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Abstract

Conventional database systems deal with exact queries which have to be met precisely. However,
there are many applications that simply cannot perform well without some notion of approzima-
tion implemented by the database system. Examples include decision support systems, engineering
applications, decision making systems, and image databases. Different approaches for providing ap-
proximate answers have been proposed in the literature [1, 2, 4, 7, 9]. We propose a new approach
based on Bayesian belief networks to generate approximate answers. Belief networks provide a flex-
ible framework that can be successfully used to merge approximation spaces, complex queries, and
a ranking strategy in natural fashion. We compare our system with Motro’s Vague system [7] and,

through examples, show that our approximate answers agree better with hurman intuition.

1 Introduction

Conventional database systems deal with exact queries. An exact query specifies constraints that have
{0 be met precisely. For instance, if a user asks for a film directed by Hitchcock that is being shown
in Beverly Hills and there is no such film in the database, the user receives a null answer. However,

it might be that there is a Hitchcock film in a theater located at Westwood which is only 5 miles

*Work supported in part by Organization of American States grant F29180 and NASA grant NAG 5-2225.



away. Further, the user has no mechanism to specify an approximate constraint such as film-cateqory
similar-to suspense in which case an adventure film might be satisfactory.

Since conventional database systems cannot handle approximate queries directly, these have to be
emulated through a sequence of exact queries. But then, the user has to direct the system through a
possibly long interaction to satisfy his needs. If the user is not aware of close alternatives, then even
this solution is infeasible [7].

There are many applications that simply cannot perform well without some notion of approximation
implemented by the database system. Cuppens and Demolombe [2] mention decision support systems
and advice giving systems. Fuhr [4] mentions engineering applications, materials data systems, and
business decision making systems. Rabitti and Savino [9] point to image databases.

Different approaches for providing approximate answers have been proposed in the literature. Cup-
pens and Demolombe [2] suggest the use of a knowledge based system implemented on top of a Prolog
system extended by a meta level. Chu,Chen, and Lee [1] use a type abstraction hierarchy to form
clusters of neighbor instances that can then be used to provide approximation. While the first has the
resolution engine of Prolog to help with deducing inferences, the second provides a more structured ap-
proach that scales up better for large systems. However, none of them provide a ranking that reflects the
goodness (i.e., proxdmity) of their answers with regard to the user query. Fuhr [4] enhances a database
system with a probabilistic ranking formula borrowed from information retrieval. Rabitti and Savino [9]
adopt another information retrieval strategy, the vector model, and apply it to image databases. While
both approaches are able to provide a measure for the goodness of the approximate answers, the use
of essentially empirical formulas raises questions. For example, by borrowing directly from information
retrieval they fail to investigate under which conditions their adaptation is valid and/or useful. In
addition, not having a more structured underpinning makes it difficult to extend and generalize these
ideas.

Our approach also draws from information retrieval. However, we look to establish basic criteria

desirable in a strategy for ranking approximate answers in a database. From fundamental assumptions



and axioms, we aim at a new ranking formula.

Combining a ranking formula with an expert provided notion of proximity requires sound justifica-
tion. Motro [7] proposes to solve this problem by normalizing the measures with a neighborhood radius
and then combining them in a weighted sum of squares. While the approach does provide a solution,
it lacks intuition. It also lacks a formal foundation. Yet, to the best of our knowledge, it is the work
closest to ours.

Our approach relies on Bayesian belief networks [8]. Besides a solid formal basis, belief networks
provide the epistemological foundation for combining different dependency relationships. They allow us
to model the database, the expert quantification of proximity, neighborhood spaces for the instances,
and complex queries; all under the same unifying framework. As discussed in section 7, our approach
presents important advantages over the Vague query answering system [7).

The paper is organized as follows. Section 2 briefly introduces Bayesian belief networks. In section 3
we present our network model for databases. Section 4 discusses the derivation of a formula for ranking
responses to queries from basic principles. This formula is used to complete the specification of our
network model. Section 5 presents the incorporation of queries into the belief network. The concept of
vague query conditions and its inclusion in the network is discussed in section 6 and section 7 illustrates
our approach with an example. A comparision with the Vague approximate query answering system is

given in section 8, followed by our conclusions,

2 Bayesian Belief Networks

In this section we briefly introduce Bayesian belief networks and discuss its fundamental properties.
The exposition is entirely based on the presentation by Pearl [8].

Bayesian networks are DAGs in which the nodes represent random variables, the arcs portray causal
relationships between the linked variables, and the strenghts of these influences are expressed by condi-

tional probabilities. We proceed with a simple example.

Consider an experiment involving two dice and a bell. The dice are fair and independent. The bell



Figure 1: Bayesian beliefl network for a pair of dice and a bell.

rings when the outcomes of the dice coincide. The event that the bell rings is said to be caused by
the event that the outcomes of the dice coincide. This behavior is properly modelled by the DAG in
figure 1. If nothing is known about the outcome of the bell, the outcomes of the dice are independent.
Suppose now that a spy observed an experiment and told us that the bell rang. In the face of this
new piece of information (i.e., evidence), we can tell something about the outcomes of the dice even
if the outcome is not completely determined. For instance, we immediately rule out events in which
outcome; # outcomez. Thus, the outcomes of the dice are no longer independent.

This behavior is referred to as an induced dependency. Induced dependencies are an important prop-
erty present in many practical problems. Belief networks are able to distinguish induced dependencies
from transitive dependencies (e.g., those established through an undirected path in the graph). For
example, there is a path between the two dice in figure 1, but it is not a directed path. A path is said
to be blocked if the sinknodes in it (e.g., those that participate in the path with two incoming links) are
not instantiated. Instantiation of these sink nodes induces the dependency. In the language of belief
networks, this is called the d-separation criteria. The main weakness of Markov networks, which use
undirected graphs, is their inability to represent induced dependencies.

The DAG in figure 1 is an incomplete specification of the belief network for the dice-bell experiment.
To complete the model it is necessary to quantify the strength of the dependencies between the two

dice and the bell. This is done by specifying the probabilities P(bellldie;, die;). For this simple case,

1 if diey = dieg
P(bell rings|dieq, dieq) = (1)

0 otherwise



This completes the specification of the belief network for this example.

The parents of a node are those judged to be direct causes for it. The roots of the network are the
nodes without parents. The set of parents of a node isolates the node from the rest of the network.
This feature allows changing the strenghts of the link dependencies in a rather local fashion. One has
to concentrate only on the relationship between a node and its parents.

When incoming evidence becomes available (e.g., the spy informing us of the outcome of the bell)
the corresponding variables in the network are instantiated. This generates a belief in the state of the
evidential node (i.e., the state of the bell node). In this case, the state of the bell node becomes rang
with probability 1 (i.e., there is no doubt associated with the evidence). From the instantiated variables
the new information is emanated to the rest of the network by a mechanism called Bayesian belief
propagation. Section 7 illustrates the mechanism with an example.

Bayesian belief networks are a powerful and flexible modelling tool. Further, they have a solid formal

foundation.

3 Belief Network Model for the Database

In this section, we discuss a model for representing a database as a belief network. Our interpretation
is motivated by an analogy between a database and an information retrieval system.

In an information retrieval system, each document is described by a set of representative keywords
called index terms. This set of index terms is usually converted into a vector as follows, If an index term
1 occurs in a document d and is representative of the document content (as decided by an expert or by
some heuristic algorithm), then the ith position in the vector is set to 1, otherwise, it is set to 0. The
vector for d provides an abstract and succinct description of the document. The information retrieval
system uses these document vector descriptions for its retrieval and ranking operations. A user requests
information by specifying a set of relevant index terms. These terms also form a vector — the query
vector. The information retrieval system answers the user by searching for documents whose vectors

approzimate the query vector. Further, the system ranks the documents according to some measure of



similarity between the document vectors and the query vector.

Ranking of the answers is better supported by assigning weights to the index terms [12, 13]. The
weight of a term expresses its relative importance inside the document as well as its importance to
the document in comparison with other documents. The resultant weighted document vectors are then
compared for ranking purposes. A well accepted measure of proximity between weighted vectors is the
cosine of the angle between them [12].

Turtle and Croft [15] propose a network model for an information retrieval system in which docu-
ments and index terms are modeled by binary random variables. As defined in their work, ¢ document
variable corresponds to the event that a document has been observed. Also, an index term variable cor-
responds to the event that an index term has been assigned to a document. An arc from a document
node to an index term node indicates that the index term occurs in the document and has been rec-
ognized as a relevant index term (e.g., the document node is a cause for the index term node). This
model presents, in our view, the following problems: (a) the event of observing a document is nof well
defined, (b) the event of assigning index terms to documents has no probabilistic meaning, and (¢) most
importantly, the causal relationship between document and index term variables is, at best, hard to
grasp. We present an alternative below for databases that circumvents these problems.

The analogy that we establish with a database is as follows. A tuple in a database corresponds to
a document vector in an information retrieval system. The attribute values in the tuple correspond to
the index terms in the document vector. While the document vector summarizes a book in a eollection,
the tuple summarizes features of an object in the world. In an information retrieval system, however,
there are no constraints on the index terms. In a database system an attribute can typically have only
values from the attribute domain (i.e., a database is a typed system). The consequence is that when
referring to a value we also have to refer to its type. This requires the introduction of the concept of
an aitribute-value pair.

An attribute-value pair (AVP) is a pair [<attribute>,<value>] stating that the attribute is equal to

the value. For now, let a user query be a conjunction of AVPs. Thus, we can think of the experiment of



a user selecting AVPs for a query. In this experiment, we assume that each AVP is equally likely to be
selected by the user. Similarly to Turtle and Croft, we model each AVP (i.e., index term) by a binary
random variable. However, the associated event is well characterized in our interpretation.

Once the user has specified the query, the system has to retrieve the relevant answers. In traditional
relational databases, this means that tuples that satisfy all AVPs are reirieved. In this paper, relevant
refers to the tuples that have some match of AVPs in common with the query. Thus, besides the
traditional answers, the system also retrieves tuples that approximate the query [1, 2, 4, 7). A tuple
that matches the query exactly is relevant. However, a tuple that nearly matches the query is likely to be
relevant. We want to formalize these notions in a database system which finds the candidate tuples and
determines to which extent they are relevant. We model this relevance judgement by a binary random
variable (relevant or non-relevant) assigned to each tuple. In section 4, we discuss how to estimate,
using Bayesian beliel networks, the probability that a tuple is relevant to a query, i.e. the probability
that the associated binary variable is true. This probability is a measure of the strength of belief that
the tuple is relevant and is the basis for ranking possible responses (for example, a user might ask for

the most relevant answers).

Figure 2: Bayesian belief network relative to tuple ¢; only.

In our model, a relevance judgement is issued only after the user chooses a set of AVPs (e.g., submits
a query). We interpret this temporal ordering to mean that the submission of a query causes the system
to emit a relevance judgement for every tuple in the database!. Thus, our network model considers

that the pattern of AVPs chosen by the user is a cause for the emission of relevance judgements by the

'Tempaoral ordering is the reason most often used to infer causation [3].



system. Notice that the causal directionality here is the oppesite of that proposed by Turtle and Croft.
Their work considers that documents (tuples} are the reason (i.e., the cause) for the existence of index
terms (AVPs). While this relationship is true, it is not the focus of the querying process. The user is
not worried about how and why index terms were associated to documents. This is the concern of the
information system designer who, given a book, has to decide which are the representative index terms.
The user reasons from the opposite viewpoint: given a set of index terms what books could possibly
be relevant. Thus, specification of index terms {AVPs) is the reason (i.e., the cause) for deciding the
relevance of a document (tuple). Our proposed causality directionality reflects the user querying process
and is, in our view, more natural for the task of ranking relevant answers.

Figure 2 illustrates the corresponding fragment of a Bayesian belief network for a tuple #; in the
database. The set of parent nodes for t; is the set {avpy, avps,...,avp,} of all v AVPs in the database.
The reason is that the relevance to a query may depend on any AVP mentioned in the query (and not
only on those in the tuple).

To complete our network model, we have to quantify the influence of the set of parent nodes on each
tuple node. This requires the specification of the probability dependencies between a tuple node and
its parents. Let,

§  — vector describing the state (true,false) of all the AVP nodes in the belief network according to

query (). For now, we assume that an AVP node is true if it was specified in the query.

P(+tk|é }  — probability that tuple t; will be found relevant to query Q.

P(~tx|Q) — 1— P(+1|Q)

In the following section, we discuss the desired properties associated with these probabilities.



4 A Probability Ranking Formula for our Network Model

In this section we quantify the probability P(+tklé ) that a tuple #; is relevant to a query Q. We take
this probability as the ranking of tuple ¢; with regard to query Q. Our choice of a particular ranking
formula is motivated by basic principles and empirical evidence borrowed from the field of information
retrieval.

Given a query Q, for each tuple t; we distinguish four vectors over the state space of all AVPs in
the database: Fgay,, Lot f@\tk, and Tgarre Let gi be a function that takes any of these vectors and
returns the state of its ith AVP (avp;). Then,

9i(Tgns, ) 18 1if avp; true in Q A avp; true in ty, otherwise it is 0;

g,-(EQAK) is 1if avp; true in @ A avp; false in ty, otherwise it is 0;

g.i(:'c'amk) is 1if avp; false in @ A avp; true in t;, otherwise it is 0;

gi(f@\ﬁ) is 1if avp; false in Q@ A avp; false in t), otherwise it is 0.
Further, let &, and &g be vectors such that

9i(Zy,) is 1 if avp; true in 1y, otherwise it is 0.

gi(Q_) is 1if avp; true in ), otherwise it is 0.

The most accepted ranking strategy in information retrieval ranks documents (e.g., tuples in a
database)} by the cosine of the angle between the vectors &;, and Zg [12]. The numerator in this
cosine similarity formula (i.e., the inner product of the two vectors) is a function of Fgas,, while the
denominator is a function of #;, and #p. However, ¥g is the same for all documents and can be regarded
as a constant. Thus, the cosine similarity formula yields a ranking that is a function of ga,, and :i"a At
only (&, = Zone, + E-Q"Mk). The impact of :T:'@\tk on the ranking is to provide a normalization over the
document space. This is important because different documents might be represented by index term
vectors of rather disparate lengths.

In the world of databases all tuples have the same length and thus, i’a Aty does not have the same

impact on the quality of the ranks. Further, database queries usually request information about a



subset of the attributes in a tuple and not about the whole tuple. Thus, in general the database user
worries about specific AVPs (those in the query) and not about the tuple as a whole. This discussion

is summarized in the following:

Assumption 1 Proper ranking of approzimate answers in a database context must take into account

Zqat, and I3 Consideration of 5,, s not crucial. Contribution of Ega; 18 irrelevant.
We proceed from basic principles.

Axiom 1 The ranking of a tuple t;, with reqard to a query Q@ is an increasing monotonic function of

the AVPs common o t; and Q.

Riyjo < filZoan) (2)

fQ-"\tl g fQ/\tz = fl(fQ/\t:[) S fl(fql\tz) (3)

The intuition behind this axiom is that the ranking of a tuple should increase with the number of AVPs

it has in common with the query increases.

Axiom 2 The ranking of a tuple t;, with regard to a query Q is a decreasing monotonic function of the

AVPs that appear in the query but do not appear in the tuple.

o
f2(Tonr)

*QA_I c _‘QAI_; = f2(i:QAE) < f2(fQAE) (5)

Ryl « (4)

The intuition here is that a tuple that fails to match one or more AVPs in the query should be penalized.
The penalty should increase with the number of missing AVPs.

Research in information retrieval shows that ranking formulas based on the frequency count of
terms inside documents perform well [11, 12, 13]. Models based on a probabilistic interpretation of

these frequencies of occurrence also perform well {4, 6, 16). This empirical evidence motivates our next

assumption.

10



Assumption 2 Probability functions based on the frequency of occurrence of AVPs in the database are

reasonable selections for fi and fy. Thus,

H(P(Egat,))

T2(P(Foni)) (6)

Rtle o

where P(Eqns,) is the probability that vector ¥gae, occurs among the tuples in the database. P(Zg i)

is defined analogously.

Equation 6 is too generic and allows an infinite number of ranking formulas. To narrow the possibilities,
we search for additional intuition.

The best index term weighting schemas in information retrieval emphasize the selectivity of the
index term [12]. Index terms that appear in many documents are not very discriminatory and therefore
receive smaller weights. This idea concurs with the concept, introduced by Shannon [14], of amount of
information generated by an event. Ross calls it surprise [10]. An index term that occurs infrequently
carries more information {i.e., surprise) and should contribute with higher weight in the ranking com-
putation. The concept of amount of information has interesting properties that agree with the behavior
expected of a ranking formula. Qur approach is to establish this relationship and to adapt it to our
network model of the database.

Let f be a function variable for either f; or f;. Let r be a variable for probabilities such as P(#gns, )

and P(Z, f\t_;:)' We associate f to the amount of information provided by events such as Tgae, and
fQ/\t_k-'

Axiom 3

f(1)=0 (7)

The intuition is that an AVP that occurs in every tuple (e.g., with probability 1) provides no information.
Axiom 4 f(r} is a strictly decreasing function of v. Thus,

r< 8= f(r)> f(s). (8}

1



This axiom states that AVPs that are more discriminatory boost the value of f. This is a standard

assumption in information retrieval systems.
Axiom 5 f(r) is a continuous function of r.
This axiom states that small variations on r cause small changes on f(r) — a desired property.

Axiom 6

frxs) = f(r)+ f(s) (9)

This axiom states an independence assumption. Let r = P(avp;) be the probability that avp; occurs
in the database. The associated value for f is f(r). Consider avp;, another AVP distinct of avp;,
and let s = P(avp;). Further, assume that the event of avp; occurring in the database is independent
of the event of avp; occurring in the database. Clearly, the value of f for the event of avp; and
avp; occurring simultaneously is f(r x s). Thus, consideration of avp; increases the value of f by

f(r x 8) — f(r). Since the occurrence of avp; is assumed independent of the occurrence of avp;, it has

to be that f(s) = f(r x s) — f(r).
Theorem 1 If a function f satisfies azioms 1 through 4, then

firy=—-Clog,r (10)
where C 1s a positive integer.

Proof Refer to [10].

Years of research in the field of information retrieval solidified the use of the inverse document
frequency as a good weighting factor for index terms [3, 12, 16]. The empirical formulation for the
inverse document frequency factor has the same form as equation 10. Our interpretation is that the

desirable properties of axioms 1 through 4 were intuitevely incorporated in the specification of index

12



term weights, culminating in the final form displayed by ( 10). Our contribution here is to offer a more
detailed , basic derivation of this result which exposes the assumptions made in the ranking formula. In
addition, this formalization provides the basis for generalization to a formal treatment of approximate
answers for database systems,

By fixing the proportionality constants to 1 and substituting ( 10) into { 6), we obtain

—10g2 P(fo\fk) (11)
- 10g2 P(EQAE)

Rile =

Using the independence assumption of axiom 6, we are able to write

R _ Zavp,: true in fgar, 10g2 P(avpi)
2 ZGUP.’ true in g, logy Plavp;)

(12)

Let the number of tuples in which avp; occurs be ngyp, and the total number of tuples in the database
be N. This yields

Plavp;) = n‘};’rp‘ (13)

Substituting into 12, we finally obtain

Navp,
R _ zavp, true in fgar, "10g2 N (14)
telQ — Ravp;
Eavp.' true in EQ/\E - 10g2 N

Now that we have derived the ranking formula, we return to the problem of quantifying P(+tk|C§ )
and thus P(—t;|@) = 1 - P(+14]Q), for our network model. Let Qser be the set of all conjunctive?
queries that the user might specify. A generic conjunctive query Qg in this set is represented by the

vector

—

@y = (Zavpy> Tavpys+» o Zaup, )

(15)
Vi, Taup € {0,1) (16)

where v is the total number of AVPs in the database. Thus, there are 2¥ possibilities for Cj ¢- To quantify

the strength of the influence of ng on 15, one can use any set of 2V functions Fi(fx, Q,) satisfying

Fi(te,@y) =1 (17)

tx tn {true false}

215 section 5, we relax this restriction and consider complex gueries.

13



where 0 < F(ty, ég) < 1. This specification is consistent and complete because the product form
Pr(th, Tavpys Tapgs -+ > Tavpy) = 1] Filtr @) (18)
Yty Tavp;
constitutes a joint probability distribution that supports the assessed quantities. For a thorough dis-
cussion of this matter refer to Pearl [8].
Since we take P(+14]Q) to be the rank of tuple ¢; in the network model, we make it proportional to
Ry, given by equation 14. The only required step is to normalize Ry, so that it can be interpreted

as a conditional probability and used in the Bayesian network. Thus,

Nevp; . avp;
. (Zavp,- true in a’,‘QMk - 10g2 _NPL) -~ (Eaupg true in EQI\Q - 10g2 n_NpL
P(+tle) = 1 Tlavp, (19)
Eavp; true in &g — 0g,

P(~tx|@) = 1-P(+4|Q) (20)

This set of equations completes the specification of our network model for the database. P( +t5|Q) is

such that it reflects all the desirable properties of a ranking formula as discussed in this section. In fact,

Theorem 2 The expression for P(+tk|Q.) in equation 19 satisfies all the arioms stated in this section.

Further, all assumptions stated here apply to it.

Proof Equation 19 differs from equation 14 by the sum over &g only. For a given query, this sum is

the same for all tuples in the database. O

5 Belief Network Model for Queries

Until now, we have assumed that a query is simply a conjunction of AVPs. In this section, we extend
a query to conjunctions and disjunctions of AVPs. As we are about to see, belief networks naturally

extend themselves to handle complex queries.
As before, an AVP is modeled by a binary random variable avp;. The associated experiment is the
selection of AVPs by the user for inclusion in a query. Without prior information, we assume that the

user is equally likely to select any of the AVPs.

14



Figure 3: Bayesian belief network for query @ = (avp, V avpy) A avp,.

A query is a conjunction or disjunction of AVPs. It imposes a restriction on the set of AVPs that
should be considered for retrieval (and ranking). A purely conjunctive query restricts the system to
consider a unique combination of AVPs: those in the query are selected (avp; = true), while those
not mentioned are not selected (avp; = false). A query that includes disjunctions of AVPs allows
the system to consider more than one combination of AVPs. In this case, each combination of AVPs
satisfying the query contributes to the final rank of a tuple 3.

This behavior can be modeled in a belief network by representing a query by a binary random
variable ). Q = true means that the query is satisfied, @ = false means that the query is not satisfied.
As suggested by Pearl [8], the links are directed from the AVP nodes to the query node.

Figure 3 illustrates the Bayesian belief network for the query @ = (pa V ps) A pc. The disjunction is
modeled by the introduction of an auxiliary query node @,,. Having the query node as sink establishes
an induced dependency among variables p,, ps, and p.. If nothing is known about node Q, the network
states that AVPs p,, ps, and p. are independent of each other (our system does not prefer one to
another). If now the user specifies the query as input (@ = true), a dependency is induced among the
three AVPs. For instance, our system will rule out choosing (—pa, —ps,pc) because it contradicts the
new evidence (forcing p, and ps to false does not satisfy Q). Induced dependencies naturally model the

action of a user inputting a query as new factual evidence (i.e., a new constraint). The impact of this

3Through Bayesian belief conditionalization and propagation, the network model combines all the evidence supplied by

the query into a final rank for each tuple. The calculation is illustrated in section 7.

15



new evidence can then be propagated throughout the network resulting in new relevance judgements
(e.g., rankings). Section 7 illustrates the approach with an example.

To complete this network model for queries we need to specify the link dependencies between a query
node and its parent nodes. These dependencies are described by conventional logic since the conditions
are deterministic. Let,

P(+Q|¥)  — probability that query node @ is true given a state description of all the AVP nodes.

For the network in figure 3 this translates to

1 ifp, vV
P(+Qor|T) = o (21)

0 otherwise

1 if Qor A pe
Paqu = { Ot (22)

0 otherwise

“

Notice that a user no longer selects the AVP nodes directly. Instead, a query is specified as new

factual evidence. This evidence deterministically constraints combinations of AVPs that satisfy the

query.

6 Belief Network Model for Vague Patterns

In the previous section, we have designed a ranking strategy from basic principles, discussed its prop-
erties, and shown how to model this strategy using a belief network. However, we have yet to address
the key issue of this work — approximate answers. In this section we show how approximate or vague
patterns can be naturally incorporated in a belief network.

Our definitions below are based on the work by Motro [7]. To be able to specify proximity or
nearness, the user needs a vague operator. Motro calls this operator similar-to. We refer to it by
either similar-to or ~. Let a vague AVP be the triple [<attribute>,<value>,~]. This vague AVP is

a reference to all AVPs that are similar-to the AVP [<attribute>,<value>]. The system searches for

16



tuples containing these similar-to AVPs and provides a rank for these tuples. This requires quantifying
the similarity between neighbor AVPs.

Measuring similarity requires the design of data metrics. A data metric is a function M : Dx D — R
that specifies a semantic distance between any two AVPs in the same attribute domain. AVPs in different
attribute domains are considered unrelated (i.e., separated by an infinite distance). In this paper, we
do not concern ourselves with the design of data metrics for a database?. We simply assume that they

have been specified by an expert.

Figure 4: Belief network for the vague AVP [location, Westwood, ~].

A vague AVP establishes a dependency among similar AVPs only when it is mentioned in a user
query. Before the specification of a vague AVP, no approximation can be used (all AVPs are considered
independent). In the language of belief networks, we say that specification of a vague AVP induces a
dependency among its neighbor AVPs. Thus, as done for queries, vague AVPs can be modeled by binary
random variables representing factual evidence. We model the vague AVP corresponding to avp; by the
binary random variable Vavp;. The AVPs that bear influence on Vavp; are those that are neighbors of
avp; according to the data metric.

Figure 4 illustrates the belief network corresponding to the vague AVP [location, Westwood, ~].
V aupys is the associated random variable. Westwood (WW } is a region in Los Angeles. Hollywood
(HW), Santa Monica (SM), Beverly Hills (B# ), and Downtown (DT) are regions in the neighborhood
of Westwood. The degree of influence of each region upon Vavpy,, is taken here to be inversely propor-

tional to the distance (from Westwood) to that region. The influence of Westwood upon Vavp,. tends

*Motro [7] discusses this issue in detail.
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FILM
1d | Title Director | Category | Theater Location
t1 | Four_Feathers | Korda Adventure | Music_Hall | Beverly_Hills
t; | Modern_Times | Chaplin Comedy Rialto Downtown
t3 | Psycho Hitchcock | Suspense Chinese Hollywood
ts | Rear_Window | Hitchcock | Suspense | Egyptian Westwood
ts | Robbery Yates Suspense | Odeon Sta_Monica
t¢ | Star_-Wars Lucas Adventure | Rialto Downtown
t7 | Surf_Party Dexter Drama Village Westwood

Figure 5: A database for films.

to infinite. We model this fact by a weight that is an order of magnitude greater than any other.

The link matrix between Vavp,. and its parent nodes is specified by the normalized sum of the
respective weights, For instance,

1
i+ s i
T 1,1
wtststgtl0
1 - P(+Vavpyy| + hw, +sm, —bh, —~dt, —ww)

P(+V avpyy| + hw, +sm, —bh, —dt, —ww} =

P(=V avpyw| + hw, +sm, —bh, —dt, —ww) =

All the other conditional link probabilities are calculated similarly.

7 Ranking Approximate Answers: an Example

In this section we show how belief networks can be used as an unifying framework for ranking approxi-
mate answers relative to a vague query. We use a simple conjunctive query here because it better suits
our desire to expose clearly the advantages of our approach. However, there is no essential difference
in the application of our ranking procedure to complex queries. The final ranking enjoys the properties

established in section 4.

Figure 5 illustrates a database adapted from [7]. A film ¢ has a title, a director, a category, a
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theater where it is in exhibition, and a location for that theater. The attribute #; is not part of the
original database. It is introduced here to facilitate reference to the tuples. Our example is based on
the following vague query (also from [7]).
Q: select title,theater,category,location

from film

where category ~ Adventure

and location ~ Westwood

which asks for films whose categories are similar to adventure and that are been exhibited near to

Westwood. Thus, this query involves two vague AVDPs.

Figure 6: Bayesian belief network for our example query.

Figure 6 illustrates the complete network for our database and our example query. The acronyms
stand for: com = comedy, adv = adventure, sus = suspense, and dre = drama. The others are as
before. Only the links that can be possibly activated by ¢ (i.e., influence the ranking computation for
any tuple) are shown®. The black node in the figure is a switch that connects any incoming links to

all the outcome ones. It was introduced to simplify the drawing. Thus, the set of parent nodes of any

5The full network i a complete bipartite graph on the database side
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tuple node #; includes all the AVP nodes. The weights for the parent nodes of AVP Vavp,, are as
specified in section 6. The weights for the parent nodes of AVP Vavpyq, are taken as the inverse of the
semantic distance between each parent node and Vavpaq,. These semantic distances are taken from the
data metric given by Motro [7].

The AVP nodes (e.g., {com, sus,dra,...,bh,dt}) are the root nodes in the network. They bear
influence on other nodes but are not directly influenced by them {e.g., they have no incoming links).
Before the user provides evidential information through a query, the AVPs are considered independent of
each other. The boundary condition for a root node in a belief network is given by the prior probability
of the root variable [8]. As before, we assume that a user has no preference to any AVP prior to
specifying a query. This translates to a prior probability that is uniform over the space of AVPs.

Assuming that the prior probability distribution for AVPs is uniform does not mean that the user
is unable to state preference. It means that prior to the manifestation of any preference, there is not
much that can be said about the likelihood of an AVP being used in a query. The user manifestates
preference when it specifies a query. The network acknowledges this preference by considering, for
ranking purposes, only the combinations of AVPs that satisfy the query.

Input of query @ activates the vague AVP nodes Vavpaqy and Vavpy,. Given all the query evidence,

what is the steady state probability (belief) forced upon each tuple node in the network? These beliefs
are the corresponding rankings.

For our network model, the propagation of beliefs can be obtained by simple Bayesian conditioning.

We proceed as follows.
P(+tx| + Q) = P(+ts| + Vavpuw, +Vavpas)
Let # be a vector describing the state of all AVP nodes (e.g., root nodes) in our network. Then,

P(+te| + Q) = E P+t + Vavpyw, +Vavpaan, £) X P(T] + Vavpuw, +Vavrpady)
i

S P(+t|E) x P(&] + Vavpww, +Vavpad)

vz

because, given ¥, the state of a tuple variable is independent of the other variables in the network. We
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again apply Bayes rule to obtain,

P+t + Q) ST P(+1}T) X a X P(+V avpuw, +Vavpeald) x P(T)
vz
37 P(+x|Z) x @ X P(+V avpyy|E) X P(+V avpas|T) x P(Z)

v E

where « is simply a normalization constant and P(Z) is the prior probability (before any evidence is
collected) for # [8].
The computation of P(+tx| + Q) is carried out as follows. P{+Vavpy,|¥) and P(+Vavpaq|T)

-+

are calculated as exemplified in section 6. P(Z) is the prior probability for # Before any evidence
is collected, all AVPs are independent of each other and uniformly distributed (they are the roots in
the belief network). Thus, P(#) can be trivially computed. P(+t|Z) is calculated using our ranking

formula provided by equation 19. The computation has to cover the state space of £ (2° in this example).

Further details can be found in [8].

8 Comparision with Vague

In this section, we make a qualitative comparision between the ranking provided by our belief network
model and the ranking provided by Vague [7]. The comparision is based on the example discussed in
section 7. We can argue comparatively because the database, the data metrics used, and the query are
the same for both systems.

Computation of the beliefs P(+tx| + Q) generates the following relevance ordering:
tr >t >tg >ty >l >t > 13 (23)

We first observe that no tuple matches both query conditions (Westwood and Adventure). t7, i1, fg,
and #4 are the tuples that match either one of these conditions. t7 is considered most relevant because
its approximate AVP match [category, drama] is highly specific. There is only 1 drama movie in the
database and that is provided by t7. Thus, if the user is willing to accept a drama movie instead of

an adventure he has no options other than to go with #7. The network highlights this fact by boosting
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t7 in the ranking. Humans tend to do the same when confronted with many alternative choices that
is, they concentrate on the more specific ones first. The approximate AVP match for #; is also very
specific [location, Beverly Hills], but ¢; is considered less relevant because the relative semantic distance
between Beverly Hills (;) and Westwood is greater than the semantic distance between Drama (t7) and
Adventure. Tuple g is preferred over t4 because Downtown (fg) is more specific than Suspense (24).

Intuitively, the network is ranking tuples as follows. It first detects the exact AVP matches and
emphasizes those. For the approximate AVP matches, it first takes into account the amount of informa-
tion provided by each pattern. Secondly, it considers the influence of the respective data metric. This
balance between amount of information and semantic distance can be easily tilted to favor either one
by proper manipulation of the data metric (i.e., preserving relative distance among neighbor AVPs).
Thus, the network model provides a unifying framework for different ranking strategies that one might
think of.

Vague ranking strategy generates the following relevance ordering:
=ty >t5 >t >3 > 1 > 12 (24)

We first notice that 7 is in the middle of the rank. This is so because Vague does not consider the
associated amount of information. For the same reason, ¢; cannot be distinguished from %4. Most
surprising is to find #5, a tuple without exact AVP matches, well positioned in the ranking. This
happens because, without further information from the user (e.g., such as weights for the attributes),
Vague heuristically combine distances between unrelated AVPs (category of the movie and location of
the theater) by a square sum. Notice also that {g, a tuple with an exact AVP match, ended up almost
at the bottom of the ranking.

We find the network ranking more consistent and more in agreement with human intuition. It also

provides a generic and flexible framework that is completely missing in Vague. Further, belief networks

have a solid formal foundation.
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9 Conclusions

Bayesian belief networks are a powerful modelling tool. Their flexibility and formal background make
them suitable for application in many areas. To the best of our knowledge, Turtle and Croft were the
first to use it in the field of information retrieval. We have investigated the use of belief networks for
approximate answers in databases.

We have pointed out our disagreements with the Turtle and Croft model and have suggested a
viable alternative that, we understand, is more promising. Their model reflects the frame of mind of
the system designer. Ours models the user querying process and intentions. The latter is the important
process for a system that seeks to produce relevant answers to approximate queries.

We based our ranking strategy on empirical results borrowed from the field of information retrieval.
The idea was to establish an analogy between an information retrieval system and a database. We
avoided using information retrieval ranking strategies directly for two reasons: (a) they have an exces-
sively empirical nature and (b) index vectors for documents might have rather disparate lengths while
tuples have vectors of fixed length. Our analogy led to the desired, but yet general, form displayed in
equation 6. To further constrain our choice for a ranking formula, we drew from information theory. By
axiomatization of desired properties, we were able to constrain the form of our ranking formula what
led to the result in equation 14. Further, we provided a more detailed, basic derivation for the inverse
document frequency, a common metric in the field of information retrieval.

We discussed how to use induced dependenciesin a Bayesian beliel network to model vague AVPs and
generate approximate answers. The flexibility of the belief network allowed us to combine Motro’s data
metrics with our ranking formula in a consistent fashion. Further, we could easily extend the approach
to deal with complex queries, an issue that is not dealt with properly by Motro’s Vague system®,

We compared the results of our strategy with those generated by the Vague system through a

simple example extracted from Motro’s paper (7). Even this simple example was enough to highlight

$We did not explore this in the paper.
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the advantages of our approach. While Vague merges the contributions of distinct approximate query
conditions through a simple weighted sum of squares, our system uses Bayesian conditionalization what
preserves the independencies stated by the network. Further, our formula takes into account the amount

of information provided by each vague condition what improved the quality of the rank considerably.
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