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Abstract

We analyze relationships among local minima for the traveling salesman and graph bisection problems
under standard neighborhood structures. Our work reveals surprising correlations that suggest a globally
conver, or “big valley” structure in these optimization cost surfaces. In conjunction with combinatorial
results that sharpen previous analyses, our analysis directly motivates a new adaptive multi-start paradigm
for heuristic global optimization, wherein starting points for greedy descent are adaptively derived from the
best previously-found local minima. We test a simple instance of this method and obtain very significant
speedups over previous multi-start implementations.

Keywords: Heuristic global optimization, stochastic hill-ciimbing, multi-start, traveling salesman prob-
lem, graph bisection.

1 Introduction

A combinatorial problem has a finite solution set .S and a real-valued cost function f : § — #. Global
optimization seeks a solution s* € § with f(s*) < f(s') ¥s' € S. Because many formulations are intractable,

heuristic methods are employed, which can often be described by the following template:

Iterative Global Optimization

for (i=0;;i4+4)
Step 1: Given the current solution s;, generate a new trial solution s
Step 2: Decide whether to set s,41 = 8¢ or 8ip1 = s
(When stopping condition is satisfied, Return best solution found)

Typically, s’ is a slight perturbation of s;, i.e., s’ € N(s;) where N(s;} is the neighborhood, or set of all possible
“peighbor” solutions, of s;. The function f then defines a cost surface over the neighborhood topology.

This template is quite general. For example, simulated annealing [13] generates a random s € N(s;)in Step
1, and in Step 2 sets s;=1 = s’ with probability one if f(s') < f(s;), and probability exp({f(s) — f(&))/THf
f(s") > f(s;), where T; is the “temperature” parameter at the it? step. Other heuristics are greedy, with s;4, =
s in Step 2 if and only if f(s') < f(s;). Of specific interest to us is the non-deterministic Greedy Descent

procedure, which iteratively tests solutions s’ € N(s;) in rendom order until an improvement ;4 = s" with
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f(siz1) < f(si) can be made; the procedure terminates when no improving s’ € N(s;) exists. The well-known
weakness of greedy search is that progress stops when the first local minimum is encountered. Simulated
annealing can escape from local minima and has gained wide popularity because it yields superior solution
quality, and because it is theoretically guaranteed to return a global optimum solution in the limit of infinite

time. On the other hand, successful annealing generally requires very large amounts of CPU.

Because greed returns a good solution relatively quickly, one alternative to simulated annealing is to apply
greed repeatedly and return the best result. Indeed, several studies have shown “greedy multi-start” superior
to simulated annealing in terms of both solution quality and runtime. Johnson [9] describes extensive empirical
studies of the traveling salesman problem (TSP) and indicates that multiple runs of various greedy methods
can outperform simulated annealing. Recent results of Sorkin [21] show that a multi-start approach is superior
to standard simulated annealing on a class of fractal cost surfaces. Boese and Kahng [3] have computed optimal
annealing temperature schedules for small combinatorial problems; these schedules can resemble multi-start,
with alternating periods of greedy descent and randomization {corresponding to annealing at zero and infinite

temperatures). Multi-start is also attractive for its trivial parallelizability.

Nonetheless, the multi-start approach has its weaknesses. For such problems as graph partitioning, the
number of greedy descents needed to achieve a stable methodology (i.e., having predictable solution quality)
grows rapidly with problem size [10] [23]. Recent analyses of cost surfaces show that as problems grow
large, random local minima are almost surely of “average” quality, implying that current random multi-start

heuristics which rely on random starting solutions are doomed to a “central limit catastrophe” !

2 Global Structure of Optimization Cost Surfaces

Our motivating hypothesis is that multi-start heuristics can remain successful for large problem instances
only by exploiting global structure in the cost surface. Several general structural models have been proposed,
e.g., Sorkin [20] and Weinberger [24] have fitted fractal and AR(1) processes to real-world optimization cost
surfaces. For our purposes, the leading study is due to Kirkpatrick and Toulounse [14], who attempt to confirm
an ultrametric relationship between local minima of TSP instances. These authors find that the distances
between random pairs of local minima satisfy a normal distribution with surprisingly low average. Kirkpatrick
and Toulouse find only inconclusive evidence for ultrametricity. Related studies are due to Mezard and Parisi
[17] and Sourlas [22]; the latter fails to find evidence for ultrametricity in the TSP, and goes on to propose a
modified simulated annealing heuristic which eliminates edges from consideration if they appear infrequently
in good solutions. Similar studies of ultrametricity have been made for other combinatorial problems such as
graph coloring [1] and one-dimensional circuit placement [19]. Note that [22] and [17] both discuss correlations

of TSP tour costs with distances between tours, much as we do in Subsection 2.1 below; however, they fail to

1Gee, e.g., discussions by Baum [2] on traveling salesman structures and by Kauffman and Levin [12} on “adaptive landscapes”
in evolutionary optimization.



make any of the enabling observations that we present here.

In this work, we also study relationships among local minima, but in a novel way: we consider the set of
local optima from the perspective of the best local optimum. As we describe in the remainder of this section,
our results indicate that many solution spaces exhibit a “globally convex” [7] or what we call a big valley
structure. Figure 1 gives an intuitive picture of the big valley, in which the set of local minima appears convex
with one central global minimum. This general structure suggests improved multi-start strategies that derive
starting points from the best previousty-fouund local minima. Section 3 will describe our initial investigations

of this new class of edapfive multi-start methods.

Figure 1: Intuitive picture of the “big valley” solution space structure.

2.1 The Symmetric Traveling Salesman Problem

The symmetric TSP is perhaps the most well-studied of all NP-hard combinatorial problems [16]. Given n
cities with symmetric intercity distances, the TSP seeks a minimum-cost {our, 1.e., a (cyclic) permutation of
the cities which minimizes the sum of the n distances between adjacent city pairs of the tour. A given TSP
instance is represented by a complete weighted graph G = (V, E) with |[V]| = n and |E| = ”(n—.l"lz so that any
tour is a Hamiltonian circuit in G. We use the Lin 2-opt neighborhood operator that is usual in studies of the

TSP [16]: a 2-opt deletes two non-adjacent edges of the current tour and then reconnects the two resulting

paths into a new tour.

To study the structure of the TSP solution space, we require a measure of distance hetween two tours ¢
and t2. A natural definition of distance is the minimum number of 2-opts needed to transform #; into ty; we
call this the 2-opt distance. denoted d(f1,t2). Since no polynomial method for computing d(?;,%2) is known,
Kirkpatrick and Toulouse [14] study a distance measure based on the number of edges, or bonds, common to
both #; and ¢5. This bond distance, denoted b{t,,13), is equal to n minus the number of edges that are present
in both ¢; and t (disregarding edge direction). No previous results link bond distance directly to the 2-opt or

any other TSP neighborhood structure. However, we have partially addressed this gap through the following



theorem (see Appendix 1 for proof), which supports the existing practice of measuring bond distance even in

a 2-opt neighborhood structure.
Theorem 1. For any two tours ¢; and #, of a given TSP instance, m—‘zﬁ} < d(ts,1a) < b(t1,1a). 0

Recall that our new approach to multi-start will be motivated by our novel examination of the set of local
optima, from the perspective of the bestlocal optimum. For each of 2,500 unique random local minimum tours
in a 100-city Euclidean TSP instance, Figure 2(a) plots the tour’s cost versus its average bond distance to all
(2,499} other local minima. 2 There is a clear correlation: the best local minimum appears to be “central” to
all other local minima, and indeed a “big valley” structure can be said to govern the set of locally minimum

tours.
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Figure 2: Analysis of 2,500 random local minima for a 100-city 2-D Euclidean TSP
instance. Tour cost (vertical axis) is plotted against (a) average distance from the other
2,499 local minima and (b) distance from the local minimum with lowest cost. In (b),
we do not show the hest local minimuwn, which is at distance zero.

Further insight is gained from Figure 2(b), which plots the costs of the same 2,500 local optima against
their distances from the best local optimum found. Note that all the local optima (2,499 plus the best one)
are at bond distance < 48. In Appendix 2 we show that the expected distance between two random n-city
tours is just under n — 2, slightly sharpening an observation in [14]. Appendix 2 also gives the first efficient
enumeration of tours at each bond distance; this calculation indicates that less than 1/10°° of the solution
space lies within a “ball” of radius = 48. Thus, the set of local minima not only has a “big valley” structure,
but is also confined to a tiny portion of the solution space S. (Such intuitions are clearly suggestive vis-a-vis

multi-start strateglies.)

20ur Buclidean TSP instances are chosen randomly from a uniform distribution over the unit square. A “random local
minimum” solution is found by starting at a random initial solution and executing procedure Greedy _Descent.
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Figure 3: Analysis of 2,500 random local minima for a 100-city random symmetric TSP

instance.
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Figure 4: Analysis of 2,500 random local minima from a 500-city Euclidean TSP in-
stance.

In Figure 2 we report data for the Euclidean TSP because its metricity is reflective of many practical TSP
instances. Very similar results are shown in Figure 3 for a 100-city instance of the random symmetric TSP?
which is studied in [14] and elsewhere. Finally, Figure 4 gives analogous plots for a random 500-city Euclidean

TSP instance (note that a ball of radius = 245 corresponds to less than 1/10%°% of the solution space).

2In the random symmetric TSP, distances between pairs of cities are distributed uniformly and independently over the interval
[0,1].



2.2 The Graph Bisection Problem

We have found that a similar structure governs the local minima for graph bisection instances. Given an
unweighted graph G = (V, E), the (unweighted) graph bisection problem is to find a partition of V' into
disjoint subsets {/ and W, with [I7{ = {W/|, such that number of edges (u,w) € E with v € U, w € W is
minimized. We adopt the standard 2-interchange neighborhood structure, where a 2-interchange swaps a pair
of vertices u € 7 and w ¢ W. The distance between solutions s; and s» is the number of 2-interchanges

required to transform s; into s2, and can be at most |V[/4.

We study a standard class of random graphs G(n, p), i.e., graphs having n vertices and each edge present
independently with probability p [4]. Because graphs in G(n, p) have expected optimum bisection cost within
a constant factor of the random bisection cost [5], more “difficult”, structured models have been proposed. In
particular, we also study the class Ggui(n, d, ), proposed by Bui et al. {3}, which have n nodes, are d-regular,
and are constructed to have optimum bisection cost almost certainly equal to 4. Typical results are shown in
Figures 5 and 6. The “big valley” correlations are again clearly apparent, although local minima can be up to
the maximum distance away from the best local minimum. Note that the average distance between random

bisections ts 23.02 for n = 100 and 35.04 for n = 150.
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Figure 5: Analysis of 2,500 random local minimum bisections for graph in (150, 0.5).
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Figure 6: Analysis of 2500 random local minimum bisections for graph in
Gpy:(100,4,10).

3 Exploiting Global Structure: Adaptive Multi-Start

Tt is natural to wonder whether more effective starting solutions for Greedy Descent can be derived if we
rely on a “big valley” structure holding for the set of local minima. In this section, we consider a simple

instance of such an Adaptive Multi-Start (AMS) methodology and demonstrate its effectiveness in practice.

3.1 A Simple AMS Heuristic
We have implemented a simple AMS heuristic consisting of two phases:

1. Phase One: Generate R random starting solutions and run Greedy_Descent from each to determine

a set of corresponding rendom local minima.

2. Phase Two: Based on the local minima obtained so far, compose adaptive starting solutions and run

Greedy Descent A times from them to yield corresponding adaptive local minima.

Intuitively, the two phases respectively develop, then exploit, a structural picture of the cost surface. Our
AMS heuristic is more precisely described in Figure 3.1. (Note that our discussion is henceforth couched with

respect to the symmetric TSP.)

In the Figure 3.1 template, the term descent denotes a single execution of Greedy Descent. The

number of passes through Phase Two (Lines 3-6) is determined by the relationship passes = [D;R] In

obtaining the results of Section 4, we uniformly use A = 10 and R = D/2 (i.e., we spend half our CPU budget



Adaptive_ Multi-Start (G,D,R.k,A)
Input: TSP instance G = (V, E} with [V|=n
D = limit on number of descents = CPU budget
R = number of descents from random starting tours
k = number of local minima used to construct each adaptive tour
A = number of descents made from each adaptive starting tour
Output: {* = best local minimum tour found after D descents
Local Variables:
M = set of k best local minimum tours so far
/* (Phase One) */
1. Generate R random local minima
/*  (Phase Two) */

2. repeat

3 Update M

4, t «— Construct_Adaptive Starting Tour({M)
5. Run Greedy Descent(t) A times

6 Update t*

7. until D total descents.

Subroutine Construct_Adaptive Starting_Tour{M)
Input: Set A = {M,,..., M} of local minimum tours
Output: Set ¢ of edges forming a new starting tour

S1. In = union of all edges in set of tours M

S2. t=0.

S3.  Assign weight w(e;) to each edge ¢; € In

S4. for e; € In in order of decreasing w(e;) do

Sh. if ¢; is a valid tour edge with respect to { then
S6. t = tuU{e;} with probability Pr(e;)

S7. while |t| < n (i.e.. t is not yet a tour) do

58. Add a randomly chosen valid tour edge from E \ 1

Figure 7: Adaptive Multi-Start template.

in Phase One); when D — R is not an exact multiple of A we truncate the final pass in Line 5. The subroutine
Construct_Adaptive.Tour called during Phase Two always constructs an adaptive starting tour from the
set M = {My,..., Mg} of the best k local minima found so far; k is a heuristic parameter set to k = 10 in
our experiments. To explain Construct_Adaptive_Tour, we use partial tour to denote a set of edges that
is a subset of the edges in some tour. Given a partial tour ¢, edge e is a valid tour edge with respect to ¢, 1ff
{U{e} is a partial tour. Our experimental results below were obtained using the following additional specific

choices:?

1. In Step S4, w(e;) is the sum of the inverses of the tour costs over those tours in which e; appears, 1.e.,

1
wle) = Z cost(M;) (1)

M;3e;

4Tn Step S4, our choice gives greater weight to edges that are present in many short tours; however, we have obtained similar
results using uniform edge weights. In Step S6, while we have also tried other probabilistic weighting methods, our choice allows
the probability of e; being included into ¢ to approach 1 as w(e,) approaches its maximwun possible value. In Steps S7-S8, we
again find that a number of other strategies yield very similar results, e.g., adding the shortest valid edge. testing edges according
to a fixed order, or following a nearest-neighbor heuristic.



2. In Step S6, we use
wle;
Pr(e;) = exp(~(1 ~ A2 2
|M|
where W = Jz_:l W is the weight an edge would have it were contained in all tours in M.

3. In Steps $7-$8, we simply insert random valid edges until 2 becomes a tour.

Given these implementation decisions, Construct_Adaptive_Tour has O(nk log(n)) worst-case runtime.®

Of course, this is dominated by the known exponential worst-case runtime of Greedy Descent for 2-opt in
the TSP [18]. We also observe that our particular choice of Phase Two, with its multiple passes, is reminiscent

of a genetic algorithm {8].

3.2 Experimental Results

Figure 8 gives some intuition into why the AMS heuristic is promising: it shows the distribution of the rank of
an eleventh descent compared to ten previous random descents when the eleventh descent is (a) an adaptive
descent based on the previous ten descents and (b) another random descent. The adaptive local minimum
is not always superior to the minima on which it is based; however, its distribution is much better than a

random descent, providing a clear improvement upon the use of multiple randomm descents.

Table 1 compares results of the AMS implementation above with results of Random multi-start and
Nearest Neighbor (NN) multi-start (i.e., multi-start from initial tours obtained by the nearest-neighbor TSP
lheuristic; note that this is the method suggested in [9] for obtaining initial tours for 2-opt descents). As
problem size and the CPU budgets D) increase, we obtain significant improvements over the current methods,
e.g., for 100-city TSP instances our adaptive strategy achieves in only 200 descents what random multi-start
would require over 5,700 descents to achieve. A more detailed portrait of this same comparison data is given
in Figure 9.

We emphasize that the stability of our method is very good: for a single 100-city instance, 30 separate
executions of the AMS heuristic with 2 = 100 yielded mean cost(t*} = 7.4207, with standard deviation
= .03329. Tor a single 50-city instance, 50 separate executions of the AMS heuristic with D = 100 yielded

mean cost(t*) = 5.3840, with standard deviation = .00277.

5To analyze its time complexity, Construct_Adaptive_Tour can be divided into four parts: i) assigning weights in Step 53;
ii) sorting the edges by weight for Step 54; lii) checking whether edges are valid for inclusion in ¢ in Step 55; iv) adding valid
edges in Step $8. i) Weights can be assigned in O(kn). 1i) The O(nk} edges in all k locally minimum tours can be sorted by
weight in Ofnklogn) time. (We assume that & = O(n).) iii) We note that an edge (i, 7) can be added to ¢ if and only if its
endpoints 7 and j each have degree less than two and are each contained in a different connected components of t; i.e., adding
edge (i, 7) will not give us a city of degree > 2 or a tour subcycle. (An exception occurs when the partial tour has n —1 edges and
the last edge is forced.} We can determine whether the kn candidate edges are valid for inclusion in ¢ in O(nk + nlogn) time by
using the weighted union heuristic deseribed in 77 to test whether the two cities in an edge are contained in the same connected
component of ¢, iv) Finally, we can fill out the tour in Step 58 using O(nlog n) time by starting from an arbitrary degree-1 city
and continuing the tour from that city, adding a random valid city at each step when needed. O{n) new cities will be added with
a cost of O(logn) to maintain the list of valid cities each time a new city is added to the partial tour. Thus, sorting the edge for
Step 4 dominates the time complexity of Construct_Adaptive_Tour giving it an overall complexity of O{nklogn}.
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Table 1: Sample experimental results for AMS implementation on 100-city Euclidean TSP instances. Results
are averaged over 50 separate random instances in the unit square, and show the number of descents needed
for Random multi-start or Nearest-Neighbor-based multi-start to achieve the same solution quality. Random
multi-start was run for 3,000 descents and Neatest-Neighbor multi-start for 2,000 descents on each of the 50
instances. Entries with “>" are conservative estimates based on linear extrapolation. Absolute tour costs and
relationship to Held-Karp lower bound on TSP cost (provided by D. S. Johnson [11]) are shown to facilitate

Figure §: For 50-city Euclidean TSPs, distribution of the rank of an eleventh local min-
imum compared with respect to ten previous random local minima when the eleventh
tour is (a} adaptive (average rank = 2.92) and (b) random (average rank = 6.19; ex-
pected rank = 6.00). Each distribution is calculated using eleven descents on each of
150 different randomly generated TSP instances.

Equivalent # Descents Average % Above
# Descents nsed | Random NN Soln. Cost Held-Karp
in AMS strategy strategy (AMS) Lower Bound

1 1 1 8.5404 10.91
50 442 50 7.9835 3.68
100 1508 176 7.9266 2.94
150 > 4500 426 7.8967 2.55
200 > 5700 826 7.8806 2.34
400 > T800 > 3000 7.8555 2.02
600 > 9100 > 4000 7.8367 1.78
1000 > 10000 > 4500 7.8275 1.66

comparison with other work, e.g., [9].

ing local minima. For the three types of starting tours (random, NN, adaptive), the Table shows average bond

distance between the starting tour used by Greedy Descent and the local minimum tour it returns. The

10

Finally, Table 2 shows the strong relationship between our adaptive starting tours and the correspond-



¥ T L T T 1 T T 1 T

' Random’ —— 7
. fNNf ..B....

8.4 ’Adapt’ |
8.3

]

0N

Q

&) 8.2

H

5

[ 8.1

T B"'E"‘E'“'E'---EI---B--ﬂ-vﬂ--a--a---a-—.T

l I . X R, S i A

G 100 200 300 400 500 600 700 800 900 1000
Number of Descents

Figure 9: Graphical comparison of AMS, Random multi-start, and Nearest-Neighbor
multi-start approaches averaged over 50 random 100-city Euclidean TSPs instances.

50-city instance 100 city instance
Starting Tours Random NN Adaptive Random NN Adaptive
Distance to Local Min 47.52 (1.32) | 13.20 (1.66) | 5.18 (1.93) || 97.90 (1.34) | 27.16 (3.92) | 9.69 (5.25)
Ave Dist to Random Mins 47.58 (1.13) | 22.99 (0.82) | 13.51 (0.88) 98.08 (1.01) | 39.01 (1.14) | 31.27 {1.52)

Table 2: Mean (standard deviation) of bond distance between 50 starting tours and the corresponding local
minimum tours found by Greedy.Descent. Also given are the mean (standard deviation} of the average
bond distance between each starting tour and 100 “random” local minima. Sample size is 50 for all data;
single random Euclidean instances are used for both » = 50 and for n = 100.

Table also compares these distances with the average bond distance between starting tours and 100 “ran-
dom” local minima obtained by Greedy_Descent from 100 different random starting tours. We see that
the position of a random starting tour has little effect on the position of the local minimum tour found by
Greedy_Descent: in fact, the starting tour is no closer to the resulting local minitnum than to a “random
local minimum”. By contrast, the NN and adaptive starting tours are not only much closer to their resulting

local minima, but are also significantly closer to other “random” local minima.®

6The high standard deviation of bond distance from the adaptive starting tour to the corresponding local miniraum tour is
due to our data collection methodology: to obtain 30 distinct adaptive starting tours using the AMS heuristic with the usual
R=D/2, A =10, etc. we must use I s 1000, and the quality of the adaptive initial tours increases significantly over the course
of this process. We could also cbtain the adaptive initial tours by executing AMS with D = 20 a total of 50 separate times; this
yields slightly higher mean, and lower (std}, values of 7.46 (1.766) for n = 50, and 15.20 {3.339) for n = 100.
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4 Conclusions

Multi-start greedy optimization has shown much promise for a number of practical applications, but the
traditional random multi-start implementation suffers from a “central-limit catastrophe” when problem size
arows large. In this paper we have developed new adaplive multi-start methods, based on new insights into

glohal structure of optimization cost surfaces.

For instances of the symmetric TSP and graph bisection, we study correlations between the cost of
a local minimum and its average distance to all other local minima (as well as its distance to the global
minimum). Our analyses show evidence of a “big valley” governing local minima in the optimization cost
surface, and motivate the adaptive multi-start methodology. Specifically, our evidence suggests a globally
convex [T} structure for the set of local minima (we may draw a simile to the structure of an integer polytope,
which “viewed from afar” may appear to have a single minimum point, but which up clese has many local
minima). Qur results may explain why simulated annealing and other hill-climbing heuristics have been so

successful in practice: very good solutions are located near other good solutions.

Based on these insights, our Adaptive Multi-Start {(AMS) heuristic uses best-known local minimum
solutions to generate starting points for subsequent greedy descents. Experimental evidence for TSP instances
shows significant improvement in runtime and solution quality over previous multi-start methods {random-
and nearest-neighbor-based). Future work should apply our adaptive approach to other greedy methods (e.g.,
3-opt and Lin-Kernighan for TSP) and combinatorial formulations (e.g., graph partitioning and VLSI eircuit
placement). Our current study also motivates consideration of alternate neighborhood structures which can

mduce a “big valley” over the solution space.

Appendix 1. Relation between d(¢,t¢') and b(¢, )

Recall from Section 2.1 that d(t,1') is the 2-opt distance and b(t,#') is the bond distance between TSP tours.
Theorem 1: For any two tours t and ¢’ of a given n-city TSP instance, b—”Q—t’) < d(t,t') < b, ).

Proof: The lower bound follows easily by noting that a single 2-opt affects only two edges in the tour, and
can therefore increase the bond distance by at most two. This lower bound is tight: a sequence of j 2-opts
(1 <7 < |%]). each of which is applied to two edges remaining from ¢, will yield ¢’ with d(¢,t') = j and
b(t,t') = 2j.

In proving the upper bound, we will use a canonical -subtour representation to express ¢’ in terms of
t. We depict tours as permutations < 1,... > with city 1 listed first, followed by its lower-indez neighbor. A
t-subtour of t' is a contiguous sequence of cities in # that is also contiguous in t'; we nse capital letters to label
the t-subtours, with these labels assigned in alphabetic arder according to their positions in t. A #-subtour is

lower (higher) than another t-subtour if its label is closer to the beginning (end) of the alphabet (e.g., B is
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lower than (). Because all tours are notated as permutations beginning with city 1, the canonical t-subtour
representation always begins with A. A t-subtour that appears in t' in reverse order is denoted by a bar above
its label. For example, if t =< 1,2,3,4,5,6 > and ¢’ =< 1,2,4,3,5,6 >, then the {-subtour representation of
' is ABC, where A =< 1,2 >, B=< 3,4 >, and (' =< 5,6 >. Note that reversing a sequence of t-subtours
corresponds to a single 2-opt, e.g., a 2-opt involving the two edges in t' = ABC which separate AB and CA

will yield the tour ACB =< 1,2,6,5,3,4 >.

We will prove the following three facts:
e Fact 1: If b(¢,t') = 2, then d(t,t') = 1.

e Fact 2: If the t-subtour representation of ¢’ contains a reversed {-subtour, then there is a 2-opt which

transforms t' to t" such that b(£7,¢) < b(t',1).

e Fact 3: If the t-subtour representation of t' contains a reversed {-subtour, then there is 2-opt which
transforms ¢ into ¢ such that either (i) d(¢”,€) < 4(¢",¢) — 1 and {” contains a reversed i-subtour, or

(i) b(#"”,t) = b(t',t) — 2 and " contains no reversed subtour.

The following recipe then transforms ' to t using at most b(#,¢") 2-opts; the recipe relies directly on Facts 1
g g P

and 3 (Fact 2 is used to prove Fact 3).

1. [If# contains no reversed t-subtours
arbitrarily reverse a t-subtour, leaving the bond distance to ¢ unchanged.
9. I ¢ contains at least one reversed {-subtour, perform a 2-opt that either
reduces b(£,1') by 1 or 2 and leaves a reversed {-subtour; or
reduces b(t,7') by 2 and leaves no reversed t-subtours,
If 5{t,¢') = 2 perform a 2-opt which transforms t' into .
Repeat Steps 1 - 3 untit ¢/ = ¢.

W

-

Proof of Fact 1: If b(,#'} = 2, then the ¢-subtour representation of ¢’ must be either XY or XY Z. Here,
X, Y and Z may denote sequences of t-subtours. In either case, a single 2-opt transforms t' into ¢; note that
b(t,t') = 1 is impossible.

Proof of Fact 2:  Let 3 represent the lowest t-subtour that is reversed in ', 1.e., it appears as 3, and let o
be the (non-reversed) t-subtour immediately preceding 3 alphabetically. The basic idea is to reduce the bond
distance by bringing the two f-subtours a and 3 next to each other using a single 2-opt. If a occurs before
B in t/, then a 2-opt which places 3 directly after o will reduce the hond distance to t by at least one. This
is shown in Line (a) of the template below (in the template, Z represents the sequence of t-subtours between
o and A in ). If a occurs after 4 in #, then the 2-opt move which places @ directly after 7 will reduce the

bond distance to ¢ (see Line (b)).”

(a) | A...aZB... | = | A . .afZ. ..
M| A BZa... | =>|A. BaZ. ..

For an example of Line (a): if ¢ = ACH, then 3 = B, o = A, and t" = ABC. An example of Line {b): ¢’ = ACDB, B =2¢,
o= B,and t" = ACBD.
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Proof of Fact 3:  Suppose {' contains a reversed (sequence of) t-subtour(s), and that (i) is not true, i.e., there
is no 2-opt which transforms ¢’ to ¢, with " containing a reversed ¢-subtour and having b(t”,t) < b(', ). Let
X be the first maximal contiguous sequence of reversed t-subtours in ¢'. If ¢’ contains any ¢-subtours outside
X, then any 2-opt will leave a reversed subtour, and by Fact 2, there will exist some 2-opt move that will
reduce the bond distance to ¢t. Thus, all reversed t-subtours in ¢’ must be contained in A'. As in the proof
of Fact 2, let 8 be the lowest reversed #-subtour in ¢/, let o be the t-subtour preceding 3 alphabetically, and
let Z be the sequence of t-subtours between « and 3, with # denoting another t-subtour in #'. The template
below shows that the following must hold if no 2-opt move exists which reduces the bond distance to ¢ and
leaves a reduced t-subtour: (a) a appears before 3; (b) 3 is located at the end of block X'; and (c) « is located
immediately before block X. Let 7 denote the highest reversed t-subtour in t' and let & denote the t-subtour
after v alphabetically (we use § = A if v is the highest #-subtour.) A similar argument shows that ¥ must be

located at the beginning of A’ and ¢ must lie immediately after X'. Consequently, the tour structure forced

by (a), (b), and (c) allows a 2-opt from ¢’ = ... .avZ56... to .. .afZvé ..., reducing the bond distance to ¢
by 2.
Case | If () holds [ Then 3 2-opt satisfying (i) |
{(a) | (« not before g in t’) . BZa... = . BaZ...
(b) | (Bnotatendof X int')|...aZ8y... = .. .aBZ7.. .
(¢) | (xnotnextto Xint) |..enZ3... = .. .afZy. ..
ad

Appendix 2. Distribution of Tours in the TSP

Analysis of the distribution of tours at each bond distance from a given tour, which by symmetry is the
same as the distribution of 8(;,t2) between random tours ¢; and t;, has been attributed to D. Gross and M.
Mezard in [14]. The cited result is that the number of edges in common between any two random tours #;
and ts, i.e., n — b(ty,12), approaches a Poisson distribution as n — oo, and has mean = 2. We have studied
this distribution more precisely. In what follows, we show that the number of edges in common has mean

= 2% =2 We then describe an exact method for efficiently calculating the b(Z,,2) distribution.

Fact 4: The mean number of edges in commnon between two random tours on n cities is 2 * 25.

Proof Each edge in E occurs in exactly (n — 2)! tours. Since each tour has n edges, the average number of

overlaps between a given tour and all tours in solution space 5 is equal to T = (aoi)/2 = 2« . O

To compute the b(t,24) distribution, without loss of generality we compute the distribution of I(n, k},
where I{n, k) denotes the number of tours on n cities that have k edges in common with the identity four,
on) =< 1,2,...,n—1,n>. I(n+1,k) can be calculated exactly based on the observation that any tour t

of n + 1 cities is uniquely expressible as the insertion of city » + 1 into a tour 1 of n cities.
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The basic methodology is that of dynamic programming: given the values I{n k) for 0 < k < n we
can compute all the I(n 4 1, k) values for 0 < k < n+ 1. For a given n, the entire computation of all I{n, k)
values requires only ©(n”) time and ©(n) space. We use the term bond to denote any adjacency in the n-city
tour ¢ that is also an adjacency in a(n), ie., ¢ has k bonds if b{t,s(n)) = n—k, or equivalently if there are
k edges in common between t and o(n). We say that we break a bond when we insert city n+1 between the
two cities which form that bond in t. One readily sees that breaking a bond will usually reduce the number
of bonds that remain in ' to & — 1; similarly, inserting n + 1 next to city 1 or n will generally increment the

number of bonds, while other positions for city n + 1 will generally leave the number of bonds unchanged.

To be more precise: when placing city n + | into a tour t of n cities with & bonds, we must consider

eight cases corresponding to the possible presence or absence of each of three “special” bonds in t:

e (1,n): breaking this bond #ncreases the number of bonds by 1 because the new bhonds (1,7 + 1) and
(n,n 4 1) in o(n + 1) are created. If ¢ has this bond and the placement of city » -+ 1 does not break 1t,

then the number of bonds decreases by 1 because (1,n) is no longer a bond in a tour of n + 1 cities.
o (1,2): breaking this bond will leave & constant unless ¢ also contains bond (1,n).
e (n— 1,n): breaking this bond will also leave k constant in the absence of bond (I, n).

Figure 10 illustrates the ways in which ¢ity n41 can be placed into a 6-city tour t =<' 1, 2,4,3,5,6 >,

which contains all three special bonds.

New Tour ¢ Effect of Placement Effect on &
<1, 7,2,4,3,5,6> | break bond (1,2) ke—k-—1
<1,2,7,4,3,5,6 > | not break any bond ke—k-—1
<1,2,4, 7,3,6,6> | break non-special bond (3,4) | ¥ — k-2
<1,2,4,3, 7,5,6> | not break any bond ke k=1
<1,2,4,3,5, 7,6 > | break bond (n — 1,n) k—k—~1
<1,2,4,3,5,6, T > { break bond (1, n) k—k+1
Figure 10:  IHustration of the six ways to insert city n + 1 7 into tour

t =< 1,2,4,3,5,6>. Because ¢ contains bonds (1,2), (3,4), (5,6), and (1,6).
k = 4 for . Note that ¢ contains all three special bonds, (i,2), (1,n), and
(n—1,n)

Figure 11 gives details on how the placement of city n+1 affects the number of overlaps with o(n+1).
(Although not shown in the table, it is also necessary to keep track of how the placement of n+1 affects which
special bonds occur in the resulting tour #'.) Thus, if we know the number of tours of length n containing &
bonds for each & and each combination of the three special bonds, we can compute the number of tours of
length n + 1 for each k and special bond combination. Summing up the eight cases for special bonds for n
and k gives us the value for I(n, k). This overall computation of I{n, k), 0 < k < n, can be accomplished in

time ©(n?) and space O(n).
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Number of

Special Bonds in ¢ Placements | Effect of Placement Effect on £
- k break non-special bond k—k-1
4 create new bond (next to lorn) [ & — %k +1
n—4-—%k | other k—k
(1,2) 1 break bond (1,2) k—k
k-1 break non-special bond k—k-1
3 create new bond (next to lorn) | k — k41
n—k—3 | other k—k
{1,n) 1 break bond (1, n) ke k41
k-1 break non-special bond ke—k-12
2 create new bond (next to Lorn) | k —k+1
n-—k—2 | other k—k
(n—1,n) 1 break hond {n — 1, n} ke—*k
E—1 break non-special bond E—k-—1
3 create new hond (next to lorn) | k— k41
n—k—3 | other k—k
(1,2)(1,n) 1 break bond (1,2) Eek—-1
1 break bond (1,n) k—k+1
k—2 break non-special hond k—k-2
1 create new bond (next to n) ke k
n—4&k—1 | other ke—k-—1
(1,2}{n—-1,n) 1 break bend (1, 2) ke—k
1 break bond (n — 1, n) k—Fk
k-2 break non-special bond ke—k—-1
2 create new bond (next to Lorn) | k — £
n—k—2 | other k—k
(I,n)(n—1,n) 1 break bond (1,n) k—k+1
1 break bond (n—1,n) E—k-1
E—2 break non-special bond k—k—2
1 create new bond (next to 1) ke k
n—k—1 | other k—k—1
(1,2)(1,n){(n—1,n) 1 break bond (1,n) k—k+1
1 break bond (n — 1,n) ke—k—1
] break bend (1, 2) k—k—1
k-3 break non-special bond k—k—-2
n—k other Eek—1

Figure 11:

tour from placing city n + 1 in a tour { of n cities.

Figure 12 shows the resulting cumulative distribution of b(t1,¢2) for 100-city and 500-city TSPs. Note
that all 2,500 local optima shown in Figure 2(b) for a 100-city instance are confined to a ball of radius = 48

containing less than 1/10%° of the entire solution space; similarly, all 2,500 local optima in Figure 4(b) are

Details on the effect on the number edges in common with the identity

contained in a ball of radius = 245 corresponding to less than 1/10%% of the solution space.
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Figure 12: Cumulative distribution of the fraction of all tours within a given bond
distance (a) n = 100 and (b) n = 500. (Log scale base 10 used on vertical axis).
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