
UCLA CSD TR030019
Integration of Real-Time Information into a Virtual Environment ∗

Scott Friedman Richard Muntz Matthew Yeo

Department of Computer Science
University of California, Los Angeles

{friedman,muntz,myeo}@cs.ucla.edu

ABSTRACT

Advances in sensor technology and wireless communication are en-
abling the real-time (or near real-time) collection of information
about the physical world. This raises many interesting possibilities
as well as challenges for acquisition and visual presentation of this
data. We start with a fully interactive, photorealistic 3D model of an
urban environment. A user “flies” through the model and relevant
sensor data which impacts the rendering of the user’s current field
of view must be fused with the static model in a timely fashion.
Within this environment we assume sensor data of various kinds
may be available and the goal is to acquire this information and in-
tegrate it into the 3D model of the static environment as needed.
One application scenario might be for emergency response.

We describe our testbed application which at present can track
moving objects and integrate position data into the 3D urban simu-
lation model. We discuss the tradeoffs between latency in the dis-
play of object positions in order to correct/smooth the noisy mea-
surement data as well as a number of system resource optimization
issues. The testbed is operational and actual experience with the
system is reported.

CR Categories: H.5 [Information Interfaces and Presentation]:
Multimedia Information Systems— [J.7]: Computers in Other
Systems—Real-time, Command and Control

Keywords: interactive visualization, data filtering, sensors

1 INTRODUCTION

Advances in sensor technology and wireless communication are en-
abling the real-time (or near real-time) collection of information
about the physical world. This raises many interesting possibilities
as well as challenges for acquisition and visual presentation of this
data. We start with a fully interactive, photorealistic 3D model of
an urban environment. Within this environment we assume sensor
data of various kinds may be available and the goal is to acquire this
information and integrate it into the 3D model of a static environ-
ment as needed. One application scenario might be for emergency
response. A central coordinator may, for example, be getting loca-
tion information for various vehicles, personnel, and other assets as
well as environmental sensor readings such as temperature, air pol-
lutants, wind direction, etc. The visual display which incorporates
the known static infrastructure as well as the real-time information
provides obvious advantages. For example, the coordinating person
can “see” the same context that a person on the scene may be seeing.
Also, context is often important to leverage human cognitive pow-
ers and common sense. For example, the visualization could help
the coordinator realize that a fire is approaching a hazardous chem-
ical factory. Automating recognition of this situation requires an a

∗This work was supported by NSF grants IIS-0086116, ANI-0085773
and EAR-9817773.

priori specification of a very large variety of such dangers which is
problematic. Even context hidden from an on-the-scene observer,
for example an underground gas pipeline, could be observed in the
simulation. These are examples of critical context information that
is part of the static model. Sensors also raise the possibility of ob-
servation of information that is not directly available, even to those
on the scene. For example, underground real-time measurements of
contaminants, temperature, water, etc.

Figure 1: UCLA Campus Virtual Model.

Our testbed application at present is confined to the tracking of
moving objects and the integration of a visualization of these ob-
jects into the 3D urban simulation model. Specifically we deal with
actual GPS data gathered from transportation vehicles on the UCLA
campus. Figure 1 shows a snapshot from a model of UCLA with
two of the campus buses in view. One of the major challenges to be
addressed is the imprecision of the GPS data. Due to the noise in
the data, it cannot be directly used to position the object in the sim-
ulation. This raises questions such as (a) how to smooth or correct
the reported values and (b) what the tradeoffs are with latency in
the displayed location of the objects. The issue of smoothing or cor-
recting the data is not just a signal processing problem since there is
also an issue of compatibility with what is known (or assumed with
high probability) such as that vehicles move on roads, that a vehicle
has its wheels on the ground, etc. Latency is often a communica-
tions issue but here the problem can be that some position readings
for a time t can only be corrected after the measurements through
time t + τ are known. Another issue concerns optimizations of
various resources in the system. (The system includes the devices
on mobile objects that measure and transmit location data, the soft-
ware for smoothing the raw location data,and the urban simulation.)
Issues include how and in what form the object positions are up-
dated in the simulation and also optimizations in which only ob-
jects within the viewing frustum of some observer need report their
position. Such optimizations involve consideration of many factors



including communication delays, latency requirements of the data
correction/smoothing algorithms, motion models/constraints for the
objects being tracked, and also any constraints on the movement of
the viewing frustum. Resource optimizations can also exploit the
fact that the aesthetic visual requirements for an object distant from
the viewer allow for less precise information. This can translate, for
example, into less frequent reporting by an object which is visible
but at considerable distance. Consider for example, a user at ground
level observing vehicles going through an intersection versus a user
at 2000 feet with a bird’s eye view of campus. In the former case,
there are few vehicles in view at any time but they need to be repre-
sented with fine-grained precision. In the latter case, most vehicles
may be visible but a more gross representation of their movement
will suffice. Since the user can “fly” from the intersection to the a
2000-foot high vantage point, the system should smoothly transi-
tion from the one extreme to the other.

This paper is organized as follows. In section 2 we discuss the
overall architecture and software components. In particular the ur-
ban simulation, the vehicle GPS units, error characteristics of the
data, and some characteristics/assumptions based on the objects be-
ing tracked, which in the testbed, are campus transit buses. In Sec-
tion 3 we present the algorithms used for cleaning/smoothing the
reported GPS readings, the performance considerations and result-
ing protocols for communication to the urban simulation of object
motion, and methods for minimizing the communication required
to and from objects based on visibility. In Section 4 we compare
our environment and objectives to the most closely related work,
and we offer conclusions in Section 5.

2 OVERVIEW OF SYSTEM ARCHITECTURE

The architecture of our testbed is composed of four principle com-
ponents: sensor platform, data repository, data filter, and visualiza-
tion tool. The relationship between these elements is fairly straight-
forward and this section will describe the details of these compo-
nents as raw data flows from the sensors through the system until
it is finally visualized on a user’s display. All of the components
except for the data filter have been in use for some time within a
variety of other research projects, so we will focus here on the spe-
cific features related to this component of the system.

All of the data used for this project is derived from sensor plat-
forms installed within seventeen transit buses operated by UCLA’s
Fleet and Transit Services. The platform itself is essentially a small
embedded computer with a variety of sensor input capabilities. This
computer is connected to a wireless CDPD modem which provides
continuous IP connectivity for the platform. While the sensor plat-
form can receive data from a variety of sensor devices on board the
buses, here we are concerned only with the location, speed and di-
rection of the bus. For this project we are using a GPS sensor alone
to locate bus positions. We are currently working to fuse additional
sensor data available on the bus with the GPS for more accurate raw
position reporting. For instance an electronic compass would pro-
vide more precise heading information while very accurate speed
information can be derived from the bus’s transmission. It is impor-
tant to note that many other types of objects (people, cars, etc.) that
we might be interested in visualizing may not have additional sen-
sor data available. With this in mind, we explore the issues related
to accurately and in an aesthetically acceptable manner, visualizing
objects using GPS data.

Collecting position data from a GPS device is simple enough as
the data is most often reported as a series of ASCII strings or sen-
tences. These sentences follow a protocol and syntax defined by
the NMEA-0183 standard1 that, when parsed, provide the GPS de-
vice’s solution to position, heading, and speed, among other things

1NMEA - National Marine Electronics Association

defined in the standard. As the GPS device continually produces
position information at one second intervals, the sensor platform
collects this data and converts it into a binary packet for reporting
to the data repository.

Data packets are transmitted over a wireless CDPD2 connection
to a data repository which acts as a collection point for all of our
sensor platform data. Unfortunately, maintaining any wireless con-
nection is not always possible and during the construction of our
testbed we have experienced problems with connectivity. The two
most serious have been “dead spots” where the signal from our
wireless provider is either very weak or non-existent and, second,
having our data connections bumped in favor of voice traffic. What-
ever the cause, we implemented a mechanism for buffering data on
the sensor platform until the CDPD connection could be restored.
Fortunately, in most instances the buses move quickly back into ar-
eas of connectivity and fill-in the repository with any missing data
from their buffer. While not experienced during this project, an-
other possible cause of missing data is loss of the GPS signal itself.
When this happens the! sensor platform cannot report updates to
its position at all. Here, again, is a reason to consider implementing
additional sensor capabilities. With compass and speed information
available a dead reckoning could be computed from the last known
position in place of the GPS signal until it becomes available again.

As the data repository receives updates from the sensor platforms
over the network they are stored in a database. While the database
provides us with an archive of mobile sensor data for other projects
as well. It also has a practical purpose for a visualization system
like the one we are describing; it allows us to support a playback
mechanism for user evaluation of real-time events. While a com-
mander could clearly use a system like this for real-time coordina-
tion of units in the field, an off line playback capability allows for
analysis, training, and debriefing. Another benefit of an intermedi-
ate repository is that applications can all use a common mechanism
for accessing the data, whether real-time or archival. Real-time ap-
plications incur a small increase in latency since sensor platforms
need to add data into the repository, and application clients must
request and retrieve that data, but we believe that the overall benefit
of this cost is worthwhile.

The data filter acts as a client to the repository to retrieve location
information for each of the buses. The filter continually requests
the most up-to-date raw position information for each of the buses
currently being filtered. Filtering here implies a series of steps that
are performed to interpret the raw GPS data in terms of knowledge
of the the real world. For the data filter this knowledge is encoded
in a data structure representing the location of the roads and the
location of relevant entities along the roads such as intersections,
crosswalks and bus stops. The data filter uses this information to
first determine which road segment the bus is on and then through
additional corrections, determines the bus’s location along the road.
Once the filter has made a determination of where it believes the
bus really is, it can make some final aesthetic adjustments before
sending commands to visualize the bus.

The visualization system we are using is the Urban Simulator,
an application developed by the Urban Simulation Team at UCLA3.
The Urban Simulator is capable of rendering in real-time very large
urban environments. The environment we used for this project is a
model of the UCLA campus and the surrounding parts of Los An-
geles. The model itself is several hundred megabytes in size and
roads, buildings, etc., are accurate to within about a foot in location
and dimensions. It is within this virtual world that the buses are
visualized using the position data provided by the data filter. The
models of the buses themselves are loaded along with the static ur-
ban model, and their locations are updated by the data filter through
an API that the Urban Simulator exposes through the network. The

2CDPD - Cellular Digital Packet Data
3http://www.ust.ucla.edu



user navigating the environment sees the buses realistically moving
about the model as they would in the real-world.

3 ALGORITHMS AND OPTIMIZATIONS

3.1 Filter Module: Smoothing Data
As mentioned above, the data filter processes the raw GPS data
to attempt to map the raw data into a more accurate reconstruc-
tion of the actual movements of the vehicles. Knowledge of the
roads on which the vehicles travel is used in conjunction with sev-
eral assumptions regarding the nature of the vehicles’ movements,
e.g., that they travel on the correct side of the road. However, it is
impossible to correct a single point obtained from the GPS device
using only the above information; coordinates of the points before
and after it are needed as well. For this reason we maintain a buffer
of points, which introduces some latency between the time when
a GPS reading is received and the time when we can inform the
simulator of an accurate, filtered version of that point reading. We
also want vehicles to be displayed along a smooth, continuous path,
the final vehicle position is calculated as the interpolation of several
consecutive points in the buffer4

When a new point is received from the vehicle, it is placed at the
end of the buffer, and all other points in the buffer move one step
closer to the front of the buffer. Thus, the oldest point in the buffer is
at the front, while the newest point is at the end. As new points enter
the buffer, more is learned about the movement of the vehicle, so the
position of older points in the buffer can be refined. However, we
do not want to change the position of any points that have been used
in an interpolation to produce the vehicle’s final position, since this
could lead to discontinuities in the vehicle’s movements. Therefore
there is a window of interpolated points at the front of the buffer on
which no further calculations are performed.

The first and most basic step in refining a raw GPS device read-
ing is to snap it to the known system of roads on which the vehi-
cles travel, where the network of roads is represented as a directed
graph. However, simply snapping the GPS data to the closest point
on the graph does not take advantage known characteristics of ve-
hicle motion; namely that a vehicle’s direction of motion is very
close to the direction of the street on which they are traveling and
that vehicles follow a continuous path along the street graph. Since
we know both the motion and previous position of the vehicle from
stored points in the buffer, we can use this information to more
accurately determine to which road (that is, to which edge of the
graph) a point should be snapped. Segments that have a direction
close to that of the vehicle’s motion are given preference, as well as
are those that are close to the road on which the vehicle was previ-
ously traveling. Since these calculations only require knowledge of
past points, they are performed when the point is first received from
the GPS and placed at the end of the buffer.

Snapping points to the road is a method of correcting lateral er-
rors in vehicle positions, but it can neither correct nor detect er-
rors along the direction of the road. This does not create a serious
problem until the bus turns, at which point the vehicle may either
“overshoot” the turn if the GPS coordinates are ahead of the actual
position of the vehicle in the direction of travel, or “undershoot” the
turn if the GPS coordinates are behind the actual position. If the ve-
hicle overshoots the turn, it will first appear to pass an intersection,
then make a sharp turn and drive across a corner to one of the cross

4Some computations on the raw GPS data are aesthetically neutral and
some are made to provide a more realistic visual experience. Which is which
is clear from the descriptions in this section. For some purposes, those
calculations made for aesthetic reasons may not be appropriate, since these
modifications to the data tend to eliminate abnormal conditions, e.g., when
a vehicle leaves the road.

1' 2' 3'

6'

7'

7

5'4'

4

6

3
21

5

Figure 2: Overshoot Before Correction.

1' 2' 3'

4

5

1
2

3

4'

5'

Figure 3: Undershoot Before Correction.

streets that it just passed (see Figure 2). If the vehicle undershoots
a turn, it will start to turn before the actual intersection and “cut”
the corner (see Figure 3. While both of these situations produce
undesirable results, they require very different solutions.

A point that overshoots an intersection cannot be detected by
looking only at the earlier points stored in the buffer, Therefore
it can not be resolved immediately when a point is first received.
This is due to the fact that such a point will be encouraged not to
turn by the snapping algorithm mentioned above. The line segment
past the intersection has direction similar to the direction of motion
of the vehicle up to this point, while the cross street is most often
perpendicular to the motion of the vehicle. Since we cannot rely
only on past data, we must correct over shoots based on new data
that can alert us of the problem; namely points that are snapped
to the cross street. We detect overshoots when as a point is about
to move into the window of interpolated points at the front of the
buffer, since this is when the most relevant data is available. The
distance in terms of number of graph edges between the point being
examined and points later in the buffer is computed. This distance
is compared with points closer to the front of the buffer and the
points later in the buffer. If the latter distance is smaller, then the
point being examined is not along the path connecting points before
it and points after it, so it should be corrected. It is snapped to
the road using the snapping algorithm above, but this time only
those segments between the older points and the newer points are
considered (see Figure 4).

One large difference between over shoots and under shoots is
that over shoots can be detected qualitatively, while under shoots



1' 2' 3'

6'

7'

7

4

6

3
21

5

4'

5'

Figure 4: Overshoot After Correction.

1' 2' 3'

4'

5'

4

5

1
2

3

Figure 5: Undershoot After Correction.

are merely a quantitative problem. That is, we want to smooth the
data to provide a smooth, round turn, but we do not want it to cut it
so much that the vehicle appears to drive over the curb or through
buildings. For this reason, instead of explicitly detecting when an
under shoot has occurred, we try to resolve the main cause of under
shoots in general, which requires the correction of errors parallel
to the motion of the vehicle. Since errors in the GPS data are rea-
sonably constant over time, we can use past errors as a good ap-
proximation of current errors. Thus, we can use the current lateral
error as an approximation of what the parallel error will be after the
vehicle makes a 90-degree turn. An average error vector is main-
tained, which is simply the average difference between the raw data
and the calculated vehicle position for some past number of points.
This vector is added to raw data before the original snap to the road
is done, and the occurrence of under shoots is significantly reduced
(see Figure 5).

One other anomaly that can be caused by even a slight parallel
error is the appearance of vehicles stopping at inappropriate places,
for example in the middle of an intersection or on top of a cross-
walk. When the GPS data shows a vehicle stopped at one of these
places, we can guess that most of the time the vehicle is actually
stopped at the edge of the region, at a stop sign or stop light. While
there are situations in which a vehicle could stop in one of these ar-
eas (e..g., when waiting to make a left turn) data for these situations
looks much like parallel error, so we treat all cases as if the vehicle
is stopped at the edge of the region.

Detection of this sort of anomaly requires the detection of two
conditions: when the vehicle has come to a stop, and when the ve-

hicle is in a region where it should not be stopped. Since we have
knowledge of the streets on which the vehicle is traveling, we also
keep a list of points on the street graph that correspond to points
where a vehicle might stop, as well as the width of the associated
region in which a vehicle should not stop. Detecting when a vehi-
cle has stopped is a matter of comparing consecutive points in the
buffer to see if they are below some minimum threshold distance.
However, in order to correct the situation, we must be able to detect
stops as soon as the vehicle enters the region, even if it does not
stop for several more seconds. When a point enters the window of
interpolated points in the buffer, it is compared to the list of stops to
see if it is in a region in which it is normal to stop. If it is, the points
later in the buffer are checked to see if the vehicle stops. If it does,
all points between when the vehicle enters the region and when it
stops are snapped to the edge of the region. When the vehicle starts
moving again, the next few points are brought closer to the edge of
the region to give the vehicle the appearance of a smooth start up,
rather than jumping to the spot at which the GPS data showed it
stopping in the first place.

3.2 Optimization of Communication
In the current testbed implementation we have at most 17 vehicles
being tracked at any one time. With this small number of objects
reporting their position once per second, communication require-
ments and processing at the filter do not stress the system. However,
this naive approach of having all objects report continuously is not
optimal since not all vehicles are within view all the time. In order
to scale the system to situations where there are a large number of
objects being tracked, we analyze how we might control reporting
by vehicles to closely approximate the intervals when they are in
view. Our objective is to have the position data for vehicles at the
urban simulation in time to maintain a smooth, seamless view. To
begin, we need some notation for critical system parameters. Let

• V = the maximum latency required for a vehicle to transmit
a point, or a buffer of points, to the filter. This includes any
processing that may be done at the vehicle between when a
point is recorded and when the vehicle is ready to transmit
that data.

• F = the maximum latency required by the filter. In order to
calculate the final position for time t, the filter must have all
points in the interval [t, t + F ].

• M = the maximum latency of a message passed from the
filter to a vehicle. That is, a message sent by the filter at time
t will be received by the vehicle at least by time t + M .

• S = the maximum latency of a point sent from the filter to
the simulator. That is, a point sent by the filter at time t will
be displayed on the screen at time t + S.

• A = the maximum latency required to send frustum infor-
mation from the simulator to the filter.

• T = the maximum total latency of the system. That is, at
time t, the vehicles are displayed at their positions as of t−T .
Since a point must be transmitted by the vehicle, stored in
the filter, and transmitted to the simulator, we can see that
T ≥ V + F + S.

Figure 6 shows the communication timeline under normal
streaming, in which all vehicles are transmitting their positions
once per second5 For the rest of this discussion, let us say that the

5We use maximum latencies in all discussions since, to avoid jitter in
the display, we need to allow for this maximum time. Of course data can be
delivered early and delayed appropriately by the processing algorithms.



Simulator

Filter

Vehicle

Filter starts
sending point.

Simulator receives
and displays position.

Time

-T -S-F -S C

V F S

Filter receives
point and
starts processing.

Vehicle starts
sending point.

Figure 6: Continuous Streaming from Vehicles.

viewer is looking at a certain point on the screen at time t = 0. At
time t = −T , the vehicle records this point and transmits it to the
filter. At time t = −T + V , this point is received by the filter and
stored in the filter’s buffer. Over the interval [−T+V, −T+V +F ],
the filter receives new points from the vehicle, stores them in its
buffer and performs smoothing calculations on them. At time
t = −T + V + F , the filter transmits the smoothed version of
this point to the simulator and at time t = −T + V + F + S, or
since T = V + F + S, time t = 0, this point is displayed on the
screen to the user.

When choosing an appropriate communication strategy, we must
examine certain constraints imposed by the system. In order to dis-
play a point on the screen at t = 0 (which corresponds to the
vehicle’s position at t = −T ), we can see by working backwards
that, regardless of the strategy used, the filter must send this point
to the simulator no later than t = −S. Thus, assuming negligible
computation time by the filter, the vehicle must transmit any data
that the filter might need no later than t = −S − V . As stated
above, in order to calculate the position for the point at t = −T ,
the filter needs all points from t = −T to t = −T + F . Since
T + F = −S − V , the vehicle will necessarily have all needed
data by the time that it needs to transmit to the filter. This assumes
that the vehicle has enough memory to store the data in this interval.
Still working backwards, we see that the filter must have some idea
of what will be visible at t = 0 no later than t = −S − V − M .
At this point, there are two basic alternatives. The filter can either
have some idea whether or not this vehicle will be visible at t = 0,
and explicitly tell the vehicle to send its position if it will be visi-
ble, or the filter can transmit its estimation of the viewing frustum
at t = 0, and let the vehicle decide if it should transmit its position.

We are interested in minimizing the network traffic by having
vehicles stream their position data in intervals that closely approx-
imate (but subsume) the intervals in which that data is required by
the simulator. Thus if a vehicle is visible during interval (t1, t2),
that vehicle needs to stream its position data in an interval that sub-
sumes (t1 − T, t2 − T + F ). Note that on the trailing edge of the
interval, an extra F seconds of data are required by the data filter
smoothing algorithm. Here, in consideration of space limitations,
we will be concerned with the leading edge of the intervals when a
vehicle needs to stream position information. The trailing edge is
less critical and also yields to similar analysis.

3.2.1 Vehicles Do Culling

For each vehicle to do culling, it must have some information to
compute a bounding box (or sphere) of where the viewing frustum
might be at a future time. To begin, we assume that the data filter
periodically sends the vehicles viewing frustum and user motion
data (velocity, acceleration) and perhaps other information useful

in computing a relatively tight bounding box with period P .
Given the information in the last report from the data filter and

the age of that report, let
MBFV (LastReport,Age, T ) be the minimum bounding box, at
a vehicle, for the viewing frustum at time T into the future. Here we
are not concerned with the exact nature of the information sent from
the data filter or the algorithm for computing the MBFV . We are
interested in how to formulate the rules for using this information
to ensure that all necessary data reaches the simulation in a timely
fashion.

We assume that a vehicle knows its own position with no de-
lay. Due to imprecision in the GPS data, its current raw position is
expanded to a bounding box centered at that raw position. Let us
denote this bounding box as MBLV , which stands for Minimum
Bounding Location at Vehicle. The vehicle should start sending
data at a time t if there is a non-empty intersection of its current
MBLV and MBFV (LastReport,Age,+T ).

A number of variations on this basic scheme can be considered.
For example, if the data filter knows the prediction algorithm that
the vehicles use, there can be a protocol in which, if the viewing
frustum, deviates from the prediction, the data filter will send an
earlier update. This allows for more aggressive assumptions to be
used in the prediction in order to obtain tighter predictions since, if
the assumptions are wrong, the data filter can send updated infor-
mation that corrects the vehicle’s predictions.

Simulator

Filter

Vehicle

Simulator receives
and displays position.

Time

-T= - -S-V - F -S C

F S

Last-report
received from 
vehicle.

Vehicle sends
report on its
location

V’

t1

t0

V

M

MBL
V
(Last-report,Age,M+V+S-T)

MBF
V

(M+V+S)

Figure 7: Filter Culling With Fast Communications.

3.2.2 Data Filter Does Culling.

In this scheme, the vehicles send location information to the data
filter periodically. The data filter determines when a vehicle should
start streaming position data and sends a “start” message to the ve-
hicle in time for it to send the needed data. The timing in this case
is a bit more complex. Referring to Figure 7, a vehicle sends its
position information to the data filter at time t1 and this is received
at the data filter at least by time t1 + V ′ where V ′ is the maximum
latency that this message will experience. If the data filter sends a
“start” message to the vehicle at time t, that message is received as
late as t + M at the vehicle. The vehicle can then send its position



data which arrives at the data filter perhaps as late as t + M + V
and at the simulator at t + M + V + S.

From Figure 7 we see that for the vehicle position data to reach
the simulator at time t0, the vehicle must send the data by t0 −S −
V . Since the “start” message has a maximum latency of M , the
data filter must send the “start” message by t0 − S − V − M .

We recall that M is communication delay from the data filter to
a vehicle and that F is a delay required by the data filter smoothing
algorithms. Therefore these are not control variables that can be
tuned to minimize communication bandwidth requirements. There
are two cases to consider: M < F and F < M .

Case F > M . This case is illustrated in Figure 7. Note that at
t0 − S − V − M the data filter must know that it is possible that
the vehicle comes into view at time t0. The data filter knows the
current viewing frustum but must predict the minimum bounding
box containing the frustum an interval M + V + S into the future.
We denote this as MBFF (M +V +S). At the same time the data
filter must create a minimum bounding box for where the vehicle
might be at time M + V + S − T into the future. This minimum
bounding box we denote MBLV (LastReport,Age,M+V +S−
T ). We note that the last argument here can be negative. (This is
not the case illustrated in Figure 7.) If this value is negative but less
than Age in absolute value, it is just the distance into the future that
the LastReport data needs to be projected. The more interesting
case is when it is negative and greater in absolute value than Age.
In this case, the projection is into the past or, if the LastReport
contains information about where the vehicle has been (which it
knows rather precisely) this not an issue of projection into the future
but the report may be an approximation of the past trajectory. Note
also that prediction is only completely avoided if M +V +S−T +
Age < 0 at all times. If P is the period between vehicle reports,
and if V is the communication delay, then to avoid all prediction of
vehicle position requires M + V + S − T + P + V ≤ 0 since this
is the worst case.

Case M > F . This case is illustrated in Figure 8. In this case,
since M > F , at t0 − S − V − M the data filter has to compute
MBFF (M +V +S), i.e., a minimum bounding box at M +V +S
into the future, knowing the current viewing frustum and velocity,
etc. It also needs to predict from the last report from each vehicle,
MBLF (LastReport,Age,M + V + S − T ). If the intersection
of these two bounding boxes is non-empty, then a “start” message
must be sent to the vehicle. (Note that M + V + S − T is always
positive if T = S + V + F , its minimum value, and M > F .)

From this analysis, it would appear that the vehicle culling so-
lution is more efficient in most cases. Since it does not place any
constraints on the relative latencies of the system, it is more widely
applicable. It also distributes more work from the single point at the
filter to the individual vehicles. However, in systems that meet the
constraints for the centralized solution, and in which the vehicles
may not have the needed computational abilities to decide when
they are visible, the second solution may be the only choice.

4 RELATED WORK

Our work combines aspects from previous research in two areas:
the visualization of real-time information, and the culling of mov-
ing objects from a virtual environment. However, our goal of
presenting the user with an accurate and realistic view of events
and their surroundings in real time presented additional challenges.
There has been a great deal of research done on systems to collect
and display real-time information to a user in a convenient man-
ner [4, 2, 3]. However, most of these systems have one or more of
the following simplifying characteristics: the raw data that is be-
ing displayed is accurate enough that it can be usefully displayed
to the user with little or no correction, or the user interface for the

Simulator

Filter

Vehicle

Simulator receives
and displays position.

Time

-T= - -S- V - F -S C

F S

Last-report
received from 
vehicle.

Vehicle sends
report on its
location

V’

t1

t0

V

M

MBL
F
(Last-report,Age,M+V+S-T)

MBF
F

(M+V+S)

Figure 8: Filter Culling With Slower Communications.

system is abstract or coarse enough that the usefulness of the appli-
cation is not affected by small errors in the data, e.g., a freeway map
showing real-time travel speeds Our work differs in the fact that we
display data that can have errors of up to 50 feet in a photorealistic
environment where a user can detect errors of less than a few feet.
While the idea of collecting complex data and showing it to a user
in a way that can be easily understood and processed by the hu-
man mind has been explored previously, we have expanded greatly
on ways of filtering information to remove errors introduced by the
underlying hardware. The result is a system in which a user can
visualize relatively accurate data in relation to a highly detailed en-
vironment. We have also explored and analyzed methods of culling
unnecessary location data which would be required to scale the sys-
tem several orders of magnitude.

Systems to display dynamic information to a user who can
change his point of view freely are well documented [2]. It has been
shown that in order for these systems to be scalable, objects that are
not visible to the user should be culled in some manner so that in-
tensive calculations are not done unnecessarily [1, 5]. However,
most past work has dealt with objects whose motion was either pre-
recorded, generated by an internal motion model, or rendered at an
abstraction level that eliminated the need for the level of accuracy
needed for a realistic and accurate rendering. In our application,
the data is near real-time, is relatively unpredictable, and requires
accuracy and realism, Also, we have explored methods to distribute
the job of culling to the distributed individual objects, while previ-
ous research has considered only performing this task at one central
location.

5 CONCLUSIONS

As sensor technology advances, it will make much real-time infor-
mation available. There are a number of technological challenges
including the need to control access to much of this information
to ensure privacy. Our purpose here was to explore algorithmic is-
sues concerning visualization of sensor data (in our particular case,
tracking information) in terms of (a) smoothing or cleaning of noisy
data and (b) optimization of data communication based on culling
of location information for vehicles that are not visible. Future
work would include reduced precision in tracking objects that are



visible but at a far distance from the viewer. Another issue to be
studied is scalability when the number of objects grows. The chal-
lenge is that the on-board computers of the objects should perform
much of the work so that a bottleneck is avoided. This is particu-
larly difficult in that the objects are moving (as well as the view-
ing frustum) and associations based on proximity are continually
changing. Future work should also include consideration of multi-
ple simultaneous users with different viewing frustums. This then
becomes an “N-to-M” problem with N consumers (viewers) and M
sources (vehicles) where the subset of sources feeding a destina-
tion is continuously changing and potentially overlapping with the
subset of sources feeding other consumers.

REFERENCES

[1] Chenney and Forsyth. View-dependent culling of dynamic sys-
tems in virtual environments. In Proceedings of 1997 Sympo-
sium on Interactive 3D Graphics, April 1997.

[2] Hu, Mehrotra, Winkler, Ho, Gregory, and Allen. Integration
of saturn system and VGIS. In Proceedings of ARL Federated
Laboratory Advanced Displays and Interactive Displays Con-
sortium, February 1999.

[3] Kawasaki, Murao, Ikeuchi, and Sakauchi. Enhanced navigation
system with real images and real-time information. In Proceed-
ings of 8th World Congress on Intelligent Transport Systems,
October 2001.

[4] Long, Mantey, Rosen, Wittenbrink, and Gritton. REINAS: A
real-time system for managing environmental data. In Proceed-
ings of Conference on Software Engineering and Knowledge
Engineering, June 1996.

[5] Shou, Chionh, Huang, Ruan, and Tan. Walking through a very
large virtual environment in real-time. In Proceedings of Very
Large Databases, September 2001.


