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Abstract

Occlusions are commonplace in man-made and natural environments; they often result in photometric features where a
line terminates at an occluding boundary, resembling a “T”. We show that the 2-D motion of such T-junctions in multiple
views carries non-trivial information on the 3-D structure of the scene and its motion relative to the camera. We show how
the constraint among multiple views of T-junctions can be used to reliably detect them and differentiate them from ordinary
point features. Finally, we propose an integrated algorithm to recursively and causally estimate structure and motion in the
presence of T-junctions along with other point-features.

1 Introduction

The term “T-junction” commonly refers to a point on the image where a line segment terminates on another line, as illustrated
in Fig. 1. The significance of T-junctions is that they often correspond toocclusions: the terminating segment lies on a surface

Figure 1:Examples of proper (left) and false (right) T-junctions.

in space that is occluded by another surface, whose occluding boundary contributes to form the “T” (Fig. 1 left). When this
occurs we say that the T-junction isproper. When this does not occur, and both line segments lie on the same surface in
space, we have afalseT-junction, which is simply a radiance profile that happens to resemble a “T” (Fig. 1 right).

In order to distinguish a proper T-junction from a false one, one needs multiple views of the scene taken from different
vantage points, as we describe in Sect. 1.2. Nevertheless, most photometric feature detectors, for instance the popular Harris’
corner detector [5], happily detect both types because of the rich irradiance profile. While false T-junctions do not cause any
problem if fed to a multiple-view geometry reconstruction algorithm (they are just ordinary point features), proper T-junctions
do not correspond to any point physically attached to the (rigid) scene, and therefore they adversely affect the estimate of the
multiple-view geometry.
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Traditionally, T-junctions are detected based on their photometric signature and excised as outliers. This, however, presents
two problems: first, detecting T-junctions based on local photometry is unreliable, because true T-junctions are defined based
on their global geometric relationship among multiple views. Second, discarding T-junctions as outliers is tantamount to
throwing away information. In this paper, we show that T-junctions carry non-trivial information on the structure of the
scene and its motion relative to the camera, we propose algorithms to reliably detect T-junctions based on their multiple-view
geometry, and we propose an integrated algorithm to recursively and causally estimate structure and motion in the presence
of T-junctions along with other point-features.

1.1 Relation to prior work and contribution of this paper

Detection of T-junctions from one single image based on local photometric information has been the subject of numerous
studies in the field of edge and contour detection. The interested reader can consult [12, 3, 13, 15] and references therein.
Our work, instead, addresses the role of (proper) T-junction in multiple-view geometry: it is exactly the difficulty in reliably
detecting T-junctions in single images that motivates us to extend the analysis to multiple images, where proper T-junctions
can be detected and differentiated from other features, including false T-junctions.

Detection on T-junctions based on the local (instantaneous) motion was addressed in [2] based on a probabilistic model.
We work in a deterministic, wide-baseline, multiple-view scenario that complements that of Black and Fleet [2]. Naturally,
our work relates on the expansive literature on multiple-view geometry, which we cannot review in detail given the limited
space. We refer the reader to the recent monographs [4, 6] and references therein for an accurate account of results and
credits. Recently, [1, 7] generalized the geometry to points moving on lines. Matrix rank conditions have been an effective
tool to study the geometry of multiple views of points and lines [16, 9, 14, 11]. This paper shows that the same framework
can be used to study T-junctions.

In this paper we first show that T-junctions carry non-trivial information on the structure of the scene and its motion
relative to the camera (Sect. 2). We then show how the geometric constraints can be used to reliably detect T-junctions based
on their motion and geometry (Sect. 3). Once we have unraveled the geometry of T-junctions, in order to arrive at a robust,
causal inference scheme to estimate structure and motion, we implement a robust version of the extended Kalman filter, as
proposed by [10], in Section 4.2, and document its performance in Section 5.

1.2 Notation and definition of T-junction

Consider two lines in space,`1 and`2, each represented by a base point (a point on the line)X1, X2 ∈ R3, and a vector
V 1,V 2 ∈ TR3, such that̀ i = {X = Xi + ρV i, ρ ∈ R}, i = 1, 2. In homogeneous coordinates, we writēXi =
[XT

i , 1]T ∈ R4 andV̄ i = [V T
i , 0]T ∈ R4, i = 1, 2. Note that points have a “1” appended, whereas vectors have a “0”. We

often forgo the bar in the homogeneous coordinates when the dimension is clear from the context.
A “T-junction” is defined as a point on a plane that is the intersection of the projection of two lines onto it (see Figure

1). For perspective projection, a T-junction is represented by homogeneous coordinatesx = [x, y, 1]T ∈ R3 that satisfy the
following equation1

x ∼ Π[X̄1 + ρV̄ 1] ∼ Π[X̄2 + γV̄ 2] (1)

for someρ, γ ∈ R, whereΠ = [R, T ] with2 T ∈ R3 andR ∈ SO(3) for the case of calibrated geometry, otherwise
R ∈ GL(3). In order to avoid trivial statements, we require that the two lines be non-intersecting (otherwise their intersection
provides a trivial incidence relation), and non-parallel (otherwise the T-junction degenerates to an entire line). That is, we
require that

`1 ∩ `2 = ∅, V 1 × V 2 6= 0 (2)

where× denotes cross product between vectors.
Consider now a collection ofm images of a scene taken from different vantage points, and assume that one can establish

the correspondence of a T-junction (represented by the two lines`1 and`2) among the different views. That is, one can
measurex1, x2, . . . , xm ∈ R2 that satisfy

xi ∼ Πi[X1 + ρiV 1] ∼ Πi[X2 + γiV 2], i = 1, . . . , m (3)

1We here use “∼” to denote equality up to scale.
2SO(3) is the space of matrices that are orthogonal with unit determinant{R|RRT = I, det(R) = 1}.
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where the structure of the scene, represented byX1, X2, V 1, V 2, and the motion of the cameraΠi = [Ri, Ti] as well as the
scalesρi, γi are all unknown. The first question that arises naturally is whether knowledge of the T-junction measurements
xi provide any useful information on the unknown structure of the scene and its motion relative to the camera. This question
is addressed in the next section. In what followsû ∈ R3×3 denotes the skew-symmetric matrix defined byûv = u ×
v, ∀ u,v ∈ R3.

2 Multiple-view geometry of T-junctions

In this section we show that the multiple-view constraints for a T-junction can be characterized by the rank of a multiple-view
matrix which has a special null space. The rank of the matrix and its null space precisely distinguish a proper T-junction from
regular point features (false T-junction), either fixed or moving freely on a line.

2.1 Multiple-view rank conditions for T-junctions

The following claim unravels how the information on scene structure and camera motion is related through multiple images
of T-junctions.

Lemma 1 Letx1, . . . , xm denote the position of a T-junction inm distinct views, related by changes of coordinates[R1, T1],
. . . , [Rm, Tm]. Let `1, `2 be two lines in space represented by{X1, V 1} and {X2, V 2} respectively, that satisfy the
conditions (2). Define the following matrix

W
.=




xT
1 R1 xT

1 T̂1R1

xT
2 R2 xT

2 T̂2R2

...
...

xT
mRm xT

mT̂mRm


 ∈ R

m×6. (4)

Then we have that rank(W ) ≤ 4.

Proof: ¿From the definition ofW , we have

x ∼ RX1 + ρRV 1 + T,

x ∼ RX2 + γRV 2 + T.

Applying the hat operator on both sides, we get

x̂ ∼ RX̂1R
T + ρRV̂ 1R

T + T̂ ,

x̂ ∼ RX̂2R
T + γRV̂ 2R

T + T̂ .

Multiply on both sidesxT to the left andR to the right,3 it yields

0 = xT RX̂1 + ρxT RV̂ 1 + xT T̂R,

0 = xT RX̂2 + γxT RV̂ 2 + xT T̂R.

Now multiplyingV 1 to the first equation andV 2 to the second we get

0 = xT RX̂1V 1 + xT T̂RV 1,

0 = xT RX̂2V 2 + xT T̂RV 2.

Obviously, since the following two vectors

U1 =
[
X̂1V 1

V 1

]
, U2 =

[
X̂2V 2

V 2

]

3In this step sufficiency is lost.
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are always in the null space of[xT R, xT T̂R], they are in the null space ofW . Therefore, we have

rank(W ) ≤ 4.

If we choose the first camera frame to be the world frame,[R1, T1] = [I, 0], then the above matrixW simplifies to

W =




xT
1 0

xT
2 R2 xT

2 T̂2R2

...
xT

mRm xT
mT̂mRm


 . (5)

Multiplying on the right by the full rank matrixR6×7

[
x1 x̂1 0
0 0 I

]
. (6)

we obtain the matrixW ′ ∈ Rm×7

W ′ =




xT
1 x1 0 0

xT
2 R2x1 xT

2 R2x̂1 xT
2 T̂2R2

...
xT

mRmx1 xT
mRmx̂1 xT

mT̂mRm


 . (7)

Note that the matrixW ′ has the same rank asW since we multiplied it by a full rank matrix on the right. Therefore,

rank(W ′) ≤ 4. (8)

Let us define the multiple-view matrix (as a sub-matrix ofW ′)

MT
.=




xT
2 R2x̂1 xT

2 T̂2R2

xT
3 R3x̂1 xT

3 T̂3R3

...
...

xT
mRmx̂1 xT

mT̂mRm


 ∈ R(m−1)×6, (9)

where the subscript “T ” indicates T-junction.

Theorem 2 Under the same conditions of Lemma 1, them images of a T-junction satisfy the following rank condition

rank(MT ) ≤ 3. (10)

It is not difficult to see that

U0 =
[
x1

0

]
, U1 =

[
λ1V 1

V 1

]
, U2 =

[
λ2V 2

V 2

]
∈ R6 (11)

for someλ1, λ2 ∈ R are three linearly independent vectors in the three-dimensional null space ofMT .

2.2 Relations to other rank conditions

A T-junction can be viewed as the intermediate case between a fixed point as the intersection of two lines and a point which
can move freely on one straight line, as shown in Figure 2. It is then reasonable to expect that the rank condition for the
T-junction is related to those of the other two cases. This is indeed true. Our derivation in the previous section directly applies
to the case when the pointX moves on only one line. In this case, we have

rank(MT ) ≤ 4, with

{[
λ1V 1

V 1

]}
∈ null(MT ). (12)
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Figure 2: Left: A pointX as the intersection of two lines. Middle: A T-junction from two lines. Right: A point that moves
on one line.

In the T-junction case, we have

rank(MT ) ≤ 3, with

{[
λ1V 1

V 1

]
,

[
λ2V 2

V 2

]}
∈ null(MT ). (13)

In the case when two lines intersect at a fixed point, we may choose the base point for each line to be the intersectionX
and then we haveρ = γ = 0. This implies that the derivation in the previous section holds for any vectorV 1 or V 2 ∈ R3.
Therefore, in this case, we have

rank(MT ) ≤ 2, with

{[
λV
V

]
, ∀V ∈ R3

}
∈ null(MT ). (14)

This condition yields
[λxT

i Rix̂1 + xT
i T̂iRi]V = 0, ∀V ∈ R3 (15)

for i = 1, 2, . . . ,m. Note thatRix̂1 = R̂ix1Ri, we obtain the equation

λxT
i R̂ix1 + xT

i T̂i = 0, ∀i. (16)

This is equivalent to
λx̂iRix1 + x̂iTi = 0, ∀i. (17)

Therefore, the above condition (14) is equivalent to the known rank condition for a fixed point

rank




x̂2R2x1 x̂2Ti

x̂3R3x1 x̂3Ti

...
...

x̂mRmx1 x̂mTi


 ≤ 1. (18)

Notice that all the above constraints are non trivial. If we take measurements of a point moving randomly in space, the
corresponding matrixMT has in general4 rank≤ 5 (it cannot possibly have rank6 because the vectorU0 is always in the
kernel ofMT ).

2.3 Constraints from the rank conditions for T-junctions

What kind of constraints does the above rank condition for a T-junction give rise to? The rank condition (10) requires that
any4 × 4 minor of the matrixMT has determinant0. It is easy to notice that any such a minor involves up to 5 different
images.

However, one should notice further that the nature of the rank condition for a T-junction isdifferentfrom the conventional
rank conditions studied in [11]. The rank conditions themselves are onlynecessarybut notsufficientfor them images of a
T-junction. The reason is because the null space of the matrixMT here needs to have the special structure described in (11).
From the equation

MT U1 = 0, (19)

4This is true up to a set (of measure zero) of degenerate camera motions.
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Figure 3: Verification of the rank constraint. The plot on the right shows the mean and standard deviation of the6 singular
values. Notice that there is a drop after the third singular value as expected from the multiple-view matrix rank constraint.
The last singular value is always zero by construction.

we obtain
xT

2 R2x̂1V 1

xT
2 T̂2R2V 1

=
xT

3 R3x̂1V 1

xT
3 T̂3R3V 1

= · · · = xT
mRmx̂1V 1

xT
mT̂mRmV 1

(20)

since the ratio is exactlyλ1. A similar set of equations can be obtained fromMT U2 = 0. The above equations can also be
written in another way

V T
1 (x̂1R

T
i xix

T
j T̂jRj −RT

i T̂ixix
T
j Rjx̂1)V 1 = 0 (21)

for all 2 ≤ i < j ≤ m. Define5

Sij
.= x̂1R

T
i xix

T
j T̂jRj −RT

i T̂ixix
T
j Rjx̂1, ∈ R3×3

the above equation is simplified toV T
1 SijV 1 = 0. Similarly, we haveV T

2 SijV 2 = 0.
In order to eliminate the two unknowns6 in V 1 and arrive at expressions that do not depend onV 1, we need three

independent equations of the formV T
1 SijV 1 = 0 which typically involve at least 5 images. This conforms to the result that

if a point is moving on a straight-line, 5 images are needed in order to obtain effective constraints [1].
However, here a T-junction lies simultaneously on two straight-lines and the equations

V T
1 SijV 1 = 0, V T

2 SijV 2 = 0 (22)

usually are not totally unrelated. For instance, if we assume7 V T
1 V 2 = 0, there are only a total of three unknowns in both

V 1 andV 2. Then, we can use the following four equations

V T
1 S23V 1 = 0, V T

1 S34V 1 = 0,

V T
2 S23V 2 = 0, V T

2 S34V 2 = 0

to eliminate bothV 1 andV 2. Obviously, the resulting constraint will only involve collections of 4 images.

2.4 Testing the rank constraints

In order to validate the analysis experimentally, we have generated6 views of T-junctions seen from a moving vantage point
(Fig. 2.4). The plot on the right shows the numerical value of the rank for each of the T-junctions, displayed as a mean and
standard deviation. As one can see, the numerical rank - although not strictly equal to 3 due to noise in feature localization -
drops significantly beyond3, and can therefore be easily determined by thresholding techniques. This experiment is shown

5EnforcingSij = 0 leads to the well-known trilinear constraint.
6Recall that the vectorV 1 is defined up to scale.
7In the case that a T-junction is caused by a pair of mutually orthogonal lines.
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only for illustrative purposes. We do not propose using the rank condition “cold turkey” to estimate structure and motion,
especially because real scenes are rarely comprised entirely of T-junctions. Instead, we wish to integrate the rank condition in
a general multiple-view inference scheme in order to exploit information coming from the T-junctions rather than discarding
them as outliers. We discuss this in the next sections.

3 T-junction detection

The results in section (2) can be used in a straightforward manner to classify point features into rigid points, T-junctions and
outliers. By using the filtering scheme described below in the next sections, we assume that a sufficiently large subset of
the detected point features are ordinary features or false T-junctions. Our procedure consists in collecting measurements of
features for5 or more frames with the corresponding estimated camera motions, and then building the multiple-view matrix
associated to each of the features.

We classify a feature as outlier if the rank of the multiple-view matrix is5 or 4, as a T-junction if the rank is3, and as a
rigid point if the rank is2. Due to noise or degenerate motions, the classification may be prone to errors. However, this is
not an issue in the proposed robust filtering scheme (see section 4.2), since measurements that are not modeled properly are
detected as outliers and automatically weighted accordingly.

Once T-junctions are detected, their structure can be reconstructed from the constraints in eq. (21) by minimizing the
following cost functionals:

Ṽ1 = arg min
V1

∑

i=2..m

(
V T

1 S1iV1

‖V1‖2
)2

Ṽ2 = arg min
V2

∑

i=2..m

(
V T

2 S1iV2

‖V2‖2
)2

+ α

(
Ṽ T

1 V2

‖V2‖

)2 (23)

whereα ∈ R is a tuning parameter. Notice that the second minimization also forces the directionV2 to be transversal toV1.
We perform the minimization by using a simple gradient descent technique. The estimated structure can be used to initialize
the structure and motion filter that we are going to present in the next section.

4 Structure and motion estimation from mixtures of rigid features and T-junctions

We consider the (general) class of structure from motion estimation algorithms that are divided into the following two steps:
(i) Select and track features points on the image plane, and (ii) use the 2D trajectories of the tracked points to infer both their
structure and the camera motion. The advantage of splitting the task into these two steps resides in considerably reducing
the number of required computations and in simplifying the design of each algorithm. However, splitting the task into two
steps has also some drawbacks. In order to estimate camera motion, the second step needs to have an a-priori model for
structure. Therefore, when we feed it with measurements that are not generated by the same model, what we calloutliers,
the estimation process can produce erratic results. Since a feature tracker is based solely on matching the photometry of the
features, and not their 3D geometry, it has no way to detect these outliers.

As a solution to this problem, we propose to use a filtering scheme that accounts for multiple structure models, which will
be introduced in section 4.1. To be able to select the most appropriate model during the estimation process, we work in the
framework ofrobustKalman filtering, which will be presented in section 4.2.

4.1 Structure and motion representation

Camera motion is represented by a time-varying translation vectorT (t) ∈ R3 and rotation matrixR(t) ∈ SO(3). Camera
motions transform the coordinates of a pointX in space viaR(t)X + T (t). Associated to each motion there is a velocity,
represented by a vector of linear velocityV (t) and a skew-symmetric matrix̂ω(t) of rotational velocity. Under such a velocity,
motion evolves according toT (t + 1) = ebω(t)T (t) + V (t) ; R(t + 1) = ebω(t)R(t). The exponential of a skew-symmetric
matrix can be computed using Rodrigues formula:ebω = I + bω

‖bω‖ sin(‖ω̂‖) + bω2

‖bω‖2 (1− cos(‖ω̂‖)) ∀‖ω̂‖ 6= 0, otherwise

e
b0 = I.

As mentioned in previous sections, the measurements on the image plane{xi}i=1..m may have been generated by points
on a rigid structure, by T-junctions, or, more in general, may be moving entirely independently of the scene.
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We model a rigid pointX ∈ R3 as the product of a2D homogeneous coordinatesx ∈ R3 with a positive scalarλ ∈ R+,
i.e.

X = xλ. (24)

This choice has the advantage thatx can be measured directly on the image plane, and it leaves one with estimating only the
scalarλ.

As the camera moves in time, the measurement equation corresponding to a rigid point becomes:

x(t)λ(t) = Π(t)xλ (25)

wherex = x(0) andλ = λ(0).
T-junctions are instead modeled by using the normalized directionsV 1 ∈ R3 andV 2 ∈ R3, and two pointsX1 ∈ R3

andX2 ∈ R3 on the lines̀ 1 and`2 respectively. To keep the representation minimal, instead of using any two points on
the lines, we take the ones that can be factorized as the product of a measurement in homogeneous coordinatesx ∈ R3 (the
measurement at time0) and two scalarsβ1 andβ2, i.e.

X1 = xβ1

X2 = xβ2.
(26)

In this case we use the following measurement equation

x(t)λ(t) = ((R(t)V 1)× (R(t)xβ1 + T (t))×
× (R(t)V 2)× (R(t)xβ2 + T (t))) .

(27)

4.2 A robust Kalman filter implementation

We make the assumption that (both linear and rotational) accelerations are a Brownian motion in time. This assumption and
the structure models in the previous section result in the following state and measurements equations:





λi(t + 1) = λi(t) ∀i = 1...NR

β1,i(t + 1) = β1,i(t) ∀i = 1...NT

β2,i(t + 1) = β2,i(t) ∀i = 1...NT

V 1,i(t + 1) = V 1,i(t) ∀i = 1...NT

V 2,i(t + 1) = V 2,i(t) ∀i = 1...NT

T (t + 1) = ebω(t)T (t) + V (t)
R(t + 1) = ebω(t)R(t)
V (t + 1) = V (t) + nV

ω(t + 1) = ω(t) + nω

xrgd
i (t) = π

(
R(t)xrgd

i λi + T (i)
)

∀i = 1...NR

xjct
i (t) = π

(
(R(t)V 1,i)×

(
R(t)xjct

i β1,i + T (t)
)
×

× (R(t)V 2,i)×
(
R(t)xjct

i β2,i + T (t)
))

∀i = 1...NT

(28)

whereπ is the perspective projection defined asπ([X1 X2 X3]T ) = [X1
X3

X2
X3

]T . NR is the number of rigid features andNT

the number of T-junctions, so thatm = NR + NT . (·)rgd denotes measurements of rigid point features, while(·)jct denotes
measurements of T-junctions.

To infer the state parameters, we implement arobustEKF (extended Kalman filter) (see [10] for more details). The main
difference between the robust EKF and a traditional EKF is that the distribution of the state conditioned over the measure-
ments, usually modeled by a normal distribution, is considered contaminated by outliers. Thus, instead of obtaining the MAP
(maximum a posteriori) estimate, we seek for the M-estimate of the state. Following [8] (1981, p.71), we choose the “least
informative” probability density and obtain that at each estimation step the measurement covarianceRn = diag([r1 . . . r2m])
changes as: {

ri = n if |ei|√
n
≤ c

ri =
√

n|ei|
c if |ei|√

n
> c

∀i = 1..2m (29)
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whereei is the innovation (i.e. the difference between the actual measurement and the prediction of the measurement) of the
i− th measurement,m is the number of feature measurements,n is the measurement noise variance (identical for all points),
andc is a constant threshold usually set to1.5. In other words, the robust EKF detects an outlier by testing the innovation. If
the innovation is above a certain threshold (which is tied to the maximum degree of contamination of the normal distribution),
the corresponding measurement is weighted so that it does not affect the state estimate.

The general structure and motion estimation scheme then proceed as follows:

• Initialize the filter withNT = 0 (i.e. no T-junctions are modeled in the filter, but only rigid features)

• During motion estimation the robust scheme automatically detects outliers and re-weights the measurement covariance
Rn accordingly, by using eq. (29)

• T-junctions are detected among the outliers as explained in section 3, and the corresponding state and measurement
equations are inserted in the filter.

5 Experiments

The purpose of this set of experiments is to show that outliers need to be accounted for, as they have catastrophic effects
on the estimation process, and that T-junctions are carriers of information, and rather than being discarded, they should be
exploited. To this aim, we implemented three filters: one is the traditional EKF, where outliers are not accounted for; the
second is the robust EKF, where outliers are detected and re-weighted accordingly (i.e. “discarded”), but where T-junctions
are not explicitly modeled (i.e.NT is always0). The third is the T-junction EKF, which is as the robust EKF, but where
T-junctions are instead used in the estimation process.

The synthetic scene is composed of30 points of which20 are rigid features, and10 are T-junctions. The camera rotates
around the points, with center of rotation approximately on the center of mass of the structure (T-junctions do not define a
center of mass). We rescale both translation and structure by fixing the depth coordinate of one of the rigid points to1. In
Figure 4 we show one instance of the experiments performed for each of the implementations. The true motion (translation
and rotation) is superimposed to the estimated motions of each of the filters. In particular, the traditional EKF diverges almost
immediately. Notice that the camera motion estimated by both the robust EKF and the T-junction EKF are very close to the
ground truth motion. To better appreciate the difference between these two implementations, in Figure 5 we show in more
detail the estimation error on the translation for the robust EKF (dotted) and the T-junction EKF (solid). Similarly, in Figure 5
we show in more detail the estimation error on the rotation. We plot the norm of the error between the estimate and the ground
truth for each time instant. The RMS error over the whole motion for the robust EKF is of1.5 · 10−3 for translation and
of 1.5 · 10−3 for rotation, and for the T-junctions EKF is of6.2 · 10−4 and7.8 · 10−4 respectively. This shows that using
T-junctions doubles the performance of the filter. Thus, we can conclude that measurements of T-junctions are beneficial to
the camera motion estimation once they are properly modeled, and therefore should be used rather than being discarded.

Unlike synthetic sequences, in real sequences we do not have accurate ground truth available. In order to generate a
controlled experiment, we collect a sequence, and then play it forward and backward in order to guarantee that through
the composite sequence the camera returns exactly at the initial position. We then evaluate the repositioning error (error in
position and orientation of the camera relative toT = 0 andR = I). We do so for10 experiments with forward translation,
sideways translation, and roto-translation about a fixed point in space. The results of these preliminary experiments are
summarized in Table 1 and show that our algorithm is very promising for applications in uncontrolled environments.

6 Conclusions

T-junctions are commonplace in man-made and natural environments, and cannot be distinguished from rigid features only
from their photometric information. On the one hand, not accounting for T-junctions, may result in catastrophic consequences
for camera motion estimation. As we showed in this paper, T-junctions should not be discarded as outliers, as they carry non-
trivial information on the 3-D structure of the scene and its motion relative to the camera. We analyzed T-junctions in the
context of the multiple-view geometry, defined the multiple-view matrix for T-junctions, and derived the corresponding rank
constraint. We showed how the constraint among multiple views of T-junctions can be used to reliably detect them and
differentiate them from ordinary point features. Finally, we proposed a scheme in the framework of robust Kalman filtering
to recursively and causally estimate structure and motion in the presence of T-junctions along with other point-features.
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Figure 4:Ground truth camera motion components superimposed to the estimates of the three implementations. The evolution of the three
components of translation (normalized with respect to the structure) in time is shown on the top figure, while the evolution of the three
components of the rotation are shown on the bottom figure. The traditional EKF (dashed line) diverges after50 frames. The robust EKF
(dotted) and the T-junction EKF (dotted-dashed) are both very close to the ground truth as expected. To better appreciate the difference,
we show their corresponding estimation error in Figure 5 and Figure 6.

Forward Sideways Roto-
Translation Translation Translation

Translation 0.0082 0.0040 0.0039
error

Rotation 0.0042 0.0060 0.0045
error

Table 1: In the table we show the results for three experiments: forward motion, sideways motion and roto-translation motion.
The translation is normalized with respect to the structure (we fixed the depth of a rigid point to1). The values in the table
are the norm of the repositioning error. The data set contains a mixture of25 rigid points with5 T-junctions, which leads a
traditional EKF to divergence.
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