Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PROLOG TECHNOLOGY TERM REWRITING: APPLICATIVE
SYSTEMS

M. H. M. Cheng December 1993
D. S. Parker CSD-930041
M. H. van Emden

Prolog Technology Term Rewriting:
Applicative Systems

M.FH.N. Cheng~
Department of Computer Science
University of Victoria. P.O. Box 3055
Victoria. B.C'. V3W 3P6 Canada

D. Stott Parker!
C'omputer Science Department.
University of California
Los Aungeles. CA 90024-1596 USA

M.H. van Emden?
Department of Computer Science
Universitv of Victoria. P.O. Box 3055
Victoria, B.CL VW 3P6 Canada

Abstract

We explore Applicative Term Rewriting Systems. first-order term-rewriting svstems that axiomatize
fanction application. These systems are similar in flavor to Klop's higher order combinatory reduction
svstems. but involve only firsi-order terms.

Applicative tern-rewriting svstems have several aspects that are interesting to us. First, they are
simple, and their rules can be integrated directly with declarative, first-order axiomatizations of the
equality refation. Second. they ave easily implemented with Prolog. thereby making a basis for a Prolog
Technology Terin Rewriter in the sense of Stickel’s ~Prolog Technology Theorem Prover™. and providing
hoth easy implementation and cfficient execution. Third. they permit specification of computationally
useful fragments of higher order cquality theories. by allowing selective omission of equality axioms.
Finally. in tlus approach innermost and outermost reduction. ax well as many combinations of these, are
obtained by merely rearranging the clanses that express equality axioms.

A nmmber of higher order tern rewriting svstems propesed recently rely on simplified A-term unifica-
tion algorithnes, implementing fragments of equality theories for A-terms. Our approach provides both a

*Supported by Natural Sciences and Fngineering Research Council of Canada.
TSupperted by National Science Fondation grant IRL28917907.
tSupparted by Natural Sciences and Engineering Research Council of Canada.

way to implement such schemes, and an alternative equality theory when the fragment required is limited
{as is often the case),

1 Introduction

Stimulated by the success of first-order term rewriting systems (TRS). interest turned to the investiga-
tion of the potential of higher order rewriting systems [3. 12]. These systems are suggested as vehicles for
sophisticated rewriting applications. particularly those invelving the notions of hound variables or abstrac-
tion. Such applications include systems for manipulating logical formulas with quantifiers and programs
with variable declarations. Thus they have been used for specifications of logics, theorem provers, program
transformations. and control schemes for rewriting systems (tactics and normalization strategies) [5. 6].

As A-conversion is nontrivial to implement correctly. there is a benefit in expressiveness and elegance
provided by systems that support rewriting with A termis and include A-unification [8] as a built-in facility.
Also the "combinatory”™ Hexibility of higher order systems makes it possible to develap soplisticated systems
with ouly a few primizives and composition. For example. in the specification of theorem provers a language
of rewrite plans can be inade available with a small set of higher order functions [5. 14].

However. TRS based on the A-caleulus Live serious practical drawbacks, First. it is well-known that
systems that manipulate A-terms directly carry an overhead. and tend to be slow. 1t is challenging to develop
compilers that skirt the inherent complexity caused by A-terms being equivalence classes, and minimize the
runtime overhead off A-conversion. Second. general Aunification typically requires intelligent use of types,
and is known to be both nondeteriinistic and undecidabic. Overall, the overhicad is considerable. For
example. while it must be stressed that AProlog 2.7 was not written with speed foremost in mind. it yields
under 10 LIPS {successful nnifications per second) on the examples provided with the svstem usintg SICStus
Prolog 0.7 on a Sun ELC — three orders of magnitude slower than the Prolog system itself.

Recognizing these drawhacks, Miller has recently proposed a simplified unifieation procedure implement-
Ing only a pattern-oriented fragment of the equational theory of A-terms [10] in the simplified L, system. This

approach has attracted considerable interest [6. 13). since several existing systems employ a slower, more gen-
eral A-unification procednre. The sample programs in [10] stress that useful applications of A-unification can
be implemented with a simpler unification problem and greater reliance on wniversally guantified implication
to express useful meta-level goals ahout substitutions at the object level.

Comumenting on the moiivations for this proposal. Miller remarks:

Bath the Isabelle thearem prover and AProlog contain simiply typed M-terins, dy-conversion, and quantification of
variables at all functional orders. These systems have heen used (o specify and implement a large number of meta-
programming tasks. incloding theorsin proving. type checking. anel program transformation. interpretation, and
compilation. An examination of the structure of those specifications and implementations revealed twe interesting
facts. First, free or “logic” variables of functional type were often applied only to distinet bound M-variables. For
eanple, the free functional variable A7 may appear in the following context:

A A Y TN 0. V 72 T

When such free vaviables ave instantiated. the only new J-redexes that arise are those involving distinct A-bound
variables. Tor example. if M above is instantiated with a Md-term. say Aude - £, the only new J-redex formed is
((Nuwdr yar). This is vecduced to normal form simply by renaming in # the variables u and ¢ to y and o+ — a very
simple computation. Secand. in the cases where free variables of functional tvpe were applied to general terms,
meta-level d-reduction was invoked simply to perfarm objeci-level substitution. For example, an ohject-level
universal quantifier can be specified using 1he svimhol o/f of second-order tvpe ¢6crn — formula) — formude. The

e

binary predicate that relates a universally quantified formula to the result of instantiating it with some term can
be coded simply by the [ollowing meta-level axiom

VR YT (instun{cll BHBT))
where B and T are typed as term — forniule and term. vespectively. At the object-level. this predicate relates
the formulas ¥ - 4 and [» — T]B: ohject-level snbstitution is expressed at the nieta-level using S-conversion.

The logic Ly is designed to permit the first kind of 3-redex but not the second. As a result, implententations of
this logic can make nse of a very simple kind of unification. Although olject-level substitution is not antomatically
available. it can be specified naturally as an Ly program. ... Thus. Ly requires that some of the functionality of
i-conversion be moved from the terin level to the logic level. The result can be mwore complex logic programs Lt
with simpler unification problems. This seens like a trade-off worth investigating.

— Dale Miller. section 2.1 of [10].

The enormous power of A-umification is soretimes unused even by the applications proposed for higher or-
der rewriting. As Miller points ont. its main use to date seems to be in pattern matching and 3-normalization,
both simple operations. A trace of the programs distributed with AProlog 2.7 showed that general A-term
unification. with flexible-flexible pairs. arose in only a few programs (type inference and program transfor-
mation}. For example. the program that implements theorem-proving tacticals (an application proposed by
Felty for higher order rewriting [4. 3]) generated no flexible-flexible pairs. and one flexible-rigid pair.

A natural question is thevefore: can we provide only that part of the equality theory needed by these higher
ovder applications? Doing so will presumably speed up such applications considerably, and should have the
beneficial side-effect that the unificr (or whatever ather interface to the equality theery we choose} will be
easier Lo understand and predict.

We argue that it 1s possible to provide fragments of equational theories in an elegant and relatively
efficient way. using a first-order approach that is implementable as a Prolog Technology Term Rewriter.

2 A Prolog Technology Term Rewriter

In this paper. we describe an approach to tern rewriting in the spirit of Stickel’s Prolog Technology Theorem
Prover [17]: exploiting the combination of high level and efficient iniplementation of the Prolog programming
language. Similarly. we show that the logical basis of Prolog makes it possible ta implement terim rewriting
in a way that provides a remarkshle comhination of effortlessiess and run-tinie efficiency. Moreover, our
method is not mere Profog hacking: it is based on an uncovering of the logical foundations of term rewriting,
an activity that is of interest independently of any practical motivation.

Although reduction. the basic step in term rewriting, is usually defined as a primitive operation, it
can also be obtained by logical inference from an equation representing the rule and one of the axioms of
equality. In this paper we adopt this approach for the practical reason that it allows us to avoid duplicating
the equivalent of certain aspects of Prolog imptementation. It also allows us to obtain different behaviours
s of expressing the axioms of logic. In this way

of term rewriters by choosing among logically equivalent wa

it s easy to sec the semantic refations between the different versions.

2.1 The Role of Equality in Logic Programming

To obtain the above advantages. we use logic prosramming as the framework: the lansuace of clauses and
& o o o & oS

resolution as inference rule. Specifically. we asanme a logic program consisting of positive Horn clauses to be

activated by a query in the form of a negative clause. Inference is restricted to SLD resolution: resolution of
the most recently obtained negative elanse (and initially the query) with a positive clause. vielding the next
negative clause. Resolution is the only inlerence step, and syntactic unification is the only form of equality
used. Of the axioms of equality. only substitutivity and reflexivity are embodied in unification.

Tlie programmer is of course free to inclnde other equality axioms. At a superficial level this is facilitated
by the fact that in their usual formulation. the axioms of equality are substantially in the forn of positive
orn clauses. But it is rarely wise to do so. as the search space for SLD resolution is rendered intractable by
the inclusion of, for example. transitivity. Thus, logic programming has only succeeded because programimers
have learned to avoid the use of the equality relation: for example by saving sum(X,Y,2) instead of X+Y=2Z.

2.2 The Axioms of Equality

As we will often be relerring to axioms of equality, it is important to list them for future reference. We use
the clausal form of logic, in which all variables arve implicitly universally quantified. The following set Fq of
clauses define eguality.

Reflevivity L=

Symmetry LTy o— oy =

Transtlivily r=r — r=yoy— oz

Function substitutivity flaeyoo o Picooodnd = flere e — 1=y

The substitutivity axioms range over all arguinent positions of all n-ary function svinbols f.

The method we follow is to rewrite terms by proving the initial term equal to the final term in the
reduction sequence. [f we base the proof on the standard axioms given above. the required inference is
a complex task. Instead we will forilate inini-theories of equality that are justified by being a logical
consequence ol Eq. These mini-thearics deline subsets of the equality relation (regarding these relations as
sets of pairs). The subsets are large cnough to contain the desived resulis of rewriting and are defined by
axioms of a form that qualifies as a logic program. As a result the efficient Prolog theorent prover, being
based on SLID reschition, can obtain the result of rewriting at a cost i time and memory that makes this
method of practical interest.

To obtain our wuuitheories. we introdocee of different predicate symbols eq; for i = 1,2... that, though
different. all have as same meaning the equality symbol used above, Thus we add to Ey the clauses eq; (2, y) <
(@ = y) for whatever values of 7 we need.

We then collect theorems abaut the eq; from the axioms in Fq. These theorems can then he used as sole
definition of eq,, that is. not using the axiom ey, (r. y) < (> = y). In this way the theorens typically define
a subrelation ol equality: that is. they constitute a mini-theory as referred to above.

2.3 Implementation of Prolog Technology Term Rewriting

The discussion above explains how the single rewrite step and its transitive closure can be represented as
clauses suitable for execution as a Prolog program. According to this method (let us call this the “Basie
Method™), we translate any scl of rewrite rules 1o a logic program containing the following clauses:

o The rule reference clause, which savs that the two sides of a rewrite rule are in the eq; relation.

¢ For each function symbol of positive arity, the corresponding clanse expressing substitutivity.

» The clause defining eq, as the reflexive transitive closure of eq,.

This is the Basic Method. It does not specily the order of the clauses.
For example, we can define the rules

twice : F : X => F : {(F : X).
suce ; X => s(X).

and then specialize our equality implementation for the binary funetion symbol : to obtain:

eq{X,Y) :- eq2(X,Y).

eq2(¥,Z) :- eqi{X,Y), eq2(Y,Z). % transitivity
eq2(X,X). % reflexivity
eql((X1:X2),(Y1:X2)) :- eqi(X1,Y1). % substitutivity for ’:’
eq1((X1:X2), (X1:Y2)) :- eq1(X2,Y2). % substitutivity for ':’
eql(X,Y) - (X => ¥Y). % rule-reference clause

The query
?- eq(twice:twice:twice:succ:0, X).
vields the answer
X = s(s(s(s(s(s(s{s(s(s(s(s(s(s{s(s(0))))ININIMINY.

This example in fact shows what we are mainly interested in: applicative definitions.

Performance results for applicative definitions like these, showing the surprising result that even naive
Prolog implementationus such as this run faster than interpreted Lisp programs using the equivalent LAMBDA
definitions. arve presented in [2. 3].

2.4 Implementing Fragments of Equality

In the Basic Method we have not cousidered how ¢lanses should be ardered. This has determines whether
the rewriting is done innermost or outermost. an important choice. Innermost has the advantage of speed
{even on small examples a speed-up of two orders of magnitude can sometimes be ohserved). 1t has the
disadvantage that a rewriting possihle under onterniost does not terminate.

A substitutivity clause pertains to a certain [unction symbol and to a certain argument place. If such a
clause occurs hefore (after)

eql(X,Y) - (X => Y). % rule-reference clause

then the entire program will causce innermost {outermost) rewriting with respect to that function symbol
and that argument place. This possibility of miixing outermost and inuertost rewriting may be novel and is
certainly worth pursuing. However. in this paper we will sav no more about it as it docs not seem to affect
the higher order aspects of termi-rewriting.

Often the substitutiviry axioms are not useful. particularly when we are interested in ontermost (lazy)
rewriting. For example, with the definition of plus

ur

X

plus{X,0) .
> s(plus(X,¥)).

plus{(X,s(Y))

substitutivity on the first argument will nerer help in successful unification. We can see this easily, since
the rules are linear (i.e.. no variable appears more than once in the left. of any rule) and the first argument
of plus is always a variable. Use of substitutivity on this argument in any proofl will have the effect of
evaluating the argument. even though the value of the argnment may not he needed later.

A more striking exaitrple comes lrom considering the standard rules

if(true, X,Y) => X.
if(false,X,Y) => Y.

in which it is clear that evaluation of the second or third argument is not wanted. When the leftmost
mnermost strategy s selected for reasons of speed, and exception is wisely made for if-then-else, avoiding
evaluation of the arguments in this case.

For instance. with the example above we obtain the following equational theory:

eq2(X,Z2) :- eql(X,¥), eq2(Y,2). % transitivity

eq2(X,X). % reflexivity

eql(X,Y) :- (X => Y). % subst. outermost
eql(plus(X1,X2),plus(X1,Y2)) 1= eq1(X2,Y2). % subst. 2nd argument of plus

eql (1f(X1,X2,X3),if(Y1,X2,X3)) :- eq1(X1,Y1). % subst. 1st argument of if

2.5 Implementation method
Prolog Technology Term Rewriting is implemented in three stages:

» Choice of a computationally useful fragment of equality. as explained above. The logic program consists
of rewrite rules plus selected consequences of the equality axioms. Fhis logic program is executable
under Prolog and gives the same results as term rewriting. It is. however. susceptible to optimization

as described i the next Lwo stages.

e In the first optimsization stage. the maodified axioms of equality are optimized by partial evaluation.
That is. the clauses defining the equality relation shown above are ~unfolded™ [16] using the rules
provided.

» The results of this stage are then “relationalized™ by converting the applicative equational definitions to

predicate form. Lhe definition apply(r. g 2) — eq(e @ y. 2) is introduced and then partially evaluated.
The resulting “apply™ predicate execntes more rapidly with most Prolog systems as it requires fewer
terms to he constructed.
Actually. thix relationalization step ix the result of a ~fold™ transformation in our partial evaluator:
partial evaluation of the specialized query eq((X:Y),2) generates a threc-argument apply(X,Y,Z)
predicate. and recursive calls of the fore eq({U: V), W) produced by this partial evaluation are folded
to apply (U, V,W). This folding 1echnique is described in [16).

¥

Such an implementation can be easily extended, as Stickel shows [17). to include complete proof search
(by iterative deepening). unification with the ocenr check, and a complete form of negation. Using Prolog
does not imply incompleteness.

For example. with the following equality theory. theorems of the forni eq(X,Y,L) are provable only when
there is a rewriting from X to ¥ of length at most L, i.e.. with at most L applications of “=>" rules. Every
proof of eql ultimately results in the application of exactly one ~=>" rule.

eq(X,Y) :- eq(X,Y,_).
eq{X,¥,L) :- peano_numver(L), eq2(X,¥,L,_). Y% search bound is L

eq2(X,Z,s(L1),L) :- eqi(X,Y¥), eq2(Y,Z,L1,L). % decremented bound

eq2(X,X,L,L).

eql{(X1:X2),(Y1:X2)) :- eqi{X1,Y1). % substitutivity for ':°’
eql((X1:X2),(X1:¥Y2)) :- eql(¥X2,Y2). % substitutivity for ’:’
eql(X,Y¥) - (X => Y), % rule-reference clause

peanc_number (0),
peano_number (s{W)) :- peano_number{N).

Tle length values L are represented here as Peano numbers bath for elegance. and also for speed (1), since
L] O
Prolog implementations arc optimized lor sucl unification. Since peano_number generates all possible Peano
b= =]
numbers m ascending order, this cquality theory performs depth-first iterative decpening search, a complete

proof search strategy.

3 Applicative Term Rewriting

Applicative Term Rewriting Systems permit vules of the lorm fley,....cn) 0 = F where F is a first-
order term whose only function symubols are the application operator »" and funetion symbols of other rules,
and whose only free varables are in the set {o e oo ey} By “capturing” all these free variables, the term
Fler oo oovn) beconies a kind of combinator - a A-term with no free variables - hut treats the free variables
U1, ...ty as parameters. This term serves the role of a supercombinator [153]. and we will call it such here.
Combinators can be expressed as curried supercombinators. For example. the Tamiliar combinators 8, K.
and I are easily expressible:

i:X => X.

k : X => ki{X).
k1(X) : ¥ => X.

s : X => s51(X).
s1(X) @ Y => s2(X,Y).

s2(X,Y) : Z => (X:Z) : (Y:2).

Applicative Terni Rewriting Systeins have been studied in the larger setting of combinatory logic, and
are subsumed by Klop's combinatory veduction sysfoms (CRS) [9). CRS permit use of A-terms in both the

left- and right-hand sides of rewrite rules. These A-terms can be used as higher order patterns, which we
will discuss below.

Of course. there is a direct relationship between A-terms and combinators. The relationship is provided
by the A-fifting algorithm used in translating functional programs to applicative form (combinator form)
[15]. Expressions containing free variables are translated to supercombinators by reintroducing ahstractions
to bind the free variables. Ilere we use the first-order term representation to represent these reintroduced
abstractions that capture free variables.

Any A-term can be converted to a supercombinator applicative form with the following recursive algo-
rithm. a A-lifting algorithm used in compiling functional programs into supercombinators:

Lift(e) = if & 15 a variable (or constant)
LR(AINY = HR(AL) LN
ft(Ae FY = glv... .. 0n)
oy, v, are the free variables of £, and
g 15 a new function symbol defined by gley. . vy e = Bft(E).

This translation introduces new supercombinator definitions. ultimately vielding an expression that is con-
ditioned on a set of equations.
Note that a conseguence of this algorithin is that

-".'ﬂ()\?J s ./\J’,”.rl_‘;:) - [,T(](i-'l‘ S f‘”}

where we obtain as side effects the {curried) applicative definitions:

golvr, o)ty = gpleroo ey k)
gilry.. ... Cpody)ide = ga(eg... Cp iy, 2a)
M1 {0 b e e = HFIUED.
These definitions introduce new supercombinators g; (v e, ey vidofor 0 < j < in— 1. The SKI-

combinator rules above are an example of this translation.

Thus there is a direct trauslation from A-terms to applicative supercombinator expressions. However,
the approach rests firmly in first-order logic. We axiomatize only the application operator =", and that
part of equality that is necded. Tor higher order terim rewriting applications that do little more than 8-
normalization and argument pattern matchiug. the applicative term rewriting approach described here is
probalbly sufficient.

4 Sample Application: Higher Order Pattern Matching

We feel the foregoing approach is uselul in addressing new problems. To illustrate this we will address its
application to a higher order problein. We quickly review the definition of higher order patterns as in [13] and
[5], and describe a unification procodure for (hoth untaped and simply typed) A-terms with these patterns
[12, 13]. We then explore a fragiment of this kind of pattern matching that appears to he useful: monadic

v

patterns. We show how unification for these patterns can be implemented using the Prolog Technology Term
Rewriter approacl.
Throughout this section, by a A-term {denoted r. s,) we mean a termm constructed from A-bound variables

(denoted x, y, 2): constants (denoted ¢. d. . f. g): atoms -~ variables or constants — (denoted a or b); free
variables (denoted F. . H): applicatiom (s 1) and abstractions (Ar.7). The normal convention of left
associativity of application {so » st f = (i1 5) 1) is followed. We will omit discussion of types here.

4.1 Higher Order Pattern Matching

A (higher order) pattern is a A-term in J-normal form in which every occurrence. if any, of a {ree variable

H appears in a subterm (M oy 0 .00 ay) (0 > 0). where wy... . 2, are (g-convertible to) distinet A-
bound variables. FExamples of higher order patterns inclide Arow. B Ao (H 2 x). Ae (FH - (da(y:)} and

Ar Ay (H sy e} On the other hand, terms such as Ae.(H a)c e and e (H : (H :r)) are not patterns.
Uses for hl“ht’l arder patterns have heen described by Miller [19]. Ioilomn" the)\Plo]on work described
earlier. and in work on higher order term rewriting systems such as the CRS of Klop mentioned above [9].
and more recent work by Fely [5] and by Nipkow [12]. Tor example. a highcr order rewrite rule is a pair
[= v such that 7 and + are A-termis of the same primitive type. £ is a pattern but net a free variable, and
all free variables in / also occur in ro A highcr ordcr rowrite systom is a finite set of these rewrite rules. The
rewrite step relation s — ¢ [or a higher order rewrite svstem may be defined for terms s and ¢ if there oxist
terms w, L, Rosuch that: » =, (v L)t =4 (v R L= Aoy 0 Aw, (16). R = Ary o d, (r8): there is a
rule I = ri 8 1s a substitution that maps lree variables of 7 to terms whose only free variables are 2. .. Sy,

and wq. ry, o not occur as free variables o any of s 6.1,
Nipkow [13] gives a clear presentation ol a A-unification algorithin for A-terins with higher order patterns,
using transformations. Ler 77 denote the sequence vy .. th. &0 2 denote vartables. and s, f denote terms.

Then the unification process repeatedly transforms a list of disagreement pairs and substitution into a new
. fre . . . r . .
bist of disagreement pairs and substitution. The leftmost disagreement pair s = 1 is extracted from the input
) =1
list and replaced by a list {and substitution) obtaimed from the appropriate case among the following:
" o

Aes= Ard — [s I]
(J(L)_H) :‘1 (!(H) - ([\ : [--'SH :")[N]v {})
Firn) = ally) — (H(Fm="1..... Hol®m) =] AF — AT al Ho (T D))

where a 15 a constant or a variable in 7,
F s not a frec variable in 5.

and al H, (05)) = al By (v .. 0370,

FIFR)="F() — (45— AmralHE)
where {770 = {a, | 2, =y}
FlE) =" Gy — AT — Xon H(T). G AT H(T)

where P2 Gand T = T n{wn)

Miller demonstrated in [10] that it is decidable whether two patterns are unifiable. and if they are, then
there 15 a most general unilier.

9

4.2 A Useful Fragment: Monadic Higher Order Patterns

An interesting special case is to consider monadic higher order patterns. ie.. patterns of a single bound
A-variable. of the form (F : r) where F is the [ree variable. Monadie patterns have several atiractive
features.

First, monadic patterns are useful in practice. Many programs appear to be naturally expressed with
ouly this limited amount of higher order power. For example, in [10] Miller notes that for the commoniy-
encountered logic program

YauVIvhvm (append:Lkom D wppend:{cons:x:d):k:fcons:z:m))
vk {appendenilk:kj

the resuit of the query
Yyulappend:{cons:a-fcons:bunil)jry:(H:y))

with the monadic higher order pattern His that # is bound to the value Aw . (cons @ fcons b w)).

Second, monadie patterns are simple and easy to reason about in a way that polyvadic patierns are not.
[T one believes that unification showld be an intuitive operation that is useful in constructing and reasoning
about programs. such simplicity s tnportant.

Third. monadic higher orcder pattern wnification is efficient in a way that polvadic pattern unification is
not. The implementation in ML provided by Nipkow [13] demonstrates the problem clearly. as the pattern
subterm

Plrm) = () sea) o))

must be isolated within a terin being unified, and matched with the corresponding subterm a(f,,). Dealing
with the polvadic case introdnces complexity 1hat slows down the unifier.

4.3 Prolog Technology Term Rewriting Implementation

Although the monadic case of higher order pattern matehing is an intrigning and prounsing special case,
further investigation is needed to firmly establish the rewards and penaltios of belng restricted to this special
case. Pending the results of sucli vesearch, we have staved on the safe side and implemented higher order
patterns in their full generality,

We first implemented a unifter for higher order monadic patterns without regard for any particular
methad. This version was bhasically the vesnlt of Prolog hacking. In the next version the method of this paper
was partially fellowed, The version displayed in the appendix differs in being a more complete application
of the method and by lifting the restriction to monadic patterns,

In both the second and third versions we found that our method provided worthwhile simplifications
i the code. The third version shows that the generalization 1o polvadic patterns was achieved at a mild
penalty in perfarmance. This suggests that the Grst and second versions did not fully utilize the performance
potential of the vestriction 1o the monadic case. Tlow to obtain a fuller utilization and how restrictive in
practice monadic patterns are should he elarified by furthier research.

10

5 Conclusions

We have developed Applicative Term Rewriting Systems, a simple kind of TRS that has potential in practical
higher order term rewriting applications, A henefit of our approach is that it can build on Prolog technology,
permitting efficient huplementation with a minimum of implementation effort. Furthermore, a variety of
rewriting strategies (bottom-up, leftmost-outermost. lazy) are casily arranged within the framework of SLID
resolution, and hence also casily implemented with Prolog.

Applicative TRS use supercombinators, which have heen exploited in architectures for functional pro-
gramuming. Combinator-based implementations reduce the problem of evaluating expressions to the evaluat-
ing purely applicative forms, with reduced overhiead in handling the variable bindings in A-conversion. The
result executes quickly with Prolog. comparing favorably with standard LISP systems [2, 3].

Finally. the Prolog Technology approach deseribed here perniits selective implementation of fragments of
the equality theory. Although using A-calenlus-based approaches [4. 3. 9. 12] for higher order term rewriting
has undeniable benefits - - they are well-defined. logically sound. and extremely expressive the price in
peformance is considerahle. The approach here is consistent with the growing body of research i identifyving
useful fragments of A-term equality. and provides the speed of Prolog technology. Our results suggest a
design method where a snitable program. sucl as a verifier or a code optimizer. is first specified in higher

order logic. In this way maxinum expressiveness is obtained. At the same time such a specification can be
ran: though slow. this 15 often a good way 10 debug the specification. When one decides 1o go ahead with
implementation. a siccession of steps is available. First the specification is vewritten. if necessary, to contain
patterns only. Qur expericnce suggests that this gives already a respectable performance. As a next stage
of reformulation it may he not too diffienlt 1o restrict to monadic patterns. Further optimization beyond
Prolog. if necessary, is less visky when a compact and running Prolog program can be used as specification.

References
(1] H.P. Barendregt. The Lambda Calealus: Its Syntar and Semaniics. North-Tolland, 1984,

[2] M.H.M. Cheng, M.H. van Emden. B.E. Richards, “Ou Warren's Metliod for Functional Programming in
Logic™, Proc. 7th Intcrpatione! Conf. ou Logic Progrannming. Jerusalem. MIT Press. 316=360, 1990,

[3] M.HM. Cheng. K. Yukawa., "AP: An Assertional Programming System™ . in Adrances in Logic Program-
ming and dutomatcd Reasoning, volume | R, Wilkerson (ed.), Ablex Pub., pp. 120134, 1092,

[4] A. Felty. D. Miller. ~Specifying Fheorem Provers in a Higher Ovder Logic Programming Language”,
Proc. CADE-G, 61-80. Springer-Verlag LNCS #3100, 19858,

[3] A. Felty, “A Logic Programming Approach to Implementing Higher Order Term Rewriting™, in: Ezten-
stons of Logic Prograinming. Proceedimgs of the 2ud Intcrnational Workshop ELP 91, L.11. Eriksson. L.
Hallnas. P. Schiroeder-Heister (eds.). Springer-Verlag, LNAL #596. 135-161. 1991.

[6] J. Hanvan. “Imiplementing A-Caleulus Reduction Strategies in Extended Logie Programming Languages™,
i Eetensions of Logic Programming. Procecdings of the 2nd Tnternaiional Workshop ELP 91, L.
Briksson. L. Hallnas. P. Schrooder-Ileister (eds.). Springer-Verlag. LN AT #5396, 1940 219, 1991

[7] P. Hendersouw. Functional Programuing: Application and Implemcntation, Prentice- Hall, 1980.

11

[8] G. Huet, “A uniftcation algorithm for tvped A-calewlns”, Theorctical Computer Seience 1. 27-57, 1975.
9] J.W. Klop, Combnatory Reduction Systems, Amsterdam: Mathematical Centre tract #127. 1980.

[10] D. Miller, "A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple
Unification™, J. Legic and Compulation 1:4, 197-536. September 1991,

(11} G. Nadathur. D. Miller. “Higher Order Horn Clauses™, J. ACM 37:4. 777-814, October 1990.

12{ T. Nipkow, “Higher Order Critical Pairs™, Proc. §th [EEE Symp. on Logic in Computer Science. Ams-
g 1
terdam, 342-349, July 1981,

(13] T. Nipkow. “Functional Unification of Higher Order Patterns™, Proc. LICS ‘93, Montreal, 1993.

(14] L.C. Paulson. Logec and Computation. Chapter §: Rewriting and Simplification. Cambridge University
Press, 1987,

[15] S.L. Peyton Jones. The fmplementation of Functional Programming Languages. Prentice-Hall, 1987

116] D. Sallin, “An Automatic Partial Evaluator for Full Prolog™. PI.D. dissertation, Dept. of ‘Telecommu-
nications and Computer Systems, Royal Institute of Technology {KTH). S-160 44 Stockholm Sweden.
Also available from: Swedish Institute of Computer Seience. Box 1263, §-164 28 Kista, Sweden.

[17] M. Stickel. “A Prolog rechnology theorem prover: a new exposition and implementation in Prolog”,
Thearclical Compuler Scicnes 104, 100128, 1492,

6 Appendix: Higher Order Pattern Unification in Prolog

% MHigher-Order Pattern Unification

% This equational theory solves equations of the form S=T (if this is

% possible}, where beth § and T can be higher-order patterns. Such

% patterns are lambda-terms that can contain free variables.

% A higher-order pattern is a {(generalized} lambda-term in beta-normal form
% such that every occurrence of a free variable F is in a subterm

) (F x_1 ... x_n)

% where (x_1 ... x_n) is eta-equivalent to a list of distinct bound
% wariables. See reference [13].

y

A

% Lambda-terms here are represented by logical ground terms as follows:

% the bound variable (x) is represented by the atom x [one of u,v,u,x,y,2];
% 1the constant (c¢) is represented by the atom c; the free variable {F) is
% represented by the logical variable (F); (M N) is represented by (S:T)

% vwhere 8,T are the representations of M,8, (lambda x.M) is represented by
% (x\T) where T is the representation of M.

% The choice of representing free variables by logical variables makes

% this implementation mere useful in implementing real systems with Prolog
% since the distinction between free and bound variables is a natural one,

12

% and this approach permits us to avoid dealing with substitutiens directly.
% However, it complicates the implementation slightly, as it mixes the
% meta-level and object-level concept of variable.

% We assume throughout that the only use of logical variables in terms

:= op(1150,xfx,(=>)).
i- op(1000,xfy, (&)).
i- op(600,yfx,(:)).
:= op(500,xfy,(\)).

hop_unification(X,Y) :- eq({X=Y), true).

eq(X,Y) - eq2(X,Y¥).

eq2(X,2) :- eql_(X,Y), ', eq2(Y,Z).
eq2(X,X).

aql{X,Y) - (X => Y).

eql({X18Y), (X28Y))
eql ((X1=Y), (X2=Y))
eql ({X=Y1),{(X=Y2))
eql COXANY1) , (X\Y2))
eql ((X1:¥) ,{X2:Y})
eqt ({X:¥1) ,(X:Y2}}

1= oeql_(X1,X2).
1= eql_(X1,%2).
i- eql_(Y¥1,¥2).
= oeql {Y1,Y¥2).
i= aql_{X1,X2).
- eql_{¥1,Y2).

% Lazy unification omits this rule: it matches only the weak head normal
% form of the two arguments being unified.

% Commenting this rule out increases the spead of the unifier somewhat:
% see the timings at the end of this file.

eql_(X,¥) :- nonfreevar(X), eqt{(X,¥).

(S\T) =» R :~ eta_reduct{{8\T),R).

(5:T> => R - beta_reduct((S:T),R).

(5=T} => R :~ term_type(S,5t}, term_type(T,Tt), match(St,Tt,S,T,R).
(V->T) => R :- variable_binding(V,T ,R).

variable_binding(V,T,true) :- freevar(V), ', beta_eta_normal_form(T,V}.

variable_binding(V,T,(¥=5)) :- beta_eta_normal_form(T,$).

{(truekR) => R.

match(flexible, flexible, 5,T, R} :- match_flex_flex(§,T,R}.
match(flexible, rigid, 5,T, R} :» match_rigid_flex{T,5,R}.
match{rigid, flexible, §,T, R) :- match_rigid_flex(S,T,R).
match{rigid, rigid, $.T, R) :~ match_rigid_rigid{S,T,R).
match(lambda, lambda, S, T, BY :- alpha_conv((5=T),R}.
match(lambda, flexible, 8,T, R} :- eta_expand((S=T),R).
match(lambda, rigid, 8,T, R} :- eta_expand((S=T),R).
match{(flexible, lambda, $,T, B) :- eta_expand((T=$),R).

13

match{rigid, lambda, $,T, R) :- eta_expand{(T=5),R).

match_flex_flex(T, F, true} :- freevar(F), ', match_flex_freevar(T,F).
match_flex_flex{ F, T, true) :- freevar(F), !, match_flex_freevar{(T,F).
match_flex_flex(3, T, R Y :- bind_flex_flex{(s,T,R).
match_flex_freevar(T,F) :- freevar(T), !, F=T.

match_flex_freevar(T,F) :- term_without_freevar(T,F), F=T.

match_rigid _flex(T, F, (F-»>T)) :~ freevar{F), 1.

match_rigid_flex{ X, (F:X), true) - freevar{(F), ', F={X\X).
match_rigid_flex{ ¥, (F:X)}, true) :- constant{(¥Y), freevar(F), !, F=(X\Y).
match_rigid flex{ S, T, R } :- bind_rigid_flex(§,T,R).

match_rigid_rigid(§, S, true } - atomic(§), !
match_rigid rigid((S1:T1),($2:T2), (R & T1=T2)) :- match_rigid_rigid(S1,52 k).

alpha_conv((X\S=X\T),S$=T) -
alpha_conv((X\S=Y\T),SV=TV) :-
newboundvar(V), subst(S,8V,X V), subst{T,TV,Y, V).

eta_expand({X\S=T),(3=T:X)) :- term_without_loose_var(T,X), !
eta_expand{{X\S$=T),(S¥=T:V)) :~ newboundvar(V}, subst(§,8V X V).

eta_reduct(X\5X,5} :- nonfreevar(SX), $X=(5:X), term_without_loose_var(S,X).

beta_reduct(XS5:Y,T} :- nanfreevar(Xs), X8=(X\$), subst{5,T,X,Y).

subst(§, 5, 1Y) (- X ==Y,6!

subst(§, Y, ,Y) -5 ==X, .

subst(F, F, —._) :~ freevar{F), !

subst{(Z\SX), (Z\SX), X,_) :- X == 2, 1.

subst C{Z\SX), (Z\SY), X,Y) :- ', subst(SX,S8Y.X,Y).

subst((SX:TX), (SY:TY) ,X,Y) :- !, subst(SX,SY X,Y), subst(TX,TY,X,Y).
subst({ S, g, I

beta_eta_normal_form(X,Z) :- beta_etal_{X,Y), !, beta_eta_normal_form(Y,Z).

beta_eta_normal _form(X,X).
beta_etal_(X,Y) :- nonfreevar(X), beta_etal{X,Y).

beta_etal(5,T) := beta_reduct(8,T).
beta_etal(S,T) :- eta, reduct{(5,T}.
beta_etal(X1:Y,X2:Y) :- beta_etal_(X1,6X2)
beta_etal(X:Y1,X:¥2) :- heta_etal_{¥1,Y2).
beta_etal (X\¥1 ,X\Y2) :- beta_etal_(Y1,Y2).

beta_rormal_form{X,Z) :- betal_(X,Y), !, beta_normal_form{(Y,Z).
beta_normal_form{X,X).

betal_(X,Y} :- nonfreevar(X), betal(X,Y).

betal(S,T) :- beta_reduct($,T).

betal(X1:Y,X2:Y) :- betal_{X1,X2).
betal(X:¥1,X:Y2) :- betal_(Y¥1,¥Y2).
betal {X\Y1,X\Y2) :- betal_(¥1,Y2).

weak_head_normal_form(X,Z} :~=
left_betal {X,Y)}, !, weak_head_normal_form(Y,Z).
Reak_head_normal_form(X,X).

left_betal_ (X,Y) :- nonfreevar{X), left_betal{X,Y).

left_betal(S,T) :~- beta_reduct{(s,T).
left_betal(X1:Y,X2:Y) :- left_betal_(X1,X2). % Dbeta reduce rator only

% bind_rigid_flex(s,T,R} :~

% if 5 = a:51:52:...-S8 and T = F:x1:...:x0 then

% R is the binding F~>(x1\x2\...\xN\AHsXs)

A where AHsXs = a:(Hl:x1:...:xN):{(H2:xi:...:xN):...:(HN:x1:... :xlD
% provided that F does not appear in §,

% and that a is either a constant or one of the xi.

bind_rigid_flex(S,T,(ArgUnifications & (F->B})) :-
flexible_binding_term(T,F,6AlsXs,B),
term_without_freavar($,F),
rigid_ head(S, A},
{constant(A) ; member_boundvar(a,T)),
1

hind_rigid_flex(s,T,F,ﬁ,AHsKs,ArgUnifications).

bind_rigid_flex(S,T,F,AHsXs0, (AHsXs:HiXs},{R & HiXs=8i)) :-
$=(8s:8i), !,
subst{T,HiXs ,F,_Hi),
bind_rigid_flex(Ss,T,F,AHsXs0,AHsXs R).
bind_rigid_flex(_A,_,_,AHsXs,AHsXs ,true).

% bind_flex_flex{S,T,R) :-

% if § = F:xt:x2:...:x8 and T = F:yl:...:yN then

% R is the binding F->(x1\x2\...\xH\HZs)

% where zi:...:2P = ordered intersect of x1:...:xN and y1:...:yN

% and HZs = H:z1:...: zP

% if 5 =F:x1:x2:...:xM and T = G:yl:...:yN then

% R is the binding F->{(x1\x2\. . \xM\HZs), G->{y1\x2\...\yN\HZs)

% where z1:...:2P = unordered intersect of x1:...:xM and y1:...:y¥
% and HZzs = H:z1:...: zP

bind_flex_flex(S,T,R) :-
flexible_binding_ term(S,F,HZs,FB),
flexible_binding_term(T,G,HZs ,GB),

bind_flex_flex{S,T ,HZs,F,FB,G,GB, R).

bind_flex_flex{$,T,HZs,F,B,G,_,(F->B)} :-
F==G, 1!,
flex_arity(s,N),
flex_arity{T,N),
ordered_boundvar_term(8,T,_H,HZs).
bind_flex_flex(S,T,HZs,F,FB,G ,GB,{(F->FB) & (G->GB))) :-
common_boundvar_term(S,T,_H,HZs) .

% flexible_binding_term{(T ,F,H,B) :- T = F:x1:x2:,..:xN is a flexible term
% and B ® x1\x2\.. . \x¥M\H (N can be zero).
%

flexible_binding_term(F,F ,H,H) :- freevar(F), !.
flexible_binding_term((T:X) ,F ,K,B} :- flexible binding_term(T,F,(X\E),B).

% common_boundvar_term(S,T H,HVs) :- HVs = H:ix:y:...:2
% where x,y,...,z are the bound variables common to S and T.
A
cemmon_boundvar_term(F,_ H,H} :-
freevar(F), !.
common_boundvar_term{(3:X),T H, HV¥s) :~-
member _boundvar{X,T), ',
common_boundvar_term(S,T, H:X HVs).

common_boundvar_term((S:_) ,T.H,EVs} :- common_boundvar_term(S,T, H HVs).
member_boundvar(X,T) :- nonfreevar(T), T=(_:X), 1.
member_boundvar(X,T) :- nonfreevar(T), T=(T1:_), member_boundvar(X,T1).

% ordered_boundvar_term(S,T,H,HVs) :-

% HVs = Hix:y:...:2

% where x,y,...,z is the sequence of bound variables common to § and T.

%

ordered_boundvar_term(F,_,H,H) :-
freavar(F), !.

ordered_boundvar_term({S:X),{(T:Y) H HVs) :-
X==t, !,
crdered_boundvar term(3,T,H:X HVs).

ordered_boundvar_term((S:_J,{T:_) ,H,HVs) :-
ordered_boundvar_term{S,T,H, HVs).

% Term representation and inspection

Y e e
term_without_freevar{(G, F) :- freevar(G), !, F\==G.
term_without_freevar(X, _) :- atomic(X), !.

term_without_freevar(_\T,F) :- term_without_freevar(T,F).
term_without_freevar(S5:T,F) :- term_without_freevar{5,F),

term_without_freevar(T,F).
term_without_loose_var(S,X) :- boundvar(X), subst(5,T,X,anything), §==T.

term_type(T, rigid } :- rigid(T), !.
term_type(T, flexible) :- flexible(T), !.

term_type (T, lambda) ;= lambda{T), !.

lambda(T) :- nenvar(T), T = (__), \+ eta_reduct{(T,_}.

rigid(T) :- atomic(T), !,
rigid(T) :- nonvar(T), T=(T1:), rigid(T1).

% rigid_head(T,A) succeeds if:

% T = A:x1:x2:...:x¥§ (H can be zero!
rigid_head{A,A) :- atomic(A), '.
rigid_head{{T:_),A) :- rigid_head{(T,A}.

flexible(F} :- var(¥), !,
flexible(T) :- nenvar(T), T=(T1:X), flexible(T1), boundvar{X).
% each argument X can be either a bound variable or a generic constant

flex_arity(F,0) :- var(F), !.
flex_arity((F:_),s(W)) :- flex_arity(F, N).

nonfreevar(X) :- nonvar(X).
freevar(X) :- var(X).
% atomic(X) :- X is a constant er a bound variable.

nonconstant(X) := \+ constant(X).

constant(X) :- atomic(X), non_existential_boundvar(X).

noenboundvar(X) :- \+ boundvar(X).

boundvar(X) :- nonvar{X), existential_boundvar(X}, !.

boundvar (X) :- nonvar(X}, universal_boundvar(X), '.

%4 ¥ote: boundvar{X) :- X is already eta-converted to an atomic boundvar.
non_existential_boundvar(X) :~ \+ existential_bounrdvar(X).

i~ dynamic existential_boundvar/1.

existential_boundvar{u). existential_boundvar{v). existential_boundvar(w).
existential_boundvar(x). existential_boundvar(y). existential_boundvar{z).
newboundvar{X) :- gensym{x,X}, assert{existential_boundvar(X)).

1= dynamic universal_boundvar/t.

newgeneric{C) :- gensym(c,C), assert(universal_boundvar(C)).

i~ dynamic recordedSymbollndex/2.

gensym(Prefix,Symbol) :-

name (Prefix,50),
symbolIndex(Prefix,Index),
name (Index,S1),

[l =",
appendString(50,[U(51],501),
name {Symbol, 501},

symbolIndex(Prefix,Index) :-

retract(recordedSymbollndex(Prefix,Index} },

1

NewIndex is Index+1,

assert{ recordedSymbclIndex{Prefix,NewIndex)).
symbolIndex(Prefix,Index} :—

Index = 1,

NenIndex is Index+i,

assert(recordedSymbolIndex(Prefix NewIndex)).

appendString ([],L,L).
appendString([X|L1]},L2,{X|L3]) .- appendString(L1,L2,L3).

% Simple benchmarks
'/‘ __
test -
benchmark(0) , % lambda-term unification net using patterns
benchmark(1), % a simple append benchmark adapted from Miller
benchmark(2), % essentially a beta-reduction benchmark
benchmark(3), % a simple L_{\lambda} interpreter
benchmark(4). % a more involved L_{\lambda} interpreter
benchmark(Q) :-
S5 = x\y\z\(x:z:(y:z)),
K = x\y\x,
T = x\x,
write(’ 8 = x\y\z\(x:z:(y:2))’) ,nl,
write(’ K = x\y\x’),nl,

write(’ I = x\x °},nl,
write(’ 7- hop_unification($:K:K:x , I:x).’),nl,
goal_time{(

hop_unification(§:K:K:x , I:x)

3),nl,!,
% Zero = s\x\x, % Church numeral
One = s\x\{(s:x), % Church numeral
Two = s\x\{(s:(s:x)), % Church numeral

Four = s\x\(s:{s:{(s:(s5:x)))), % Church numeral
Plus = ud\wiAshx\{({u:s):{vis:x)),

% Suce = udsix\(u:s:(s:x)),
Times = ulvis\x\{u:(v:s):x),

grite(’ One = s\x\(=:x} % Church numeral’),nl,

1a

E |

¥rite(’ Two s\x\(s:{s:x}) % Church numeral®},nl,
write(’ Plus nA\m\sAx\{{n:s):(m:s:x}>’),nl,
write(’ 7= hop_unification(Plus:0Gne:0ne , Two).’),nl,
goal_time((

hop_unification{ Plus:COne:One , Two)

)),nl,!,
write(’ Two = s\x\{s:(s:x)) % Church numeral’),nl,
write(? Four = s\x\(s:(s:(s:{(s:x)))) % Church numeral?’),nl,
write(’ Times = n\m\s\x\(n:{m:s):x)’},nl,
write(’ 7- hop_unification{ Times:Two:Two , Four).’),nl,
goal _time ({
hop_unification{ Times:Two:Twec , Four ?}
¥),ml, 0.

% 1. A Iambda-unification benchmark adapted from reference [10].

h append [] K K.
% append [X{L] K [XIM] :~ append L K M.

% benchwark(1) :=

% statistics,

% pi Y\ (append

% [a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r,5,6,u,v,¥,x,y,2] ¥ (H Y)),
% statistics.

:—op(950,fy, (pi)).

hop_append{ L1, L2, L3) :-
hop_unificatien(Ll,nil),
hep_unification(L2,L3).

hep_append(L1, L2, L3) :-
hop_unification{Ll, (cons:U:¥X)),
hop_apperd(X, L2, L4),
hop_unificatien{L3, (cons:U:L4)}.

benchmark(i) :-

nl,
write(?® ?- pi y \ hop_append{’),nl,
write(? (cens:1: (cons:2: (coms:3: (cons:4: (cons:5:'),nl,
write(’ (cons:6: (cons:7: (cons:8: <(cons:9: (cons:10:’),nl,
write(’ (cons:11: (cons:12: (cons:13: (cons:14: (cons:15:°),nl,
write(? (cons:16: {cons:17: (cons:18: (cons:19: {comrs:20:’},nl,
write{’ (cons:21: {(cons:22: (cons:23: (cons:24: {cons:25:’) ,nl,
write(’ {cons:26: nil))})IIX32))11)00)331)))))),), nl,
write(’ ¥, (H:y)).?Y,nl,n},

goal _time{{

pi ¥y \ hop_append(
(cons:1: (cons:2: {coms:3: <{cons:4: (cons:5:
(cons:8: (cons:7: {(cons:8: f{cons:9: (cons:10:
(cons:11: (cons:12: (cons:13: (cons:14: (cons:15:

19

(cons:16: (coms:17: (cons:18: (cons:19: {cons:20:
({cons:21: {cons:22: (cons:23: (cons:24: {cons:25:
{coms:26: nil)XI1)INIINNNINMIMNINDY,
¥, (H:y)y,
write{’Solution ocbtained: H = ?),write(H},nl
¥),nl,!'.

% 2. A beta-reduction benchmark

% Difference lists are encoded as lambda-terms.

% The "fast" difference list algorithm for reverse becomes a

% lambda-unification/beta-reduction test.

% Note this approach te implementing reverse is not really invertible...

% Lambda~Prolog benchmark for comparison:

% reverse L (Rlambda []) :- rev_lambda L Rlambda.
% rev_lambda [J (Z \ 2).

% rev_lambda [X[L] R ;-

% rev_lambda L R1,

% append_lambda R1 (Z\[X]2]) R.

% append_lambda L1 L2 (Z\(L1 (L2 Z))}.

% benchmark(2) :-

% statistics,
% (reverse [a,b,c,d,e,f] XD,
% statistics.

reverse(L, R) :~
rev_lambda(L,Rlambda),
hep_unification({ (Rlambda:ril}, R).

rev_lambda{ L, R) :-
hop_unification({ L, nil),
hep_unification(R, z\z .
rev_lambda(L, R) :-
hop.unificatior(L, (cons:X:L1}),
rev_lambda(L1, Ri),
append_lambda(R1, z\(cons:X:z), R).

append_lambda{ L1, L2, L3) :-
hop_unification{ v\(L1:(L2:v))}, L3).

benchmark(2) :-
nl,writae(
'7- reverse((cons:a: (cons:b:(cons:c:{cons:d:(cons:e:{cons:f:nil)}}}¥)), X1.°
),nl,nl,
goal_time((
reverse(
(cons:a:(cons:b:(cons:c:(cons:d:(cons:e:{cons:f:nil))}))),

20

X,
write{’Solution obtained: X = *),write{(X),nl
)),nl,!'.

% 3. Simple L_{\lambda} program, from reference [10].

% copyterm a a.
% copyterm (f X) (f U} :- copyterm X U.
% copyterm (g X ¥Y) (g U V) :- copyterm X U, copyterm Y V.

% copyform (p X) {p U) :- copyterm X U.

% copyform {q X Y) {(q U ¥) :- copyterm X U, copyterm Y V.

% copyform {and X Y} {(and U V) :- copyterm X U, copyterm ¥ V.
% copyform {imp X Y} {imp U V) :- copyterm X U, copyterm ¥ V.
% copyform (all X} (all U) :-

A pi y\{ pi z\{copyterm y z => copyterm (X y) (U z))).
% <copyform {(some X} (some U) :-

% pi y\{ pi z\{copyterm y z => copyterm (X y) (U z))).
%

% term a.

% term (f X} :- term X.

% term (g X Y) :- term X, term Y.

% atom (p X) :~ term X.
% atom (g X Y) :- term X, term Y.

= op{900,xfy,(==>)). % logical implication

;= dynamic term/1. % for use by the 1_lambda interpreter below
1~ dynamic atom_/1. % for use by the 1_lambda interpreter below
1~ dynamic copyterm/2. % for use by the 1_lambda interpreter below
1= dynamic copyform/2. % for use by the 1_lambda interpreter below
term{a).

term{{f:X)) :- term(X).

term{{g:X:Y)) :- term(X), term(Y).

atom_{ (p:X)) :- term(X).
atom_{(q:X:Y)) :- term(X), term{(Y}.

copyterm(a,a).
copyterm({(f:X),(f:Ud) :- copyterm(X,U).
copyterm((g:X:Y),(g:U:V)) :- copyterm(X,U), copyterm(Y¥Y,V).

copyform({(p:X},(p:U)):~ copyterm(X, U}.
copyform((q:X:Y),{q:U:¥)) :- copyterm{(X,U), copyterm(Y,¥).
copyform((and: X:Y),{and:U:V¥)) :~ copyform(X,UY, copyform(Y, V).
copyform((imp:X:Y),{imp:U:V)) :- copyform(X, U}, copyform(Y V),
copyform((all:X),{all:U}):-

pi y\(pi z\(copyterm(y,z}==>copyform{(X:y),{U:2)))})

21

copyform({some:X), (soma:U}):~-
pi ¥\C pi z\{copyterm(y,z) ==> copyform({(X:y),(U:2)))).

benchmark(3) :-
nl,writal
*?7- copyform((
imp:{all:x\(and:{p:x}:{and:(all:y\(q:x:y)):{p: (£:x))1)):{(p:al)) X}
},nl,nl,
goal_time ((
1_lambda_prove((
copyform(
(imp: (all:x\(and:{(p:x):{and: (all:y\{q:x:y)): (p: (f:x))))):(p:a)),
CopiedForm
M
)3,
beta_eta_normal_form(CopiedForm,NiceCopiedForm},
vrite(’Sclution obtained: X = ’) ,write(NiceCopiedForm),nl
3),nt, 0.

% prenex B B :- atem B.

% prenex (and B C) D :- prenex B U, prenex C V, merge (and U ¥) D.
% prenex (imp B C) D :- prenex B U, prenex C V, merge (imp U ¥) D.
% prenex (all B} (all D) :- pi x\{term x => prenex (B x) (D x)).

% prenex (same B) (soms D) :- pi x\(term x => prerex (B x) (D x)).

% merge (and (all B (all C}} (all D) :-

% pi x\{term x => merge (and (B x)} {C x)) (D x)).
% merge (and (all B) C) (all D) :-

% pi x\(term x => merge (and (B x) C) (D x}}.
% merge (and (B {(all C)} (all It} :-

% pi x\(term x => merge (and B {C x)) <D x}}.
% merge (and (some B) C) (some D) :-

% pi x\(term x #> merge (and (B x) G} (D x)).
% merge (and (B {some C)) (some D) :-

% pi x\(term x => merge (and B (C x)) (D x)).
h

% merge (imp (21l B) (some C)) (some D) :-

% pi x\(term x => merge (imp (B x) (C x> (D x)).
% merge (imp {all B} C) (some D) :-

4 pi x\(term x => merge {imp (B x> C) (D x)).
% merge {imp (B (some C)} (some D} :-

% pi x\{term x => merge {imp B (C x}) (D x)).
% merge (imp (some B) C) (all D) :-

% pi x\{term x => merge {imp (B x) C) (D x)).
% merge {imp (B {(all €)) (all D) :-

% pi x\{term x => merge (imp B (C x)) (D x)).
%

% wmerge B B :- quant_free B.

22

:- dynamic prenaex/2. % for use by the 1_lambda interpreter below
:— dynamic merge/2. % for use by the 1_lambda interpreter below
:- dynamic quant_free/1. % for use by the 1_lambda interpreter below

prenex{(B,B) :- atom_(B).

prenex({and:B:C),D) :- prenex(B,U), prenex(C,V), merge({and:U:V),D}.
prenex((imp:B:C),D) :- prenex(B,U), prenex(C,V), merge((imp:U:¥),D).
prenex((all:B),(all:D?) :- pi x\(term(x) ==> prenex((B:x),(D:x))}.
prenex((some:B),{some:D)} :- pi x\(term(x) ==> prenex((B:x),(D:x}}).

merge{{and: (all:B):(all:C)),{all:D)}

pi x\(term(x} ==> merge((and: {B:x):(C:x)),(D:x)}).
merge ((and:(all:B):C},(all:D)) :-

pi x\(term(x) ==> merge{{and:(B:x):C),(D:x)))
merge((and:B:(all:C)),(all:D)) :-

pi x\(term(x) ==> merge({and:B:(C:x}),(D:x)}}
merge((and; (some:B):), (some:D)) :-

pi x\{term(x) ==> merge({and:(B:x):C),(D:x))).
merge ((and:B:(some:C)), (some:D)) ;-

pi x\(term{x) ==> merge((and:B:(C:x)),(D:x)))
merge{{imp: (all:B):{some:C)), (some:D}) :~

pi x\(term(x} ==> merge((imp:{B:x):(C:x)),(D:x}}).
merge((imp:{all:B}:C), (some:D)) :-

pi x\(term(x) ==> merge((imp:(B:x):C),(D:x)))
merge((imp:B: (some:C)), (some:D)) :-

pi x\(term(x) ==> merge({imp:B:(C:x2),(D:x})}
merge (Cimp: (some:B):C), (all:D)) :-

pi x\(term(x) ==> marge({imp:(B:x):C),(D:x})).
merge ((imp:B:(all:C)),{all:D}) :-

pi x\{(term{x)
merge{B,B) :- quant_free(B).

"
]
v

merge((imp:B:{C:x)),(D:x)))

quant_free(A) :- atom_(A).
quant_free({and:B:C)) :~ quant_free(B), quant_free(C).
quant_free((imp:B:C)) :- quant_ free(B), quant_free(C}.

benchmark(4) :-
nl,write(
*?-prenex((imp: (all:x\{and:{p:x):(and: (all:y\{q:x:y)):{p: (£:x))))):(p:ad), X}’
),nl,nl,

goal_time((
l.lambda_prove((
prenex({imp: (all:x\{and: (p:x):{and:(all:y\(q:x:y) 3 : (p:(f:x))))): {p:a)),

PrenexForm)

3,
beta_eta_normal_form(PrenexForm,NicePrenexForm),
write(’Solution obtained: X = ') write(NicePrenexForm),nl
Yr,nl,t.
'/. ___
% A simple L_{\lambda} Interpreter using all of the previous material

pi (X\GX} :- newgeneric{(C), (X\GX):C.

243

((X\GX) :Y) :- goal_subst(GX,GY,X,Y), call(GY).

assume{Atom) :- assert(Atom,Ref), undo(erase(Ref}).

1_lambda_prove{true} =t

1_lambda_prove{{4,B}) 1~ ', 1_lambda_prove{A), 1_lambda_prove(B).
1_lambda_prove{{pi G}> :~ ', pi 2z\{l_lambda_prove((G:z))).
1_lambda_prove{{X\G):Y) :- ', goal_subst{(G,GY,X,¥Y), 1_lambda_prove(GY).
l.lambda_prove{(A==>B)) :- !, assume(A), 1_lambda_prove(B).
1_lambda_prove{G) = 1.lambda_clause{G,B), 1_lambda_prove(B).

1_lambda_clause{G,B) :- functor(G.,P,N), functor(H,P,N), clause(H,B),
unifyGoalArgs(0,N,G,H).

unifyGoalArgs(N,N,_,_) :~ ',
unifyGoalArgs(I0,8,G ,H) -
I is IC+1,
arg(I,G,Gi),
arg(I,H,Hi),
hop_unification{Gi,Hi},
unifyGoalArgs(I N, G H}.

goal_subst{G,G,.,.) :- var(G), !'.
goal_subst{X,Y X ,¥) :~ 1.
goal_subst{X\G,X\G,X,_} :- !.
goal_subst{GX,GY X Y} :-
functor{GX,P N},
functor{GY,P,N},
goalSubstArgs(0,N,GX ,GY, X ,Y).

gealSubstArgs(NN,_,_,_,_) - !.
goalSubstArgs(I0,N,GX,GY X ,Y) :-
I is I0+1,

arg{I,GX,GXi),

arg{I,GY,GYi),
goal_subst(GXi,GYi,X,Y),
goalSubstArgs(I,N,GX,GY,X,Y).

‘I‘- ___ ———— e —————————

% Output of the benchmarks above on an 8MB Sun ELC

% SICStus ©.7 #1: Fri Oct 25 09:12:35 PDT 1991

% {compiling /u/kr/papers/cufe/uvic/impl/test_hop.xp2...}

% {/u/kr/papers/cufe/uvic/impl/test_hop.xpl compiled, 2880 msec 60216 bytes}
% {cempiling /u/kr/papers/cufefuvic/impl/goal_time.pl...}

% {/u/kr/papers/cufe/uvic/impl/goal_time.pl compiled, 50 msec 646 bytes}
%S = x\y\z\(x:z:(y:2))

% K = x\y\x

%I = x\x

% 7- hop.unification{ S:K:K:x , I:x).

%

24

% O msec

% One = s\x\{(s:x) % Church numeral
% Two = s\x\{(s:(s:x}) % Church numeral
4 Plus = m\m\s\x\{{n:s):(m:s:x))

% 7- hop_unification(Plus:0One:0ne , Two).
% 10 msec

% Two = s\x\(s:(s:x)} % Church numeral
% Four s\x\(s:{(s:¢(s:(s:x0))) % Church numeral
Y% Times = nim\s\x\(n:(m:s):x)

% ?- hop_unification(Times:Two:Twe , Four }.

% 10 msec

% ?~ pi y \ hop_append(

% (cons:1: (cons:2: <{(cons:3: <{(cons:4: (cons:5:
% (cons:6: (cons:7: (cons:8: <(cons:9: (cons:10:
% (cons:11: (cons:12: (cons:13: (cons:14: (cons:15:
% (cons:16: (cons:17: (cons:18: (cons:19: (cons:20:
¥ (cons:21: (cons:22: (cons:23: (cons:24: (cons:25:
% Ccons:26: nil)IIIER 0320000003300,

% y, (H:y»).

A

% Solution obtained: H = c_i\(cons:1i:(cons:2:(cons:3:(cons:4:(cons:5:(cons:6
% :{cons:7:(cons:8:(cons:9:{cons:10;:(consg:11:(cons:12:(cons:13:(cons:14

% :{cons:15:(cons:16:(cons:17:(cons:18: (cons:19:(cons:20: (cons:21:{cons:22

% :(cons:23:(cons:24:(cons:25:(cons:26:c_123)))33231)))3)2333)))10)3)

% 500 msec

% 7= reverse((cons:a:{cons:b:{cons:c:(cons:d:{(cons:e:{cons:f:nild)}})), X).

% Solution obtained:
% X = cons:T:{cons:a:(cons:d:(cons:c:(cons:b:{cons:a:nil)))))

% 110 msec
% 7~ copyform((
% imp:(all:x\{and:{(p:x}:Cand:(all:y\(q:x:y)}): (p: (f:x))))):{p:a)) X}

% Solutien obtained:
% X = imp:{all:c_3%{and:(p:c_3):{and:(all:(q:<c_3)):(p:{f:c_323))) :(p:ad

% 130 msec
% 7-prenex{ (imp:{all:x\(and:(p:x):{anrd:(all:y\(q:x:y)):{p:{£f:x32))):(p:ary.,X)

% Solution obtained:
% X = some:c_10\{some:c_11\{imp:

25

(and: (p:c_10):{and: (q:c_10:c_11) : (p: {f:c_10Y3)) : (p:ad))

540 msec

Output of the benchmarks above with lazy unification
(the second substitutivity axiom for application is omitted)
SICStus 0.7 #1: Fri Oct 25 09:12:35 PDT 1991
{compiling /u/kr/papers/cufe/uvic/impl/test_hop.xpl...}
{/u/kr/papers/cufe/uvic/impl/test_hop.xpl compiled, 3710 msec GOOTO bytes}
{compiling /u/kr/papers/cufefuvic/impl/goal_time.pl,..}
{/u/kr/papers/cufe/uvic/impl/goal _time.pl compiled, 40 msec 646 bytes}
$ = xAy\z\(x:z:{y:2))
K = x\y\x
I = x\x
?- hop.unification{ S:K:K:x , T:x)

O msec
One = s\x\(s:x? % Church numeral
Two = s\x\(s:(s:x)) % Church numeral
Plus = a\m\s\x\{(n:s):{m:s-x)?}

7- hep_unification(Plus:0One:0ne , Twe).

10 msec
Two = s\x\(s:(s:x)) % Church numeral
Four = s\x\(s:{(s:{(s:(s:x)))) % Church numeral

Times = n\m\s\x\{(n:(m:s):x)
?- hop_unification(Times:Two:Two , Four }.

0 msec

7- pi y \ hop_append(
(cons:1: {cons:2: (cons:3: (cons:4: {cons:5:
{cons:6: {cons:7: <{cons:8: (cons:9: (cons:10:
(cons:11: (cons:12: {(cons:13: (cons:14: {(cons:15;
{cons:16: (cons:17: {cons:18: {cons:19: {(cons:20:
(cons:21: (cons:22: (cons:23; {cons:24: (cons:25:
(cons:26: nil) 33NNy,
y, (Hiy)).

Sclution obtained: B = c¢_1\(cons:1:(cons:2:(cons:3:(cons:4:(cons;5;(cons:6
:{cons:7:(cons:8:(cons:9:(cons:10: (cons:11:(cons:12: (cons:13:(cons:14
:{cons:15; (cons:16:{cons:17:(cons:18; {(cons:19: {cons:20:{cons:21:(cons:22
:{cons:23:(cons:24:{cons:25:Ccons:26:c_1))1)3333))0)3)313300)0)03 1))

430 msec

7- reverse((cons:a;:(cons:b:(cons:c:(cons:d:(cons:e;(cons:f:nil))))}}, X).

Solution obtained:

26

X = cons:f:(cons:e:(cons:d:(cons:c:{cons:b:{cons:a:nil))))})
110 msec

?- copyform((
imp:(all:x\(and:(p:x):(and: (all:y\(gq:x:y)): (p: {f:x})))):(p:a)), X}

Solution obtained:
X = imp:(all:c_3\{and:(p:c_3):{and:{all:(q:c_3)):{p:(£:c.322))):(p:a}

120 msec

?-prenex((imp:(all:x\(and:{p:x):(and: (all:y\(q:x:y)) :{p: (£:32)) :(p:ad) X}
Solution obtained:
X = some:c_10\(some:c_11\(imp:
(and:(p:c_10):(and:(q:c_10:c_11): (p:{£f:c_10))}}:(p:ald}

440 msec

27

