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1 Abstract

Conventional microprocessor designs are guided mainly by the maximum throughput (measured as IPC), but fail
to evaluate the impact of microarchitectural decisions on the physical design, and in particular, the impact on
the interconnects. In this paper, we propose MEVA, a system to consider both IPC and cycle time in the design
space search for a given microarchitectural design. MEVA can consider a variety of user-specified architectural
alternatives that trade IPC and cycle time in the design, and performs accurate floorplanning and simulation to
fully evaluate each alternative. The resulting solution will maximize the benefit from both IPC and cycle time
to provide a better solution than a design space exploration based simply on IPC or cycle time alone. For a
sample architectural design, we are able search a space of 32 architectural configurations with physical planning
in less than 2 hours to find a processor configuration that, in terms of BIPS, outperforms the configuration with
the best IPC performance by 14% and the configuration with the fastest clock by 27%. This initial exploration
only considers the boundary cases of the large design space, but still features substantial IPC and cycle time

variation.

2 Introduction

There are a number of hardware challenges that future architects will need to face in the design of the next
generation of microprocessors. One of the primary means of increasing the speed of microprocessors has been to
scale the feature size of the current technology. As feature sizes continue to shrink, it has become evident that
interconnect delay is not scaling at the same rate as transistor delays. There have been a significant amount
of analytical and empirical analyses of the interconnect scaling bottleneck in the process technology literature.
Recently, these analyses have carried over into the computer architecture literature [1, 2].

Architects have been adding a variety of components to the chip to improve processor performance. These
components have caused the chip area to increase with successive technology generations [1], complicating layout
and routing. As the clock speed of the processor continues to increase, correspondingly dropping the cycle time

of the processor, this problem becomes even more severe, as the processor may be unable to communicate across



the chip in a single cycle [1, 3]. Agarwal et al. [1] predict that current processor designs will improve by at best,
12.5% per year in terms of performance over the next fourteen years due to hardware scaling concerns.

Prior work [1, 2, 4] has demonstrated the need to consider both cycle time and throughput (IPC) when
measuring overall processor performance. However, architects often have little or incomplete physical design
information about the architectural space they are considering. Accurate area and delay information for a given
logic block can be difficult to derive without an actual implementation of the architecture. Moreover, without
accurate physical planning, designers cannot measure the considerable impact interconnect can have on a given
architecture.

In general, the execution time for a given program is defined as
Tewee = num_instructions * CPI x cycle_time

where num_instructions is the dynamic instruction count of the program, CPI or cycles/instruction is the average
number of cycles required to execute a given instruction, and cycle_time is the inverse of the processor frequency
(measured in seconds). Much research has been dedicated to exploring the interaction between compilers and
architectures to better improve both the CPI and dynamic instruction count of a given application space. Hard-
ware/software co-design has enabled architects to more intelligently focus silicon area on processor bottlenecks.
However, it is equally important to consider the interaction between architectural design and physical design (the
latter two variables in the execution time equation). While the throughput or IPC! of a processor is determined
by the architectural design, the cycle time (clock rate) of the processor is determined by the physical design
(layout and routing). This requires designers to carefully explore both spaces together, making architectural
decisions that maximize benefits to both throughput and cycle time.

The design space explored by architects during processor design can grow quite large when considering different
algorithms (i.e. different branch predictors), component sizes and characteristics (i.e. cache size or associativity),
or pipeline depth (i.e. cache access latency). To better manage and explore this space in the face of future hardware
scaling challenges, we propose a Microarchitectural EVAluation (MEVA) system to provide a set of flexible and
customizable tools to explore an architectural design space with both accurate physical planning information
and cycle-accurate architectural simulation. Through this joint exploration of physical and architectural design,
architects can better study what designs are able to tolerate poor wire scaling and still achieve high performance.

The rest of the paper is organized as follows: In Section 3, we present an overview of the MEVA system.
Section 4 discusses the physical planning engine, while Section 5 and Section 6 deal with the architecture simulation
methodology and the design driver used to evaluate our system. Experimental results are presented in Section 7

and the paper is concluded with some suggestions for future work in Section 8.

! Architects often use IPC or instructions/cycle than CPI to measure the effectiveness of a processor architecture.
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Figure 1: Overview of the MEVA system

3 Overview of MEVA

Figure 1 shows the overall picture of the MEVA system. In the following section, we briefly discuss the inputs

and outputs of this system and the various components which build the entire system.

Inputs to MEVA

The MEVA system takes two inputs — (a) an architectural template, which is essentially a block-level netlist that
captures connectivity of the major functional blocks and (b) a library of architectural alternatives for the different
blocks in the template. Each block in the template can be implemented in a variety of ways, and architects
usually have a set of alternatives they would like to explore for each block. Together, the architectural template
and the library of alternative block implementations capture a class of microarchitectures where the underlying
connectivity is fixed, while the individual block properties such as area, timing, latency can vary significantly.
Such alternative architectures for the blocks affect the IPC through varying latency properties, and also affect
the cycle time as they have different area/timing characteristics. For example, one would like to explore different
sizes such as 8K, 32K or 64K for the instruction and data caches in the template. Decision as to which cache
size is appropriate can only be made after a careful understanding of their impact on both the architectural and
physical design spaces. It is exactly this combined design space that the MEVA system is trying to explore. It
is important to note that it is impossible to represent all classes of microarchitectures using a single template.
Thus, one can come up with a variety of templates and corresponding library files to model any architectural
space, and use the MEVA system to evaluate each class of microarchitectures with physical planning.

Since the choice of any architectural alternative on the physical design space is measured by its impact on
the achievable cycle-time, the area and timing properties of these alternatives should be modeled in sufficient

detail. Figure 3 shows how the timing properties of any block alternative is modeled in MEVA. Each alternative
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Figure 2: Timing model used in MEVA for each alternative block implementation.

is characterized with the following information:

(i) Area of the block.

(ii) Longest delay D of any combinational path inside the block as shown in Figure 3.

(iii) Input-to-clock time (T}, ): For each input pin on the block, this value specifies the maximum delay from
this pin to any flip-flop inside this block.

(iv) Clock-to-output time (7,,): For each output pin on the block, this value specifies the maximum delay to
this pin from the output of any flip-flop inside this block.

The Ty, and T,, values are very important in deciding the freedom available for the interconnects that are
connecting this block to the rest of the design. We believe that the above mentioned information is good enough
for the purpose of careful interconnect planning.

In MEVA, we use structural Verilog to represent a given architectural template and a Synopsys .lib like format

for our library of architecture alternatives.

Components of MEVA

The MEVA system consists of three main components which are (a) physical planning engine, (b) IPC estimator
and (c) cycle-accurate microarchitectural simulator.

The physical planning engine takes as input the architectural template and the library of architecture alter-
natives and performs a floorplanning of the design with interconnect planning to optimize a given cost function,
which can include a combination of objectives from the architectural and physical design spaces such as IPC,
cycle time, power etc. During this process, the planning engine also chooses different alternative implementations
for each block from the library to achieve the best set of block implementations for the given objective. The
planning engine also considers various layout related issues such as pin-assignment for the blocks, routability of
the floorplan etc., when it attempts to find the best microarchitecture in terms of the given constraints. This
planning engine is presented in Section 4.

The goal of the IPC estimator is to provide the planning engine with a quick and accurate IPC estimation for



any configuration of block alternatives chosen by the planning engine at any point of time. Such estimates can be
obtained either by a combination of statistical and analytical methods or a table-lookup method, if the number
of different configurations is not too high.

Once the planning engine determines the best configuration for each block based on the IPC estimates and
the results of the floorplan, this result can be fed to a microarchitecture simulator. The simulator performs
a cycle-accurate simulation of the underlying architectural model for a given set of benchmark programs, and

provides the IPC information characterizing the microarchitecture.

Outputs from MEVA

The output from MEVA includes the selected architectural alternative for each block in the template along with
the best possible cycle time information that it can derive using its physical planning engine, subject to the cost
function specified to the planning engine. The latency of the architectural alternative for each block can then
be fed to a cycle-accurate architecture simulator for that template to generate an accurate IPC value. The cycle
time information from the physical planning engine and the accurate IPC estimation from the simulator can then
be used to get a good estimate of the performance of the microarchitecture on the given set of benchmarks.

In the following sections, we describe our implementation of the MEVA system and a base architecture template

that we have developed to study the MEVA system.

4 Physical Planning Engine

The physical planning engine in MEVA has been developed to address the following goals:

e Optimize the performance of the system measured as the number of instructions executed per second — i.e.,

IPC/cycle_time, subject to other physical design constraints such as area.

e Consider different architectural alternatives for the blocks when searching for the architecture with the best

performance.
e Consider interconnect planning during the floorplanning stage.

The inputs to the engine are (a) an architectural template, (b) a library file that contains area and timing
information for different architecture alternatives of each block and (c) a list of allowed architectural combinations
along with the IPC for that configuration. The output of the engine is a layout of the blocks with a selection of
an architecture combination such that the performance of the system is maximized under given area constraints.

Below, we explain how we address each of the three main goals:

Objective function: The objective function for our planning engine is as follows:

Z?=1 w(i)wl(z)
IPC(c)



where w(7) is the weight of a net i, wl() is the wirelength of ¢, and IPC/(c) is the IPC of the current configuration
c. The weights for the nets are computed according to the slacks of their pins. We use a traditional simulated
annealing engine and at every temperature we perform static timing analysis. The delays for every pin-to-
pin connection are computed by the IPEM estimator [5] for 100nm technology which considers optimal buffer
insertion, sizing and wire sizing. Using static timing analysis, we can estimate the cycle time for the current layout
and the timing slack for each pin. For a net n , suppose that the slack on its source pin is s picoseconds and if
the current cycle time is ¢ picoseconds, the weight of the net n is computed as (1 — s/c)®. The exponential factor
a is initialized to 1, and is gradually increased as we move to lower temperatures, so that timing optimization is
concentrated on highly critical nets at lower temperatures.

Alternative Block Selection: We introduce an alternative block configuration selection move in the simulated
annealing engine. When a new configuration is selected, the dimensions and the timing characteristics of one or
many blocks change, as well as the IPC of the configuration in the architectural space. This is usually a significant
change to the current solution we have. In order to evaluate the effect of such moves, we first perform a small
number of low-temperature traditional floorplanning moves on the new configuration and we then decide whether
to accept or reject this configuration.

Interconnect Planning: As mentioned earlier, we use the interconnect performance estimator IPEM [5] for
estimating the wire delays under optimal buffer insertion, sizing and wire sizing. Currently, we adopt a simple pin
assignment strategy. Ignoring pin spacing constraints, all pins are assigned initial locations along the boundary
of the block depending on the locations of the other blocks which connect to these pins. The pins are then
spread out until they satisfy the width and spacing requirements. For the immediate future, we plan to integrate
pin assignment with global routing according to the algorithm described in [6]. For the global router, a good
candidate is the L-Z router presented in [7], as it is very fast and can provide congestion information.

We have implemented a version of our physical planning engine extending the floorplanner PARQUET [8] to
support timing optimization, alternative block selection and interconnect planning. Table 1 shows the quality
of our physical planning engine compared to existing state-of-the-art floorplanners [9][10] on a set of MCNC
benchmarks. Tt can be seen that our physical planning engine produces competitive results in terms of area and

wirelength.

Circuit | Sim-Tempering TCG MEVA
Area WL | Area | WL | Area | WL
ami33 1.29 48.6 1.24 50.3 1.28 | 47.7
ami49 | 39.24 715.8 | 38.20 | 663.1 | 38.47 | 646.8
hp 9.58 114.9 9.49 | 151.8 | 9.96 | 101.2
xerox | 20.50 417.4 | 20.42 | 385.0 | 21.02 | 384.3
apte | 48.50 223.8 | 48.48 | 378.0 | 49.58 | 276.6
Average | 0.99 1.03 | 097 | 1.19 1 1

Table 1: Comparison of MEVA with existing floorplanners on MCNC benchmarks.



5 Simulation Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0 tool set [11], a suite of func-
tional and timing simulation tools for the Alpha AXP ISA. The timing simulator executes only user-level in-
structions, performing a detailed timing simulation of a dynamically scheduled microprocessor. Simulation is
execution-driven, including execution down any speculative path until the detection of a fault, TLB miss, or
branch misprediction. We have made extensive modifications to the simulator to handle the architecture pro-
posed in Section 6, including creation of a finite scheduling window (and realistic release from the issue queue),
memory dependence prediction, duplicated register file support for clustered functional units, and a decoupled
front-end architecture [4]. The simulator is highly parameterizable, and a single configuration file can specify the
issue width, predictor sizes, cache configuration, pipeline depth, and more, of a given processor.

To perform our evaluation, results were collected for 20 randomly selected SPEC2000 benchmarks. The
programs were compiled on a DEC Alpha AXP-21164 processor using the DEC C and C++ compilers under an
OSF/1 V4.0 operating system using full compiler optimization (-04 -ifo). Each program has been simulated
using the ref set for that application for 200 million instructions after fast forwarding past the initialization portion

of the benchmark (as described in [12]).

6 Design Driver

We use the architectural template shown in Figure 3 to study the effectiveness of the MEVA system. It represents
a 4-way out-of-order superscalar processor and the architecture has been carefully chosen to allow us to study
many of the interesting architectural alternatives available for a microprocessor designer, and to understand the
impact of such architectural decisions in the physical domain.

The template features a decoupled front-end [4], which provides latency tolerance between the branch predic-
tion architecture and the instruction fetch unit, and provides a glimpse of the future fetch stream of the processor.
Our branch prediction architecture includes a basic block target buffer [13] (BBTB) to provide accurate, high-
bandwidth instruction supply — crucial for exploiting instruction level parallelism in future microprocessors. The
design has a minimum branch prediction penalty of 11 cycles (based on our minimum latency estimates for each
block along the pipeline). We have two levels of on-chip caches: non-blocking instruction and data caches, and a
unified L2 cache. The architecture features two renaming units and two dynamic instruction schedulers, one each
for integer and floating point instructions. As in a deeply pipelined processor like the Pentium 4 [14], our design
features a large scheduling window due to scheduler, dispatch, and register file read latency. Our scheduler makes
use of memory dependence prediction, and we verify these predictions through an in-order load/store structure.
To recover from memory dependence mispredictions, we use the same squash recovery hardware as is used by the
branch predictor for control path mis-speculations. Our execution core uses a duplicated register file architecture
with two distinct clusters of functional units in the integer pipeline.

In this paper, we focus on scaling the sizes of the following structures in our architectural exploration:
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Figure 3: A sample microarchitectural template

BBTB - the BBTB holds the basic block address predictions for the branch prediction architecture. As this
structure grows larger, more basic blocks will be able to be tracked simultaneously by the branch prediction
architecture. For applications with large instruction footprints or with frequent branches, scaling the BBTB can
provide a large benefit.

Instruction Window - the instruction window consists of the register file, the reorder buffer (ROB), and the
load/store queue (LSQ) that is used to detect memory aliasing. It makes sense to scale these structures together,
as most entries in the ROB will require storage space in the register file and/or LSQ. Scaling the instruction
window can provide benefit for applications that are plagued by long latency instructions (such as loads that miss
in the data cache) and have sufficient instruction level parallelism to continue executing instructions in the face
of these long latency instructions.

Instruction Cache - the instruction cache stores the actual instructions to be executed by the processor (specified
by the basic block address predictions of the BBTB). If there is a miss in the cache, the front-end must stall while
the L2 is probed for the desired cache block. Thus, this structure can significantly impact fetch bandwidth, and
applications with large instruction footprints may see a benefit from increasing the size of the instruction cache.
Data Cache - the data cache stores recently accessed blocks of data memory. If there is a miss in the data
cache, the instructions dependent on the load that caused the miss will have to stall, potentially filling up the

schedule-to-execute window and instruction window if there is not enough instruction level parallelism. Larger



data caches can help programs with large data footprints.
For this paper, we assume that the instruction cache is always a 2-way set associative cache and that the data
cache is always a 4-way set associative cache. The unified L2 cache is a 256 KB 4-way set associative cache. Our

gshare branch predictor has 16K entries, and the FTQ has 32 entries.

7 Experimental Results

In this section, we report evaluation results on the architecture design driver described in Section 6 using a
preliminary implementation of the MEVA system to show the viability and impact of our proposed approach of
combining architecture exploration with physical planning.

As mentioned in Section 6, we have chosen to vary the size and latency of the BBTB, Instruction Window
and the instruction and data caches primarily due to the fact that variation in these block characteristics will
result in significant change in the IPC of the architecture, leading to interesting design tradeoffs. As a secondary
reason, these blocks have been chosen also because the area and delay of these blocks can be modelled reasonably
well using CACTT [15], which is crucial for our physical planning. All our area/delay estimates using CACTI
are based on the 100nm technology parameters built inside the tool. Based on the delay values, we derive a
minimum and maximum latency value for each of the blocks based on the cycle-time of existing state-of-the-art
microprocessors. We assume that these blocks can be pipelined using a given number of flip-flops, such that the
delay of each stage inside the block is the same. It is important to note that the minimum and maximum latency
options will imply a different longest combinational delays and T, /T, requirements, which will significantly
affect the freedom during physical planning. We generate 32 architectural combinations, 16 for the minimum

latency values and 16 for the maximum latency values, as shown in Table 2.
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Figure 4: IPC, cycle time and BIPS results for the 32 configurations.

Figure 4 presents three data points for each of the 32 configurations listed in Table 2 — (a) the average IPC for
each architectural configuration obtained using our cycle-accurate simulator on a set of 20 SPEC2000 benchmarks,
(b) the cycle time of the best floorplan obtained using our physical planning engine and (c) the corresponding
BIPS rating. It can be seen from Figure 4 that configuration #16 has the best IPC and configuration #18 has

the best cycle time. However, configuration #24 has the best performance in terms of BIPS, underlining the fact



that it is important to look at both the architectural and physical design spaces together to draw conclusions
on the overall performance of any microarchitecture. Also, despite the relatively lower IPC of the maximum
latency configurations (17-32), we see a dramatic increase in BIPS for these configurations due to the cycle time
we are able to achieve with the deeper pipelining. The extra data cache latencies and larger branch misprediction
depth are particularly hard to tolerate, as shown in [2], and have a large impact on IPC for these configurations.
This again, demonstrates the importance of examining both IPC and cycle time when exploring a design space.
Ultimately, these results emphasize the importance of taking interconnect effects into account when exploring an
architectural design space. The latencies in the architectural alternatives impact the IPC of the configuration, and
can be tuned for a desired cycle time, but the true cycle time is only known once the floorplanning is complete.
This can have surprising results, as in the case of configurations #2 and #3. Despite a comparable IPC, the
wirelength impact of the larger branch prediction unit has a significant impact on BIPS (nearly a 10% reduction
in BIPS from configuration #3 to #2).

It should be noted that these results only represent the performance of the boundary cases (corresponding to
the minimum and maximum latencies of the blocks) in our driver architecture design space. A configuration with
latency between the boundary configurations should provide the most beneficial tradeoff between IPC and cycle
time, as the minimum latency alternatives do not provide an aggressive enough clock speed and the maximum
latency alternatives are too heavily pipelined (impacting IPC) relative to the impact of wirelength.

Finally, to validate the alternative architecture selection part of our physical planning engine, we tried to search
the combined solution space using the method explained in Section 4. Since we did not have a fast and accurate
IPC estimation technique that can provide quick IPC for architectural configurations during physical planning,
we use a cycle-accurate simulator to obtain IPC for all the 32 configurations that our physical planning engine
will explore and use a table-lookup method for obtaining IPC during architectural exploration. Since the tool is
searching a very large solution space, we measure the effectiveness of the tool by the quality /runtime tradeoff —
i.e., what is the quality of the best configuration identified by the tool, given a fixed amount of computing time?
Over several runs, we observed that the tool finds the best configuration (#24 in our case) in about 1/4th the
total running time required to generate the best possible floorplan for each of the 32 individual configurations.
This, we believe, is a significant savings in time and makes this method suitable for searching even larger solution

spaces.

8 Conclusion and Future Work

We have presented a microarchitectural evaluation system named MEVA that attempts to combine the architec-
tural design space with the physical design space. MEVA provides early feedback to architects about the impact
of architectural changes on physical design. A representative architectural template and corresponding block al-
ternatives were presented which has a significant variation in terms of architectural and physical design objectives.
Both IPC values and cycle times for these different architecture configurations were shown, along with the BIPS

value, to demonstrate the need for a combined consideration of physical planning during microarchitecture evalu-

10



ation. We are able to find a solution with the best BIPS rating, which is over 14% better than best IPC solution

and over 27% better than solution with the fastest clock. This performance improvement is just based on the set

of boundary alternatives in our initial exploration and further improvement may be expected. Finally, runtime

vs. quality tradeoff of the MEVA system in exploring the combined solution space was presented. Experimental

results show the viability of this approach and the need for better tools in to evaluate microarchitectures with

careful physical planning. Future work will also involve a more efficient search of a much larger design space,

beyond the boundary alternatives and more efficient ways to quickly estimate the IPC of microarchitectures.
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BPRED | ROB | RF | LSQ 1$ D$
32/1 | 128/1 | 128/1 | 72/1 | 8K/2 | 8K/2
512/1 | 128/1 | 128/1 | 72/1 | 8K/2 | 8K/2
32/1 | 512/1 | 512/2 | 288/1 | 8K/2 | 8K/2
512/1 | 512/1 | 512/2 | 288/1 | 8K/2 | 8K/2
32/1 | 128/1 | 128/1 | 72/1 | 32K/2 | 8K/2
512/1 | 128/1 | 128/1 | 72/1 | 32K/2 | 8K/2
32/1 | 512/1 | 512/2 | 288/1 | 32K/2 | 8K/2
512/1 | 512/1 | 512/2 | 288/1 | 32K/2 | 8K/2
32/1 | 128/1 | 128/1 | 72/1 | 8K/2 | 32K/2
512/1 | 128/1 | 128/1 | 72/1 | 8K/2 | 32K/2
32/1 | 512/1 | 512/2 | 288/1 | 8K/2 | 32K/2
512/1 | 512/1 | 512/2 | 288/1 | 8K/2 | 32K/2
32/1 | 128/1 | 128/1 | 72/1 | 32K/2 | 32K/2
512/1 | 128/1 | 128/1 | 72/1 | 32K/2 | 32K/2
32/1 | 512/1 | 512/2 | 288/1 | 32K/2 | 32K/2
512/1 | 512/1 | 512/2 | 288/1 | 32K/2 | 32K/2
32/2 | 128/1 | 128/3 | 72/2 | 8K/4 | 8K/4
512/2 | 128/1 | 128/3 | 72/2 | 8K/4 | 8K/4
32/2 | 512/1 | 512/4 | 288/3 | 8K/4 | 8K/4
512/2 | 512/1 | 512/4 | 288/3 | 8K/4 | 8K/4
32/2 | 128/1 | 128/3 | 72/2 | 32K/5 | 8K/4
512/2 | 128/1 | 128/3 | 72/2 | 32K/5 | 8K/4
32/2 | 512/1 | 512/4 | 288/3 | 32K/5 | 8K/4
512/2 | 512/1 | 512/4 | 288/3 | 32K/5 | 8K/4
32/2 | 128/1 | 128/3 | 72/2 | 8K/4 | 32K/5
512/2 | 128/1 | 128/3 | 72/2 | 8K/4 | 32K/5
32/2 | 512/1 | 512/4 | 288/3 | 8K/4 | 32K/5
512/2 | 512/1 | 512/4 | 288/3 | 8K/4 | 32K/5
32/2 | 128/1 | 128/3 | 72/2 | 32K/5 | 32K/5
512/2 | 128/1 | 128/3 | 72/2 | 32K/5 | 32K/5
32/2 | 512/1 | 512/4 | 288/3 | 32K/5 | 32K/5
512/2 | 512/1 | 512/4 | 288/3 | 32K/5 | 32K/5

Table 2: List of 32 different architecture configurations explored. Each entry corresponds to the size/latency of

that block.
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