Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE IMPLICATION OF THE BOROWSKY-GAFNI
SIMULATION ON THE SET-CONSENSUS HIERARCHY

E. Borowsky July 1993
E. Gafni CSD-930021

The Implication of the Borowsky-Gafni Simulation
on the Set-Consensus Hierarchy *
{Extended Abstract)

Elizabeth Borowsky Eli Gafni

(borowskyQcs.ucla.edu) (eli@cs.ucla.edu)

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024
U.S.A.

Abstract

We elaborate on applications of the non-blocking-busy-waif simulation method,
introduced in [6], to extend the linear consensus hierarchy of Herlihy [11] info a
partial order encompassing set consensus objects. In particular, we show (n, k)-set
consensus can not be implemented using (m, j)-set consensus objects if n/k > m/j.
We explore cases cases where this hierarchy is strict.

1 Introduction

The problem of distributed consensus is fundamental to many applications of distributed
systems. In consensus, processors communicate with each other to agree on a common
value. The k-set consensus (agreement) problem introduced by Chaudhuri [7] is a
generalization of the standard problem of consensus. In k-set consensus, processots
with private initial values each decide on some processor initial value such that the set
of decision values is size at most k. When n processors are to execute k-set consensus,
we refer to the problem as (n, k)-set consensus. The standard consensus problem is the
special case of set consensus with & = 1. Throughout this paper we abbreviate (1, 1}-sct
CONSeNsus as 7-Consensus.

In one of the most celebrated results in distributed computing, Fisher, Lynch and
Patterson (FLP) [9] established that asynchronous consensus tolerating a single unde-
tected fail-stop processor is impossible. When a processor fail-stops, from that point
on the processor takes no steps. In an asynchronous system, a fail-stopped processor is

*Work supported by NSF Presidential Young Investigator Award under grant DCOR84-51396 .

indistinguishable from a slow processor. Upon introducing (n, k)-set consensus, Chaud-
huri [7] conjectured that (n, k)-set consensus is impossible if k& processors may fail-stop
undetected. She proved the problem is solvable if at most &k — 1 processors may fail-stop.
Recently her conjecture was proven correct {6, 12, 15].

While investigating the problem of consensus, Herlihy [11] showed the n-consensus
task is universal in the sense that if » processors can achieve wait-free n-consensus then
they can wait-free implement any task. He then proposed to define a hierarchical rela-
tionship between wait-free objects. He defines object A to be above B in the hierarchy
if A can wait-free implement B, but not vice-versa. He established such hierarchical
relationships between n-consensus objects for even n. Jayanti and Toueg [13] extend
this relationship to all n. Here we elaborate on what we have written rather tersely in
(6], which extends Herlihy’s hierarchy into a partial order encompassing set-consensus
objects. We prove a wait-free (n, k)-set consensus object can not be implemented using
a wait-free (m, j)-set consensus object if n/k > m/j. This extension is a easy outcome
of the non-blocking busy-wait simulation technique introduced in [6] and yields as a
special case an alternate proof of the Jayanti and Toueg result.

The paper is organized as follows. In Section 2 we define our model. In Section 3 we
present the non-blocking busy-wait agreement protocol. Then, in Section 4 we use it in
the simulation, proving the extended hierarchical relationship. We end with concluding
remarks.

2 Model

Qur model consists of n processors communicating asynchronously through shared mem-
ory. W.lLo.g. (e.g.[14]) the shared memory is constructed from single-writer multi-reader
atomic registers. The processors communicate to execute a task, after which each pro-
cessor decides on an output value.

Formally, a task is a point to set mapping of a set of processors with given input to
possible combinations of outputs. A processor output is a decision, and an implemen-
tation of a task is a decision protocol. A decision protocol is said to be wait-free if, in
every execution, each processor is guaranteed to reach a decision after taking a finite
number of steps. Such a protocol is a wait-free implementation of the corresponding
task. An object is a black-box implementation of a task. All objects and protocols In
this paper are wait-free.

We now define the possible hierarchical relationships between objects. Given two
objects, we say object A is stronger than object B if there is no wait-free implementation
of A using any number of objects of type B and any number of read-write registers.
Object A is strictly stronger than B if A is stronger than B and there is a wait free
implementation of B using objects of A. Object A is weaker than object B if it is not
stronger than B, and A is strictly weaker than B if B is strictly stronger than A. We
say objects A and B are incomparable if A is stronger than B and vice-versa, in other
words, if neither object can implement the other. If objects A and B can wait-free

implement each other, they are said to be equivalent.

The task used throughout this paper to show additional hierarchical relationships is
the (n, k)-Set Consensus task. In (n,%)-set consensus, each of n processors with private
input values must decide on the input value of some processor, such that the set of
decision values is of size at most k. Notice that in a wait-free implementation of {n,k)-
set consensus, if a processor comes alone and decides before any other processor wakes
up, then that processor necessarily decides on its own input value.

3 Non-blocking-Busy-Wait Agreement Protocol

In this section we design a read-write agreement protocol which will be used in the
simulation. The protocol may not terminate if even a single processor participating in
it fails, thus it is not wait-free. However, it has the property that all waiting is done in
the last step. A wait is a loop of reads that terminates when the read returned satisfies
a given condition. The code of the agreement protocol consists of a wait-free section
ending with a single read loop and a subsequent agreement decision. Processors can
decide once all participating processors have reached the wait statement. Thus. if a
processor at the wait statement can not make a decision, there must be at least one
processor currently in the wait-free section of the code.

The agreement protocol we use is a one-shot mutual-exclusion algorithm. Here we
state it in the generality of l-exclusion, with all processors observing when any processor
decides to enter the critical section. The algorithm is presented in Figure 1, and is a
simple variant of the FIFO l-exclusion algorithm proposed in [2]. All the variables are
atomic single writer multi-reader (i.e. none are private). Assume every read step is an
atomic snapshot of the memory. Thus, any read or write is done atomically although
reading and writing many variables.

For the simulation, assume we have n codes which are to be simulated by some num-
ber of processors. Take [to be 1 in the agreement protocol. The simulating processors
must come to an agreement on the value of each read step in a simulated code. Thus,
in order to agree on a value, each processor first writes its proposed read value into
the shared memory then enters the agreement protocol. When the agreement protocol
terminates, all participating processors agree on a single participating processor. Since
the winner is participating, it must have written a proposed value in the memory. Al
processors take this value as the agreement value for the simulated read. Each code
is simulated sequentially, so no processor can simulate past a read statement before
the agreement protocol for that statement terminates. However, a processor walting
on the outcome of one simulated read may join or start simulating a read in another
code. In this manner, simulating processors can wait-free simulate an execution of the
n processor protocol.

Protocol for Processor ¢:
Initially:
z;=false, S5; =0, label; = (0,7).

T; 1= true;

read

label; := (Maz{y|(y,) = label;} + 1,1);
read

Si = {jla; = true};
read until there exists 7 such that:

5; # 0 and|{k € S;llabely < label;} <1
(* let < denote the lexicographic ordering on labels *)
choose: j

Figure 1: Agreement Protocol

4 The Set Consensus Hierarchy

We use the simulation to prove (n, k)-set consensus is stronger than (m, j)-set consensus
for n/k > m/j. Since the cases where n < k or m < j are trivial (since each processor
can simply choose its own value) we limit our discussion to the case where n > &
and m > j. We show that if (n,k)-set consensus can be implemented using (m, j)-set
consensus objects, then a (jk + 1, jk)-set consensus object can be implemented from
read-write registers contradicting the results in {6, 12, 15]. Thus we assume we have n
codes invoking the primitive operations of read, write and invoke((m, j)-object, value)
followed by return((m, j)-object, value). For each (m, j)-set consensus ob ject used, this
pair of lines appears in at most m codes.

Specifically, assume that there is a wait-free (n,k)-set consensus protocol using
(m, 7)-set consensus objects. Then, by using j copies of this protocol, there is a wait-
free (jn, jk)-set consensus protocol using (m, j)-set consensus objects as well. So, let
7k + 1 processors simulate the jn codes of (jn, jk)-set consensus. Before simulating
the read, write, invoke, and return steps of a simulated code, the jk + 1 simulating
processors associate the code with an input from the simulating processors. To agree
on the input, the simulating processors perform an agreement protocol on their own
initial values. The simulating processors may then begin simulating a code by using
the agreement protocol for each read and return((m, j)-object, value) statement of the
code. A processor failing in the wait-free section of an input, read or return agreement
can block at most that simulated code.

The line invoke{(m, j)-object, value) is simulated by using the agreement protocol
with [= j. To block such a multi-valued agreement at least j simulating processors must
fail. However, when such an agreement is blocked, it blocks the simulation of up to m
simulated codes. Thus, if one of the jk + 1 simulating processors remains working, there

can be at most m(jk/7) = mk codes blocked. Since n/k > m/j it holds that nj > mk.
so there must be at least one unblocked simulated code for the remaining processor
to execute to completion, thus achieving a jk-set consensus value. Consequently. if an
(n, k)-set consensus protocol could be implemented using (m, j)-set consensus objects,
then jk + 1 processors could reach jk-set consensus wait-free, contradicting 6, 12, 15].

(1,1)-set consensus €— (2,1)-set consensus €—(3,}&— &— (nl) €— (ml]

N bk

o

\
(22)-set consensus €— (3,2} €—

N

nk) € (n+1k)

i\

w € (nk+l) € (n+lk+1)

x—> ymeans: x is strictly stronger thany

Figure 2: The Set Consensus Hierarchy.

We have shown that (n, k)-set consensus is stronger than (m, j)-set consensus when
n/k > m/j. Now we investigate the cases when (n,k)-set consensus is strictly stronger
than (m,j)-set consensus. Clearly, in the case where n > m, k& < j and n/k > m/j,
(n, k)-set consensus can easily implement (m, j)-set consensus. Thus, in this case (n, k)-
set consensus is strictly stronger than (m, j)-set consensus. This yields the implications
presented in Figure 2 that (n,k)-set consensus is strictly stronger than (n,k 4 1)-sct
consensus and (n — 1,k)-set consensus. However, in the case where n > m, & > j
and n/k > m/j, we conjecture that (n,k)-set consensus and {m, j)-set consensus are
incomparable. In addition, we conjecture that when n < m and n/k > m/j, (n, k)-set
consensus can be used to implement (m, j)-set consensus. In the case where [m/n|k < j
this conjecture holds easily as we can partition the m processors into [m/n] groups of
size < n, each of which can access a separate (n,k)-set consensus object, and thus
achieve the result. Also, if j — |m/n]k < m — [m/n|n the conjecture holds as we can
partition the m processors into |m/n| groups of size n which each use an {n,k}-sct
consensus object, while the remaining processors each choose their own value. This
last case proves the implication shown in Figure 2 that (n,k)-set consensus is strictly
stronger than (n + 1,k + 1)-set consensus. Thus, we have shown strict hierarchical
relationships between various set consensus objects, and supplied our conjectures about

the cases yet to be determined. A schematic representation of the strict hierarchy is
presented in Figure 2.

5 Conclusion

Expanding on the applications of the non-blocking busy-wait simulation method, first
introduced in [6], we have proved a hierarchy of wait-free set-consensus objects. We
extend Herlihy’s consensus hierarchy to encompass set consensus, showing (n,k}-set
consensus is stronger than (m, j)-set consensus if n/k > m/j. In particular, we show
(n, k)-set consensus is strictly stronger than both (n — 1, k)-set consensus and (n, k4 1)-
set consensus for n > k, and that (n—1, k)-set consensus is strictly stronger than (n, &+
1)-set consensus, thus giving the complete relationships between set consensus objects
which differ by one in either parameter. Notice, that between two set consensus objects
of the same n/k value, it is clear that the object with smaller n value can implement that
with larger n value. That is, an (n, k)-set consensus object can implement a (en, ckh)-set
consensus object. We suspect that the converse is false.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit. “Atomic Snap-
shots of Shared Memory”, Proc. 8th ACM Symp. on Principles of Distributed Com-
puting, pages 1-14, 1990.

[2] A. Afek, D. Dolev, E. Gafni, M. Merritt and N. Shavit,“First-in-first-Enabled |-
Exclusion”, Proc. {th International Workshop On Distributed Algorithms | Bari.
Italy 1990.

[3] H. Attiya, A. Bar-Noy and D. Dolev, “Sharing Memory Robustly in Message Pass-
ing Systems”, Proc. 9th ACM Symp. on Principles of Distributed Compuling, pages
363-375, 1990.

[4] H. Attiya, A. Bar-Noy, . Dolev, D. Koller, D. Peleg, and R. Reischuk, “Achievable
Cases in an Asynchronous Environment”, Proe. 28th IEEE Symp. on Foundations
of Computer Science, pages 337-346, 1987.

[5] O. Biran, S. Moran, and S. Zaks, “A Combinatorial Characterization of the Dis-
tributed Tasks Which Are Solvable in the Presence of One Faulty Processor”™, Proc.
Tth ACM Symp. on Principles of Distributed Computing, pages 263-275, 1988.

[6] E. Borowsky and E. Gafni, “Generalized FLP Impossibility Result for t-resilient
Asynchronous Computations,” Proc. 25th Symp. on Theory of Computing. 1993.

[7] S. Chaudhuri, “Agreement is Harder Than Consensus: Set Consensus Problems in
Totally Asynchronous Systems”, Proc, 9th ACM Symp. on Principles of Distributed
Compuling, pages 311-324, 1990.

[8} D. Dolev, C. Dwork and L. Stockmeyer, “On the Minimal Synchronization Needed
for Distributed Consensus”, JACM 34, January 1987.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process”, Journal of the ACM, Vol. 32, No. 2, pages
374-382, April 1985.

[10] G. N. Frederickson and N. A. Lynch, “Electing a Leader in a Synchronous Ring”.
Journal of ACM, Vol. 34, No. 1, pages 98-115, 1987.

[11] P. M. Herlihy, “Impossibility and Universality Results for Wait-Free Synchroniza-
tion”, Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 276~
290, 1988.

[12] M. Herlihy and N. Shavit,“ The Asynchronous Computability Theorem for ?-
Resilient Tasks”, Proc. 25th Symp. on Theory of Computing, 1993.

[13} P. Jayanti and S. Toueg, “Some Results on the Impossibility, Universality and
Decidability of Consensus”, private communication.

[14] L. Lamport, “On Interprocess Communication, Parts I and II”, Distributed Com-
puting, Vol. 1, pages 77-101, 1936.

[15] M. Saks and F. Zaharoglou,* Wait-Free k-set Agreement is impossible: The Topol-
ogy of Public Knowledge”, Proc. 25th Symp. on Theory of Computing, 1993.

