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Abstract
In this report we present a technique for reducing the dimensionality of a stationary time series with an
arbitrary covariance sequence. Contrary to popular belief, this problem can be solved in closed form in a
way that is asymptotically efficient (i.e. optimal in the sense of maximum likelihood). Our technique can be
seen as a special case of a more general theory of subspace identification borrowed from the field of dynamical
systems. Although our scheme only captures second-order statistics, we suggest future developments that model
higher-order moments.

1 Preliminaries

Let {y(t)}¢=1...r be a discrete-time stochastic process with sample paths y(t) € R™. We are interested in reducing
the dimensionality of the “data” (i.e. a sample path of dimension O(m7)) by extracting a model for the process
{v}.

We restrict our attention to second-order statistics and assume that the process {y(t)} generates a covariance
sequence with rational spectrum. Later we will extend our approach to a more general class of models.

1.1 Model realization

It is well known that a positive definite covariance sequence with rational spectrum corresponds to an equivalence
class of second order stationary processes [11]. It is then possible to choose as a representative of each class a
Gauss-Markov model — that is the output of a linear dynamical system driven by white, zero-mean Gaussian noise —
with the given covariance. In other words, we can assume that there exists a positive integer n, a process {z(t)} (the
“state”) with initial condition zo € R"™ ~ N(0, P) and a symmetric positive semi-definite matrix [SQT ]‘5%‘} >0
such that {y(t)} is the output of the following Gauss-Markov “ARMA” model':

{x(t +1) = Az(t) + v(t) v(t) ~N(0,Q); z(0) = zo (1)
y(t) = Ca(t) + w(t) w(t) ~N(0,R); Elwt)wl(®#)]=S5

for some matrices A € R"*" and C € R™*". The goal of dimensionality reduction can be posed as the identifica-
tion of the model above, that is the estimation of the model parameters A, C, @), R, S from “output” measurements

y(1),...,y(7).

LARMA stands for auto-regressive moving average.




It is commonly believed that — even for the case of linear models driven by Gaussian noise such as (1) — this
problem can only be solved iteratively, and is often formulated in the framework of expectation-maximization
[14]. Instead, we will follow the philosophy of subspace identification methods as championed by Van Overschee
and DeMoor [12], and show that a solution can be computed in closed form. This solution can be shown to be
asymptotically efficient under suitable hypothesis.

1.2 TUniqueness and canonical model realizations

The first observation concerning the model (1) is that the choice of matrices A,C, @, R, S is not unique, in the
sense that there are infinitely many models that give rise to exactly the same measurement covariance sequence
starting from suitable initial conditions. The first source of non-uniqueness has to do with the choice of basis for
the state space: one can substitute A with TAT ', C with CT ', Q with TQT7T, S with T'S, and choose the initial
condition T'xg, where T' € GL(n) is any invertible n x n matrix and obtain the same output covariance sequence.

The second source of non-uniqueness has to do with issues in spectral factorization that are beyond the scope
of this paper [11]. Suffices to our purpose to say that one can transform the model (1) into a particular unique
form — the so-called “innovation representation” — given by

{ z(t+1) = Az(t) + Ke(t) z(0) = zg ~ N(0, P) @)
y(t) = Cx(t) +e(t) e(t) ~ N(0,A);

where K is called “Kalman gain” and e(t) the “innovation proces?”. Therefore, without loss of generality, we
restrict ourselves to models of the form (2).

We are therefore left with the first source of non-uniqueness: any given process has not a unique innovation
model, but an equivalence class of models R = {[A] = TAT',[C] = CT ', [K]=TK, | T € GL(n)}. In order to
be able to identify a unique model of the type (2) from a sample path y(t), it is therefore necessary to choose a
representative of each equivalence class (i.e. a basis of the state-space): such a representative is called a canonical
model realization (or simply canonical realization). It is canonical in the sense that it does not depend on the
choice of the state space (because it has been fixed).

While there are many possible choices of canonical realizations (see for instance [10]), we are interested in one
that is “tailored” to the data, in the sense of having a diagonal state covariance. Such a model realization is called
balanced [3]. Since we are interested in data dimensionality reduction, we will make the following assumptions
about the model (1):

m >> n; rank(C) =n (3)

and choose the canonical realization that makes the columns of C' orthogonal:
CTC = 3Y? = diag{o\/?,..., oM/} (4)

where, without loss of generality, o; > o}, for ¢ < j and o; are non negative. One can show that the numbers o;
are an invariant of the process.

As we will see shortly, this assumption results in a unique innovation model. Such a model is characterized by a
state space such that its covariance ©5* = E [z(t)zT (t)] is diagonal, and its diagonal elements are uniquely defined
by the data. We shall also make a simplifying assumption that E[z(t + 1)y” (t)] has full row rank, that is the state
is constructible in one step.

The real numbers o;, which one can estimate from the data y(¢), are called the “canonical correlation coefficients”
[9], as they represent the canonical correlations between past (say Py = Span{y(s),s < t}) and future (say F; =
span{y(s),s > t}) of the process. In terms of data® the spaces P; and F; can be thought of as the row-span of the

2The innovation process can be interpreted as the one-step prediction error e(t) = y(t) — §(t|t — 1). Tt is the error one commits in
predicting (in the Bayesian sense) the value of y(t) given the values of y(s), for s < t.

3The Hilbert spaces of zero-mean and finite variance random variables and the (row) space of semi-infinite sequences constructed
from a realization (sample-path) are isometrically isomorphic with a suitable choice of inner product



doubly-infinite block-Hankel matrices:

y(t) yt+1) ... ylt+7-1)
y(t+1) yt+2) ... y(t+7)
F; = Tow span : : :
y(T) y(T+1) ... y(T+717-1)
and _
y(t—1) y(t) oo ylt+T—2)
yt—2) yit—-1) ... yt+7-3)
P, = Tow span : : :
y¢-7T) @) ... ylr-1)

In practice one only considers the finite past and future, i.e. takes only a finite number of block rows in these
matrices (under our hypothesis we can take just one) and, as only finite data are available, infinite sequences are
approximated by finite ones (finite number of columns). The canonical correlations o; can be related to the mutual
information between past and future by the well-known formula

I(Py, Fy) = Zlog<1_0> (5)

which is independent of ¢ by stationariety [1]. This interpretation can be used in the reduction context as one
wants to reduce the dimension of the state n while keeping the maximum amount of information. If z(t) is chosen
in this basis, according to (5), the reduction just consist in dropping its last components.

The problem we set out to solve can then be formulated as follows: given measurements of a sample path of
the process: y(1),...,y(7); 7 >> n, estimate A,C, K, A, a canonical realization of the process {y(t)}. Ideally, we
would want the maximum likelihood solution from the finite sample:

~

A(r),C(1), K(1),A(r) = arg min p(y(1),...,y(1)|4,C, K, A). (6)

We will first derive a closed-form suboptimal solution and then show that it asymptotically maximizes the likelihood.

2 Closed-form solution for the linear Gaussian case

The idea behind dynamic dimensionality reduction is to use the dynamic properties of the processes involved to
determine a low rank approximation. To understand this fact, let us for a moment assume that we only consider
the output equation. Let Y7 ! = [y(1),...,y(7 — 1)] € R™*7 ! with 7 > n, and similarly for X] ! and W] !,
and notice that Y7 ' = CX] '+W/ Y CeR™"; CTC = e by our assumptions (3) and (4). Consider the
problem of finding the best estimate of C' in the sense of Frobenius: C(7), X (r) = arg ming yr-1 |[¥77" LexTYr.

Let /7' =USVT;, UeR™™ UTU =1; Ve R™*", VTV = I be the singular value decomposition (SVD)
[8] with ¥ diagonal. Let U,, V,, be the matrices formed with the first n columns of U and V respectively. Let us
also denote with ¥, = diag{o1,...,0,}. It follows immediately from the fixed rank approximation property of the
SVD [8§] that C(r) = Uyn; X(r) = £,V,T. However, this solution is “static” in the sense that it does not take into
account the fact that the rows of X have a very particular structure (determined by equation 2). In particular,
the state z(t) (i.e. a column of X) represents a very special low-rank approximation of the output y(t): it is the
one that makes the “past” and the “future” conditionally independent. Therefore, in the context of dimensionality
reduction of finite data, it is natural to choose the state to be the n-dimensional subspace of the past measurements
which retains the maximum amount information to predict future measurements at any given time according to
formula (5). In the rest of this section we shall construct such an approximation.



The way we construct this approximation can be summarized as follows. Let L; be the lower triangular Cholesky
factor [8] of Yy (Y)Y and L, that of 25Y7 (Y7 ')Y. We want to find the “best”, in the sense of weighted

Frobenius norm, i.e. ||Lf (Y7 — @Y7 ) ||F, n-dimensional subspace of the (finite) past (say Y ~') to predict the
(finite) future (say Y77). The reason why the norm is weighted by the inverse cholesky factor is that we want to
compute relative error and not absolute one. The answer to this question [8] is found by computing the first n
principal directions in Y;" ! with respect to Y and choosing the state as the space spanned by these components.
Principal directions are computed using the Singular Value Decomposition as follows.

Let us denote Yy = [y(2),...,y(7)] € R™*" ! with 7 > n, and similarly for XJ and WJ, and notice that

Y, =CX]+WJ; CeR™" (7

Let us denote with Y{ the orthogonal projection® of the rows of Yy onto the row-span of the matrix Y{‘l and

similarly by 1737+1 the orthogonal projection of the rows of YBT‘H onto the row-span of Yf*l and Y. Let us
compute the singular value decomposition (SVD) [§]

leLleY{ (Y{*l)TL;T =uxvl, UeR™™ UTU=I,VeR™™, VIV =1 (8)
with ¥ = diag{o1,...,0n,...0,}. Ideally (in the absence of noise and when the data are generated according to
a Gauss-Markov model) 6,41 = 042 = ... = 04, = 0. In practice, however, this does not hold. One can therefore
choose n by choosing a threshold on the value of o;. Let us denote with U,, V,, the matrices formed with the
firs n columns of U and V respectively. Let us also denote with X, = dlag{al, ..,0,}. Consider the problem of
finding the best estimate of C' and the best estimate of X of the form XT t= MYT ! for some linear operator

M € R™™ acting on the “past”, in the sense of Frobenius: C/(r), M = argminc ||Lf (Y7 — CMYT ™) ||p.
It is shown in [8] that this is solved by choosing XlT ~1 as the space spanned by the first n principal directions in
Y ! with respect to Y. It is also shown in [8] that these principal directions are given by the formula:
Z}l/ZVnTLljly*lel — Z;l/ZUE;L;]'YZT
Therefore, we have )
C(r) = LyUpSy/% X7~ =51 2vin, yy =t =5, PUl LYy (9)
A can be determined uniquely, again in the sense of Frobenius, by solving the following linear problem: A(T) =

argmin || X7 — AX7 || which is trivially done in closed form using XJ (1) = E;lﬂU;{L;lff;H as

Ay = 1 %7 (fq—l)T il (10)

T—1

Notice that C’(T) is uniquely determined up to a change of sign of the components of C and z. Also note that

T

. _ 1 A T _y1/2y Ty vl/2
Elzt)zT ()] = Tlgr;o;];x(t+k)x (t+k)=x2vTy,nl/2 =5, (11)

which is diagonal. Thus the resulting model is stochastically balanced®.
Let é(t) = y(t) — C(7)Z(t) be the estimated innovation which is, strictly speaking, the one-step ahead prediction
error based on just one measurement y(t — 1), i.e. it is the transient innovation. Its covariance can be obtained by

A@) = B (577)

T—1

where ET ! is defined as ET ' = [é(1),...,é(r —1)]. The input-to-state matrix K can be estimated, following (2)
as follows. Compute K () = arg ming ||X2T — KET™Y||p which yields

R(r) = x5 (57" A, (12)

-1
T e T _ _\T _
4The orthogonal projection is computed via YT =Y (YIT 1) [Y{ ! (Y{ 1) } Y7 L

5Strictly speaking this model is finite interval-balanced as in this case o; are the canonical correlation coefficients between finite
past and finite future, namely Y{71 and Y7 .



Note that we have used the finite past and future (Y, ~" and Y3) to obtain our estimate. As we have pointed out,
the difference y(t) — C(7)Z(t) is the transient innovation i.e. it is the prediction error based on the finite past.
It coincides with the stationary one if and only if the system has finite memory m (in our case ha memory one),
which happens if and only if (A — KC)™ is nilpotent (in our case A — KC = 0).

It follows easily that its variance is bigger than the variance of the true innovation. For the same reason also
the matrix K (7) is not the stationary K (which is called the “Kalman” gain). There is a procedure, which could
in principle give us consistent estimates A and K even using the finite past and future under some assumptions.
This is based on solving some Riccati equation, but would require the introduction of a certain “backward ” model
for the process y, which is beyond our scopes. This fact, however, seems to have been partially overlooked also in
the system identification community, and we will not comment on it further beyond warning the reader that there
are indeed procedures which gives consistent and asymptotically efficient estimates [6].

2.1 Choice of model order

In the algorithm above we have assumed that the order of the model n was given. In practice, this needs to
be inferred from the data. Following [3], we propose determining the model order empirically from the singular
values 01,09, ..., by choosing n as the cutoff where the value of o drops below a threshold. A threshold can also
be imposed on the difference between adjacent singular values. The problem of order estimation is currently a
research topic in the field of subspace identification and can not be considered as a fully solved problem. There
are, however, numerous procedures based either on Information Theoretic criteria or Hypothesis testing ([4, 13]
and references therein) which can be used to choose a threshold.

2.2 Asymptotic properties

While the solution given above is clearly suboptimal, it is possible to show that a slight modification of the
algorithm reported above is asymptotically efficient. This proof of this fact has not yet been published and is due
to D. Bauer [5]. The proof is valid for a particulr type of algorithms, which, in our setup, would substantially
increase the computational complexity

3 Extensions to nonlinear, non-Gaussian models

While the algorithm proposed above depends critically on the linear structure of the problem and only captures
the second-order statistics of the process {y(t)}, some simple modifications allow extending it to non-linear models
and/or to non-Gaussian processes.

3.1 Choice of basis and independent components

The estimate of C' derived in Section 2 can be interpreted in a functional sense as determining a choice of (orthonor-
mal) basis elements for the space of measurements. This basis captures the principal directions of the correlation
structure of the data. However, one may want to capture higher-order statistical structure in the data, for in-
stance by requiring that the state vectors are not only orthogonal (in the sense of correlation), but also statistically
independent. This could be done in the context of independent component analysis (ICA) by seeking for

~

C =argmin KL(p(y(1),...,y(7))|lp(Cz(1),...Cx(r))) (13)

subject to
p(z(1),...,2(1)) = p(z(1)) - - - p(z(1)) (14)

where KL indicates Kullback-Leibler’s divergence. Although this seems appealing from the point of view of
dimensionality reduction of a static set, z(¢) are not independent for they have to satisfy (1). Nevertheless, C
could be chosen according to the independence criterion so as to extract maximally independent components [2],
and then X and A could be inferred from the estimated C according to a least-squares or maximum likelihood
criterion.



3.2 Features and kernels

The model (1) assumes the existence of a state process with realization x(¢) of which the data y(t) are a linear
combination; the algorithm in Section 2 uses the geometry of the measurement space (specifically its inner product
(y(i),y(4))) in order to recover the matrix C.

More in general, however, one could postulate the existence of a state of which the data are a nonlinear
combination. If h is an invertible map, then we could have y(t) = h(Cz(t) + w(t)). Equivalently, if ¢ = h~!, one
could postulate the existence of a function ¢ acting on the data in such a way that its image is a linear combination
of states x(t):

P(y(t) = Ca(t) + w(t). (15)

Such images ¢(t) = ¢(y(t)) are called features. Applying the algorithm in Section 2 to the transformed data is
equivalent to changing the geometry of the measurement space by choosing an inner product in feature space:

(y(@), 9N = (D(y (), 6(y(5))) (16)

in a way that is reminiscent of kernel methods [15]. The feature map ¢ could either be assigned “ad-hoc”, or it
could be part of the identification procedure. Ad-hoc choices may include wavelet transforms, Gabor filters etc.

4 Applications

4.1 Dynamic image modeling, coding and synthesis

We have tested the power of the algorithm above in modeling visual scenes that exhibit certain stationariety
properties, so-called “dynamic textures” [7]. A small sample (50-100 images) of scenes containing water, smoke,
foliage etc. has been used to identify a model, which can then be used for coding with orders of magnitude
compression factors, or for synthesis of novel views.

In figure 1 we show a few images of the original sample (top) as well as simulated ones (bottom), and the value
of the correlation coefficients. The order of the model has been truncated to 50. Complete video sequences can be
downloaded from http://vision.ucla.edu. A different sequence depicting water undergoing vortical motion is
shown in figure 2, together with the synthetic sequence and the correlation coefficients.
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