Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

CONCURRENT ERROR DETECTION IN SELF-TIMED VLSI

D. A. Rennels April 1993
H. Kim CSD-930013






Concurrent Error Detection in Self-Timed VLSI *

David A. Rennels and Hyeongil Kim
Computer Science Department
6291 Boelter Hall
University of California
Los Angeles, CA 90024
Phone:(310)825-4033 FAX:(310)825-2273

E-mail:rennels@cs.ucla.edu

Abstract

This paper examines architectural techniques for providing concurrent error de-
tection in self-timed VLSI pipelines. Signal pairs from DCVSL self-timed logic are
compared with a checker that is composed of a tree of dual-rail (morphic) compara-
tors to detect errors and signal completion. An efficient implementation is shown that
compares favorably in speed and area with conventional completion signal generators.
The control of the pipeline is then examined, and techniques are described that detect
errors in the C-gates and other circuits that provide handshaking control. Based on
these studies we have concluded that self-timed logic offers considerable fault-tolerance
potential due to its built-in redundancy that can be effectively exploited for error
checking.

Keywords: self-checking, self-exercising, self-timed, concurrent error detection, VLSI
circuits.

*This research was sponsored by the Office of Naval Research under grant (N00014-91-J-1009).

1






1 Introduction

There has been a great deal of interest lately in asynchronous logic design in the VLSI
community [Mart89, Jaco90]. Self-timed logic is typically more complex than synchronous
logic with similar functionality, but it offers potential advantages. These include higher
speed, the avoidance of clock-skew in large chips, better layout topology, and the ability to
function correctly with slow components. In addition self-timed logic contains redundancy
for signalling completion that can be used for testing and error detection. One of the reasons
Muller developed early self-timed designs was to provide error detection because high error
rates were expected in the early hardware of the ILLIAC machine.

A great deal of research has been conducted into the testability of asynchronous Dif-
ferential Cascode Voltage Switch logic. Fault modeling and simulation of DCVS circuits is
discussed in [Barz85] and the DCVS circuits provide on-line testability with their comple-
mentary outputs [Mont85]. In [Jha89] testability of DCVS EX-OR gate and DCVS parity
trees is analyzed. Methods for testing DCVS one-count generators are given in [Jha90] and
also discussed the testing of DCVS full and half-adders. In [Taka90] easily testable DCVS
multipliers are presented in which all detectable stuck-at, stuck-on and stuck-open faults
are detected with 6 test vectors. It is shown that how concurrent testing of DCVS circuits
can be performed under a single transistor fault and the impact of multiple faults on DCVS
circuits is examined [Kano90]. A technique for designing self-checking circuits using DCVS
logic was presented in [Kano92].

We began this study to explore the feasibility of using asynchronous logic in the inter-
face/controller chip of the self-checking self-exercising memory system previously described
at FTCS [Renn91]. The synchronous nature of that design caused what we felt were unnec-
essary delays, so we decided to examine an asynchronous design as an alternative. A key
requirement of the design was concurrent error detection. Thus our approach has been from
an architectural viewpoint.

The Starting Point ~ Synchronous Circuits with Concurrent Error Detection

A common way to make synchronous hardware systems with concurrent error detection is
to duplicate the circuit modules, run them with the same clock, and compare their outputs.
Duplication and comparison has become widely accepted and is supported in chip sets by
commercial manufacturers (e.g. Intel) and DoD-supported projects such as the GVSC and
RH-32 processors. One way to do this in a self-checking fashion is to invert the outputs of one
module to obtain morphic (1,0 or 0,1) pairs and compare its outputs with the corresponding
outputs of the other module using a tree of self-checking comparators of the type introduced
by Carter et. al. many years ago [Cart68, Sedm80]. These checkers are self-checking with
respect to stuck-at faults, and will, in most cases detect transient errors that cause the



coding to be incorrect at clock transitions. They may fail under Byzantine conditions where
noise or marginal circuit conditions cause the checker to see correct coding while the circuit
receiving the output data sees an incorrect value.

When one examines conventional duplicated synchronous systems, the cost of concurrent
error detection is a doubling of active circuits plus the addition of comparators. The overhead
of error detection in asynchronous designs should be similar to the synchronous case and it
is already an integral part of the design. This is discussed below.

The Analogous Asynchronous Design Style — Differential Cascode Voltage Switch
Logic (DCVSL)

An asynchronous design requires redundant encoding that can provide completion infor-
mation as part of the logic signals. A logic module is held in an initial condition until a
completion signal arrives from a previous module indicating that its inputs are ready. Then
it is started, and when its outputs indicate completion, other modules may be started in
turn. In general this requires a form of encoding that allows the receiver to verify that the
data is ready. Also, the checker that it uses to determine completion much be glitch-free,
i.e., it can have no intermediate states during transitions that raise a false completion signal
before the inputs are set up.

One way to do this in self-timed designs is to use a form of 1-out-of-2 coding [Cart72].
Output signals from various logic modules are sent as a set of two-wire pairs, taking on the
values 0,0 before starting, and 0,1 or 1,0 after completion. Such logic can be implemented
using differential cascode voltage switch logic (DCVSL). A typical DCVSL gate is shown in
Figure 1(a). It is a differential precharged form of logic. When the Req (request) signal is
low, the PMOS pull-up transistors precharge points a and ¢ to Vdd. At this time the circuit
is in an initial state, and its outputs are 0,0. The circuit block B contains two complementary
functions. One pulls down, and the other is an open circuit. When the input signals are
ready, Req is raised, the pull ups are turned off, the NMOS pull down transistor connects
points b and d to ground, and the circuit computes an output value. The side that forms
a closed circuit forms a zero and the side that remains an open circuit remains precharged.
The outputs, driven by inverters, go from 0,0 to either 1,0 or 0,1 and the completion signal
CPL is generated from either a logical OR or the exclusive OR of the outputs. As in the
case of duplex self-checking synchronous circuits, the functions are duplicated in true and
complement form, but here the state 0,0 on a signal pair is a valid setup signal, and the
arrival of complementary values signal completion.

It is intuitively obvious that DCVSL can provide a degree of error detection. Consider a
single DCVSL circuit (Figure 1(a)). The circuit block B can be designed so that a fault or
error will only affect one of the two sides (true or comnplement) and therefore only affect one
output [Barz83]. However, the effects of faults and errors can be quite complex due to timing

3



T —
L —d s |°— Req — 7 ID— T—CPL
Out— a c — Out E — wn
2 5
2] I— o CPL
= True B Cplt. = I o
= Fet. Fct. c 3
- PL —CPL
bl —| Jd ) — —d
Req g  —
cpPL U
REQ | CPL
(a) A Single Circuit (b) A Multi-Module Circuit

Figure 1: Differential Cascode Voltage Switch Logic

considerations. For example, a transient error could cause multiple completion signals, or a
data line could change to an incorrect state in the time delay while a completion signal is
being generated. Since completion signals that start the next computation step are generated
as a combinational function of a large number of data signals the probability of transient and
Byzantine errors is probably greater than synchronous circuits where special low-impedance
clock drivers are used.

In order to develop a fault-tolerance strategy it is useful to move to a higher level and
examine how a group of DCVSL functional blocks (i.e., combinational circuits) are combined

into a pipeline.

2 Fault-Tolerance in Cascaded Self-Timed Circuits

As shown in Figure 2, several self-timed blocks can be cascaded to form a pipelined structure,
in which self-timed combinational circuits, designated functional blocks (FB) are denoted as
A, B,C... and Interconnection/Synchronization Circuits(ISC) are 1,2, 3... Each ISC contains
a register for holding data between stages. For example, the output of FB A is latched at
the register of ISC 1 when its completion signal Rin; goes high and it can be used by FB B
as an input when Rout; goes high. When Rout, goes high, the B B starts evaluation with
the input and generates a completion signal and an output. The completion signal is used
as Riny of ISC 2. Aout, of ISC 2 is the same signal as Ain, of ISC 1.

The transition graph of signals in Figure 2 is shown in Figure 3 which implements a
full-handshake between function blocks as explained in {Meng91]. This is the synchronizing
function performed by the ISC. Both the positive and negative values of the control signals



FB FB FB
A Rint Rout1 B Rin2 Rout2 C

ISC ISC
Aoutt | 1 | aint Aou2 | 2 | Ainz

Figure 2: Pipelined Blocks

B e R v Rout?’
Rin2" Ain2’

N N

Figure 3: Transition Graph Derived from Full-Handshake

are shown by the superscript + and —. Arrows show signal conditions that must be true
before the following transition is allowed to proceed. A careful examination of the graph
shows that this provides the appropriate interlocking so that a module on the right has to
complete before the module on the left is allowed to take the next computational step. The
Rout™ to Rout™ step then provides the reset to pull up the DCVSL functional block before
the next computation is started.

Figure 4 shows a typical timing diagram of signals associated with an ISC, {e.g., ISC 1).
Arrows in the diagram indicate causes that must proceed events.

3 Implementing Concurrent Error Detection

In order to achieve concurrent error detection, three conditions are needed (1) the errors
in the functional blocks (FB) must map to uncoded 1-out-of-2 pairs, (2) checking must be
provided for detecting these errors, and (3) control signal errors must be detected either by



Rin1 .

Aout1 o
X \J
ROU” " —
(B)
Aini

Figure 4: Timing Diagram of Full-Handshake

their causing detectable errors in the data and/or by the use of monitoring circuits (e.g.
time-out counter) in the ISCs. We will first look at error detection in the ISCs.

3.1 Error Detection in Synchronization and Control

In the circuits presented by Meng, the register in the ISC (that holds data between functional
blocks) is positive edge-triggered, and only true DCVSL outputs are transmitted from the
previous block. Since the DCVSL needs true and complement data lines at the input, the
register provides true and complement outputs. Latching completion signal can be generated
by comparing input and output signals of the register, i.e. if output signals are the same as
the input signals, then latch completion is assumed. This completion signal is used as Aout
and the request signal enables the following functional block.

There are a number of ways that a transient error or permanent fault can go undetected
with this circuit. As examples, a clock to a flip flop can fail, leaving old data in a latch, or
wrong data may be loaded when a transient occurs on the load signal in Figure 5(a). These
errors can not be detected, since the register has true and complement outputs. Similarly,
errors in the C gates and their associated logic can produce undetectable errors.

3.1.1 A Modified Control Circuit

To improve the testability and fault tolerance of the interconnection/synchronization circuit
we modified the circuit in Figure 5(a) to that in Figure 5(b). The register in Figure 5(b) has
two gated latches for each DVCSL output pair, and thus it accepts morphic inputs instead
of single line inputs as in Figure 5(a). Both latches are reset after its contents have been
used to give it a better chance to detect errors if it is clocked when data is changing or if
some of the latch pairs fail to be reloaded. The dual gated latches are simpler than the single



positive edge triggered flip-flops used in Figure 5(a).

Since the register is reset after computation is done and the input to the register is a
morphic pair, we can generate the latch complete signal, Aout, using an OR-AND circuit
rather than the more complex COMPARE-AND circuit used in the original design. The
completion signal from the Functional Block is generated by a 1-out-of-2 checker that waits
until all signal pairs have at least one ”1” value before signalling completion. It can also
explicitly detect {1,1 and 0,0) error outputs. This circuit is partially self-checking and it will
be described later.

3.1.2 Stuck-at Faults

The interlocking nature of the feedback control signals causes the circuit to "hang up” and
stop if one of the signals Ain, Aout, Rin, Completion, .. sticks at a one or zero value (see
Figure 3). A time out counter is employed to detect the stopped condition.

In nearly all cases, stuck-at values in a register or functional block will cause a detectable
value of 0,0 or 1,1 to appear at the checker. This occurs because the dual-rail DCVSL logic
block circuits pass on an uncoded (0,0 or 1,1) outputs when an uncoded input (0,0 or 1,1)
occurs. When input signals occur that would normally cause a stuck circuit to go to the
other value, its complementary circuit takes on the same value, generating an uncoded signal
that passes through the Functional Block to the checker.

The reset signal sets all register pairs to 0,0 to enable detection of faults caused by the
inability to clock one or more sets of latches. It is redundant so that if it sticks at zero, a
second fault must occur before an error is generated. If it sticks at one, the register will be
permanently reset to 0,0 pairs, Aout will never go high, and the circuit will stop.

As soon as the latch complete signal goes high, the {oad signal to the register goes low in
order that the latched data are not disturbed by changing data from the preceding stage. If
the load sticks at zero, the registers will be permanently reset and Aout will not be generated,
halting the circuit. A stuck at one load signals will cause the register not to be held constant
while the functional block is working. The C-gate preceeding a register normally prevents
the register from being reloaded while the outputs of the circuit that sent it inputs is being
to reset to 0,0. The stuck at one load will allow the register to change while the following
functional block is using its data. The results, though difficult to predict, are likely to
produce a detectable coding error in the following stage.



N N
Data In % Data Qut
0 [ e
ol g ¥
@ (55 g 8
o [ |
f 3 £ M (Rin)
Rin 3 Completion
b bad \C request
(O /O o
Aout OQ l OQ Ain
(a) Original ISC Circuit (Meng)
Data In % Data Out
5 e
] = 5
Sk S %
= e
o g Crequest ©m 2 (Rin)
Rin (Rout] B L | Completion
3 |3 =
2| | & I
[ Error
Aout °<} Ain

<

(b) Modified Interconnection/Synchronous Circuit

8B8CD E

A

k4

~

Rin ::?
/:/
latch 2
hY
N
Aout N
2~
reque N
2
Co mp N

(c) Timing Diagram for Transient Effects on the ISC

Figure 5: Interconnection/Synchronous Circuit



3.1.3 Transient Errors

It is not possible to exhaustively analyze transient error responses. Extensive simulation is
probably the only way to characterize the coverage of these circuits under various transient
conditions. However, we will examine two examples of transient errors that are most likely
to occur,

A Muller-C circuit has the property that the output signal will change to the input
value when both inputs are of the same values; otherwise the output stays unchanged. This
hysteresis can mask out transient errors under some circumstances. A typical timing diagram
of the ISC signals of Figures 5(a) and (b) is shown in Figure 5(c). Consider the different
effects of transients on control lines during these times.

Rin Transient Errors:

Rin is more likely to experience transient errors or permanent faults than most other
signals because it is generated as a combinational function of all the data outputs from the
previous stage’s function block.

Interval A — Any transients in the Rin signal during the timing zone, denoted as "A’, can
not change the latch signal because the other C-gate input is low. In this period both of the
ISC circuits in Figure 5 have the same responses.

Interval B — Zone B’ is the time the circuit is ready for another computing step. Here,
the C-gate inputs are different so any transient in the Rin signal sets the load signal. A
transient in the original ISC with single flip-flops in Figure 5(a) clocks in wrong data and
drives incorrect but re-encoded morphic values to the functional block — resulting in an
undetectable error. But the ISC in Figure 5(b) waits for morphic data from the previous
functional block and provides correct values to the functional block despite of incorrect
timing caused by the glitch in the Rin signal. (Remember that the latch pairs are all set
to zero before the computation starts. Due to the hysteresis of the C-gate, the load signal
will remain at one until all of the data stabilizes correctly to (1,0 or 0,1) in the dual latches.
Then the Aout signal resets the load signal. Similarly transient faults in the load signal can
be tolerated in the ISC of Figure 5(b), but not in that of Figure 5{(a).

Intervals C,D,E ~ During the rest of the cycle, transients on Rin will be masked by the
C-gate because it has output of one and the other input is one.

The modified circuit (Figure 5(b)) has only one period (B) when Rin is sensitive to
transient errors. A transient that holds the value of Rin to one or zero for an extended
period of time only halts the circuit for the transient duration. The interlocking sequence
does not allow processing to proceed to the next step.



Errors in the latch completion signal Aout

As discussed above, the data latch completion signal Aout is generated by an OR-AND
check of the register’s contents, i.e., all of the output pairs must have one line go to logic
one. When it occurs it means that the previous stage can precharge its functional block to
prepare for the next data while the current stage can start computation with the latched
data.

If there is a falsely generated latch completion signal (i.e., false Aout signal) in the original
circuit of Figure 5(a), the previous stage is forced to abruptly finish computation that should
be continued in normal condition and it prepares for next computation by precharging the
circuit. The flip flops of the register take the wrong data and convert it into properly coded
l-out-of-2 data. The Functional Block of the current stage starts computation using the
wrong data and this error 1s not detected.

Now consider what happens in the modified circuit of Figure 5(b) when a transient occurs
in Aout. If Aout takes on value one when it should be zero, this means that the data in the
register is uncoded, but its availability is signalled. The functional block will be started with
uncoded data. (This will be detectable by checkers in the following block.)

A more difficult case occurs when Aout takes on a correct value of one, but a transient
causes it to transition to zero prematurely. This does not affect the request signal to the
functional block of the current stage if it has started, but it affects that of the previous stage.
Rin may be prematurely dropped and a new step computed in the previous stage. It will
not be loaded until the functional block completes so no error will occur. If the request to
the functional block has not yet been generated, the circuit will stop because the register
cannot be loaded.

3.2 Summary of Control Error Detection

From the above discussion we have concluded that the modified control circuit has good, but
certainly not perfect, error detection properties. It is a distinct improvement on the original
design. The analysis of error effects is certainly far from complete, and the circuit is far
too complex to work them out analytically. Our next step will be to conduct switch-level
simulation experiments to identify conditions that are covered and not covered, and possibly
further improve the design.

10



T s —_
s

-5
¢ -t

e 4[;

Figure 6: A 4-Input Self-Timed Checker

JL!_I:_!JL_‘

4 Error Detection in the Registers and Functional
Blocks

As discussed above, data is output from the functional blocks, and a checker is used to
determine if each pair has complementary values. The checking circuit, implemented as a
tree of four input-pair dual rail checkers shown in Figure 6. This DCVSL circuit has the logic
function: z=a®bPcPhdand T=a D bD c® d. Since the PMOS and NMOS transistors
are separated in this self-timed circuit, the circuit area can be relatively small. By inspection
one can see that any input pair of 0,0 causes a 0,0 output, and any input pair of 1,1 causes
a 1,1 output.

An example of five four-input checkers combined into a tree to check a 16-pair functional
block is shown in Figure 7. If any input data pair is incorrect (remains at 0,0 or goes to
1,1), the outputs Z,Z take on values 0,0 (detected by a simple time-out counter) or 1,1
(detected by the AND function). The checking circuit is equivalent to the self-checking
checker (morphic AND) tree developed by Carter et. al.

11



o
L
S
QM ERROR
5 I
AND
e 7
etc. [ '55
o Z
etc. [ 4 %
o OR
o Completion (Rin)
x  —
O N
w
T
o R
Req| | c Time-
Simple RC Timer Out

Figure 7: The Function Block Output Checker

4.1 The Checker Circuit

In a synchronous system this type of dual-rail checker is self-checking, but in an asynchronous
system the behavior is somewhat different from the synchronous case for the reasons discussed
above. The cases are enumerated below:

Case 1 Behavior when the circuit being checked and the checker are fault-free.

All pairs equal 1,0 or 0,1 — For error free cases the signal pairs of the circuit being
checked will start at all zeros and the pairs will transition to 0,1 or 1,0. Under these
conditions, the checker provides a "glitch-free” logic, and when the signals have stabi-
lized, the final checker output will transition to 1,0 or 0,1. This is detected by the OR
function in Figure 7 that generates the completion signal (Rin to the next stage).

Case 2 Behavior when the circuit being checked (CBC) has a single error and the checker
is fault-free.

12



¢ One pair has values 0,0 - For those errors in the CBC that produce a 0,0 in one of
its output pairs, a tree of checkers will continue to output 0,0, and no completion
signal will be generated. This is detected using an independent time-out circuit.

e One pair has values 1,1 — For CBC errors that produce a 1,1 in one of its output
pairs, the checker tree will eventually produce a 1,1 output also. However, for a
short period of time, the erroneous signal pair will transition from 0,0 through a
correctly coded value 0,1 to an incorrect value 1,1. This will, in effect, cause the
signal pairs down one path of the tree to rapidly ripple from a legal value 0,1 or
1,0 to 1,1, and the final output pair Z,Z will go through a sequence of 0,0, to
(0,1, or 1,0), to 1,1. The first transition to 0,1 or 1,0 signals completion through
the OR function in Figure 7. The detection of the second transition to 1,1 is
done with the AND function in Figure 7. Note that after the completion signal is
generated there must be sufficient delay in resetting the CBC in order to assure
detection of the 1,1 condition.

Case 3 Behavior when the CBC is good but the checker tree has stuck-at variables.

o Cases that lead to time-out detectable output values of 0,0 are stuck-open tran-
sistors in the pull down iree or a stuck-at-zero inverter. For some inputs the error
will not be detected because the stuck at conditions are the same that the inputs
would have generated. So the circuit pairs remain complementary causing a cor-
rect Z, Z output. So long as no double error occurs in the data, no computational
error occurs and no harm is done.

For other input patterns the effect is to generate an output pattern of 0,0 at
one checker circuit because the complementary circuits take on identical (off or
zero) values. Since these checker circuits are combined into a tree, the 0,0 output
propagates through other checkers and holds the final output at 0,0. The final
complete Rin is not generated, and this will be detected by the time-out counter.
Analogous to self-checking circuits, the right input pattern has to appear to flush
out this fault condition and eventually cause an error signal.

¢ The remaining faults are stuck-short transistors in the pull down tree and stuck-
at-one values in the inverters. These may result in a premature completion signal
and could lead to subtle undetected error conditions. Some input data patterns
will lead to a Z,Z output of 1,1 (i.e. the complementary transistor or inverter
gets a correct state identical to the failed one). In this case, as in case 2 above,
an error will be detected by the AND gate if the circuit is not reset too quickly.

Other input patterns will lead to a Z,Z output pattern of 0,1 or 1,0. Here the
stuck circuit is stuck at the value the data would cause it to take anyway so the

13



data drives the complementary circuit to the opposite value of the stuck circuit
(The other inverter is ”1” or the other transistor is open.) The error will not be
detected, but an early completion signal may be generated. In effect, the tree
decides immediately that some of the circuits are complete, and data may be
prematurely loaded as one or more 0,0 pairs into the next pipeline stage. These
errors will go undetected in the current stage, but the next stage should stop
because it received an 0,0 input and cannot complete.

5 Issues in Implementing a Self-Timed Memory In-
terface

In a paper in FTCS21, we described a self-checking self-exercising memory system under
development at UCLA that can be composed of two chip types, a special RAM with internal
parity checking and a Memory Interface Building Block (MIBB) that implemented SEC-
DED codes and had extensive concurrent error detection features [Renn91]. In the MIBB
design we found that speed was limited by the synchronous clocking scheme that typically
required five constant length high speed clocks to control and synchronize read and write
operations. Also it was determined that higher performance could be obtained if data was
read from the RAM in blocks, and pipelining was used in the MIBB. Thus we have begun to
explore the use of a self-timed design for a higher performance MIBB chip. The architecture
is preliminary, and is expected to change as the various function blocks are further mapped
out,

Figure 8 shows the data path of the MIBB presented at FTCS21.

In the original synchronous design, the critical timing path is from the Spare Plane
Switching Circuit (SPSC) to the Error Detection circuits for the Hamming Code Tree (HCT).
This path contains a Spare Plane Switching Circuit (SPSC), Inverter, bus with large capac-
itance, IICT (checking and generating SEC-DED code), and a self-checking comparator for
the tree.

This data path can be implemented in self-timed circuits as shown in Figure 9. The
functional blocks of Figure 8 are replaced by self-timed functional blocks with attached
registers to form a pipeline. The registers attached to the self-timed blocks store data
during precharge and computation of the blocks. The SPSC and Inverter are merged to one
functional block. Since data from outside of the chip are only in true form, pad driving
circuits and registers receiving data from outside are designed to handle two-to-one and one-
to-two interfaces. Since the RAM chips do not provide morphic outputs, their completion
signal must be artificially generated. The single bidirectional bus was replaced with separate

14



| RAM Datsk Pads | [ C&SPads |

i L ||

| RAMreg0 1 |_RAMregt |
Sparei Plane Switching Circuit |
| INVerterOf | | INVerter1 |
SPReg I |
Hamming Code Tree
CORrect Circuit & Register "
| 1
ERReg
L
|
| CPUpari\tyl CircuitI ]——1 l
| CPUrea I CPU Pads
) ]
| ADbuffer l

$ Abus0  Abus1}

Figure 8: The Synchronous MIBB Data Section

READ and WRITE paths. The READ path consists of three (read operation without error)
or four (read operation with data error) pipelined stages, while the WRITE path has two
pipelined stages.

There are potential advantages and disadvantages associated with the asynchronous data
path implementation. Among the potential advantages are:

1. There is more comprehensive error detection, since the individual signal pairs can be
checked in addition to the Hamming code and bus parity codes across the data words.
This makes it easier to differentiate between data errors from the RAMs (code errors
only) and errors in the MIBB chip (code errors and errors in the morphic signal pairs).

2. If the data path can be set up as a micropipeline, control signals are localized and
require less routing.

3. Faster operation can be achieved using the pipeline for burst data transfer.

Potential disadvantages of the asynchronous data path include:

15



RAM Data, Check, and Spare Pads

Register |
Spare Plane Switching Circuit and Inverter
! Register
. Register | -
b= Hamming Code Tree L
-« «
A I B
i =
?t' Register =
g‘i Caorrection Circuit ;
! i
Error Registers and Spare Plane Register
| |
Register |
CPUparity Circuit
| Register
1
CPU Pads

T l

ADDRESS SECTION

Figure 9: Data Section of the Asynchronous MIBB

1. More routing is required for data signals.
2. The number of storage cells for registers is doubled (for true and complement values).

3. Increased logic. This is deceptive however, because self-timed logic is often more com-
pact than conventional CMOS. Since the PMOS pull ups are limited in number and
better isolated from the NMOS logic trees, the area cost of separating NMOS and P-
wells is considerably reduced. Some self-timed circuits take less space than synchronous
circuits (as will be seen in Section 6 below).

4. Overhead for handshaking introduces circuit and time delays.

6 A MIBB Circuit Example

For an implementation example, we choose the slowest circuits of data path, the Hamming
Checking Tree (HCT) and the self-checking comparator to compare synchronous and asyn-

16



chronous designs. The HCT uses seven trees of XOR gates to generate 7 syndromes. The
individual checkers average 14 two-input gates each and the checkers together require a total
of 96 gates. In the synchronous design, we generate both a true and complement version of
each parity check using one tree of XOR gates and another tree of XNOR gates. The results
of these checks are compared with a self-checking checker to distinguish between data errors
and checker errors.

The basic cells for the synchronous HCT are the 2-input XOR gate and 2-input XNOR
gate which generate true and complement outputs (shown in Figure 10(a) and (b)}. A 4-
input self-timed XOR gate is used to implement the self-timed (asynchronous) HCT, and is
shown in Figure 10(c). Since the self-timed tree carries both true and complement signals it
has additional error checking properties and does not need to be duplicated.

If an error occurs in the data path that causes a signal pair of 0,0 or 1,1 it can be detected.
If a 0,0 appears on any input pair, the output will also be 0,0 and propagate through the
tree. Similarly, if an input pair is 1,1, and output pair of 1,1 will be generated and propagate
through the tree. An open transistor will cause either a correct output or the value of 0,0
for some error patterns. Similarly, a shorted transistor will cause either a correct result or
an output of 1,1, depending upon the input pattern.

Table 1 presents comparison of the synchronous and asynchronous designs of the HCT
in terms of transistor count, input load, and time delay using SPICE-simulations with 2-um
design rules. Transistor sizes of the gates are not optimized, but are fixed 4um and 8um to

NMOS and PMOS respectively.

Each of 96 CMOS-XOR gates and each of 96 CMOS-XNOR gates in the synchronous
design have 10 transistors, for a total of 1920. The self-timed XOR gate is a four-input
device, and thus there are only 35 of them required. The DCVSL logic is especially eflicient
in implementing multi-input gates. A total of 805 transistors are used. From the summary we
see that the self-timed parity tree is several times smaller and is faster than the synchronous

CMOS design.

7 Conclusions

This preliminary study indicates that self-timed design techniques can be adapted to fault-
tolerant systems, and that they offer considerable potential in the implementation of modules
that have concurrent error detection. An asynchronous pipeline controller was presented
that was enhanced to provide improved concurrent error detection, and the error detection
techniques for combinational functions were discussed. Preliminary studies were presented
comparing a portion of a Memory Interface Building Block implemented in synchronous

17



bj aq}j}m

0
|
L a 2 o<H >0
2 ]H1 B N B I
(a

=
) Bl
b
=

AL P | '

a—| |
b a b Req——‘
AL e F(b) .

Figure 10: (a) XOR, (b) XNOR, and (c) Self-Timed XOR Gates

L \_‘_II__L?_JL‘

versus asynchronous logic.

Although the error detection coverage of these circuits appears to be high, it is hard
to get an accurate measure by analysis, and we only presented a qualitative discussion of
what we viewed as the most likely errors and faults. We are beginning a series of simulation
experiments to experimentally evaluate their response to various error conditions to better
understand their fault and error coverage.

Of course, self-timed logic is a matter of religion to many, but it is not clear to what degree
it will ever displace conventional clocked CMOS designs. We make no projections here, but
only note that asynchronous design is very interesting, and its fault-tolerance properties need

to be explored from an architecture prospective.

The cost of this approach is reasonable, and we are optimistic that this design style will
become more important as fault tolerant systems made are made from larger chips with
smaller feature sizes.

18



Synchronous Asynchronous
XOR XNOR Checker Total | XOR Checker Total

Number of Gates 96 96 36 228 35 3 38

Nurmber | PMOS | 480 480 72 1032} 210 18 228

of | NMOS | 480 480 72 1032 | 595 39 634

TRs | Total 960 960 144 2064 | 805 27 862
Input Loading 4 tr 4tr 4tr 2tr 2tr

Time Delay 5.2ns  5.3ns 3.5ns  8.8ms | 3.9us 3.2ns T.lns

Table 1: Comparison of Two Designs in Implementing The HCT

References

[Barz85] Z. Barzilai, V. S. Iyengar, B. K. Rosen, and G. M. Silberman. Accurate Fault
Modeling and Efficient Simulation of Differential CVS Circuits. In International
Test Conference, pages 722-729, Philadelphia, PA, Nov 1985.

[Cart68] W. C. Carter and P. R. Schneider. Design of Dynamically Checked Computers.
In Proc. IFIP Congress 68, pages 878-883, Edinburgh, Scotland, Aug 1968.

[Cart72] W. C. Carter, A. B. Wadia, and D. C. Jessep Jr. Computer Error Control by
Testable Morphic Boolean Functions - A Way of Removing Hardcore. In 1972
Int. Symp. Fault-Tolerant Computing, pages 154-159, Newton, Massachusetts,
June 1972.

[Jaco90] Gordon M. Jacobs and Robert W. Broderson. A Fully Asynchronous Digital
Signal Processor Using Self-timed Circuits. IEEE Journal of Solid-State Circuits,
25(6):1526-1537, Dec 1990.

[Jha89]  Niraj K. Jha. Fault Detection in CVS Parity Trees: Application to SSC CVS Par-
ity and Two-Rail Checkers. In Proc. 19th Int. Symp. Fault-Tolerant Computing,
pages 407-414, Chicago, IL, June 1989.

[Jha90] Niraj K. Jha. Testing of Differential Cascode Voltage Switch One-Count Gener-
ators. IEEE Journal of Solid-State Circuits, 25(1):246-253, Feb 1990.

19



[Kano92]

[Kano90]

[Mart89]

[Meng91]

[Mont85]

[Renn91]

[Sedm80]

[Taka90]

N. Kanopoulos, Dimitris Pantzartzis, and Frederick R. Bartram. Design of Self-
Checking Circuits Using DCVS Logic: A Case Study. IEEE Transactions on
Computer, 41(7):891-896, July 1992.

N. Kanopoulos and N. Vasanthavada. Testing of Differntial Cascode Voltage
Switch (DCVS) Circuits. IEEE Journal of Solid-State Circuits, 25(3):806-813,
June 1990.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The Design of an Asynchronous Microprocessor. Technical Report
Caltech-CS-TR-89-2, CSD, Caltech, 1989.

Teresa H. Meng. Synchronization Design for Digital Systems. Kluwer Academic
Publishers, 1991.

R. K. Montoye. Testing Scheme for Differntial Cascode Voltage Switch Circuits.
IBM Technical Disclosure Bulletin, 27(10B):6148-6152, Mar 1985.

David A. Rennels and Hyeongil Kim. VLSI Implementation of A Self-Checking
Self-Exercising Memory System. In Proc. 21th Int. Symp. Fault- Tolerant Com-
puting, pages 170-177, Montreal, Canada, June 1991.

Richard M. Sedmak and Harris L. Liebergot. Fault Tolerance of a General Pur-
pose Computer Implemented by Very Large Scale Integration. IEEE Transactions
on Computer, 29(6):492-500, June 1980.

Andres R. Takach and Niraj K. Jha. Easily Testable DCVS Multiplier. In
IEEE International Symposium on Circuits and Systems, pages 2732-2735, New
Orleans, LA., June 1990.

20



