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Abstract

Spectral geometric embeddings of a circuit netlist can lead to fast, high quality multi-way partitionings
[1] [22]. In this work, we introduce a new and effective class of geometric partitioning algorithms. Our
approach first orders the (spectrally) embedded netlist modules using a d-dimensional spacefilling curve.
Then, subject to the constraint that clusters must lie contiguously along the spacefilling curve, dynamic
programming techniques can obtain opfimal multi-way partitioning solutions in low-order polynomial time
for a range of objective functions including Scaled Cost [22]. The technique easily accomodates both upper
and lower bounds on cluster size. Experimental results show excellent results, especially for & < 4.

1 Preliminaries

In top-down layout synthesis of large VLSI systems, the goal of partitioning is to reveal the naturel circuit
structure, via a decomposition into k subcircuits with minimum connectivity between the subcircuits. A

generic problem statement is as follows:

General k-Way Partitioning: Given a circuit netlist G = (V, E) with n modulesin V = {v1,v3,...,v,},
construct a k-way partitioning, denoted as P*, which divides V into k disjoint clusters Cy,Cy,...,Cy to

minimize a given objective function f(P*).
In this work, we consider the small-k partitioning (SKP) regime where k € n, e.g., k¥ < 10 for n > 1000.

The SKP problem arises in high-level VLSI system partitioning and floorplanning, as well as in clas-
sification analysis. Early approaches in the VLSI realm have involved seeded epitaxial growth, extensions
of the Fiduccia-Mattheyses iterative interchange bipartitioning algorithm [19], and a primal-dual iteration
motivated by a generalization of the minimum ratic cut metric [20]. Recently, Yeh et al. [21] proposed
a “shortest-path clustering” (SPC) method, where “shortest paths” between random pairs of modules are
iteratively deleted from the netlist graph until there are & connected components (i.e., the clusters). The
algorithm probabilistically captures the relationship between multicommodity flow and minimum ratio cut,
and yields high-quality solutions when measured by cluster ratio, which Yeh et al. characterize as the

“proper” k-way generalization of the ratio cut objective.



Minimum Cluster Ratio SKP: Find a partitioning P* = {C},C2,...,C}, 2 < k < |V|, that minimizes

o P)

HP) = ==
(= Ef:ll E;=i+1 |Cs| x |Cjl

where ¢(P*) is the number of nets which cross between two or more clusters in P*,

Other SKP approaches extend well-established spectral methods. In 1970, Hall [12] generated one-
dimensional netlist embeddings from the eigenvector corresponding to the second smallest eigenvalue Az of
the netlist Laplacian @ = D — A (where D) is the diagonal degree matrix and A is the adjacency matrix).
This embedding corresponds to a module placement Z along the real line which minimizes total squared

wirelength subject to the condition ¥ -7 = 1.

Hagen and Kahng [11] established a connection between X, and optimal ratio cuts by showing that %‘?
is a tight lower bound for ratio cuf cost; this motivated their method of generating high-quality ratio cut
bipartitionings by “splitting” the eigenvector. In [22], Zien generalizes the result of [11] to k-way ratio cut
partitioning, using the first k£ eigenvectors of the netlist Laplacian to construct an orthogonal prejector which
maps an n-dimensional space into a k-dimensional space (the paper of Chan et al. [6] is an abridged version
of [22]). Ideally, the n elementary unit vectors in the n-space (the modules) will be mapped to exactly k
distinet points in the k-space (the clusters) by this projector. Since this does not occur in practice, the
authors of [22] use a heuristic based on directional cosines to obtain a k-way partitioning of the modules
embedded in k-space. Zien’s approach requires additional matrix manipulations and a more complicated

netlist-based partitioning methodology in comparison with our methods below.

The authors of [22] propose the dimensionless Scaled Cost metric as a multi-way generalization of the

ratio cut objective:

Minimum Scaled Cost SKP: Find a partitioning P* = {C1,Ca,...,Ck}, 2 < k < |V, that minimizes
1 < E
fPH)= ——== > =
(Ph) = 2e =Dy ; ICi]

where Ej is the number of signal nets crossing the boundary of the cluster C;. Thus, both [21] and [22]
propose generalizations of the ratio cut concept. Each metric is robust, and automatically accounts for both
cut nets and size balance among the clusters. However, both objectives are easily shown NP-Complete by

restriction to minimum ratic cut.

Recently, Alpert and Kahng [1] proposed the KCenter heuristic, which computes spectral geometric
embeddings of the netlist and then applies simple, geometric partitioning algorithms to obtain fast par-
titioning solutions. While this idea goes at least as far back as the 1970 work of Hall, {1] demonstrated
that proper choices for the net model, for the partitioning objective, and for the partitioning algerithm are
all critical to success. In [1], geometric embeddings were generated using a “partition-specific” clique net
model which assigns cost ﬁﬁ to each edge in the clique that represents a p-pin net. This weighting

scheme ensures that a cut of a large net will have the same expected cost as a cut of a small net. As in [22],



the d-dimensional geometric netlist embedding is generated directly from the eigenvectors corresponding to

the d smallest nonzero eigenvalues of the Laplacian of the resulting graph representation.

Let d(v;,v;) denote the Euclidean distance between (the geometric embeddings of) v, v; € V. For

clusters ¢, and Cz, two cluster measures arve the cluster diameter, diam(Ci) = max, d(vi,v;), and the
Ui Uy 1
split between two clusters, split(Cy, Ca) = . éninec d(v;,v;). Alpert and Kahng [1] surveyed the following
Yy Uy 2

standard objectives in partitioning points of the geometric embedding,

Formulation 1: Maxz-Split Partitioning. Maximize
PEy = i lit(Cs, C;
J(P) = min_ (split(Ci, )}
Formulation 2: Min-Diameter Partitioning. Minimize

PFy= di ;
S(P¥) = max {diam(C0)}
Formulation 3: Min-Sum-Diameters Partitioning. Minimize

k
f(P¥y =" diam(Cy)

1=i

Fact 1: Formulation 1 can be solved optimally by the Single-Linkage Algorithm [13].

However, Single-Linkage yields poor results in practice [1], implying that Formulation 1 does not correspond
well to netlist partitioning. Three other results show that finding the best partitioning with respect to any

diameter-related criterion is as intractable as minimizing Cluster Ratio or Scaled Cost.
Fact 2: Formulations 2 and 3 are NP-Complete for & > 3 and d > 2 [16].
Fact 3: Solving Formulation 2 within a factor < 2 of optimal is NP-complete for d > 3 [7].

Fact 4: In general graphs whose edge weights do not satisfy the triangle inequality, neither Formulation 2

nor Formulation 3 may be approximated to within any fixed constant factor of optimal for k& > 3 [8].

After extensive experiments, {1] showed that Formulation 2 tends to yield the best netlist partitioning
results; that work also proposed use of the KCenter algorithm (8], which in O(nlogk) time guarantees a
solution to Formulation 2 within a factor of two of optimal. The moderate success of KCenter for VLSI
partitioning suggests that the spectral geometric embedding indeed preserves fundamental properties of
the netlist, i.e., two modules that are strongly connected in the netlist will be close to each other in the
geometric embedding. However, the approach of [1] has obvious shortcomings. Minimizing the maximum
cluster diameter has only a loose correlation to either Scaled Cost or Cluster Ratio. Furthermore, KCenter
solutions for the min-diameter objective are not as good as those obtained by higher-complexity diameter
partitioning algorithms. In general, the most important observation is that a strictly geometric formulation

will always be handicapped since it ignores valuable information in the netlist. The geometric embedding



should serve as a guide, rather than an absolute; this motivates our new approach which utilizes geometric

and netlist information simultaneously when making partitioning choices.

The remainder of this paper is organized as follows. In Section 2, we present a new Restricted Partitioning
(RP) formulation and outline the approach which yields efficient, optimal solutions. In Section 3, we
explore spacefilling curves as a method of generating instances of Restricted Partitioning from a given
d-dimensional netlist embedding. In Section 4, we present dynamic programming algorithms, along with
natural extensions, which optimally solve a number of RP variants. Section b presents experimental results
showing that our new approach substantially improves over previous methods and Section 6 concludes with

directions for future research.

2 A New Approach to Partitioning

The genesis of our approach lies in the Traveling Salesman Problem (TSP) heuristic of Karp [14], which
uses a good partitioning of a planar pointset to construct a good TSP tour. The heuristic tour visits
the clusters of the partitioning one at a time, visiting every point in each cluster before moving to the
next cluster. We ask whether an “inverse” methodology can succeed, i.e., whether we can use a “good
tour” of the geometric pointset to generate a good partitioning (ineed, if each cluster of a partitioning is a
contiguous “slice” of some tour, then Karp’s algorithm when applied to this partitioning could recover the
tour). Our new partitioning heuristic constructs a “natural” circular permutation or “tour” of the modules,
i.e., a bijection I : V — V. If we write II(v;) = vx,; then IT can be written using the ordered-set notation
{¥ry Uy ..., tr, ). A slice [i,j] of I is a contiguous subset of modules {ve,, vx,, ..., Ur, }; we treat indices
modulo n so that [7, 5] = {vr,, vrypy,s-- -, Un, }if 8 < jand [1,7) = {vr,, V00, - o el JU{Umy Oy oo vn, F T
i > j. Instead of partitioning the pointset corresponding to a d-dimensional netlist embedding, we partition
II (a 1-dimensional permutation of the pointset) such that each cluster is a slice. We therefore obtain the

following “restricted” k-way partitioning problem:

Restricted k-Way Partitioning (RP): Given a permutation Il : V — V, cluster size bounds L and
U/, and an objective f, construct P* = {Ci,Cs,...,Cr} which optimizes f(P¥) such that the following

conditions hold:
Condition 1: Yuv,, € V, vy, € C; for exactly one j,1<j <k
Condition 2: if vx,, vx, € C for some cluster C and i < j, then either
(a) [£,4]1CCor
(b) 54 €C.

Condition 3: L < |Gj| < U VC;€ PF,L1<j<k



If we set L, = 1 and I/ = n, Condition 2 is the difference between RP and the general SKP formulation.
Again, one can think of the permutation as a tour of the modules, with the k-way partitioning constructed
by removing k edges from the tour. The main advantage of RP is that dynamic programming yields optimal
k-way solutions for a large class of objectives (including Scaled Cost and diameter-related objectives) in
low-order polynomial time. This is a big win since the general Scaled Cost and diameter formulations
are NP-Complete for ¥ > 2. User-imposed bounds on cluster size are also handled transparently, with
optimality being retained without any increase in time complexity. If we further restrict the RP formulation
by removing Condition 2(b), the permutation is a linear ordering which narrows the solution space but
allows an Q(n) factor speedup. As shown in Section 4, the best RP solutions yield excellent k-way netlist
partionings despite the ordering constraint: results for 2-way partitioning of the SIGDA Layout Synthesis

benchrmarks result in an average of 45% improvement over the best previous spectral approaches.

3 Spacefilling Curves in d Dimensions

Given a geometric pointset (the d-dimensional module embedding), we seek to construct a permutation II
which adequately preserves proximity in the netlist. Recall that two modules which are strongly connected
in the netlist will tend to be near each other in the spectral geometric embedding. For the RP approach
to be successful, strongly connected modules must remain near each other inco II. Furthermore, if two
strongly connected modules are not adjacent in the permutation, they should be separated by modules with

which they may profitably share a cluster.

From the intuition above, a good TSP solution over the embedded pointset should suffice since it
is unlikely to wander out of, and then back into, a natural cluster. However, it is not obvious what
TSP heuristic to use. For example, even relatively good solutions such as the greedy nearest-neighbor
approach [15] can yield long edges which would force unrelated modules to be adjacent to each other in the

permutation.

Bartholdi and Platzman have used spacefilling curves to provide a provably good TSP heuristic [3].
They use the construction due to Sierpinski (1912), the 2-dimensional case of which is illustrated in Figure
1. In the Figure, the successive approximations become more and more refined until the curve “fills” up
the unit square (assuming discrete intervals), i.e., it passes over every point. The order in which points are
visited by the curve yields the desired permutation. Figure 2 shows the spacefilling curve ordering for (a) a
uniformly random set of 150 points in the plane, and (b) a 2-dimensional embedding of the Primary1 layout
synthesis benchmark. Notice that any d-dimensional spacefilling curve can be represented as a mapping
from 1-dimensional space (the curve) into d-dimensional space (the unit d-cube). Such curves as the 2-
dimensional Sierpinski construction can be easily extended into higher dimensions by recursively applying

the 2-dimensional mapping function.

3] observed that this heuristic yields planar TSP tours within 25% of optimal in practice and showed

a constant-factor expected error for uniformly random instances. The heuristic also has an O(log n) worst-



Figure 1: The Sierpinski spacefilling curve in the plane is the limit of a sequence of resursive
constructions.
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Figure 2: The ordering generated by a spacefilling curve for (a) 150 random points in the plane, (b)
a 2-dimensional embedding of Primary 1.

case error bound [3] [5]. The Sierpinski curve is certainly not the only spacefilling curve which can be
used. Figure 3 shows other recursive comstructions, including two that yield linear orderings as opposed
to circular orderings. The authors of [4] empirically found that the Sierpinski curve outperforms these
and other spacefilling curves, especially for uniformly random point locations. They also note that other
spacefilling curves might be considered for nonuniform distributions and even outline a method for creating

application-specific spacefilling curves.

The Sierpinski curve seems to suit our purposes since points which are close to each other in the geometry

will generally also be close along the curve. More critically, the Sierpinski curve avoids inducing long edges;
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Figure 3: Alternative constructions: (a) illustrates a closed spacefilling curve, while (b) and (c) are
paths.

thus, if two points are close on the curve, they must be close to each other in geometry. However, the curve
is also imperfect in that it explores one orthant entirely before moving on to the next. Thus, two points

that are close together, but in different orthants, may be widely separated in the ordering.

A tremendous advantage of the Sierpinski curve is that its induced ordering can be calculated in just
O(nlogn) time. A spacefilling curve can be viewed as mapping the unit interval into d-dimensional space,
hence computing Il requires us to compute the inverse of this mapping function. In other words, we seek
a function © : {0,1)¢ — [0,1) which assigns each point in the unit d-cube to a value in [0,1). © must
preserve the order in which points are visited by the curve such that ©(v;) < ©(v;) if and only if v; appears
before v; when traversing the curve (the “beginning” of the curve is the point u which minimizes O(u)
and the “end” of the curve is the point v which maximizes ©(v)). For the Sierpinski curve, the function ©
can be evaluated at any point in constant time, where the constant depends on the depth of the recursion
needed for the curve to “resolve” the entire space (such that the positions of all points on the curve are
distinguishable). After ©(v;) has been computed for each v; € P, the © values are sorted to yield the

permutation II. Thus, I can be computed in O(nlogn) time overall.

In Figure 4, we reproduce from [4] the calculation of @ for completeness and also to show its simplicity.
Step 7 is not included in [4] and we believe it was omitted as an oversight. We number the 2¢ orthants from
0 to 2¢ — 1, corresponding to the order in which they are visited by the Sierpinski curve. This numbering
can be represented by a d-bit Grey code since each orthant will be adjacent to the previous one; specifically,
we use the Grey code which flips the rightmost bit possible without repeating an earlier sequence. In
Figure 4, the function Grey accepts an orthant and returns a value @ between 0 and 29 — 1, i.e., Grey
(0...0) = 0, Grey (0...01) = 1, Grey (0...011) = 2, Grey (0...010) = 3, Grey (0...0110) = 4,...,
Grey (10...0) = 2¢ — 1. The function Theta itself has arguments X (a d-dimensional point) and depth
(a variable which specifies the minimum number of bits needed to distinguish any two points, i.e., depth

indicates the granularity of the pointset locations in the d-dimensional unit cube).



Function Theta (X, depth)
Input: point in R = X :array [1...d] of real
depth - granularity measure
Output: O = real number in [0, 1) which indicates place on curve
Vars: Temporary d-dimensional point Y
Orthant number @
Recursive subsolution - SubTheta
.C'= Grey(1...1)/2°
JAf (depth =0 or X =(1...1)) then return C
. fori=1toddo
Y[i] = min{|2- X[d]], 1}
. Q@ =Grey(Y[1]...Y[d])
fori=1toddo
Y[i] =12 |X[{]- 0.5}
. SubTheta = Theta(Y,depth — 1)
. 1f (@ mod 2 = 1) then SubTheta = 1 — SubTheta
. Num = (Q + SubTheta — C)/2¢
. return Num — | Num|

o —
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Figure 4: Computation of ©

4 A Dynamic Programming RP Solution

Given an ordering II over the pointset, dynamic programming efficiently finds optimal RP solutions for
a variety of objective functions f. Let w(C:) be the cost of having cluster C; in our partitioning P*.
For dynamic programming to yield optimal solutions, it is necessary that all partial subsolutions also be
optimal, e.g., if P? = {Cy, Cy, C3} is optimal then {Cy, Ca} must be the optimal partitioning of the modules
in {Cy U Cy}. This principle of optimality requires f to be monotone nondecreasing over w, i.e., for any
P* = {C,Cq,...,Ct} and @QF = {C{,C},...,C;} with w(C;) < w(C]) for 1 < ¢ < k, f is monotone
nondecreasing if and only if f(P¥*) < f(Q*). Common choices for f amenable to dynamic programming

involve maximuem and summation. For example:

o Maximum cluster diameter objective:

f(PYy = max w(Cy) with w(C;) = diam(C;)

1<i<
+ Sum of Diameters objective:

Py = 3 w(Ci) with w(Cs) = diam(C:)

1<i<k

e Scaled Cost objective:

1 . B
f(Pk) = m Z w(C) with w(Cy) = ici|

C:ePk

Three key observations allow dynamic programming to obtain efficient, optimal RP solutions for any k.



Any cluster is a slice of the permutation and is uniquely determined by the first and last elements in the

slice. Thus:
Observation 1; There are only (U + L — 1)n clusters which can possibly be part of an RP solution.

The cluster corresponding to slice [£, j]1is denoted by C[; ;; and we let P[’fj] denote a k-way RP solution
over the slice [i, j]. The optimal k-way RP solution over [4, j] is ﬁ[?j}. Notice that we always have P[} i=
15[% = {Cli.71} In general we will use the set of P["fj] partitionings as “building blocks” for solutions of the

form Ia[i?,"j,] where [i,j] C [/,5] and k < k'

Observation 2: P?,j] can be expressed as P[?,:nll U{Cim1,5;} for some m such that L < [Clpny1 5 < U.
Observation 2 follows from the principle of optimality above, whereby each subset of contiguous clusters
in P* is an optimal solution over the slice covered by the subset, e.g., if P[’f'm] C P’f:j] then P[f!m] must be
optimal over [, m]. To solve RP, we precompute the cost of every cluster (recall there are at most (U+L—1)n
clusters); these give all optimal 1-way partitioning subsolutions. We then build 2-way partitioning solutions
f’[f’j] from the Ia[}d.}, etc. until an optimal k-way solution is derived. The template of Figure 5 outlines this
generic dynamic programming solution to RP, which we call DP-RP. Note that the template assumes the
existence of a procedure Calculate_ Cluster_Costs, which computes w{C) for all possible clusters. The next

subsection gives versions of this procedure for specific examples of w.

DP-RP Generic RP Algorithm (II,L,U)
Input: Permutaion II = {vs,, Vry,- .-, Vx, }
Lower and upper cluster size bounds L, U
Output: Optimal RP solution P*
Vars: Subsolutions ﬁ[’f;]
Index k' denoting current partitioning size
Index m marking possible cluster to merge into partitioning
1. Generate f(P; ;) = w(Cls ;) from Calculate_Cluster Costs

2. for k' =2tok do

3. for each i,j do

4 fbest =0

5 form=j—Utoj—Ldo

6. if fiest < F(Bf 7] U{Clm41,7}) then

7 Srest = f(P[’f:,;]l U{Cim+1.1}) Pi’f; = P{fln_u]l U Cim41,5]
8. return f(P*) = minjcicn f(ﬁ[if,i-u)

Figure 5: DP-RP algorithm

Observation 3: DP-RP has complexity O(k(U — L)n?) assuming that Calculate_Cluster_Costs has
O(n?) complexily. When there are no cluster size constraints, DP-RP has O(kn?®) complexity.

We will now present O(n?) algorithms for the Calculate.Cluster_Costs procedure for two different cluster

cost measures.



4.1 Calculating Cluster Costs

When w(C;) = diam(C;), Figure 6 gives a simple O(nU) implementation of Calculate_Cluster_Costs (Di-

ameter) !,

Calculate_Cluster_Costs (Diameter) (II,L, 1)
Input: Permutation II = {vy,, vn,,...,¥n }
Lower and upper cluster size bounds L, UV
Output: w(Cy ;) = diam(Cl; ;1) for every possible cluster C; j
Vars: A - one less than size of current clusters
l.for1<i<ndow(Cjig) =0
2.forA=1toU —-1do
3. fori=1tondo
4, i=((t+A—-1) mod n) +1
5. w(Cij) = max{w(Clyj-1)), w(Clit1,5)), d(vm;s vr;)}

Figure 6: Calculate_Cluster_Costs (Diameter)

The algorithm starts with clusters Cj; ;) of diameter zero. The key observation is that any edge within
cluster Cj; ;1 is contained in Cjj4y,4], or is contained in Cf; j-13, or is edge e;; itself. Thus, Step 5 obtains
the diameter of each new cluster in constant time, yielding the O(nl7) complexity bound. While our usage

assumes Euclidean distances, the procedure may be applied to any dissimilarity measure d.

Our next example is w(C;) = ]%J, which pertains to the Scaled Cost metric (discussed in Section 1).
This is a more complicated computation since it involves topological information from the netlist. Figure
7 illustrates the calculation of all cluster costs for this w(C;) = ]L.T in O(nl7) time, if we assume that the
number of signal nets is O(n). (This is valid since both fanout and cell 1/0O are bounded for any given

technology: in practice, the number of nets is actually very close to n.)

Steps 1-9 calculate the outdegree for each cluster, and w(CY; ;1) is computed in Step 10. Given the value
of w(Cl; j—13), one can compute w(Cl; ;1) by adding vy, to cluster Cf; ;.4 and checking whether any cut
nets become completely contained in the cluster (Step 8), or whether any previously uncut nets become cut
(Step 8). Of course, the desired O(nU) time complexity hinges on Steps 8 and 9 being executed in constant
time. We accomplish this by maintaining an array Cut_Sigs over the signal nets, where Cut_Sigs[s] = 1 if
s is cut by our current cluster Cut_Sigs[s] = 0 otherwise. In Step 2, we start with the initial cluster Cf; )
and set Cut. Sigs[s] = 1 if s contains module vy,, and Cut_Sigs[s] = 0 otherwise. We also keep a counter
Count[s], which records the number of modules connected by net s in the current cluster, and an array
Net_Sizes[s), which holds the total number of modules in s (NetSizes can be computed in the initialization).
To execute Step 8, we verify the if condition using the Count array. If Count[s] = Net_ Sizes[s], then s is
completely contained in the current cluster, and we set Cut_Sigs[s] = 0 since this net is no longer cut. To
execute Step 9, we check that Cut_Sigs{s] = 0 in which case adding v,, to the current cluster will cause s

to be cut. For these newly cut nets we set Cui_Sigs[s] = 1 and Count[s] = 1.

}The general modulo manipulation of Step 4 appears throughout this report. Addition of indices are done in this way in
order to keep indices within the range 1...n.

10



Calculate_Cluster_Costs {Scaled Cost) (II,L,U)
Input: Permutation I = {vy , vz, ..., Vx, }
Lower and upper cluster size bounds L, U
Output: w(Cy ;) = %ﬁ—jﬁ for every possible cluster Cf; ;1
Vars: A - one less than size of current clusters
S; - set of signal nets which contain module vy,
fori=1ton do
w(Cli i) = |Si| where S; = {s|signal net s contains module v, }
foré=1tol/ do
i=((#+¢é—-1)mod n) +1
S; = {s|signal net s contains module v, }
w(Cpi 1) = w(Cj-11)
for every s € 5; do
if (s is completely contained in C; j;) then decrement w(C; ;1)
if (s contains no modules of Cy; ;_y)) then increment w(Cj; ;)

10. for every w(CJ; ;) caleulated do w(Cj; ;1) = %LEL)

R e I i ol e

Figure 7: Calculate_Cluster_Costs (Scaled Cost)

Since each S is calculated at most U7 times, all the 5; calculations are done in time U times the size of
the entire netlist (which is of the same order as the number of modules because of constant degrees). Since

all operations are done in constant time, Calculate_Cluster_Costs for Scaled Cost runs in O(nU) time.

4.2 Special Case: Optimizing Maximum Diameter

For certain choices of f and w, invoking dynamic programming may not be necessary. We recognize a

special case which enables a ﬁ speedup, namely

Here we will restrict ourselves to the case L = 1 (although this restriction is not required, extending this
special case to encompass L > 1 is nontrivial). In this case, F(P*) can take on only a polynomial number
of possible values: since there are at most nlJ possible clusters, there can be at most nU/ possible values for

P*Y despite an exponential number of possible partitionings P*.
p g

We ask the decision problem, “does there exist an RP solution P* with f(P*) < M, for some value
M?. Given an oracle which solves this decision problem in time O(T"), we can solve the RP formulation
by performing a binary search over the polynomial number of possible f values, which requires a total of

O(Tlogn + nl logn) time.

In order to enable a significant speedup over our dynamic programming solution, it is also necessary that
w be monotone nondecreasing in the size of the cluster, i.e. if [i,7] C [, 7], then w(Cjij;) < w(Cw j9)-
Thus w = diam satisfies monotonicity while w(C;) = 'I%I-T does not. The monotonicity of w allows us
to greedily solve the decision question; we simply grow each cluster C; as large as possible as long as

w(C;) < M. The algorithm in Figure 8 solves the decision problem in O(nU}) time.

11



Decide_Cluster (II,L,U, M)
Input: Permutation II = {vr,,vxyy ..., U, }
Lower and upper cluster size bounds L, U
Upper bound M
Output: YES iff IP* such that f(P*} < M
Vars: Leftmost index first of cluster
Current number of clusters in partitioning - &'
. for first =1 to U do
i=j = first
repeat
=1
while (([C; ;)| < U) and (w(C 51} < M) and (j # ((first — 2) mod n) +1)) do
increment j
Cer = Cgj-1
1=7
until (j = first or &' = k)
10. if (k' < k and j = first) return YES
1l.return NO

® NS R

©

Figure 8: Decide_Cluster Algorithm

Decide_Cluster begins with C7 = {vr,,,,,} (initially first = 1) and traverses the ordering while con-
structing each cluster to be as large as possible. When a cluster violates either the size or cost constraint
(failure of Step 5), Decide_Cluster stores the version of the cluster from just prior to the constraint viola-
tion (Step 7) and starts a new cluster. This continues until k clusters are generated or every module has
been placed into a cluster (Step 9); if the procedure has put every module into a cluster then a legal Pk
must exist (Step 10); otherwise, Decide_Cluster it tries again with the next starting point vr,,,,.,,. If all
possible values for first fail, then no partitioning exists with f(P*) < M. We now prove the correctness

of Decide_Cluster.
Theorem: Decide_Cluster returns YES if and only if there exists an RP solution such that f(P*) < M.

Proof: If Decide_Cluster returns YES, P* is given by the C1,Ca, ..., Ci generated by the procedure (there
may be fewer than k clusters, but k clusters can be generated without increasing f by arbitrarily splitting
large clusters). Assume that Decide_Cluster returns NO but there exists a partitioning QF = {C1,C4,...CL}
with f(Q*) < M. We assume that C] has left endpoint v,,,,,, = vr, Where 7 is the smallest index of all
left cluster endpoints in QF, and that the C! are indexed in permutation order. Let P* = {C},C,...,Ci}
be the partitioning constructed by Decide_Cluster with this value for first.

Inductive Hypothesis: |C}|+ |C5| + . ..|CL| < |Ci| +[Col 4+ .. [Cye| for 1 <k < k.

Basis (k' = 1): Decide_Cluster constructs C; to be as large as possible while satisfying |Ci] € U and
w(C) < M. Since C} also satisfies these constraints, |C]| < |Ci].

Induction: Assume |C!| + |Chl+ ...|CL/| € |Ci] + |C2| + ... |[Cr| holds for k’; we will show it holds for
k' + 1. Assume otherwise, then we must have Crr41 C C}.y,. But since w(Chiyy) € M, Crryy can then

be expanded while still satisfying Crr41 C Chryy and w(Chy ;) € M (since w is monotone nondecreasing).
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This is a contradiction since Decide_Cluster constructs all C; to be maximal.

Thus, if Q% is a legal RP solution, Decide.Cluster will return YES, proving the theorem. 0

4.3 Improving Complexity: Linear Orders

So far, we have considered the RP formulation where both rules 2(a) and 2(b) apply. Disallowing 2(b)
prevents wraparound, changing the tour into a linear ordering. While this restricts the solution space
even further, we achieve a factor n speedup from DP-RP. Figure ¢ illustrates how DP-RP can be modified
for linear orders with O(kn(l/ — L)) complexity, again assuming efficient implementation of the Calcu-

late_Cluster.Costs procedure.

Linear Ordering Partitioning Algorithm
Input: Linear ordering II = {my, m2,...,7a}
Lower and upper cluster size bounds L, U/
Output: Optimal RP (without Condition 2(b)) solution P*
Vars:  Subsolutions }3[’:;]
Index k' denoting current partitioning size
Index m marking possible cluster to merge into partitioning
1. Generate f(Fj; ;) = w(C}; 7)) from Calculate Cluster Costs
2.for k' =2tok do
3. for every j do
4 fbeat =00
5. form=j—-Utoj—Ldo
6
7
8.

if frest < f(f)[';:;i U {C[m+1!j]}) then
Freat = FBF o] U{Cmr, i} B jy = B 51V Gl
return P* = Pﬁ’n]

Figure 9: DP-RP for Linear Orderings

The speedup arises since we are guaranteed that some cluster begins with index #1; thus, for each value
of k', we need only record O(n) subsolutions of the form P[’;' il instead of O(n?) optimal subpartitioning
solutions. For the special case of a maximum-diameter partitioning discussed above, we achieve an O(U)

speedup in Decide_Cluster, again because the firs? medunle must be vy, .

In practice, there will be the question of how to derive a linear ordering from the spacefilling curve. We

discuss this question in more detail below.

5 Experimental Results
5.1 Minimizing Max-Diameter

Our first set of experiments involve the “special case” of DP-RP discussed in Section 3.3, namely, minimizing
the maximum cluster diameter, a common objective in the classification literature. We compare DP-RP

against three traditional diameter partitioning algorithms: a greedy bottom-up method (AGG) (13, a
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greedy top-down method (D/Q) [9] and a fast non-hierarchical method (KCenter) [8]. Because of the Togn
factor speedup obtainable from a maximum diameters objective (Section 4.3), DP-RP for min-max diameter
has O(n? log n) time complexity. This is competitive with the O(n?) complexity of AGG and the O(n?logn)
complexity of top-down D/Q. In particular, we find it feasible to consider the entire “tour” generated by
the Sierpinski curve instead of only a linear ordering (which would result in an O(n?) algorithm since

Calculate_Cluster_Costs requires at least O(n?) time when U = n).

We ran DP-RP, AGG, D/Q and KCenter on uniformly distributed random pointsets of size 50, 100, 200
and 400 for k = 2 through k = 10. We considered pointsets chosen from the unit cube in two-, three- and
four-dimensional Euclidean space. Table 1 summarizes the improvement obtained by DP-RP over the other
three algorithms. The numbers represent averages over 100 iterations for the 50- and 100-point samples,
and over 50 iterations for the 200- and 400- point samples. Averaged over partitionings P? through P'°,
improvements over AGG ranged from -2% to 10% with the amount of improvement increasing substantially
with the sample size. DP-RP outperformed KCenter by 5% to 15% though KCenter seemed to improve as
the number of dimensions increased and KCenter also can run in O(nlogk) time. Finally, DP-RP was 4%
to 9% better than D/Q.

#Points AGG KCenter D/Q

2-d 3-d 4-d 2-d 3-d 4-d 2-d 3-d 4-d
50 0.932 | 0.976 | 1.022 | 0.845 | 0.895 | 0.943 | 0.910 | 0.917 { 0.977
100 0.917 | 0.951 | 1.001 | 0.842 | 0.895 | 0.940 | 0.933 | 0.906 | 0.972
200 0.909 | 0.936 | 0.977 | 0.833 | 0.890 | 0.939 | 0.944 } 0.915 | 0.964
400 0.903 | 0.927 | 0.967 | 0.818 | 0.895 | 0.939 | 0.951 | 0.943 | 0.955

Table 1: Average ratio of DP-RP maximum cluster diameter to AGG, KCenter and
D/Q Diameter results for uniformly distributed random pointsets in 2-, 3- and 4-
dimensional Euclidean space.

Table 1 does not tell the whole story as the algorithms behave very differently depending on not only
dimension and sample size, but also on the value of k. Figure 10 shows the average diameter value yielded
by the four algorithms on pointsets of size 200 chosen randomly from a uniform distribution in the unit
square. We clearly note the inconsistency of D/Q, whose performance clearly depends on the value of k.
D/Q recursively solves the min-max diameter problem optimally for the largest remaining cluster; hence,
D/Q will always yield the best value for k = 2, but will generally do badly for k¥ = 3 with the resulting
3-way partitioning containing two small clusters and one large cluter. This effect can clearly be seen for
powers of 2: when k is a power of 2, D/Q will do very well but for k just less than a power of 2, the
partitionings will contain a few large clusters and many small ones, which is generally a poor solution. This
is especially obvious for k = 3, k = 7, and &£ = 15. DP-RP actually has similar behavior since the Sierpinski
curve naturally splits into 4 quadrants in the plane. DP-RP also shows better behavior for k a power of

two, although the effect is less noticeable and performance is uniformly better than that of D/Q.

One can also deduce from Figure 10 that D/Q generally outperforms AGG for small k but does worse
for large k; this is expected since D/Q is a top-down algorithm while AGG is bottom-up. Finally, we notice
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that KCenter has somewhat erratic behavior, e.g., it actually increases cluster diameter when ¥ = 5. This
occurs because KCenter is based on finding the & “farthest centers”; when k = 5, the fifth center will pop
up in the middle of the unit square, creating a very large central cluster. We conclude that DP-RP not
only outperforms all the other algorithms, but also gives more consistent performance than either D/Q or

KCenter.

0
;

=
i

Maximum Diameter x 1
8

# Clusters — k

Figure 10: Plot of DP-RP, AGG, KCenter, and D/Q max diameters for uniformly distributed random
pointsets in the unit square of size 200. Each point is the average over 50 iterations.

5.2 Netlist Partitioning

Qur second set of experiments used DP-RP to generate multi-way netlist partitionings according to the
Scaled Cost objective. In Section 3, we gave an algorithm which solved the Scaled Cost problem optimally
subject to the RP formulation but which required O(n®) time. This complexity is prohibitively expensive
for practical netlist sizes, and so the result we report uses a kinear ordering derived from the Sierpinski
curve to obtain Q(n?) complexity. We generated this linear ordering from the permutation II by simply
removing the largest edge from the associated tour. We found this to be an efficient methodology: after

computing the geometric embedding, total runtimes were very short (e.g., 63 seconds for Primaryl and 633
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seconds for Primary2 on a Sparc IPX) to generate partitioning solutions for 2 < & < 10.

Since removing the largest edge seems a somewhat crude way of generating the linear ordering, we also
generated a subsequent linear ordering based on the split of the 2-way partitioning solution, i.e., if the
original solution yielded P? = {Chm): Cims1n)}s {Tme1, Tmy2, .-, T, M1, T2, .. T } would become the
second linear ordering. We repeated this step to generate a third linear ordering and recorded the best
partitioning solution obtained by any of the three linear orderings. In practice, this did not yield significant
improvements and it may be necessary to derive a better linear ordering construction from the Sierpinski

curve, or to even use one of the spacefilling paths shown in Figure 3.

For our experiments, we set L = 1 and I/ = n in order to consider the full range of sclutions. For each
benchmark, we considered the d-dimensional embedding derived from d eigenvectors (1 < d < 10), and
then computed the spacefilling curve for each embedding. This methodology corresponds with the work of
{22], which conjectures that k is the correct embedding dimension. Since we considered partitionings from
k = 2 through k = 10, we recorded the best k-way partitionings obtained by running DP-RP on 2- through

10-dimensional embeddings. For each benchmark, the best Scaled Cost result is recorded in Table 2.

We compare our method (DP-RP) to KC [1], KP [22], and successive bipartitioning SB [22], which for
k = 2 is identical to the EIG1 algorithm of [11]. Recall both KC and KP used geometric embeddings
of the netlist: KC is a naive diameter-oriented partitioning algorithm, while KP uses more sophisticated
partitioning techniques that exploit both geometric and netlist information simultaneously. The Table
shows that DP-RP is significantly superior to KP and KC, particularly for ¥ = 2 through k¥ = 5. For
instance, DP-RP averaged 45% improvement over both KP and SB for ¥ = 2. We note that DP-RP does
poorly as k continues to increase, and this is due to the fact that the restricted partitioning formulation
becomes too restrictive for k in this range, i.e., the ordering captures global information but when more
local decisions have to be made (i.e., how to further split a 2-, 3- or 4-way partitioning), DP-RP’s approach
based on a “monolithic” spacefilling curve does not seem to do well. This leaves open future improvement

to DP-RP for larger k values.

6 Conclusions

We have presented a completely new approach to partitioning which can be applied to a wide range of
partitioning objectives. Our approach finds a permutation of points in d-space by using the Sierpinski
spacefilling curve. We then optimally solve k-way partitioning subject to very natural Restricted Parti-
tioning constraints by using dynamic programming. Speedups may be achieved by modifying this general
method using a linear ordering or with a different algorithm, as in the case of minimizing the maximum
cluster diameter. In practice, DP-RP significantly outperforms the traditional classification algorithms for
the max-diameter objective, and also outperforms recent VLSI neltist partitioning algorithms for the Scaled

Cost objective.
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Test ALG Number of Clusters - k (Best dimension)

Case 10 9 8 7 6 ] 4 3 2

16ks | DP-RP | 176 | 16.8 | 15.6 | 14.3 | 12.7 | 11.7 { 837 | 7.74 | 5.44
KC 15.0 | 158 | 156 | 15.1 | 144 | 13.1 | 12.5 | 17.6

bml | DP-RP | 248 | 228 | 207} 181 | 144 | 11.6 | 8.89 | 6.61 | 5.53
KC 276|306 286 | 198|179 | 111 | 7.0 | 5.8

Priml | DP-RP | 38.9 | 36.7 | 35.2 | 31.7 | 28.8 | 26.0 | 22.1 | 14.7 [ 13.5
KP 4471413 132313321313 299212 147 | 13.5
KC 346 | 33.6 | 3441 307|275 | 164 | 174 [ 13.5
5B 59.4 | 56.2 | 51.0 | 46.6 | 43.2 | 40.3 | 38.9 | 22.5 | 13.5
Prim2 | DP-RP | 13.7 | 13.3 | 128 | 12.1 | 11.0 | 9.43 | 7.95 | 6.86 | 5.05
KP 15.0 | 15.2 | 135 | 11.0 { 105 | 10.1 | 924 | 7.25 | 4.64
KC 11.7 | 12.0 | 11.8 | 11.5 | 104§ 9.0 } 7.5 | 59
SB 11.1 | 10.6 | 10.4 | 9.56 | 8.44 | 8.47 | 7.56 | 6.56 | 4.78
Test02 | DP-RP | 25.5 | 24.1 1 22.8 | 209 | 185 | 16.1 | 13.4 | 10.9 | 8.07
KP 24212341215 19.0| 164 | 13.9 | 14.1 | 127 | 9.26
KC 2157212 | 211 | 2L.2 | 23.1 | 23.6 | 19.1 | 30.1
5B 25.5 | 23.8 | 21.7| 203|189 | 145 | 13.0 | 11.4 | 8B.73
Test03 | DP-RP | 226 21.1 | 19.2 | 17.1 | 16.2 | 15.2 | 143 | 13.0 | 10.2
Kp 20.6 | 201 | 19.8] 17.6 | 18.0 | 17.5 | 20.2 | 15.0 | 31.2
KC 21.0 | 224|232 | 224( 222|193 | 214 | 167
SB 198179173 | 1701169169 | 17.1 | 20.7 | 31.2
Test04 | DP-RP | 222 [ 19.9 | 17.8 | 176 | 16.5 | 15.1 | 12.4 | 8.19 | 5.85
KP 174176 | 20,0 | 158|152 143 | 14.8 | 18.9 | 66.1
KC 221 | 23.8 | 244|243 (272|274 36.0 | 66.1
SB 21.9 | 216 | 23.3 | 244|249 | 282 | 32.3| 374 | 66.1
Test05 | DP-RP | 9.88 | 8.66 | B.06 | 7.84 | 7.32 | 6.56 | 5.49 | 4.90 | 3.15
KP 032721891 |866) 764|798 8.07]|865]|11.3
KC 110 106|107 11.1 {163 | 88 | 10.2 | 10.6
5B 028 | 843 | 658 | 6421 6.22 | 6.28 | 6.30 | 6.37 | 8.94
Test06 | DP-RP | 27.1 [ 25.1 | 23.7 | 20.2 | 184 | 166 | 14.2} 11.3 | 9.2
KP 213|216 | 20.7| 185 | 17.2 | 15.0 | 18.0 [ 12.1 | 28.6
KC 31.0| 324|336 | 264 | 2881259 | 193] 286
5B 21721712271 141 | 166 | 15.1 | 16.6 | 18.6 | 28.6

Table 2: Scaled Cost x105 measures of best k-way partitions obtained using d-
dimensional embeddings, 1 < d < 10.
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