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Abstract

In the design of algorithms, the greedy paradigm provides a powerful tool

for solving e�ciently classical computational problems, within the frame-

work of procedural languages. However, expressing these algorithms within

the declarative framework of logic-based languages has proven a di�cult re-

search challenge. In this paper, we extend the framework of Datalog-like

languages to obtain simple declarative formulations for such problems, and

propose e�ective implementation techniques to ensure computational com-

plexities comparable to those of procedural formulations. These advances are

achieved through the use of the choice construct, extended with preference

annotations to e�ect the selection of alternative stable-models and nonde-

terministic �xpoints. We show that, with suitable storage structures, the

di�erential �xpoint computation of our programs matches the complexity of

procedural algorithms in classical search and optimization problems.
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1 Introduction

The problem of �nding e�cient implementations for declarative logic-based lan-

guages represents one of the most arduous and lasting research challenges in com-

puter science. The interesting theoretical challenges posed by this problem are

made more urgent by the fact that extrema and other non-monotonic constructs

are needed to express many real-life applications, ranging from the `Bill of Materi-

als' to graph-computation algorithms.

Signi�cant progress in this area has been achieved on the semantic front, where

the introduction of the well-founded model semantics and stable-model semantics

allows us to assign a formal meaning to most, if not all, programs of practical

interest. Unfortunately, the computational problems remain largely unsolved: var-

ious approaches have been proposed to more e�ective computations of well-founded

models and stable models [25, 8], but these fall far short of matching the e�ciency of

classical procedural solutions for say, algorithms that �nd shortest paths in graphs.

In general, it is known that determining whether a program has a stable model is

NP-complete [15].

Therefore, in this paper we propose a di�erent approach: while, at the semantic

level, we strictly adhere to the formal declarative semantics of logic programs with

negation, we also allow the use of extended non-monotonic constructs with �rst

order semantics to facilitate the task of programmers and compilers alike. This en-

tails simple declarative formulations and nearly optimal executions for large classes

of problems that are normally solved using greedy algorithms.

Greedy algorithms [16] are those that solve a class of optimization problems,

using a control structure of a single loop, where, at each iteration some element

judged the `best' at that stage is chosen and it is added to the solution. The simple

loop hints that these problems are amenable to a �xpoint computation. The choice

at each iteration calls attention to mechanisms by which nondeterministic choices

can be expressed in logic programs. This framework also provides an opportunity

of making, rather than blind choices, choices based on some heuristic criterion, such

as greedily choosing the least (or most) among the values at hand when seeking the

global minimization (or maximization) of the sum of such values. Following these

hints, this paper introduces primitives for choice and greedy selection, and shows
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that classical greedy algorithms can be expressed using them. The paper also shows

how to translate each program with such constructs to a program which contains

only negation as nonmonotonic construct, and which de�nes the semantics of the

original program. Finally, several classes of programs with such constructs are de-

�ned and it is shown that (i) they have stable model semantics (ii) they are easily

identi�able at compile time, and (iii) they can be optimized for e�cient execution

|i.e., they yield the same complexities as those expected from greedy algorithms

in procedural programs. Thus, the approach provides a programmer with declara-

tive tools to express greedy algorithms, frees him/her from many implementation

details, yet guarantees good performance.

Previous work has shown that many non deterministic decision problem can be

easily expressed using the nondeterministic construct choice in logic programs [21,

9]. In [10], we showed that while the semantic of choice requires the use of nega-

tion under total stable model semantics, a stable model for these programs can

be computed in polynomial time. In fact, choice in Datalog programs strati�ed

with respect to negation achieves DB-Ptime completeness under genericity [1]. In

this paper, we further explore the ability of choice to express and support e�-

cient computations, by specializing choice with optimization heuristics expressed

by the choice-least and choice-most predicates. Then, we show that these two

new built-in predicates enable us to express easily greedy algorithms; furthermore,

by using appropriate data structures, the least-�xpoint computation of a program

with choice-least and choice-most emulates the classical greedy algorithms, and

achieves their asymptotic complexity.

A signi�cant amount of excellent previous work has investigated the issue of how

to express in logic and compute e�ciently greedy algorithms, and, more in general,

classical algorithms that require non-monotonic constructs. An incomplete list

include work by [22, 6, 20, 26, 7]. This line of research was often motivated by

the observation that many greedy algorithms can be viewed as optimized versions

of transitive closures. E�cient computation of transitive closures is central to

deductive database research, and the need for greedy algorithms is pervasive in

deductive database applications and in more traditional database applications such

as the Bill of Materials [28]. In this paper, we introduce a treatment for greedy

algorithms that is signi�cant simpler and more robust than previous approaches
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(including that of Greco, Zaniolo and Ganguly [12] where it was proposed to use

the choice together with the built-in predicates least and most); it also treats all

aspects of these algorithms, beginning from their intuitive formulation, and ending

with their optimized expression and execution.

The paper is organized as follows. In Section 2 we present basic de�nitions

on the syntax and semantics of Datalog. In Section 3, we introduce the notion of

choice and the stable-model declarative semantics of choice programs. In Section

4, we show how with this non-deterministic construct we can express in Datalog

algorithms such as single-source reachability and Hamiltonian path. A �xpoint-

based operational semantics for choice programs presented in Section 5, and this

semantics is then specialized with the introduction of the choice-least and choice-

most construct to force greedy selections among alternative choices. In Section

6, we show how the greedy re�nement allow us to express greedy algorithms such

as Prim's and Dijkstra's. Finally, in Section 7, we turn to the implementation of

choice, choice-least and choice-most programs, and show that using well-known de-

ductive DB techniques, such as di�erential �xpoint, and suitable access structures,

such as hash tables and priority queues, we achieve optimal complexity bounds for

classical search problems.

2 Basic Notions

In this section, we summarize the basic notions of Horn Clauses logic, and its

extensions to allow negative goals.

A term is a variable, a constant, or a complex term of the form f(t1; : : : ; tn),

where t1; : : : ; tn are terms. An atom is a formula of the language that is of the

form p(t1; : : : ; tn) where p is a predicate symbol of arity n. A literal is either an

atom (positive literal) or its negation (negative literal). A rule is a formula of the

language of the form

Q Q1; : : : ; Qm:

where Q is a atom (head of the rule) and Q1; : : : ; Qm are literals (body of the rule).

A term, atom, literal or rule is ground if it is variable free. A ground rule with

empty body is a fact. A logic program is a set of rules. A rule without negative
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goals is called positive (a Horn clause); a program is called positive when all its

rules are positive. A DATALOG program is a positive program not containing

complex terms.

Let P be a program. Given two predicate symbols p and q in P , we say that

p directly depends on q, written p � q if there exists a rule r in P such that p is

the head predicate symbol of r and q occurs in the body of r. The binary graph

representing this relation is called the dependency graph of P . The maximal strong

components of this graph will be called recursive cliques. Predicates in the same

recursive clique are mutually recursive. A rule is recursive if its head predicate

symbol is mutually recursive with some predicate symbol occurring in the body.

Given a logic program P , the Herbrand universe of P , denoted HP , is the set of

all possible ground terms recursively constructed by taking constants and function

symbols occurring in P . The Herbrand Base of P , denoted BP , is the set of all

possible ground atoms whose predicate symbols occur in P and whose arguments

are elements from the Herbrand universe. A ground instance of a rule r in P is a

rule obtained from r by replacing every variable X in r by a ground term in HP .

The set of ground instances of r is denoted by ground(r); accordingly, ground(P )

denotes
S
r2P ground(r). A (Herbrand) interpretation I of P is any subset of BP .

An modelM of P is an interpretation that makes each ground instance of each rule

in P true (where a positive ground atom is true if and only if it belongs toM and a

negative ground atom is true if and only if it does not belong toM|total models).

A rule in ground(P ) whose body is true w.r.t. an interpretation I will also be called

�reable in I. Thus, a model for a program can be constructed by a procedure that

starts from I := ; and adds to I the head of a rule r 2 ground(P ) that is �rable in

I (this operation will be called �ring r) until no �rable rules remain. A model of

P is minimal if none of its proper subsets is a model. Each positive logic program

has a unique minimal model which de�nes its formal declarative semantics.

Given a program P and an interpretation M for P , we denote as groundM (P )

the program obtained from ground(P ) by

1. removing every rule having as a goals some literal :q with q 2M

2. removing all negated goals from the remaining rules.
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Since groundM (P ) is a positive program, it has a unique minimal model. A

modelM of P is said to be stable whenM is also the minimummodel of groundM (P )

[8]. A given program can have one or more stable (total) model, or possibly

none. Positive programs, strati�ed programs [4], locally strati�ed programs [18]

and weakly strati�ed programs [19] are among those that have exactly one stable

model.

Let I be an interpretation for a program P . The immediate consequence oper-

ator TP (I) is de�ned as the set containing the heads of each rule r 2 ground(P )

s.t. all positive goals of r are in I, and none of the negated goals of r, is in I.

3 Nondeterministic Reasoning

Say that our university database contains a relation student(Name; Major; Year),

and a relation professor(Name;Major). In fact, let us take a toy example that

only has the following facts:

student(0JimBlack0; ee; senior): professor(ohm; ee):

professor(bell;ee):

Now, the rule is that the major of a student must match his/her advisor's major

area of specialization. Then eligible advisors can be computed as follows:

elig adv(S; P) student(S;Majr; Year); professor(P; Majr):

This yields

elig adv(0JimBlack0; ohm):

elig adv(0JimBlack0; bell):

But, since a student can only have one advisor, the goal choice((S); (P)) must

be added to force the selection of a unique advisor, out of the eligible advisors, for

a student.
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Example 1. Computation of unique advisors by choice rules

actual adv(S; P) student(S;Majr; Yr); professor(P; Majr);

choice((S); (P)):

The computation of this rule gives for each student S a unique professor P 2

The goal choice((S); (P)) can also be viewed as enforcing a functional depen-

dency (FD) S ! P on the results produced by the rule; thus, in actual adv, the

second column (professor name) is functionally dependent on the �rst one (student

name).

The result of executing this rule is nondeterministic. It can either give a sin-

gleton relation containing the tuple (0JimBlack0; ohm) or that containing the tuple

(0JimBlack0; bell).

A program where the rules contain choice goals is called a choice program. The

semantics of a choice program P can be de�ned by transforming P into a program

with negation, foe(P ), called the �rst order equivalent of a choice program P .

foe(P ) exhibits a multiplicity of stable models, each obeying the FDs de�ned by

the choice goals. Each stable model for foe(P ) corresponds to an alternative set

of answers for P and is called a choice model for P . foe(P ) is de�ned as follows:

De�nition 1.[21] The �rst order equivalent version foe(P ) of a choice program P

is obtained by the following transformation. Consider a choice rule r in P :

r : A B(Z); choice((X1); (Y1)); : : : ; choice((Xk); (Yk)):

where,

(i) B(Z) denotes the conjunction of all the goals of r that are not choice goals,

and

(ii) Xi; Yi; Z, 1 � i � k, denote vectors of variables occurring in the body of r

such that Xi \ Yi = ; and Xi; Yi � Z.

Then, foe(P ) is constructed by transforming the original program P as follows:
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1. Replace r with a rule r
0 obtained by substituting the choice goals with the

atom chosenr(W ):

r
0 : A B(Z); chosenr(W ):

where W � Z is the list of all variables appearing in choice goals, i.e., W =
S
1�j�k Xj [ Yj .

2. Add the new rule

chosenr(W ) B(Z); :diffchoicer(W ):

3. For each choice atom choice((Xi); (Yi)) (1 � i � k), add the new rule

diffchoicer(W ) chosenr(W
0); Yi 6= Y

0
i
:

where (i) the list of variables W 0 is derived fromW by replacing each A 62 Xi

with a new variable A0 (i.e., by priming those variables), and (ii) Yi 6= Y
0
i

is true if A 6= A
0, for some variable A 2 Yi and its primed counterpart

A
0
2 Y

0
i
. 2

The �rst order equivalent version of Example 1 is given in Example 2, which

can be read as a statement that a professor will be assigned to a student whenever

a di�erent professor has not been assigned to the same student.

Example 2. The �rst order equivalent version of the rule in Example 1

actual adv(S; P) student(S; Majr;Yr); professor(P;Majr);

chosen(S; P):

chosen(S; P) student(S; Majr;Yr); professor(P;Majr);

:diffchoice(S; P):

diffchoice(S;P) chosen(S; P0); P 6= P
0
:

2

In general, the program foe(P ) generated by the transformation discussed

above has the following properties[9]:
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� foe(P ) has one or more total stable models.

� The chosen atoms in each stable model of foe(P ) obey the FDs de�ned by

the choice goals.

The stable models of foe(P ) are called choice models for P .

While the topic of operational semantics for choice Datalog programs will be

further discussed in Section 5, it is clear that choice programs can be implemented

e�ciently. Basically, the chosen atoms must be produced one-at-a-time and memo-

rized in a table. The di�choice atoms need not be computed and stored (di�choice

rules are not range restricted and their evaluation could produce huge results);

rather, a goal :di�choice(t) can simply be checked dynamically against the table

chosen. Since these are simple operations (actually quasi constant-time if an hash

table is used), it follows that choice Datalog programs can be computed in poly-

nomial time, and that rules with choice can be evaluated as e�ciently as those

without choice.

4 Computing with Choice

Choice signi�cantly extends the power of Datalog, and Datalog with strati�ed nega-

tion [11, 9]. In this paper we consider Datalog with the nondeterministc construct

choice, although our framework can be easily extended to also consider strati�ed

negation.

The following example presents a choice program that pairwise chains the ele-

ments of a relation d(X), thus establishing a random total order on these elements.

Example 3. Linear sequencing of the elements of a set. The elements of the set

are stored by means of facts of the form d(Y).

succ(root;root):

succ(X; Y) succ( ; X); d(Y);

choice((X); (Y)); choice((Y); (X)):

2
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Here succ(root;root) is the root of a chain linking all the elements of d(Y). The

transitive closure of succ thus de�nes a total order on the elements of d. Because of

the ability of choice programs to order the elements of a set, Datalog with choice is

P-time complete and can, for instance, express the parity query|i.e., determining

if a relation has an even number of elements [1]. This query cannot be expressed

in Datalog with strati�ed negation unless we assume that the underlying universe

is totally ordered|an assumption that violates the data independence principle of

genericity [5, 1].

The expressive power of the choice construct has been studied in [10, 11], where

it is shown that it is more powerful than other nondeterministic constructs, includ-

ing the witness operator [2], and the original version of choice proposed in [14],

which is called static-choice, to distinguish it from the dynamic choice used here

[9]. For instance, it has been shown in [9], that the task of ordering a domain or

computing whether a relation contains an even number of elements (parity query)

cannot be performed by positive programs with static choice or the witness operator

[2].

In the rest of the paper, we will study nondeterministic queries combined with

optimization criteria. For instance, our previous advisor example can be modi�ed

using optimized criteria to match students with candidate advisors. In the next

example we present the general matching problem for bipartite graphs.

Example 4. Matching in a bipartite graph. We are given a bipartite graph G =

h(V1; V2); Ei, i.e. a graph where nodes are partitioned into two subset V1 and V2

and each edge connect nodes in V1 with nodes in V2. The problem consists to �nd

a matching, i.e., a subset E0 of E such that each node in V1 is joined with at most

one edge in E0 with a node in V2 and vice versa.

matching(X; Y) g(X; Y; C); choice((Y); (X)):

choice((X); (Y));choice((X); (C)):

Here a fact g(x; y; c) denotes that there is an edge with cost c joining the node

x 2 V1 with the node y 2 V2. 2

In section 6, we will consider the related optimization problem, of �nding a
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matching such that the sum of all Cs is minimized or maximized1.

Example 5. Rooted spanning tree. We are given an undirected graph where an

edge joining two nodes, say x and y, is represented by means of two facts g(x; y; c)

and g(y; x; c), where c is the cost. A spanning tree in the graph, starting from the

source node a, can be expressed by means of the following program:

st(root; a; 0):

st(X; Y; C) st( ; X; ); g(X; Y; C); Y 6= a; Y 6= X;

choice((Y); (X)); choice((Y); (C)):

To illustrate the presence of multiple total choice models for this program, take a

simple graph consisting of the following arcs:

g(a; b; 1): g(b; a; 1):

g(b; c; 2): g(c; b; 2):

g(a; c; 3): g(c; a; 3):

After the exit rule adds st(root; a; 0), the recursive rule could add st(a; b; 1)

and st(a; c; 3) along with the two tuples chosen(a; b; 1) and chosen(a;c; 3) in

the chosen table. No further arc can be added after those, since the addition of

st(b; c; 2) or st(c; b; 2) would violate the FD that follows from choice((Y); (X))

enforced through the chosen table. However, since st(root; a; 0), was produced

by the �rst rule (the exit rule), rather than the second rule (the recursive choice

rule), the table chosen contains no tuple with second argument equal to the source

node a. Therefore, to avoid the addition of st(c; a; 3) or st(b; a; 1), the goal Y 6= a

was added to the recursive rule.

By examining all possible solutions, we conclude that this program has three

di�erent choice models, for which we list only the st-atoms, below:

1: st(a; b; 1): st(b; c; 2):

2: st(a; b; 1): st(a; c; 3):

3: st(a; c; 3): st(c; b; 2):

2

1Given that the pair X ! Y, X ! C is equivalent to X ! Y; C, the last rule in the previous

example can also be written as follows:

matching(X; Y) g(X; Y; C); choice((Y); (X)); choice((X); (Y;C)):
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Example 6. Single-Source Reachability. Given a direct graph where the arcs are

stored by means of tuples of the form g(x; y; c), the set of nodes reachable from a

node a can be de�ned by the following program:

reach(a; 0):

reach(Y; C) reach(X; C1); g(X; Y; C2); Y 6= a;

C = C1 + C2; choice((Y); (C)):

2

Once the cost arguments are eliminated from these rules, we obtain the usual

transitive-closure-like program, for which the �xpoint computation terminates once

all nodes reachable from node a are found, even if the graph contains cycles. How-

ever, if the choice goal were eliminated, the program of Example 6 could become

nonterminating on a cyclic graph.

In the next example, we have a complete undirected labeled graph G, repre-

sented by facts g(x; y; c), where the label c typically represents the cost of the edge.

A simple path is a path passing through a node at most once. A Hamiltonian path

is a simple path reaching each node in the graph. Then, a simple path can be

constructed as follows:

Example 7. The simple path problem. When the arc from X to Y is selected, we

must make sure that the ending node Y had not been selected and the starting

node X is connected to some selected node. The choice constraints, and the goals

s-path(root; Z;0); Y 6= Z to avoid returning to the initial node, ensure that a simple

path is obtained.

s-path(root; X;0) g(X; ; ); choice((); X)):

s-path(X; Y; C) s-path( ; X; ); g(X; Y; C); s-path(root;Z; 0); Y 6= Z;

choice((X); (Y)); choice((Y); (X)); choice((Y); (C)):

2

When G is a complete graph, the simple path produced by this program is

Hamiltonian (i.e., touches all the nodes). In many applications, we need to �nd

a minimum-cost Hamiltonian path; this is the Traveling Salesman Problem (TSP)

discussed in Section 6.
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The next program presents a problem consisting in the selection of a set of

elements satisfying a constraint. The optimized version of this problem is the

well-known knapsack problem.

Example 8. We are given a set of items characterized by a identi�er, a weight

and a value. The problem consists in �nding a set of items whose total weight is

lesser than a given value (say 100). The solution can be carried out by selecting,

at each step, of the item and checking that the total value does not violate the

maximum capacity.

k(0; 0; 0):

k(I; W; V) k(I1; W1; V1); I = I1+ 1; item(X; W2; C2);

W = W1+ W2; V = V1+ V2; W < 100;

choice((I); (X));choice((X); (I)):

2

5 Fixpoint Semantics

5.1 Choice programs

Let I be an interpretation for a program P ; the immediate consequence operator

TP (I) is de�ned as the set containing the heads of each rule r 2 ground(P ) s.t.

all positive goals of r are in I, and none of the negated goals of r, is in I. For

a choice program P , with �rst order equivalent foe(P ), let us denote by TPC the

immediate consequence operator associated with the rules de�ning the predicate

chosen in foe(P ) (these are the rules with the :diffchoice goals) and let TPD

denote the immediate consequence for all the other rules in foe(P ) (for positive

choice programs these are Horn clauses).

Therefore, we have that, for any interpretation I of foe(P ):

Tfoe(P )(I) = TPD(I) [ TPC (I):

Following [10] we can now introduce a general operator for computing the nonde-

terministic �xpoints of a choice program P . We will denote by FDP the functional

dependencies de�ned by the choice goals in P .
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De�nition 2. Given a choice program P , its nondeterministic immediate con-

sequence operator 	P is a mapping from an interpretation of foe(P ) to a set of

interpretations of foe(P ) de�ned as follows:

	P (I) = f T
"!

PD
(I [�C) [�C j �C 2 �P (I) g (1)

where: �P (I) = f;g if TPC (I) = ;, and otherwise:

�P (I) = f�C j ; � �C � TPC (I) n I and I [�C j= FDP g (2)

with I [�C j= FDP denoting that I [�C satis�es the dependencies in FDP . 2

Therefore, the 	P operator is basically the composition of two operators. Given

an interpretation I, the �rst operator computes all the admissible subsets of �C �

TPC (I), i.e., those where I [�C obeys the given FDs; the second operator derives

the logical consequence for each admissible subset using the !-power of TPD .

The de�nition of �P (I) is such that �C is not empty i� TPC (I)nI is not empty;

thus, if there are possible new choices, then at least one has to be taken. The 	P

operator formalizes a single step of a bottom-up computation of a choice program.

Instead of de�ning the powers of 	P , it is technically more convenient to de�ne

directly the notion of a nondeterministic computation based on the 	P operator.

Observe that given the presence of the constraint, I [ �C j= FDP , we can

eliminate the :diffchoice goal from the chosen rules. In fact, if TP 0

C
denotes the

immediate consequence operator for the chosen rules without the :diffchoice

goals, then TP 0

C
can replace TPC in Equation 2.

De�nition 3. Given a choice program P , an in
ationary choice �xpoint compu-

tation for P , is a sequence hInin�0 of interpretations such that:

i. I0 = ;,

ii. In+1 2 	P (In), for n � 0. 2

Inasmuch as every sequence hInin�0 is monotonic, it has a unique limit for

n ! 1; this limit will be called an in
ationary choice �xpoint for the choice

program P . Thus, we have the following result [9]:
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Theorem 1. Let P be a Datalog program with choice, and M a Herbrand inter-

pretation for foe(P ). Then M is a choice model for P i� M is an in
ationary

choice �xpoint for P . 2

Moreover, the in
ationary choice �xpoint is sound (every result is a choice

model) and complete (for each choice model there is some in
ationary choice �x-

point computation producing it). For logic programs with in�nite Herbrand uni-

verse, an additional assumption of fairness is needed to ensure completeness [10].

As customary for database queries, computational complexity is evaluated with

respect to the size of the database. Then, we have the following result [9]:

Theorem 2. Let P be a choice Datalog program. Then, the data complexity of

computing a choice model for P is polynomial time. 2

Therefore, for a choice Datalog program, P , the computation of one of the

stable models for foe(P ) can be performed in polynomial time using the Choice

Fixpoint Computation. This contrasts with the general intractability of �nding

stable models for general programs: in fact, we know that checking if a Datalog

program with negation has a stable model is NP-complete [15].

Therefore, the choice construct allows us to capture a special subclass of pro-

grams that have a stable model semantics but are amenable to e�cient implemen-

tation and are appealing to intuition. Implementing these programs only requires

memorization of the chosen predicates; from these, the di�choice predicates can be

generated on-the-
y, thus eliminating the need to store di�choice explicitly. More-

over, the model of memorizing tables to enforce functional dependencies provides a

simple enough metaphor for a programmer to make e�ective usage of this construct

without having to become cognizant on the subtleties of non-monotonic semantics.

5.2 Greedy Choice

De�nition 2 leaves quite a bit of latitude in the computation of � (Equation 2).

This freedom can be used to select �s that have additional properties. In particu-

lar, we want to explore specializations of this concept that trade nondeterministic

completeness (which is only of abstract interest to a programmer) in return for
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very concrete bene�ts, such as expressive power and performance. For instance, in

the specialization called Eager Choice [9], a maximal �C is used in Equation 2.

This results in a signi�cant increase in expressive power, as demonstrated by the

fact that negation can be emulated by eager choice [9, 10].

In this paper, we focus on a specialization of choice called greedy choice; our

interest in this constructs follows from the observation that it is frequently desirable

to select a value that is the least (or the most) among the possible values and still

satisfy the FDs de�ned by the choice atoms.

A choice-least (resp. choice-most) atom is of the form choice-least((X),(C))

(resp. choice-most((X),(C)) ) where X is a list of variables and C is a sin-

gle variable ranging over an ordered domain. A rule may have at most one

choice-least or one choice-most atom. A goal choice-least((X),(C)) (resp.

choice-most((X),(C))) in a rule r can be used to denote that the FD de�ned

by the atom choice((X),(C)) is to be satis�ed | the declarative semantics of

choice, choice-least and choice-most coincide. For instance, a rule of the form

p(X; Y; C) q(X; Y; C); choice((X); (Y));choice-least((X); (C)):

de�nes the FD X ! Y; C on the possible instances of p. Thus, assuming that q is

de�ned by the facts q(a; b; 1) and q(a; c; 2), from the above rule we can derive either

p(a; b; 1) or p(a; c; 2). Moreover, the choice-least goal introduces some heuristic in

the computation to derive only p(a; b; 1). This means that, by using choice-least

and choice-most predicates, we introduce some preference criteria on the stable

models of the program. The `greedy' �xpoint computation permit us to compute

a `preferred' stable model.

We can now de�ne a choice-least rule (resp. choice-most rule) as one that

contains one choice-least (resp. one choice-most) goal, and zero or more choice

goals. Moreover, we also assume that our programs contain either choice-least or

choice-most rules. A program that contains choice-least rules (choice-most rules)

and possibly other rules with zero or more choice goals is called a choice-least

program (a choice-most program) . Choice-least and choice-most programs have

dual properties; thus in the rest of the paper we will often mention the properties

of one kind of program with the understanding that the corresponding properties

of the other are implicitly de�ned by this duality.
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The correct computation of choice-least programs can be thus de�ned by spe-

cializing the nondeterministic immediate consequence operator by (i) ensuring that

� is a singleton set, containing only one element (ii) ensuring that a least-cost tuple

among those that are candidates is chosen.

Formally, we can use as our starting point the lazy version of choice where � is

specialized into a singleton set �. The specialized version of 	P so derived will be

denoted 	
lazy

P
; as proven in [9], the in
ationary choice �xpoint restricted using 	

lazy

P

operators still provides a sound and nondeterministically complete computation for

the choice models of P .

We begin by decomposing 	
lazy

P
in three steps:

De�nition 4. Lazy Immediate-Consequence Operator (LICO).

Let P be a choice program and I an interpretation of P . Then 	P (I) for P is

de�ned as follows:

�I = f� 2 TPC (I) n I j I [ f�g j= FDP g

�lazy
P

(I) = fI [ f�g j � 2 �Ig [ fI j �I = ;g

	lazy

P
(I) = f T

"!

PD
(J) j J 2 �lazy

P
(I) g

2

Given an interpretation I, a set � 2 �P (I) and two tuples t1; t2 2 �. We say

that t1 < t2 if both tuples are inferred only by choice-least rules and the cost of t1

is lesser than the cost of t2. Further, we denote with least(�) the set of tuples of

� with least cost, i.e. least(�) = ftjt 2 � and 6 9u 2 � s.t. u < tg.

Therefore, the implementation of greedy algorithms follows directly from re-

placing � 2 �I with � 2 least(�I).

De�nition 5. Least-Cost Immediate-Consequence Operator.

Let P be a choice program and I an interpretation of P . Then 	least

P
(I) for P

is de�ned as follows:

�I = f� 2 TPC (I) n I j I [ f�g j= FDP g

�least
P

(I) = fI [ f�g j � 2 least(�I)g [ fI j �I = ;g

	least

P
(I) = f T

"!

PD
(J) j J 2 �least

P
(I) g

	least

P
will be called the Least-Cost Immediate-Consequence Operator. 2
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Likewise, we have the dual de�nition of the Most-Cost Immediate-Consequence

Operator.

De�nition 6. Let P be a program with choice and choice-least goals. An in-


ationary least choice �xpoint computation (LFC) for P , is a sequence hInin�0 of

interpretations such that:

i. I0 = ;,

ii. In+1 2 	
least

P
(In), for n � 0. 2

Thus, all the tuples that do not violate the given FDs (including the FDs

implied by least) are considered, and one is chosen that has the least value for the

cost argument.

Theorem 3. Let P be a Datalog program with choice and choice least. Then,

1. every in
ationary least choice �xpoint for P is a choice model for P .

2. every in
ationary least choice �xpoint of P can be computed in polynomial

time.

Proof. For the �rst property, observe that every computation of the in
ationary

least choice �xpoint is also a computation of the lazy choice �xpoint. Therefore

every in
ationary least choice �xpoint for P is a choice model for P .

The second property follows from the fact that the complexity of the in
ationary

lazy choice �xpoint is polynomial time. Moreover, the cost of selecting a tuple with

least cost is also polynomial. Therefore, the complexity of in
ationary least choice

�xpoint is also polynomial. 2

While the in
ationary choice �xpoint computation is sound and complete with

respect to the declarative stable-model semantics the in
ationary least (most)

choice �xpoint computation is sound but no longer complete; thus there are choice

models that are never produced by this computation. Indeed, rather than follow-

ing a \don't care" policy when choosing among stable models, we make greedy

selections between the available alternatives. For many problems of interest, this

greedy policy is su�cient to ensure that the resulting models have some important
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optimality properties, such as the minimality of the sum of cost of the edges. The

model so constructed, will be called greedy choice models2.

6 Greedy Algorithms

In a system that adopts a concrete semantics based on least choice �xpoint, a pro-

grammer will specify a choice-least((X),(Y)) goal to ensure that only particular

choice models rather than arbitrary ones are produced, through the greedy selec-

tion of the least values of Y at each step. Thus an optimal matching in a directed

graph problem can be expressed as follows:

Example 9. Optimal Matching in a bipartite graph

opt matching(X; Y) g(X; Y; C); choice((Y); (X));

choice((X); (Y)); choice-least((X); (C)):

2

Observe that this program is basically that of Example 4 after that the choice

goal with a cost argument has been specialized to a choice-least goal.

The specialization of choice goals into choice-least or choice-most goals yields a

convenient and e�cient formulation of many greedy algorithms, such as Dijkstra's

shortest path and Prim's minimum-spanning tree algorithms discussed next.

The algorithm for �nding the minimum spanning tree in a weighted graph,

starting from a source node a, can be derived from the program of Example 5 by

simply replacing the goal choice((Y); (C)) with choice-least((Y); (C)) yielding

the well-known Prim's algorithm.

Example 10. Prim's Algorithm.

st(root; a; 0):

st(X; Y; C) st( ; X; ); g(X; Y; C); Y 6= a;

choice((Y); (X)); choice-least((Y); (C)):

2In terms of relation between declarative and operational semantics, the situation is similar

to that of pure Prolog programs, where the the declarative semantics is de�ned by the set of

all legal SLD-trees, but then one particular tree will be generated instead of others according to

some preference criterion
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2

Analogously, the algorithm for �nding the shortest path in a weighted digraph,

starting from a source node a, can be derived from the program of Example 6 by

simply replacing the goal choice((Y); (C)) with choice-least((Y); (C)), yielding

the well-known Dijkstra's algorithm, below.

Example 11. Dijkstra's algorithm.

dj(a; 0):

dj(Y; C) dj(X; C1); g(X; Y; C2); Y 6= a;

C = C1 + C2; choice-least((Y); (C)):

2

Consider now the program of Example 3, which chains the elements of a domain

d(X) in an arbitrary order. Say now that a particular lexicographical order is pre-

de�ned and we would like to sort the elements of d(X) accordingly. Then, we can

write the rules as follows:

Example 12. Sequencing the elements of a relation in decreasing order.

succ(root;root):

succ(X; Y) succ( ; X); d(Y);

choice-most((X); (Y)); choice((Y); (X)):

2

Greedy algorithms often provide e�cient approximate solutions to NP-complete

problems; the following algorithm yields heuristically e�ective approximations of

optimal solutions for the traveling salesperson problem [17].

Example 13. Greedy TSP.

Given a complete undirected graph, the exit rule simply selects an arbitrary

node X, from which to start the search. Then, the recursive rule greedily chooses

at each step an arc (X; Y; C) of least cost C having X as its end node.
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s-path(root; X;0) node(X); choice((); X):

s-path(X; Y; C) s-path( ; X; ); g(X; Y; C);

s-path(root;Z; 0); Y 6= Z;

choice((X); (Y)); choice((Y); (X));

choice-least((Y); (C)):

2

Observe that the program of Example 13 was obtained from that of Example

7 by replacing a choice goal with its choice-least counterpart. The next program

presents a greedy approximation of the knapsack problem.

Example 14. While we have here concentrated on graph optimization problems,

greedy algorithms are useful in a variety of other problems. The well know knapsack

problem consists in �nding a set of items whose total weight is lesser than a given

value (say 100) and whose cost is maximum. This is an NP-complete problem and,

therefore, the optimal solution requires an exponential time (assuming P 6= NP )

but an approximate solution carried out by means of a greedy computation, which

selects at each step the item with maximum value=weight ratio. 3

k(0; 0; 0):

k(I; W; V) k(I1; W1; V1); I = I1+ 1; item(X; W2; C2);

W = W1+ W2; V = V1+ V2; W < 100; Y = V2=W2

choice((I); (X));choice((X); (I)); choice-most((I); (Y)):

2

Observe that the program of Example 14 is derived from the program of Exam-

ple 8 by insertion of the atom choice-most((I); (Y )) (and of the atom y = V 2=W2)

into the body of the choice rule.

Therefore, a most encouraging conclusion emerges from the comparison of the

algorithms of this section vis a vis those in Section 4. In fact, in Section 4, we for-

mulated several graph problems using a transitive closure computation restricted

by choice-enforced FD constraints, to ensure that the resulting graph had some

3This problem can solved more e�ciently by means of a dynamic programming technique.
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topological properties (e.g., a tree, a path, a Hamiltonian cycle, etc.). In this

section, we have shown that the specialization of a choice goal into a choice-least

goal on the cost argument turns the algorithms of Section 4 into the classical

greedy algorithms on graph optimization problems. Moreover, we have also shown

that in some case it is possible to identify a di�erent cost attribute and to add a

choice-least or choice-most goal on this attribute. The TSP problem of Example

13 elucidates the role that the choice-least construct has in this regard. The solu-

tions of many search problems rely on an heuristic guiding-function to prune the

search and �nd an optimal or quasi-optimal solution quickly. Here, we see that

choice-least provides a very e�ective optimization heuristics for selecting between

alternative choice models during the �xpoint computation. In fact, for the TSP

problem choice-least is only guaranteed to deliver a polynomial-time approximation

of the optimal solution, which is known to require exponential time. However, for

simpler problems, such as minimum spanning tree or single source shortest-path,

the greedy heuristics is known to be optimal in most situations of practical interest

(e.g., edges with positive costs). In conclusion, we have obtained a framework for

deriving and expressing greedy algorithms (such as Prim's algorithm) characterized

by conceptual simplicity, logic-based semantics, and short and e�cient programs;

we can next turn to the e�cient implementation problem for our programs.

7 Implementation and Complexity

Amost interesting aspect of the programs discussed in this paper is that their stable

models can be computed very e�ciently. In the previous sections, we have seen

that the exponential intractability of stable models is not an issue here: our greedy

�xpoint computations are always polynomial-time in the size of the database. In

this section, we show that the same asymptotic complexity obtainable by expressing

the algorithms in procedural languages can be obtained by using comparable data

structures and taking advantage of syntactic structure of the program.

In general, the computation consists of two phases: (i) compilation and (ii)

execution. All compilation algorithms discussed here execute with time complexity

that is polynomial in the size of the programs. Moreover, we will assume, as it
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is customarily done [28], that the size of the database dominates that of the pro-

gram. Thus, execution costs dominate the compilation costs, which can thus be

disregarded in the derivation of the worst case complexities. We will use compila-

tion techniques, such as the di�erential �xpoint computation, that are of common

usage in deductive database systems [28]. Also we will employ suitable storage

structures, such as hash tables to support search on keys, and priority queues to

support choice-least and choice-most goals.

We assume that our programs consist of a set of mutually recursive predicates.

General programs can be partitioned into a set of subprograms where rules in every

subprogram de�nes a set of mutually recursive predicates. Then, subprograms are

computed according to the topological order de�ned by the dependencies among

predicates, where tuples derived from the computation of a subprogram are used as

database facts in the computation of the subprograms that follow in the topological

order.

7.1 Implementation of Programs with Choice

Basically, the chosen atoms need to be memorized in a set of tables chosenr (one

for each chosenr predicate). The di�choice atoms need not be computed and

stored; rather, a goal :di�choice
r
(: : :) can simply be checked dynamically against

the table chosenr. We now present how programs with choice can be evaluated by

means of an example.

Example 15. Consider again Example 12

s1 : succ(root;root):

s2 : succ(X; Y) succ( ; X); d(Y);

choice-most((X); (Y)); choice((Y); (X)):

2

According to our de�nitions, these rules are implemented as follows:
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r1 : succ(root;root):

r2 : succ(X; Y) succ( ; X); d(Y); chosen(X; Y):

r3 : chosen(X; Y) succ( ; X); g(X; Y; C); :diffchoice(X;Y):

r4 : diffchoice(X;Y) chosen(X; Y0); Y
0
6= Y:

r5 : diffchoice(X;Y) chosen(X0; Y); X
0
6= X:

(Strictly speaking, the chosen and di�choice predicates should have been added

the subscript s2 for unique identi�cation. But we dispensed with that, since there

is only one choice rule in the source program and no ambiguity can occur.) The

di�choice rules are used to enforce the functional dependenciesX ! Y and Y ! X

on the chosen tuples. These conditions can be enforced directly from the stored

table chosen(X; Y) by enforcing the following constraints 4:

 chosen(X; Y); chosen(X; Y0); Y
0
6= Y:

 chosen(X; Y); chosen(X0; Y); X
0
6= X:

that are equivalent to the two rules de�ning the predicate :diffchoice. Thus,

rules r4 and r5 are never executed directly, nor is any diffchoice atom ever gener-

ated or stored. Thus we can simply eliminate the di�choice rules in the computation

of our program foe(P ) = PC [ PD. In addition, as previously observed, we can

eliminate the goal :diffchoice from the chosen rules without changing the de�-

nition of LICO. Therefore, let P 0
D
denote PD after the elimination of the di�choice

rules, and let P 0
C
denoted the rules in PC after the elimination of their negated

di�choice goals; then, we can express our LICO computation as follows:

�I = f� 2 TP 0

C
(I) n I j I [ f�g j= FDP g

�
lazy

P
(I) = fI [ f�g j � 2 �Ig [ fI j �I = ;g

	
lazy

P
(I) = f T

"!

P
0

D

(J) j J 2 �P (I) g

Various simpli�cations can be made to this formula. For program of Example

15, P 0
D
consists of the exit rule r1, which only needs to �red once, and of the rule

r2, where the variables in choice goals are the same as those contained in the head.

In this situation, the head predicate and the chosen predicate can be stored in the

4A constraint is a rule with empty head which is satis�ed only if its body is false.

24



same table and TP 0

D
is implemented at no additional cost as part of the computation

of chosen.

Consider now the implementation of a table chosenr. The keys for this table

are the left sides of the choice goals: X and Y for the example at hand. The data

structures needed to support search and insertion on keys are well-known. For main

memory, we can use hash tables, where searching for a key value, and inserting or

deleting an entry can be considered constant-time operations. Chosen tuples are

stored into a table which can be accessed by means of a set of hash indexes. More

speci�cally, for each functional dependency X ! Y there is an hash index on the

attributed speci�ed by the variables in X.

7.2 Naive and Seminaive Implementations

For Example 15, the application of the LICO to the empty set, yields �I0
= ;; then,

from the evaluation of the standard rules we get the set 	lazy

P
(;) = fp(nil; a)g.

At the next iteration, we compute �I1
and obtain all arcs leaving from node a.

One of these arcs is chosen and the others are discarded, as it should be since

they would otherwise violate the constraint X $ Y . This naive implementation

of 	 generates no redundant computation for Example 15; similar considerations

also hold for the simple path program of Example 7. In many situations however,

tuples of �I computed in one iteration, also belong to �I in the next iteration,

and memorization is less expensive than recomputation. Symbolic di�erentiation

techniques similar to those used in the seminaive �xpoint computation, can be used

to implement this improvement [28], as described below.

We consider the general case, where a program can have more than one mutually

recursive choice rule and we need to use separate chosenr tables for each such rule.

For each choice rule r, we also store a table thetar with the same attributes as

chosenr. In thetar, we keep the tuples which are future candidates for the table

chosenr.

We update incrementally the content of the tables thetar as they were concrete

views, using di�erential techniques. In fact, �r = �r t thetar, where thetar is the

table accumulation for the `old' �r tuples and �r is the set of `new' �r tuples

generated using the di�erential �xpoint techniques. Finally, �I in the LICO is
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basically the union of the �r for the various choice rules r.

With P
0
C
be the set of chosen rules in foe(P ), with the :diffchoice goal

removed; let Tr denote the immediate consequence operator for a rule r 2 P
0
C
.

Also, P 0
D
will denote foe(P ) after the removal of the chosen rules and of the

diffchoice rules: thus P 0
D
is PD without the diffchoice rules.

The computation of 	
lazy

P
can then be expressed as follows:

Algorithm 1. Semi-naive computation of a choice model.

Input: Choice program P .

Output: Choice model I for foe(P ).

begin

Step 0: Initialization.

For every r 2 P 0
C
set chosenr = thetar = ;;

Set: I := T
"!

P
0

D

(;);

Step 1: Repeat

(i) Select an unmarked arbitrary r 2 P 0
C
and mark r

(ii) Compute: �r = (Tr(I)nthetar)nconflict(Tr(I)nthetar; chosenr);

(iii) Add �r to thetar

Until thetar 6= ; or all rules in P
0
C
are marked;

Step 2: If thetar = ; Return I;

Step 3: (i) Select an arbitrary x 2 thetar, and move x from thetar to

chosenr;

(ii) With � = fxg, delete from the selected table thetar every

tuple in conflict(thetar; �).

Step 4: Set: I = T
"!

P
0

D

(I [ �), then unmark all P 0
C
rules and resume from

Step 1.

end.

In fact, the basic computation performed by our algorithm is operational trans-

lation of 	lazy

P
, enhanced with the di�erential computation of �r. At Step 0, the
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non-choice rules are computed starting from the empty set. This corresponds to

the computation of the non-recursive rules (exit rules) in all our examples, but

Examples 4 and 7 for which the exit rules are choice rules and are �rst computed

at Step 1.

In Step 1 and Step 3, of this algorithm, we used the function conflictr(S; R)

de�ned next. Let S and R be two union-compatible relations, whose attribute sets

contain the left sides of the choice goals in r, i.e., the unique keys of chosenr (X

and Y for the example at hand). Then, conflictr(S; R) is the set of tuples in S

whose chosenr-key values are also contained in R.

Now, Step 1 brings up to date the content of the thetar table, while ensuring

that this does not contain any tuple con
icting with tuples in chosenr.

Symbolic di�erentiation techniques are used to improve the computation of

Tr(I) n thetar in recursive rules at Step 1 (ii) [28]. This technique is particularly

simple to apply to a recursive linear rule where the symbolic di�erentiation yields

the same rule using, instead of the tuples of the whole predicate, the delta-tuples

computed in the last step. All our examples but Examples 7 and 13 involve linear

rule. The quadratic choice rule in Example 7 is di�erentiated into a pair of rules.

In all examples, the delta-tuples are as follows:

(i) The tuples produced by the exit rules at Step 0

(ii) The new tuples produced at Step 4 of the last iteration. For all our examples,

Step 4 is a trivial step where T
"!

P
0

D

(I [ �) = I [ �; thus � is the new value produced

at Step 4.

Moreover, if r corresponds to a non-recursive, as the �rst rule in Examples 4

and 7, then this is only executed once with thetar = ;.

At Step 2, we check the termination condition, �I = ;, i.e., �r = ; for all r in

PC .

Step 3 (ii) eliminates from thetar all tuples that con
ict with the tuple �

(including the tuple itself).

Therefore, Algorithm 1 computes a stable model for foe(P ) since it imple-

ments a di�erential version of of the operator 	
lazy

P
, and applies this operator until

saturation.

We can now compute the complexity of the example programs of Section 4. For

graphs, we denote by n and e, respectively, the number of their nodes and edges.
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Complexity of rooted spanning-tree algorithm: Example 5

The number of chosen tuples is bounded by O(n), while the number of tuples com-

puted by the evaluation of body rules is bounded by O(e), since all arcs connected

to the source node are visited exactly once. Because the cost of generating each

such arc, and the cost of checking if this is in con
ict with a chosen tuple are O(1),

the total cost is O(e).

Complexity of single-source reachability algorithm: Example 6

This case is very similar to the previous one. The size of reach is bounded by O(n),

and so is the size of the chosen and theta relations. However, in the process of

generating reach, all the edges reachable from the source node a are explored by

the algorithm exactly once. Thus the worst case complexity is O(e).

Complexity of simple path: Example 7

Again, all the edges in the graph will be visited in the worst case, yielding complex-

ity O(e), where e = n
2, according to our assumption that the graph is complete.

Every arc is visited once and, therefore, the global complexity is O(e), with e = n
2.

Complexity of a bipartite matching: Example 4

Initially all body tuples are inserted into the theta relation at cost O(e). The

computation terminates in O(min(n1; n2)) = O(n) steps, where n1 and n2 are,

respectively, the number of nodes in the left and right parts of the graph. At each

step, one tuple t is selected at cost O(1) and the tuples con
icting with the selected

tuple are deleted. The global cost of deleting con
icting tuples is O(e), since we

assume that each tuple is accessed in constant time. Therefore the global cost is

O(e).

Complexity of linear sequencing of the elements of a set: Example 3

If n is the cardinality of the domain d, the computation terminates in O(n) steps.

At each step, n tuples are computed, one tuple is chosen and the remaining tuples

are discarded. Therefore the complexity is O(n2).

28



7.3 Implementation of Choice-least/most Programs

In the presence of choice-least (or choice-most) goals, the best alternative must be

computed, rather than an arbitrary one chosen at random. Let us consider the

general case where programs could contain three di�erent kinds of choice rules: (i)

choice-least rules that have one choice least goal, and zero or more choice goals,

(ii) choice-most rules that have one choice-most goal and zero or more choice goals,

and (iii) pure choice rules that have one or more choice goals and no choice-least or

choice-most goals. Then Step 3 (i) in Algorithm 1 should be modi�ed as follows:

Step 3: (i) If r is a choice-least (choice-most) rule then select a single tuple

x 2 thetar with least (most) cost; otherwise (r is pure choice rule,

so) take an arbitrary x 2 thetar. Move x from thetar to chosenr;

An additional optimization is however possible, as discussed next. Consider for

instance Prim's algorithm in Example 10:

Say that theta contains two tuples t1 = (x; y1; c1) and t2 = (x; y2; c2). Then,

the following properties hold for Algorithms 1 with Step 3 (i) modi�ed as shown

above:

� If c1 < c2 then t2 is not a least-cost tuple,

� t1 belongs to conflict(theta; �), if and only if t2 does.

Therefore, the presence of t2 is immaterial to the result of the computation, and

we can modify our algorithm to ensure that only t1 is kept in table theta. This

improvement can be implemented by ensuring that the attribute Y is unique key

for the table theta. When a new tuple t0 is generated and a tuple with the same

key value is found in theta, the tuple with the smaller cost value is entered in

the table and the other is discarded. This reduces, the maximum cardinality of

theta for Prim's and Dijkstra's algorithm from e (number of arcs) to n, (number

of nodes).

However, the above considerations are not valid for rules containing more than

one choice atoms. For instance, in the greedy TSP program, or the optimal match-

ing program (Examples 13 and 9, respectively), the choice rules have the following

choice goals:
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choice((X); (Y)); choice((Y); (X)); choice-least((Y); (C))

Say that theta contains the following tuples: t1 = (x1; y1; c1), t2 = (x1; y2; c2)

t3 = (x2; y2; c3), with c1 < c2 < c3. Although, c3 con
icts with c2 and has larger

cost value, it cannot be eliminated, since it has a chance to be selected later. For

instance, if t1 is selected �rst then t2 will be eliminated, since it con
icts with t1.

But t3 does not con
ict with t1, and remains, to be selected next.

Thus, the general rule is as follows:

1. the union of the left sides of all choice goals is a unique key for theta,

2. when a new tuple is inserted and there is a con
ict on the unique key value,

retain in theta only the tuple with the lesser cost.

The above optimization can be carried out by modifying Step 1 (iii) in Algo-

rithm 1 as follows:

Step 1: (iii) Add each tuple of �r to thetar; when key con
icts occur, and

r is a choice-least (choice-most) table, retain the lesser (larger) of

the tuples.

Moreover, insertion and deletion of an element from a theta table can be done

in constant time, since we are assuming that hash indexes are available, whereas

the selection of a least/most cost element is done in linear time. The selection of

the least/most cost element can be done in constant time by organizing theta as

priority queues. However the cost of insertion, deletion of least/most cost element

from a priority queue are now logarithmic, rather than constant time. Therefore,

when using priority queues we can improve the performance of our algorithm by

delaying the merging �r into thetar (Step 2), as to allow the elimination from �r

of tuples con
icting with the new � selected at Step 3. Therefore, we will move

one tuple from �r to thetar (if �r 6= ;), in Step 1 (iii), and the remaining tuples at

the end of Step 3 (those con
icting with � excluded).

30



Algorithm 2. Greedy Semi-naive computation of a choice model.

Input: Choice program P .

Output: I, a greedy choice model for P .

begin

Step 0: Initialization.

For every r 2 P 0
C
set chosenr = thetar = ;;

Set: I := T
"!

P
0

D

(;);

Step 1: Repeat

(i) Select an unmarked arbitrary r 2 P 0
C
and mark r

(ii) Compute: �r = (Tr(I)nthetar)nconflict(Tr(I)nthetar; chosenr);

(iii) If r is a choice-least (choice-most) rule then select a single

tuple x 2 �r with least (most) cost; otherwise (r is pure choice

rule, so) take an arbitrary x 2 �r. Move x from �r to thetar;

Until thetar 6= ; or all rules in P
0
C
are marked;

Step 2: If thetar = ; Return I;

Step 3: (i) If r is a choice-least (choice-most) rule then select a single tuple

x 2 thetar with least (most) cost; otherwise (r is pure choice

rule and) take an arbitrary x 2 thetar. Move x from thetar to

chosenr;

(ii) With � = fxg, delete from the selected table thetar every

tuple in conflict(thetar; �).

(iii) Add each tuple of �r to thetar; when key con
icts occur, and

r is a choice-least (choice-most) table, retain the lesser (larger) of

the tuples.

Step 4: Set: I = T
"!

P
0

D

(I [ �), using the di�erential �xpoint improvement,

then unmark all P 0
C
rules and resume from Step 1.

end.

Observe that the improvement performed in Step 3 reduces the max cardinality

of tables thetar. In our Prim's algorithm the size of the table theta is reduced
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from the number of edges e to the number of nodes n. This has a direct bearing

on the performance of our algorithm since the selection of a least cost tuple is

performed n times. Now, if a linear search is used to �nd the least-cost element

the global complexity is O(n�n). Similar considerations and complexity measures

hold for Dijsktra's algorithm.

In some cases however, the unique key improvement just describe might be of

little or no bene�t. For the TSP program and the optimal matching program,

where the combination of both end-points is the key for theta, no bene�t is to

be gained since there is at most one edge between the two nodes. (In a database

environment this might follow from the declaration of unique keys in the schema,

and can thus be automatically detected by a compiler).

Next, we compute the complexity of the various algorithms, assuming that the

theta tables are supported by simple hash-based indexes, but there is no priority

queue. The complexities obtained with priority queues are discussed in the next

section.

Complexity of Prim's Algorithm: Example 10

The computation terminates in O(n) steps. At each step, O(n) tuples are inserted

into the table theta, one least-cost tuple is moved to the table chosen and con-


icting tuples are deleted from theta. Insertion and deletion of a tuple is done in

constant time, whereas selection of the least cost tuple is done in linear time. Since

the size of theta is bounded by O(n), the global complexity is O(n2).

Complexity of Dijkstra Algorithm: Example 11

The overall cost is O(n2) as for Prim's algorithm.

Complexity of sorting the elements of a relation: Example 12

At each step, n candidates tuples are generated, one is chosen, and all tuples are

eliminated from theta. Here, each new X from succ is matched with every Y, even

when di�erential techniques are used. Therefore, the cost is O(n2).

Greedy TSP: Example 13

The number of steps is equal to n. At each step, n tuples are computed by the

evaluation of the body of the chosen rule and stored into the temporary relation
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�. Then, one tuple with least cost is selected (Step 1) and entered in theta all the

remaining tuples are deleted from the relation (Step 3). The cost of inserting one

tuple into the temporary relation is O(1). Therefore, the global cost is O(n2).

Optimal Matching in a directed graph: Example 9

Initially all body tuples are inserted into the theta relation at cost O(e). The

computation terminates in O(n) steps. At each step, one tuple t with least cost is

selected at cost O(e) and the tuples con
icting with the selected tuple are deleted.

The global cost of deleting con
icting tuples is O(e) (they are accessed in constant

time). Therefore the global cost is O(e� n).

7.4 Priority Queues

In many of the previous algorithms, the dominant cost is �nding the least value in

the table thetar, where r is a least-choice or most-choice rule. Priority queues can

be used to reduce the overall cost.

A priority queue is a partially ordered tables where the cost of the ith element

is greater or equal than the cost of the (i div 2)th element [3]. Therefore, our table

thetar can be implemented as a list where each node having position i in the list

also contains (1) a pointer to the next element, (2) a pointer to the element with

position 2� i, and (3) a pointer to the element with position i div 2. The cost of

�nding the least value is constant-time in a priority queue, the cost of adding or

deleting an element is log(m) where m is the number of the entries in the queue.

Also, in the implementation of Step 2 (ii), a linear search can be avoided by

adding one search index for each left side of a choice or choice-least goal. For

instance, for Dijkstra's algorithm there should be a search index on X, for Prim's

on Y . The operation of �nding the least cost element in �r can be done during

the generation of the tuples at no additional cost. Then we obtain the following

complexities:

Complexity of Prim's Algorithm: Example 10

The computation terminates in O(n) steps and the size of the priority queue is

bounded by O(n). The number of candidate tuples is bounded by O(e). Therefore,

the global cost is bounded by O(e� log n).
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Complexity of Dijkstra Algorithm: Example 11

The overall cost is O(e� log n) as for Prim's algorithm.

Complexity of sorting the elements of a relation: Example 12

The number of steps is equal to n. At each step, n tuples are computed, one is

stored into theta and next moved to chosen while all remaining tuples are deleted

from �. The cost of each step is O(n) since deletion of a tuple from � is constant

time. Therefore, the global cost is O(n2).

Greedy TSP: Example 13

Observe that thetar here contains at most one tuple. The addition of the �rst

tuple into an empty priority queue, thetar, and the deletion of the last tuple from

it are constant time operations. Thus the overall cost is the same as that without

a priority queue: i.e. the global cost is O(n2).

Optimal Matching in a bipartite graph: Example 9

Initially, all body tuples are inserted into the theta relation at cost O(e � log e).

The computation terminates in O(n) steps. At each step, one tuple t is selected

and all remaining tuples con
icting with t are deleted (the con
icting tuples here

are those arcs having the same node as source or end node of the arc). The

global number of extractions from the priority queue is O(e). Therefore, the global

complexity is O(e� log e).

Observe that, using a priority queues, an asymptotically optimumperformance [3]

has been achieved for all problems, but that of sorting the elements of a domain,

Example 12. This problem is considered in the next section.

7.5 Discussion

A look at the structure of the program in Example 12 reveals that at the beginning

of each step a new set of (x; y) pairs is generated for theta by the two goals

succ( ; X); d(Y) which de�ne a Cartesian product. Thus, the computation can be

represented as follows:

� = �2succ� d
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where succ and d are the relations containing their homonymous predicates. We

can also represent � and theta as Cartesian products:

� = (�2� � d) n chosen= �2� � (d n �2chosen)

Therefore, the key to obtaining an e�cient implementation here consists in

storing only the second column of the theta relation, i.e.:

�2theta = d n �2chosen

The operation of selecting a least-cost tuple from theta now reduces to that of

selecting a least-cost tuple from �2theta, which therefore should be implemented

as a priority queue.

Assuming these modi�cations, we can now recompute the complexity of our

Example 3, by observing that all the elements in d are added to �2theta once at

the �rst iteration. Then each successive iteration eliminates one element from this

set. Thus, the overall complexity is linear in the number of nodes. For Example

11, the complexity is O(n � log n) if we assume that a priority queue is kept for

�2theta Thus we obtain the optimal complexities.

No similar improvement is applicable to the other examples, where the rules

do not compute the Cartesian product of two relations. Thus, this additional

improvement could also be incorporated into a smart compiler, since it is possible

to detect from the rules whether theta is in fact the Cartesian product of its

two subprojections. However this is not the only alternative since many existing

deductive database systems provide the user with enough control to implement this,

and other di�erential improvements previously discussed, by coding them into the

program. For instance, the LDL++ users could use XY-strati�ed programs for

this purpose [27]; similar programs can be used in other systems [24].

8 Conclusion

This paper has introduced a logic-based approach for the design and implemen-

tation of greedy algorithms. In a nutshell, our design approach is as follows: (i)

formulate the all-answer solution for the problem at hand (e.g., �nd all the costs
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of all paths from a source node to other nodes), (ii) use choice-induced FD con-

straints to restrict the original logic program to the non-deterministic generation

of a single answers (e.g., �nd a cost from the source node to each other node),

and (iii) specialize the choice goals with preference annotations to force a greedy

heuristics upon the generation of single answers in the choice-�xpoint algorithm

(thus computing the least-cost paths). This approach yields conceptual simplicity

and simple programs; in fact it has been observed that our programs are often

similar to pseudo code expressing the same problem in a procedural language. But

our approach o�ers additional advantages, including a formal logic-based seman-

tics and a clear design method, implementable by a compiler, to achieve optimal

implementations for our greedy programs. This method is based on

� The use of chosen tables and theta tables, and of di�erential techniques to

support the second kind of table as a concrete view. The actual structure of

theta tables, their search keys and unique keys are determined by the choice

and choice-least goals, and the join dependencies implied by the structure of

the original rule.

� The use of priority queues for expediting the �nding of extrema values.

Once these general guidelines are followed (by a user or a compiler) we obtain

an implementation that achieves the same asymptotic complexity as procedural

languages.

This paper provides a re�ned example of the power of Kowalski's seminal idea:

algorithms = logic + control. Indeed, the logic-based approach here proposed covers

all aspects of greedy algorithms, including (i) their initial derivation using rules

with choice goals, (ii) their �nal formulation by choice-least/most goals, (iii) their

declarative stable-model semantics, (iv) their operational (�xpoint) semantics, and

�nally (v) their optimal implementation by syntactically derived data structures

and indexing methods. This vertically integrated, logic-based, analysis and design

methodology represents a signi�cant step forward with respect to previous logic-

based approaches to greedy algorithms (including those we have proposed in the

past [12, 7]).
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