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Abstract

In this paper we propose a distribution sensitive clustering method (DISC) for numerical values. The
purpose of DISC is to discover interesting and relevant high level concepts hidden in the underlying
data. These concepts may be organized into an abstraction hierarchy, which can then be used for query
modification in cooperative query answering. The clustering problem is formulated as a search for optimal
clustering among all possible clusterings. To guide the search for optimal solutions , DISC uses relazation
error as a heuristic utility measure that quantifies the “goodness” of clustering. Experiments have been
performed to demonstrate the effectiveness of DISC. In particular, comparison to the Maximum Entropy
clustering method shows that DISC is more effective in high level concepts discovery with same degree
of compntation complexity.

1 Introduction

Conventional query processing in database management systems answers a query by listing all the tuples
that satisfy the query conditions. If no tuples satisfy the query conditions, a null answer is returned. The
null answer may be interpreted by the user in several different ways. For example, the user may think that
the query is correctly posted, but there are no tuples in the database that satisfy the query conditions. Or
the user may think that the query is not correctly posted based on some erroneous presuppositions[11]. A
database system can be made to be much more user-friendly, or more “cooperative,” if extra information is
provided in case a null answer is returned. For example, the system may inform the user that the query is
not correctly posted due to violation of some integrity constraints.

Another problem with the conventional database systems is that the user is required to define a query in
the exact terms of the underlying data schema. Thus, the user must understand the data schema in order
to satisfactorily solve a problem. Due to normalization of schema, this understanding is difficult.

Recently, several approaches have been introduced to deal with the above problems. In particular, a
knowledge-based approach that provides cooperative query answering was used to develop CoBase, a coop-
erative database system [3, 2]. Cooperative query answering is capable of providing general, neighborhood,
and associative information that is relevant to queries. This capability is facilitated by a knowledge structure
called type abstraction hierarchy. The hierarchy organizes a set of types ! where a type at a higher position is
said to be more generalized than a type at a lower position, and the latter is said to be more specialized than
the former. Operations are provided for generalization (moving up the hierarchy), specialization (moving
down the hierarchy), and association {moving between hierarchies}.

Specifically, to eliminate the ambiguity of null answers, CoBase returns approximate answers when exact
answers are not available. CoBase derives approximate answers by relaxing (generalizing) query conditions
according to the type abstraction hierarchy. To relieve the user from having to understand detailed schema
and data semantics, CoBase provides conceptual querying capability, making high level problem solving
much easier.

*This work supported in part by DARPA contract N00174-91-C-0107
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1These types are usually called concepis or categories in the area of conceptual clustering. We shall use these terms
interchangeably when the context permits.



One of the key issues in the development of CoBase is to generate type abstraction hierarchies for various
domains. For small domains, abstraction hierarchies can be generated manually. For large databases,
however, automatic generation of type abstraction hierarchies is necessary. Therefore, a clustering method
is proposed in this paper that can automatically generate type abstraction hierarchy for a single numerical
domain.

Basically, clustering of numerical values can be done in two ways. First, we start from one cluster, then we
find “cuts” to derive more clusters. We repeat this process until a pre-specified criteria is satisfied. Second,
we start with n clusters, with n being the number of distinct values, then we “fuse” clusters together until,
again, a criteria is met. In this paper, we shall propose a methodology based on the first top-down cutting
approach.

The problem of clustering numerical values is formulated as a search for a certain number of cuts such
that the resulting clustering is “optimal” in some sense. There are two basic issues: (1) determine the
number of cuts, and (2) determine the cuts. In this paper, we assume that the number of cuts is given
(either by the user or some other methodology). We develop the notion of relaration error as a measure to
quantify the “goodness” of clusterings. The optimal clustering is the one that minimizes relaxation error.

Common heuristics based either on value distribution or frequency distribution (but not both) are not
adequate. We shall use a biggest gap (BG) method and a maximum entropy (ME) method to illustrate
this [15, 11. BG method is based on the value distribution of data, and will always find the cuts at the
largest gaps. ME method is based on the frequency distribution of data, and the cuts maximize entropy.
The inadequacy of both methods can be shown by using the following set of numbers as an example.

(7,9,13,14,17,30,37,40,45,47,50,75,75,100,100)

Suppose we want to find two cuts. Using the BG method, the cuts will be between 50,75 and between
75,100. In both cuts, the gaps are the biggest (25). As can be seen, the numbers of values in each cluster are
11, 2, and 2 respectively. This causes the loss of much information due to the skewed frequency distribution
— the less evenly distributed, the more loss of information. On the other hand, by ME method, the cuts will
be between 17,30 and between 47.50. Each resulting cluster contains exactly the same number of values.
However, the result can be improved if the cut 47,50 is shifted to 50,75. This shows that ME method is not
sensitive to the value distribution, and may perform poorly for skewed distributions.

Idealty, we would like the clustering scheme to have both the advantages of the BG method and the
ME method. That is, the resulting clusters have more or less an even number of values in each cluster
{such that the information loss due to clustering is minimal), and at the same time locate cuts at bigger
gaps. Therefore, a new measure relnzation error which simultaneously considers both frequency and value
distribution is introduced in this paper. This will be used to develop a new method DISC to cluster attribute
values which minimizes the relaxation error.

The rest of the paper is organized as follows. Section 2 discusses related works. Section 3 introduces the
notion of relaxation error and its evaluation. Section 4 presents the algorithm of DISC. Section 5 compares
relaxation error of DISC with that of ME. Section 6 develops algorithms for determining optimal cuts with
minimun relaxation error. And section 7 presents empirical results of DISC based on a latge transportation
database. Finally, section 8 gives our conclusion and plans for future work.

2 Related Works

Currently, most applications of numerical value clustering are in the areas of statistical pattern recognition
and empirical machine learning.

In statistical pattern recognition, three commonly used classification techniques are the Bayesian classifier,
linear discriminants, and nearest neighbor methods [14]. Bayesian classifiers aim at minimizing the overall
error rate, thus building an optimal classifier. A new evidence (instance) e is classified to a class C; such that
for all j # 1, p(Cile) > p(Cjle). Although theoretically optimal, Bayesian classifiers are not practical since
the direct application of the above rule requires an enormous sample size to cover all possible combinations of
evidence. Linear discriminants use a linear combination of the evidence to separate among the classes and to
select a class for a new instance. They are quite simple in structure, but their error rate is higher than those
of the Bayesian classfiers. For them to obtain best results, it is required that the data distribution be known
(e.g., normal distribution). In contrast, nearest neighbor methods need not know the data distribution. For



a new instance, its distances to every other instances are calculated, and the nearest neighbor is determined
by comparing the distances. The class containing the nearest neighbor is selected for the new instance.
To calculate distance, three commonly used measures of closeness are (1) absolute distance, (2) Euclidean
distance, and (3) various normalized distances.

Empirical machine learning and classification systems learn from pre-classified examples to derive rules
that can be used for classifying future instances. The rules are usually organized in a decision tree [12]. To
construct the decision tree, an attribute is selected at each node. The criteria for attribute selection is based
on minimization of some heuristic measures, e.g., information entropy. For this purpose, an attribute with
numerical values must be clustered (discretized) before it participates in selection process [4].

Both the statistical pattern recognition and empirical machine learning methods described above are
supervised: given the category membership of examples, the learning systems derive rules that summarize
the comnmonality among members of the same category and differences among competing ones. These rules
can then be used to classify future instances. In contrast, the clustering method proposed in this paper,
DISC, is an unsupervised learning method. Category membership information is not available, and DISC
discovers meaningful categories in the data.

DISC is a special form of conceptual clustering where only a single numerical attribute is used to describe
concepts. In most current conceptual clustering systems, concepts are described by a set of attributes
(features) [5, 6, 7, 9, 13]. In these systems, objects that are similar to one another are clustered into the
same category. Similarity among objects is usually defined based on inter-relationships among attributes
that describe the objects. The meaning of similarity becomes unclear if we specialize its definition to a single
attribute. In addition, these systems treat numerical values as categorical — order between numerical values
is usually ignored. This is unacceptable for cooperative query answering, especially for deriving approximate
answers. Therefore, these methods are not suitable for generation of type abstraction hierarchies.

An approach related to DISC for clustering similar attribute values was proposed in [10]. In this approach,
if-then rules are generated from database for pattern-based knowledge induction (PKI). However, PKI only
works well for discrete non-numerical domains. Therefore, continuous numerical domains will have to be
pre-clustered in order to apply PKI algorithm.

3 Relaxation Error

In this section, we shall introduce a new notion called relazation error to measure clustering quality. To
explain relaxation error, let us consider the following scenario. Given a cluster C = (z1,22,...,2s), and
a query with a condition “X = z,” where z; is a value in C. If there is no answer for this query, then
CoBase relaxes the query condition from “X = #;” to “@y < X < z,"” to derive approximate answers. The
“goodness” of the approximate answers is measured by the difference between the exact value z; and the
approximate values a; that are returned by CoBase. The sum of these differences weighted by the probability
of the occurrence of each value is called the relaxation error of #;, RE{(z;). The smaller the relaxation error,
the better the approximate answer is. Formally, let f; denote the frequency of occurring for z;, then the
probability of returning x; by CoBase is p; = {,& where N = Z;-‘:l fi- In database, f; is the number of
tuples that have X = z;, and N is the total number of tuples in a table or view. Thus,

RE(z) = % Y1 lai - 2] M
j=1

We can extend the above definition for the entire cluster. The relaxation error of a cluster C, RE(C), is
defined as the mean relaxation error for all the values in C. That is,

RF(C) = 3" wRB(z) @

where g; is the probability of z; being queried. ¢; can be approximated by -‘% or provided by domain experts.
In this paper, we assume the probability of x; being returned, p;, and the probability of z; being queried,
g, are the same and equal to f;/N.



If the cluster C is partitioned into s sub-clusters, we can define the relaxation error of a clustering
K, = {C1,Cq, ..., C,} with s sub-clusters as

RE(K,) = -]'b- > fc,RE(C:) (3)

i=1

where fo, = 3¢, fi- Substituting (1) into (2), we have

RE(C)= Y fﬁf > f'.—fs—liﬂj-xk (4)

£;€C; TREC; *

Substituting (4) into (3), we have

RE(K,) = %z Z Z fifule; — 2. (5)

i=l r,€C, 2x€C;

Notice that RE(K,) is the mean relaxation error for all values in C, with the constraint that values in
different clusters do not contribute to each other’s relaxation error. This implies that approximate answers
are not allowed to “cross the cluster boundaries.” Thus, RE(K,) decreases as the number of sub-clusters,
s, increases. Thus, the more clusters K has, the smaller the mean relaxation error RE(K,) is. Therefore, to
compatre relaxation error for different clusterings, we need to use the same number of sub-clusters s.

4 The DISC Algorithm

For a given number of cuts k, DISC uses (5) to evaluate all the possible k cuts, and selects the one with the
minimum relaxation error. Obtaining this global optimal solution takes O(n*) time to complete. This is not
practical for a large k. Therefore, a greedy strategy is used to derive sub-optimal solutions where the best
cut is determined first, then the second best cut is determined while keeping the best one fixed, and so on.
Using this strategy, DISC is presented as follows.?

Algorithm DISC(C.,k)
DISC finds k cuts to cluster C into k+1 sub-clusters
NumCut = 0
repeat
Call BestCut to find the best cut ¢
Partition C at ¢ /* remove ¢ from legitimate cuts */
NumCut = NumCut + 1
until NumCut = k

5 Relaxation Error of DISC and ME

BG and ME are methods that use simple heuristics for clustering. Since in general BG yields a larger
relaxation error than that of ME, we shall only compare DISC with ME.

For ease of presentation, let the (probability) distribution of data be continuous. To further simplify
the argument, we shall only consider the behavior of DISC and ME for a single cut. First we present the
continuous versions of the definition of relaxation error. Consider figure 1, where C' = {xla < z < b} is
partitioned at ¢ into two sub-clusters C; = {z|a < z < ¢} and C3 = {z]c < z < b}. The relaxation error of
Cis

bopb
RE(C) :] f plz1)p(z2)|z1 — #o|dz1des. (6)
a a

2" he discussion of an efficient implementation of the procedure BestCut is postponed until section 6.
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Figure 1: A distribution partitioned at ¢

Notice that in (6) the difference of every pair of values |21 — z2| is added to the summation {wice. Therefore,
equation (6) can be rewritten as

b b
£© =2 [ plep(e(es - ai)dradz. @
a 1
Apply integration by parts first to zq, then to x1, we have

RE(C) =2 j b F(z)[l - F(2))dz (8)

a

where F(z) = [ p(z)dz. (We may interpret F(x)[1-F(x)] as the contribution by x to the overall relaxation
error. And the relaxation error is the sum over all these contributions.) For the sub-clusters C; and Cj, the
relaxation errors are

E(Cy) =2 / " F@)[F(c) - F()]d (9)

b
RE(Cy) = 2 f [F(z) - F(e)][1 — F(a)]dz (10)

respectively. Therefore, the relaxation error of the clustering Ko = {C},Cs} is

RE(Ka) =12 /c F(z)[F(c)— F(z))dz + 2jb[F(z) ~ F(o)][1 - F(z))dz. (11)

The goodness of Kz can be measured by the reduction of relaxation error RE(C)— RE(K3), which is denoted
as R(c). Using (8) and (11), we have

[ b
R(e) = 2(1 - F(c)) / F(x)dz + 2F(c) / (1 - F(z))dz. (12)

Differentiating (12) with respect to ¢, we obtain

b ¢
R(e) = 2p(c)[f (1= F(z))dz — f F(z)dz]. (13)

"The optimal binary cut ¢ where R(c) is maximum can be obtained by solving R'(¢} = 0. Using this property,
we shall now compare the relaxation error of DISC and ME in the following.
Theorem 1. Let D and M be the optimal binary cuts by DISC and ME respectively, then R(D) > R(M).
Proof. The theorem can be proved if we can show that D is uniquely determined by solvmg R(D)=0
, and R"(D) < 0 (such that R(D) is maximum). From equation (13), R'(c) = 0 implies f (1 - F(z))dz —
f F(x)dx = 0. For increasing c, f (1 — F(z))dz is strictly decreasmg and [ F(x)dx is strictly increasing.
Thus, f (1- F(z))de —f F(x)dz is strictly decreasing. Since f (11— F(z))d=z -f F(z)dz is greater than
0 for c=a, and less than 0 for c=b, it must be 0 at exactly one point ¢ between a and b. Therefore, D is
uniquely determined by solving R'(D) = 0.



To show R’(D) < 0, we first differentiate (13) to obtain R"(D) = 2p’(D)[f£(l — F(a:))da:—fap F(z)dz)-
2p(D). Since f;(l — F(z))dz — f;D F(z)dz = 0 from R'(D) =0, we have R"(D) = —2p(D) < 0. Thus, we
have shown that D is uniquely determined by solving R'(D) = 0 and R”(D) < 0. This implies that R(D) is
maximum, so R(D) > R(M). O

Theorem 2. Let D and M be the optimal binary euts by DISC and ME respectively. If the distribution
of data is symmetrical at the median, then D = M (i.e., the cuts determined by DISC and ME are the same).

Proof. First let us determine M. For a single cut ¢, entropy is computed by the following

E = F(c)logF(c) + (1 — F(e)log(1 — F(c)).

Note E has the maximum value at the median m where F(m) = 1/2. So we have M = m.
Now if we can show that the reduction of relaxation error is maximum at M, i.e., R'(M) = 0, then the
proof is complete. Setting ¢ = M in R'(¢), we have

b M
RIM) = 25(M)] /M(l _ F(z))dz - f F(2)dz.

Since the distribution is symmetrical at the median, we have M —a = b— M and F(z) = 1 - F(2M — z) for
@ < 2 < M. Substituting these into R'(M), it can be shown that R'(M) = 0. Thus, the theorem is proved.
[}

Notice that symmertry at the median is a sufficient, but not necessary, condition for D=M. D=M is
still possible for asymmetrical distributions. However, our experience with empirical results reveals such
condition is unlikely to ocecur. In fact, we shall define “skewness” for a data distribution in section 7, and
show that in general as the skewness of the distribution increases, the relaxation error improvement of DISC
over ME increases.

6 Computation Complexity

Let us now compare the computation complexity of DISC and ME for clustering numerical values.

6.1 Computation Complexity of DISC

Since computing relaxation error needs to consider all pairs of values, it takes O(n?) time to complete in
the worst case where n is the number of distinct values of data. To determine the best cut, it is necessary
to evaluate relaxation error for n-1 possible cuts. Therefore, the time complexity for finding the best cut is
O(n®). This can be improved by using a new representation of relaxation error. The new representation is
obtained from equation (2) by the following manipulation which is discussed in [8]. First we get rid of the
absolute difference between values by

n n
Yo bl =23 (5 —x)
i=1 =1 i>j
Replacing the difference
2 —x; = (2 — 2imy) + (2ic1 — Tic2) + o+ (T4 — 25),

we have

n—1
Z(xi - .‘Ej) = Z K}.(zh“ - a:;.)
i>5 h=1

where K, is the number of terms of type (&; — ;) in }:iy containing Tph41 — zn. K can be computed
by multiplying the number of j’s less than or equal to h by the number of i’s greater than or equal to h+1.



Thus we have K = (z;'zl fj)(2?=h+1 i) = F(R)(N = F(h)), where F is the cumulated frequency and N
is the total number of values 3 ;_,; fe. Therefore

n—1
RE(C) = 155 3 F(R)(N = F(h))(zns1 = za). (14)

h=1

The above definition eliminates the double summation in equation (2), thus improving the efficiency of
calculating relaxation error of a cluster from O(n?) to O(n). ® The complexity for determining a single best
cut is now reduced to O(n?).

When determining the best cut, each possible cut is evaluated sequentially in a loop. For each iteration,
only a single value changes its memship from one cluster to another. More specifically, a cluster C' =
(1.1, f1:n) may be changed to C1 = (%1:n41, f1:n41) Where a new value z,41 larger than any other values
is added. C may also be changed to Cs = (%2, f2.n} where an old value 2, smaller than any other values
is deleted. Since the clusterings resulting from these changes are very similar to each other, some of the
computations may be re-used for greater efficiency. Motivated by this observation, we shall derive two
incremental formulas for calculating relaxation error of a cluster, one for C and another for Cy given the
relaxation error of C. In what follows, N = 3_7_, f; is the total number of values in C.

Based on equation (14), we have

2 n
RE(Cy) = TP ; F(R)N + fav1 — F(B)](zh41 — @)
After simple manipulation, we derive
2
RE(Ch) = m{s + far2[T+ N{znt1 — za)]} (15)

where S = Y720 F(h)N — F(A)}(zn41 — 25) and T = Sn_) F(h)(zhe1 — 21). A similar result can be
derived for €y when a value is deleted from C:

RE(Cy) = gregoplS = W] (16)

where W = Z:;II[N — F(h))(zh41 — zn).
Based on (15) and (16), the algorithm for finding the best cut is shown below.

Procedure BestCut(C)
The input is C' = (1'1:,1,f1;n). N = E?=1 fi
The procedure returns the best cut with minimum relaxation error.
Initislization:
T=N1 251 =0,N3:N,Aiin=£n--$1
W= S hoi N = F(A)}(za41 — 21), So = RLF(R)N = F(h)](zhe1 — 23)
for h=1 to n-1 do /* evaluate each possible cut */
T=T4+ Nl(dff, —Zp-1)

31 = 31 + th
Ni=Ni+ fn
RE(Cy) = 25, /N{
Sz =5 — W
No =Ny — fu

W =W ~ No(Zhy1 — Zn)
RE(Ch) = 25, /N3
RE = JLRE(C)) + 22 RE(C))

3Fyom this new definition of relaxation error, we can clearly see that both frequency and value distributions are considered.
Essentially, the relaxation error is the sum over all gaps weighted by accumulated frequency distribution on both sides of the
gap. Compare equation {8) in section 4.

-3
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Figure 2: Data skewness and unclustered relaxation error of all attributes

if RE < Min then
Min = RE, Cut = h
Return Cut as the best cut.

In the above procedure, the initialization of variables take O(n) to complete. For each iteration of the
loop, we can now calculate the relaxation error of the tentative cut in constant time. Since there are n-1
tentative cuts to be examined, the efficiency of procedure BestCut(C) is O(n). Consequently, the efficiency
of determining the best cut is reduced from O(n?) to O(n). For multiple cuts, DISC uses a greedy strategy
which determines k cuts in O(kn) time.

6.2 Comparison of DISC and ME

Let us now consider the efficiency of the ME method [15, 1]. ME finds the best cuts by first dividing the total
number of data by the specified number of clusters. This provides us with the initial cuts, which may be
tentative because same values may be clustered into different clusters. Therefore, local perturbation (a value
is put into each of the adjacent clusters) is used to fine tune the clustering, and the computed entropy is used
to determine the best clustering. The most time consuming operation is the summation of the frequency of
each data value, which is linear. Since both finding the initial cuts and local perturbation can be done in
constant time, ME takes linear time to complete.

We have shown that DISC finds the k best cuts in O(kn) time. Since k is a constant given by the
user, DISC essentially takes linear time to complete. Therefore, DISC and ME have similar execution time

complexity.?

7 Empirical Evaluation

We have implemented a greedy DISC and a simple ME method as described in the previous section. In
this section, we shall evaluate DISC empirically from a transportation database that is used for planning
military missions. It consists of characteristics about ships, aircrafts, tanks, trucks, information about cargo
and units, and information about airports and seaports. The database is organized into 104 relations, with

4Note that in the above discussion, we assume the input to both ME and DISC is given as a sorted series of data. This
assumption may not hold in practical applications. Often the input data is given unsorted, and it requires to be sorted before
either DISC or ME can be applied. The cost of sorting turns out to be dominating for both ME and DISC methods, because
sorting the input takes at least O{nlogn) time to finish. Taking this into account, DISC has the same computation complexity

as that of ME.
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the chart represents an attribute in the transportation database.

the number of tuples in each relation ranging from 0 to 195,598. There are 376 numerical attributes, 136
among which have more than 10 distinct values 5,

In the following, we shall compare the relaxation error of the resulting clusterings of DISC with that of
ME. We shall also investigate the effect of asymmetrical data distribution on DISC performance.

The skewness of a data distribution is defined as the difference between the relaxation error at the mean

p and at the median m, normalized by the unclustered relaxation error; that is,

|[RE(p) — RE(m)|
RE(unclustered)

Skewness =

Clearly, if the distribution is symmetrical, then u = m, and skewness = 0. The skewness and unclustered
relaxation error for each of the 136 attributes in the transportation database are computed and the results
are plotted in figure 2, with their means and standard deviations shown in table 1.

Skewness Relaxation Error
mean 0.114 0.863
std dev 0.142 0.328

Table 1. Average skewness and unclustered relaxation error of all the 136 attributes in the transportation
database.

Based on the data values and frequency of the attribute, we compute the skewness of each attribute
by equations {1} and (2), and relaxation error by equation (5) for DISC and ME respectively. Figure 3
displays the difference of single-cut relaxation error for DISC and ME with varying data skewness for all
136 attributes. The difference is computed by the relaxation error difference of ME and DISC divided by
the unclustered relaxation error, i.e., [RE(ME) — RE(DISC)]/RE(Unclustered). The figure clearly shows
that in general the improvements of relaxation error of DISC to ME increases as the skewness of the data
distribution increases. The dispersing nature of the trend is due to the fact that the data are taken from
various domains with different distributions.

For each of the 136 attributes, the best single cut is determined and its relaxation error is computed
using DISC and ME, respectively. Figure 4(a) shows the distribution of relaxation error for DISC, and figure
4(b) shows that of ME, with their difference shown in figure 5. Figure 5 shows that for a single cut, the
relaxation error of DISC is always smaller than that of ME, as shown in theorem 1. The means and standard
deviations of the single-cut relaxation errors are shown in table 2.

5These inciude key-like attributes, which are essentially uniform. Since the keys are roughly symmetrical at the median, the
performance of DISC and ME will not differ much. For better comparison, we normalize all data such that they have the same

mean and standard deviation (4 = 0,0 = 1).
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To show the effect of multiple cuts on relaxation error, the relaxation errors of DISC and ME with
selected number of cuts for the attribute “UNIT.CHARACTERISTICS.OVERSIZE_CARGO_MTONS” are
shown in figure 6. This attribute is selected because of its large size (12,740 tuples). Further, its skewness
(0.239) and unclustered relaxation error (0.359) are approximately at the center of the possible ranges. In
general, the relaxation error decreases as the number of cuts increases, while the rate of decreasing reduces
as the number of cuts increases. Figure 6 shows that DISC performs better than ME for all cuts. Note that
the relaxation error of DISC with 4 cuts is lower than that of ME with any number of cuts. Thus, DISC
reduces relaxation error more efficiently than ME. Also notice that for this attribute, the DISC curve has
a knee around 5 cuts. This information may be useful in determining the optimal number of cuts for the
attribute if it is not specified by the user.

To evaluate DISC for multiple cuts, DISC is run repeatedly for each attribute to cluster the data into
successive smaller sub-clusters. This process is terminated when a sub-cluster contains less than 10 distinct
values. If an attribute has k cuts, then it has a set of clusterings with the number of cuts in each clustering
ranging from 1 to k. For each of the k clusterings, we compute its relaxation error. We repeat this process for
all the attributes, and the resulting relaxation error distribution is shown in figure 7(a). The total number
of cuts for all the attributes using this approach is 1173. The average number of cuts per attribute is 8.6.
Similarly, we compute the relaxation error of ME, and the resulting relaxation error distribution is shown in
figure 7(b). The difference of relaxation error between DISC and ME is shown in figure 8. The means and
standard deviations of the relaxation errors due to multiple cuts are shown in table 2.
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Figure 7: Relaxation error distribution for all 136 attributes with a total of 1173 clusterings

Single-cut (136 clusterings) | Multiple-cut (1173 clusterings)
DISC ME DIFF DISC ME DIFF
mean | 0.434 0.520 0.141 0.119 0.184 0.150
std dev | 0.174 0.171 0.153 0.157 0.177 0.172

Table 2. Comparison of the relaxation errors of DISC and ME.

From figure 8, we note that the relaxation error of DISC is always less than that of ME for a given number
of cuts. Thus, DISC also performs better than ME for multiple cuts. The average difference of relaxation
error between DISC and ME is greater for multiple cuts (0.150 vs 0.141) as shown in table 2.

Example. We use the attribute LENGTH in table SHIPS as an example to show how DISC can be
used for discovering interesting sub-concepts. The table SHIPS has 153 tuples, and the attribute LENGTH
has 33 distinct values, ranging from 973 to 947. DISC and ME are used to cluster LENGTH into three
sub-concepts: SHORT, MEDIUM, and LONG. The results are shown in figure 9, where vertical broken lines
are used for separating concepts. The cuts found by DISC are between 636,652 and 756,791, and those of
ME are between 540,560 and 681,685. The average gap of DISC, 25.5, is much bigger than that of ME,
12. In particular, the cut between 681,685 determined by ME is very bad, because it is in the middle of a
dense region. To see the effectiveness of the greedy strategy used by DISC, we also determine the optimal
cuts by exhaustive search. They are between 605,635 and 756,791, with an average gap of 32.5. The greedy
strategy is able to find one of the optimal cuts, while the other cut is only slightly off from the optimal one.
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Figure 9: Clustering of SHIPS.LENGTH by DISC and ME

This example shows that DISC is more effective than ME in discovering relevant concepts embedded in the
underlying data.

8 Conclusion

In this paper, we present a distribution sensitive clustering method (DISC) for numerical values (integer or
real numbers). The goal of DISC is to discover interesting and relevant high level concepts hidden in the
underlying data. These concepts may be organized as an abstraction hierarchy which is used for relaxing
query conditions to derive approximate answers when exact answers are not available, or used for conceptual
queries.

Clustering numerical values is formulated as a search for a given number of optimal cuts. To guide
the search for optimal solutions, we introduce a notion of relazalion error as a measure for “goodness” of
the clustering. Relaxation error takes into account both value and frequency distributions of data. For
generation of type abstraction hierarchies, therefore, relaxation error is more suitable than information
entropy, which only considers frequency distribution of data. An efficient implementation of DISC with O{kn)
time complexity is presented, where n is the number of distinct values of data and k is the number of cuts
specified by the user. Empirical evaluation shows that DISC always performs better than the entropy based
clustering method ME. Further, the improvements increase as the skewness of data distribution increases.
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DISC is implemented as a static top down method since it preprocesses data to discover sub-concepts
from a more general concept. we can extend it to bottom up and dynamic where the cutting is determined
by the query. An interesting future work would be to explore and compare these different implementations.

References

[1] David K. Y. Chiu, Andrew K. C. Wong, and Benny Cheung. Information discovery through hierarchical
maximum entropy discretization and synthesis. In Gregory Piatetsky-Shapiro and William J. Frawley,
editors, Knowledge Discovery in Databases. AAAI Press/The MIT Press, 1991.

[2] Wesley W. Chu, Qiming Chen, and Rei chi Lee. Cooperative query answering via type abstraction
hierarchy. In Proceedings of the International Working Conference on Cooperating Knowledge Based
SystemsData, March 1990.

[3] Wesley W. Chu, Rei chi Lee, and Qiming Chen. Using type inference and induced rules to provide
intensional answers. In Proceedings of the 7th International Conference on Data Engineering, April
1991.

[4] Usama M. Fayyad and Keki B. Irani. On the handling of continuous-valued attributes in decision tree
generation. Machine Learning, 8{2):87-102, 1992.

[5] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2):139-
172, 1987.

[6] Stephen Jose Hanson. Conceptual clustering, categorization, and polymorphy. In Machine Learning,
volume 3. Margan Kaufmann Publishers, Inc., 1989.

[7] Yannis E. loannidis, Tomas Saulys, and Andrew J. Whitsitt. Conceptual learning in database design.
ACM Transactions on Information Systems, 10(3):265-293, 1992.

[8] Maurice G. Kendall and Alan Stuart. The Advanced Theory of Statistics, volume 1, pp. 49-50. Hafner
Publishing Company, 1969,

[9] M. Lebowitz. Experiments with incremental conceptual formation. Machine Learning, 2(2):103-138,
1987.

[10] Matthew Merzbacher and Wesley W. Chu. Instance-based clustering for databases. In Proceedings of
the 8th Asis SIG/CR Classification Research Workshop, October 1992.

[11] A. Motro. Seave: A mechanism for verifying user presuppositions in query systems. ACM Transactions
on Office Information Systems, 4(4):49-50, 1986.

[12] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[13] R. E. Stepp and R. S. Michalski. Conceptual clustering: Inventing goal-oriented classifications of
structured objects. In Machine Learning, volume 2. Margan Kaufmann Publishers, Inc., 1987.

[14] Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems That Learn. Margan Kaufmann
Publishers, Inc., 1991.

[15] Andrew K. C. Wong and David K. Y. Chiu. Synthesizing statistical knowledge from incomplete mixed-
mode data. J[EEE Transactions on Patlern Analysis and Machine Intelligence, 9(6):796-805, 1987.

13



