Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A NOTE ON CALCULATING TRANSIENT DISTRIBUTIONS
OF CUMULATIVE REWARD

E. de Souza e Silva November 1993
H. R. Gail CSD-930038






A Note on Calculating Transient Distributions
of Cumulative Reward

Edmundo de Souza e Silva!
UCLA Computer Science Department
Los Angeles. CA 90024

H. Richard Gail
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

In a recent report. the authors developed an algorithm based on probabilistic ar-
guments to calculate mumerically the transient distribution of cumulative reward.
In this short note it is shown that the computational requirements of the approach
can be further reduced without altering the basic steps of the algorithm. The
computational savings are obtained by grouping terms of the previous recursion.
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partially supported by grants from CNPq(Brazil) and NSF CCR-9215064.



1 Introduction

In a recent report [3], the authors developed an algorithm to calculate numerically the distri-
bution of cumulative reward over a finite observation period. The algorithm is based on the
general methodology of [2]. and only probabilistic arguments were used in its development.
It was shown in [3] that the computational requirements of the algorithm are considerably
less than those of the method of [2]. In fact, the number of operations required by the
algorithm of [3] is O(mdMN?). and the storage requirements are Q{M N?). Here m is a
parameter which is smatler than the total number of rewards, d is the average number of
nonzero entries in the columns of the uniformized one step state transition probability matrix
P. M is the total number of states, and NV is the truncation point for the infinite series of
the main equation (10) in [3].

In this short note. we show that the computational complexity of the algorithm can be
reduced to O(mdAM N?) operations with storage requirements of O( M N). simply by grouping
terms in the main recursion of [3]. The hasic development remains the same. In the next
section we show how this reduction can be accomplished. In order to avoid repetition, we
assume that the reader is familiar with [3} and the notation used there.

2 The Grouping

The main recursion for calculating the distribution of cumulative reward over a finite ob-
servation period is derived in Lemma 3 of [3]. This lemma describes the calculation of the
quantity Qlg.7.n./}. which is used in the final algorithm. The recursion 15 as follows.

letse&S.7i=1..... m.g="0..... n+1l. Forn>1.I/>0andforn=0,/>10

Qlg.7.n,1} =
({2[g,i.n—11=1H+w2[g.ion—=11}P[s] = Qg.ion, I —1]) Jwics cl(s)#
(1)
{2Mg —1.in—10—-14+wRg—1.in— 11} P[5 cls) =1

where w;, = v, — v, for 1 # J. w, =, — r. and P[: 5] 1s the sth column of P.

The initial conditions are {(for n = 0.7 = 0)

F3(0)/"91'.-:(5} c(s) '-/é i 9= 0
0g.4.0.0] = 0 EE"; i : z — 0 (2)
75(0) cs)=1.9g=1



where 7,(0) is the initial probability of state s.

We will show that many of the terms ()5 in the above recursion can be grouped to calculate
the measure of interest, P[ACR(#) > r]|. For this, we define the following.

Definition 1 Forn >0, i=1..... m.s€S8, u>0, let
n+1

T[ionu] = Z Qslg,i,ng+u— (n+ 1)) (3)

=0
Note that T,[7.n.u] = 0 for n < 0 and for « < 0. in the latter case because g < n + 1. We
now use equation {1) and Definition 1 to obtain a recursion for the vector

Yinou)= (T [i,n.ul,.... T, [e.n.ul). (4)

Lemmal Lefse &S . i=1..... m. Forn> 1, u>0and forn =0 u>1

Yil[ron,u] =
({Y[in—LlLv=2]4+wYi.n—Lu—1]}P[s] = Yinou—1]) Jwigsy cls)#d

(Yiion—Lou—1]+wYi.n—1,u} P s] o(s) = i('))
The initial conditions ave (forn =0. v =0,1)
0 c(s) £t u=0
g =] S @970 0
0 els) =1, u=1

Proof: We first consider the case ¢{s) # 7. It has already been observed in [3] that in this
case Q[n + L.7,n.{] = 0. and so the expression for T, in (3) involves only the terms from
g=0uptog=nforany v >0 Setting!=g¢g+4+u—n—11n (1) and adding the resulting
equations for ¢ = 0..... n. we have by applying Definition 1 that

Yo, noul =
({ v=020g i =Lyt u—n=204w, X0  Rgin—1.g+u—n- l}} Pl:s] (7
— Y=o sl gt u—n — Z]) [ cis)

Noting that ¢ 4+1—n —2 = g+ (v —2) —n. we recognize the first sum on the right hand side
of (7) as Yi.n — 1.u — 2] from Definition 1. Similarly, the second sum is Y[i.n —1,u — 1].
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Finally, writing ¢ + 1« —n —2 =g+ (u —1) — (n + 1) and again using Q,[n + 1,7, n. f] =0,
we see that the third sum is T, [, n. u —1].

For ¢(s) = 7, we observe that 2,[0,7.n,!] = 0 for arbitrary [, and thus the expression for
T, only involves the terms from ¢ = 1 up to ¢ = n+ 1 in this case. Setting [ = g +u—n—1
in (1) and adding the resulting equations for ¢ = 1,..., 2 + 1, we have as before that

Tslt.n,u] =
{ZnHQ[ 1,i,n — lg—)—tf—al—)]—f—wzn"'lﬁ[g L2, — 1J+u—??—l]}P

or

Tslz.n, u] {ZQ[J@?rmiq+(r—1 —?2]+wz.f?[g?n—]g+u—n]} [: s].

=0 g=0

Applying Definition 1. we obtain the second equation in (1).
The initial conditions can be easily obtained from (2) and (3). 0

It 1s useful to note from Definition | that Y[, 0,u] = Q,{0,7,0,u ~ 1] + Q,[1,4,0, u], and
s0 Ts[2.0.u] = 0 for ¢(s) = ¢ and « > i since Q,[g.¢(s).0,1] = 0 for | > 0 and arbitrary g.
Furthermore, T, [7.n.0] = Q.[n + 1.4 1.0], and so Ts[ 0] = 0 for ¢(s) # ¢ {see the proof
of Lemma 1).

Theorem 1 of [3] gives the main equation to calculate the distribution of cumulative
reward averaged over / as

] \t n m n4l
gAr !

PIACR(#) >?]—Z ZZHQJ?HJ——”” (8)

n=0 . =1 g=1

Since Y021 [|2[g.7.n.g — 1]|| = || Y[i. n. n])|. the equation above can be rewritten to vield
the foilov\mo result.

Theorem 1 The distribution of the total reward acewmulated during (0.4) averaged over t
is given by
e A \t)‘,’] m
P[ACR({ =) e SoIX o] (9)

n=0 ' =1

Figure 1 illustrates the recursion for . In this figure the dots represent a vector Y[i.n, ul
for a given i, and the arrows indicate the values needed to calculate this vector. The dots
on the diagonal line represent the values that are needed to compute P[ACR(#) > r] using
Theoremn 1.



I'igure 1: Recursion for T.

3 Computational Complexity

The main computational effort in evaluating equation (9) is the computation of T,[,n, u]
fort=1..... men=0..... N u=0....,. N. Here N 1s the truncation point of the infinite
series in (9) that produces the desired crror tolerance. For a given value of i, the recursion
should be carried out from n = 0 to N and. for each n. from v = 0 to N. To obtain each
value of T, requires a simple vector by vector multiplication, where one of the vectors is a
column of P. The matrix P js usually sparse, and we assume that on the average there are
d nonzero entries in a column of P. Then O(dAn) multiplications are needed to obtain ¥
for a given value of n and i, and thus a total of O(dm AT N?) multiplications are required for
all values of n and ¢« where mm < N+ 1. Note that. as stated in [3]. the value of m is equal
to or near 1 when we evaluate the tail of the distribution.

Similar to the computation of §2. the computation of ¥ can be done independently for
each 1. Purthermore. for a given n. only the values calculated for n — 1 are needed. As
a consequence. a total of .V vectors of dimension M need to be stored. independent of the
number of rewards of the model. In fact. this is the same storage required by the algorithm
for the case of two rewards previously developed by the authors in [1} when recursion by
column 1s used.

The method in [4]. which combines nniformization and Laplace transform techniques, is
stated to have O(d( N + 1) A N?) number of operations and O(( + 1)AM N} storage require-
ments, which is not independent of the number of rewards. Thus the algorithm developed
in this note compares favorably with the method of [4].



4 Remarks

As noted in [3], it is convenient to scale the rewards and define a scaling factor for 2,. We
can apply the same scaling for T, as follows.

Definition 2 Let

Ti[in,u) = W Y[, n, u (10)
and iy
w:,c[s} == W ) (11)
i,e(3)

where w =min; j{w;;}. 1<i<m, 1 <j<K+1,14 7.

Then we can replace equation (43) of [3] by

Trlion,u) =

Wiy WY lin — 1w =2+ 7Y [in— 1Lu =11} Plis] = Yi[inou—1]) @ # c(s)
12)
(WY [eon —Lu—1]4+wYT " i.n— 1,u]} P[: 5] 1= c(s)
where recall from [3] that w! = w;/w;. Finally, we define for n =0.... N

m

O(n) = > _ || i n. ]l
=1

and, as in [3], we have P[ACR({) > r|n] = w™"O(n).
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