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ABSTRACT OF THE THESIS

CFC: An Efficient Stream-Processing Environment

by

Arman Bostani
Master of Science in Computer Science
University of California, Los Angeles, 1992

Professor D. Stott Parker, Chair

This thesis describes the CFC, an efficient stream-processing environment.
Stream-processing applications are developed using F*, a new programming lan-
guage which combines logic programming, rewriting and lazy evaluation. Our
primary focus in this work is to develop an environment for the efficient execution
of F* programs and, where necessary, to provide extensions to the F* language
itself.

In the course of this research, we have developed a compiler that translates a
class of F* programs (called DF*) into instructions for an abstract machine, called
DFAM. We show that it is possible to directly translate DFAM programs into C
programs which are extremely portable and efficient.

CF* is introduced as a novel extension to the C programming language, pro-
viding a non-deterministic function call mechanism. We show that general F*

programs can be compiled into an extension of DFAM, called FAM. A compiler

viil



is described which compiles FAM programs into CF*, Furthermore, we show that
it is possible to efficiently implement non-deterministic control structures, such as
those found in CF*, on conventional machine architectures.

Finally, we have extended F* to make it suitable as a general purpose pro-
gramming language. Also, unlike the early implementations of F*, this extended
F* programming environment does not rely on the availability of Prolog as a host

environment.
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CHAPTER 1

Background

In recent years, much research has been directed at developing programming
environments that efficiently combine various programming paradigms such as logic
programming, rewriting, functional programming and lazy evaluation. it has been
envisioned that such environments would provide the “expressive power of both
functions, and relations” [Nar 88].

In [Nar 88], Narain proposes a new language, F*, and its implementation in
Prolog, called Log(F), which can be used to do lazy functional programming in
logic. In Log(F), an F* compiler translates I'* rules into Horn clauses using an
additional primitive for lazy simplification of F* terms, called reduce.

This chapter presents some background information about F* and Log(F) which
have been used extensively at UCLA [Liv 88, Muntz 88, Parker 88a, Parker 88b]
for the implementation of stream processing systems. We also review Bop, which is
an extension to the Log(F) programming environment. Finally, we discuss related

research in the area of compiling logic programming languages.



1.1 Overview of F* and Log(F)

This section provides an overview of the F* programming language and its
implementation under Prolog, called Log(F) [Nar 88], which has been described as
“a approach for combining logic programming, rewriting, and lazy evaluation”.

F* programs are written as a set of rewrite rules of the following form:

LHS => RHS.

where LHS and RHS are terms satisfying a group of restrictions described later on
in this section.
The following example illustrates how one would write an F* program similar
to the Prolog “append/3” predicate:
append([], L) => L.
append([XIL1], L2) => [X|append(Li,L2)].
Using the Log(F) compiler described in [Nar 88], this program is translated
nto something similar to the following Prolog code:
reduce(append(L1, L2), L3) :-
reduce(L1, []),
reduce(L2, L3).
reduce(append(L1, L2), L3) :-
reduce(Li, [X|L]),
reduce([Xlappend(L,L2)], L3).
reduce([], [1).
reduce([X|L], [XIL]).

Having translated the I* “append” rules into Prolog, we can append two lists

(i.e. [1,2,3] and [4,5,6]) using the “reduce” predicate:
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?- reduce( append([1,2,3], [4,5,6]), X ).

With the above query, we receive the following instantiation for the variable X:

X = [1 | append([2,3], [4,5,6])].
The reader may have noticed that the F* append works “lazily”. That is, only
the head of the resulting list is computed. The tail of the list can be further

reduced when necessary. This method of demand driven computation is termed
lazy evaluation.

Note that in the translated F* rules, reducing a list (e.g. [1, [1, 21) will
simply return the list itself. Terms with this property are called constructor terms
and their functors are called constructor symbols. We will use expressions of the
form c(al,...,an) to denote constructors and F* functions (e.g. “append”) will be
denoted by f(al,...,an).

The following is the set of restrictions placed on F* rules:

a) LHS is not a variable. This is similar to the restriction in Prolog that the head

of a goal cannot be a variable,

b) LHS is not of the form c(tl,..,tn) where ¢ is a constructor. This restriction

provides a simple halting condition for the rewriting process.

c¢) Given an LHS of the form, f(t1,t2,...,tn), then each ti is either a variable or a
term of the form ¢(X1,...,Xm) where ¢ is an m-ary constructor symbol, and
Xi are variables. This restriction was introduced in order to simplify the

theoretical analysis of F*.



This restriction has been relaxed in our implementation of F*. For an IHS
of the form, f(t1,t2,...,tn), each ti is a constructor term. A constructor term
is defined to be either a variable or a term of the form c(tl,...,tm) where c is

an m-ary constructor symbol, and ti are constructor terms.

d) There is at most one occurrence of any variable in LHS. This restriction assures

that when reducing a term {(t1,...,tn) against the LHS of a rule f(L1,...,Ln),
we need only match each ti with Li. That is, function arguments can be
unified independently (potentially in parallel [Liv 88]). We believe that it is

possible to relax this restriction as well. Rules with the following form which

violate restriction (d):

f(A,A) => RHS.

can always be rewritten as:

f(A,B) => if(eq(A,B), RHS, fail).

e) All variables of RHS appear in LHS. This ensures that reductions never produce

non-ground terms.

Like Prolog, F* is a non-deterministic language. Where, in Prolog, a given
goal may evaluate to true more than once, an F* function may have more than

one return value. For instance, given the following F* code segment:

f => 10.
f => 20.



the function £ has two return values, 10 and 20. In Log(F), the rules for £ are
translated to the following reduce rules:

reduce(f, 10).

reduce(f, 20).
Therefore, the reduction of £ using the Prolog goal, reduce(f, X), will succeed

twice, instantiating variable X to the value 10 and then to 20.

1.2 Related Research

In the past few years, much attentions has been focused in the area of compiling
logic programs. The majority of current Prolog compilers are in some way related
to the work presented by Warren in [Warr 83]. Warren describes a method for
the compilation of Prolog, through the use of an intermediate code for a virtual
machine referred to as the Warren Abstract Machine (WAM).

In a similar approach Mellish [Mell 85] describes the compilation of Prolog
into a procedural language with first-class continuations, called POPLOG. Mellish
also argues that the majority of Prolog programs are directed and deterministic
and can therefore be directly compiled into efficient code running on conventional
machines.

In [Bruy 86], Bruynooghe suggests compiling Prolog to Pascal in order to im-
prove garbage-collection performance in Prolog. Although the main motivation of
this paper is developing static garbage collection mechanisms for Prolog, his work

provides interesting insights into how Prolog-like languages can be translated into



procedural languages.

Weiner and Ramakrishnan [Wein 88] describe the implementation of “piggy-
back” Prolog compiler which translates Prolog into C. Much like our work, it is an
attempt to prove that Prolog (or logic programming languages in general) can be
efficiently mapped onto a conventional architecture. Their Prolog compiler relies
heavily on user supplied annotations to generate efficient code. Non-determinism
is implemented using a continuation-passing mechanism similar to [Mell 85].

Boyd and Karam [Boyd 90] describe a “dual” Prolog and C programming envi-
ronment. Prolog programs are converted to C using a method similar to [Wein 88].
Non-determinism is handled through the usage of a continuation list. Emphasis is
placed on the potential for the hand-tuning of C code generated by the translator.

There have also been several attempts at embedding logic programming in
functional languages [Hayn 86, Kahn 84, Sriv 85, Stic 88, Tsan 88]. In particular
there have been many attempts at embedding logic programming in Lisp like lan-
guages. Kahn and Carlsson [Kahn 84] describe two implementations of Prolog on
Lisp machines. Backtracking is supported through the use of continuations.

Haynes [Hayn 86] gives a taxonomy of embeddings and introduces the notion of
“complete” embeddings. He goes on to show how logic programming control] states
(e.g. during depth first search) can be implemented using Scheme’s first-class con-
tinuations. Haynes also argues that language support for first-class continuations
is essential for embedding logic programming in that language.

Srivastava [Sriv 85] also describes the embedding of logic programming in an



extended Scheme language, called Scheme/L. A similar approach to [Hayn 86] is
used in the implementation of backtracking. The primary emphasis of this work,
however, is on the efficient implementation of logic variables in Scheme /L.

Researchers have also developed new programming paradigms which combine
various aspects of functional and logic programming [Ders 85, Levi 87, Tama 84,
van E 87]. Tamaki [Tama 84] describes a language which combines rewriting and
logic programming. This is accomplished through the introduction of a reducibil-
ity predicate similar to the Log(F) reduce. In effect, the reducibility predicate
introduces a form of extended unification to logic programming,.

Dershowitz and Plaisted [Ders 85] extend logic programming through the usage
of conditional rewrite rules. In [Levi 87], K-LEAF is described as an experimental
language based on extending Horn Clause Logic with equality. van Emden and
Yukawa [van E 87] also propose a methodology for extending logic programming
mechanisms to include functional programming through the introduction of equal-
ity. They argue for the implementation of equation solving as a special case of

SLD resolution.

1.3 Bop

In [Parker 92], Parker describes the Bop programming environment. Like our
work, the development of Bop was motivated by the need for an efficient and
flexible stream processing environment. In contrast with the CFC, however, Bop

was designed as a portable extension to Prolog.



The Bop environment combines programming paradigms such as logic program-
ming, conditional rewriting, narrowing, functional programming and lazy evalua-
tion. Bop’s syntax and semantics are similar to that of F*, but two major differ-
ences exist.

Firstly, Bop provides the ability to write conditional rewrite rules. These rules

have the following form:

LHS => RHS :- Ceondition.

where LHS and RHS are terms which satisfy similar rules as those of F*. Condition
is a Prolog term that must be satisfied before the RHS is reduced. In essence, this
approach provides the capability of writing conditional rewrite rules.

Another important feature of Bop is its ability to perform narrowing which is
a form of term rewriting with logic variables. In Bop, restriction (e) in F* has
been removed. Therefore, it is possible for Bop terms to contain variables and for

variables to become bound when rules are applied. For instance, consider the rule:

power(X, 0) => 1 :- dif(X,0).

With Bop, there is a narrowing

power(2,P) =>> 1

that binds the variable P to 0. With F* however, there is no reduction for the
term power (2, P) since it is not a ground term.
As with Log(F), Bop rules are translated into Horn clauses. The Bop compiler,

however, makes much greater use of clause indexing features of modern Prolog



systems to produce more efficient Prolog code. We should also note that many
of the ideas presented in this work on the compilation of F* can be applied to

compiling Bop.



CHAPTER 2

Introduction

2.1 Purpose of this thesis

Stream processing systems, such as those being developed at UCLA, need to
be able to handle large quantities of data distributed over many processors on
a network. The data often takes the form of time series, and stream operations
can range anywhere from applying simple stream operators to performing heavy
numerical computations.

In the implementation of F* in the Log(F) environment, F* rules are translated
to Prolog clauses. This implementation provides a flexible environment where Pro-
log and F* programs can be easily combined. Unfortunately, in many cases, F*
programs developed under the Log(F) environment, do not provide the perfor-
mance necessary for the efficient implementation of stream processing,

This thesis explores the feasibility of compiling F* programs into a more con-
ventional programming language such as C. By compiling F* programs into C, our
goal is produce small, portable, high performance modules that can be used as the
building blocks for an efficient stream processing system.

Also, in our experience with programming in the Log(F) environment, we have

10



noticed that F* has primarily been used as an “embedded” rather than the primary
language. That is, for any given program, most of the code is usually written
in Prolog and only small portions of the code which require lazy evaluation or
rewriting have been developed in F*. This is in part due to the performance
problems mentioned earlier and the lack of important features in the language
which we will describe throughout this thesis.

In developing the CFC, our purpose has been to extend F* in order to make it
sultable as a general purpose programming language. Our objective is to create a
total, integrated environment which does not rely on the availability of Prolog as

a host environment.

2.2 Why Compile to C?

As previously mentioned, we did not feel that the Log(F) implementation of
F* provided sufficient performance for the implementation of an efficient stream
processing environment. This is primarily due to the fact that all F* rules are
translated into reduce clauses rather than separate Prolog predicates. Also, to
run even a small F* program, we would need to execute a Prolog interpreter which
is a rather large executable’.

Two other alternatives exist for the implementation of F*:

1. Translation of F* to C or native machine code.

1Version 0.6 of the SICStus Prolog interpreter uses approximately 750kb of main memory
upon startup.
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2. Interpretation of F* programs using an F* interpreter.

Several questions should be explored in order to decide which alternative is

best:

1. Is there a need to interface to other languages on the machine? (i.e. providing

a simple interface for other languages to call routines in our language.)

2. What is the usual size of the programs that we will write and execute in
the language? If these programs are relatively small, the excessive size of an

interpreter can be a significant burden.

3. How well do the data structures in the language match those of the host

machine?

4. How well do the control structures in the language map to the architecture

of the machine?

In the following sections we examine these questions with respect to the im-
plementation of F*. The reader is forewarned, however, that like most difficult

problems, there are no clear-cut answers.

2.2.1 External Interfaces

None of the Prolog interpreters that we know of implements calling Prolog

predicates from external languages efficiently®. This is one the major drawbacks

2Geveral implementations of external interfaces to Prolog interpreters exist. These implemen-
tation, however, rely on starting a Prolog subprocess with which they communicate via some

12



to using interpreters. It is, in general, very difficult to provide an interface whereby
interpreted functions (predicates) may be called from an external language.

With compiled code, however, providing a callable function interface is as easy
as providing a layer for the mapping of caller data types into those of the callee,

and vice versa.

2.2.2 Program Size

Since to run interpreted programs, we always need to execute the interpreter, we
must always pay the space penalties for loading the entire interpreter. Therefore,
if the interpreter is bulky, we will need to spend considerable time on startup and
memory usage even if the program to be interpreted is comparatively small.

Since we envisioned stream operators to be small F* functions, possibly oper-
ating as a separate processes, the overhead of the interpreter would be significant.

It must be noted, however, that for executing large programs, the space advan-
tage is with interpreters. As we will discuss in the next section, compiled code is

generally much larger than the byte code representation used by many interpreters.

2.2.3 Data Structures

Conventional programming languages such as C usually have data types which
are very similar to those supported by the underlying hardware (e.g. pointers,

integers, floats, etc.). The similarity of the language data types to those supported

form of interprocess communication (e.g. TCP/IP, RPC, etc.). Thus, these interfaces tend to be
much less efficient than the usual calling interface supported by the host architecture.

13



by the host architecture enables compilers to produce efficient code for programs
written in that language.

With a language such as F*, however, which supports lazy evaluation and
complex terms, the mapping of language data types to the host architecture is
not as straightforward. A significant amount of code must be generated to create
and manipulate the language data types. In an interpretive environment, the code
for handling language data types is localized within the interpreter itself, In a
compilation setting, however, the code for data manipulation is duplicated each
time these data types are accessed.

Compilation, therefore, leads to a significant amount of bulk in the final com-
piled executable. In a comparison of compiled versus interpreted Prolog code,
[Kral 87] reports that his compiled Prolog code used ten times the amount of
memory used by his interpreted byte-code representation. This problem is a ma-

jor disadvantage of compilation.

2.2.4 Control Structures

As with data types, if the language control structures match those of the host
architecture, more efficient code can be produced by a compiler for that language.
Current conventional machine architectures are geared towards executing pro-
cedural languages. One of the major problems in compiling languages such as F*
has been the mapping of non-deterministic control constructs to underlying pro-

cedure oriented architectures. We will show that it is possible to efficiently map

14



non-deterministic control constructs to conventional machine architectures. We

believe this to be one of the major contributions of this thesis.

2.2.5 Portability and Performance

One of the key advantages of interpretive systems over traditional compilers
which generate native code is portability. Interpreters are generally written in
high level languages and in many cases contain a small core of hand written as-
sembly code, and are therefore relatively easy to port. With traditional compiler
technology, however, a great amount of work is necessary to re-target the compiler
for a new machine architecture.

By compiling to C rather than machine code, we can achieve instant portability
without the sacrifice in performance usually associated with interpreters. Also, due
to the popularity of the C programming language, instruction sets for the current
generation of microprocessors have been especially optimized for the execution
of C programs. Of course, the quality of the generated machine code depends

substantially on the C compiler used.
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CHAPTER 3

Compiling Deterministic F*

3.1 Determinacy in Prolog

Since the inception of Prolog, researchers have tried to create more efficient Pro-
log implementations by introducing user-supplied annotations [Mell 85, Newt 87,
Turk 86, Wein 88]. These annotations (i.e. mode, type, domain declarations) pro-
vide a Prolog compiler with hints about the user’s intended usage of Prolog predi-
cates. Using these annotations, a Prolog compiler is able to generate more efficient
code leading to significant improvements in performance [Wein 88).

Determinacy detection is an important aspect of such optimizations. Using the
information provided by the user, a Prolog compiler can determine whether a given
predicate is able to succeed more than once (i.e. whether it is non-deterministic).

The usage of such annotations, however, tend to be rather cumbersome. An-
notated Prolog code is often harder to maintain. If any code is modified, its
annotations must be accordingly modified. Also, it may be necessary to write
duplicate code to achieve these optimizations. For instance, an annotated Prolog
“append” predicate can be written as:

:= mode append(+, +, -),

append([], L, L).

16



append([X|L1], L2, [XIL3]) :- append(L1, L2, L3).

The mode declaration append(+, +, -), specifies that the append predicate
is to receive non-variable terms for the 1st and 2nd arguments and that the 3rd
argument will be a variable. If we needed an append with a different mode speci-
fication {(e.g. append(-, -, +)), we would either have to do away with the mode

declaration or duplicate the append predicate and rename it.

3.2 Determinacy in F*

In [Nar 88] Narain proves that there exists a class of F* programs, called deter-
ministic F* (DF*) which possess certain useful computational properties, such
as confluence and directedness. F* programs with these properties are guaranteed
to return at most one value (i.e. they are deterministic).

A DF* program is defined as an F* program P satisfying two new restrictions:

f) Let LHS1 and LHS2 be variants of heads of two rules in P, such that LHS1 and

LHS2 have no variables in common. Then LHS1 and LHS2 do not unify.

g) Let f(L1,...,Li,...,Lm) = RHS be a rule in P, where Li is not a variable.
Then in all other rules f{(K1,..., K3, ..., Km) = RHS in P, Ki must be non-

variable.

In the following examples the rules for member do not satisfy restriction (f) and

are therefore not a DF* program.
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member ([XIL]) => X.
member ([XIL]1) => member(L).

The rules for reverse and rev, however, satisfy both (f) and (g) and therefore
constitute a valid F* program.
reverse(L) => rev(L,[]).
rev([], L) => L.
rev([X{L1}, L2) => rev(L1, [XIL2]).
In contrast to the user-specified annotations introduced for optimizing Prolog,
detection and specification of determinism in F* is simply a matter of checking the
(f) and (g) syntactic restrictions. Later in this work, we will show that the detection

of determinacy in F* programs can considerably improve their performance.
y prog p

3.3 DFAM: The DF* Abstract Machine

In [Warr 83] David Warren presented a new method for compiling Prolog
through the use of an intermediate code for a virtual machine referred to as the
Warren Abstract Machine (WAM). Since its introduction, the WAM has evolved
and has become the basis of many Prolog implementations [Gabr 85, Newt 87,
Turk 86].

In the following sections, we define an abstract machine, called the DF* Ab-
stract Machine (or DFAM), which we use as intermediate representation for com-
piling DF*. Although the DFAM is not directly derived from the WAM, many

similarities exist.

18



Like the WAM, the DFAM provides facilities for the definition and calling
of procedures. Procedure arguments are passed on a global stack, and the data
structures of the DFAM are allocated from a global heap.

The major differences between the WAM and the DFAM arise in the handling
of variables. Many of the complexities associated with keeping track of variable
instantiations are eliminated since there is no variable binding in F*. There are
also considerable differences in the handling of non-determinism in our abstract

machine. These differences will be further explained in the following chapter.

3.4 Design Principles

In this section we describe the basic design principles that led to the current

definition of the DFAM.

3.4.1 Compilation of DFAM to C

An important driving force in the design of the DFAM was providing the ability
for the translation of the DFAM to C. Therefore, the DFAM has a strong resem-
blance to conventional procedural languages. For instance, groups of DF* rules
which have the same principal functor and arity are compiled into a single DFAM
function which in-turn is translated into one C routine.

Alternatively, it would have been possible to compile each individual DF* rule

into a single DFAM function. For instance, given the following DF* program :

father(’John’) => 'George’.

19



father(’David’ => ’John’.
father(’Jill’) => ’David’.

With this method, we would generate a DFAM function for each of the above
rules. Therefore, to reduce a DF* term such as father(X), where the value of X
is determined at runtime, we would need to call three DFAM functions.

This approach would dramatically increase the number of DFAM function calls.
Since each DFAM function is translated into a C function, the number of C func-
tion calls would increase accordingly. Unfortunately, in conventional architectures,
function calls are known to be rather inefficient when compared to other instruc-
tions. Our initial prototypes using this mechanism were on average 3 times slower

than our current solution.

3.4.2 Simple Instruction Set

In the past two decades, research into computer architecture design has indi-
cated that it is more effective to develop machines with smaller and simpler in-
struction sets (RISC) rather than computers with more complex set of instructions

(CISC). This phenomenon is, in part, due to the following reasons:

e It is easier to optimize and debug RISC instruction sets simply because there
are fewer instructions. Also, RISC instructions tend to be simpler than those

found in CISC architectures, and therefore easier to implement.

e It is usually harder to develop compilers that effectively use all instruction

in a CISC computer. Even when such a compiler is developed, it tends to be
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harder to debug due to the added compiler complexity.

Although RISC principles have primarily been applied to design of hardware
architectures, we believe that the aforementioned rationale also applies to the
design of the DFAM. The DFAM, therefore, has been developed with a very small

set of rather simple instructions.

3.4.3 The DFAM’s Data Types

The DFAM’s data types and the way its data structures are manipulated are
very similar to those used in SICStus Prolog. Indeed, several DFAM instructions
which manipulate data structures, directly resemble WAM instructions. Compat-
ibility with the SICStus Prolog data types allows us to easily integrate the DFAM
with the Prolog environment. This approach provided us access to many facilities
available in SICStus Prolog which are, as of yet, not implemented in the CFC.
The motivation for the usage of SICStus Prolog data types in DFAM will become

clearer when we discuss the architecture of the CFC in Section 5.1.

3.5 The Basics

There are two basic types of objects in the DFAM:

Data: These objects are used for the storage of atomic data types which include in-
tegers, floats, and atoms. The following are instances of atomic data objects:

1776, 7.04, 'Bell’. Data objects can also store list and structure descriptors.
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b (10,20,30)
10

Structure Descriptor > c/3

Heap Storage

Figure 3.1: Allocation of ¢(10,20,30) on the DFAM heap.

These descriptors are used to refer to more complex structures stored on the

DFAM global heap.

Address: These objects are used to store the addresses of defa types. They are
similar to pointers in a conventional programming language such as C. Ad-
dresstypes are used in the construction and traversal of DFAM data structure

stored on the heap.

3.6 Structures and Lists

DFAM constructs its data structures by storing objects of type data on the

global heap. Two structured types are supported:

Structures These are non-atomic objects such as the F* term: <(10,20,30).

Figure 3.1 displays the representation of this structure in the global heap.

22



c/3 represents a combination of the functor and arity of the term. The
term’s arguments appear, in order, in consecutive heap cells following the

functor/arity pair.

A structure descriptor (which is of type data) can be used to refer to this
structure on the heap. In this implementation, structure descriptors are

simply pointers to the heap location where the functor/arity pair is stored.

Lists As in Prolog, F* lists are structures with “.” as the head functor and an
arity of 2. List structures appear quite frequently in many F* application.
Indeed, in both Bop and Tangram, Lists have been used as the primary
data structure for the implementation of streams. As in SICStus Prolog,
list structures have been implemented differently from other structures for

to attain better performance.

In F*, a list is made up of two basic data items, the head and the tail. For
instance, consider the term [10 | 20], which can also be writtenas *.? (10,

20). Figure 3.2 displays the representation of this term in the heap.

Since with lists, the functor/arity pair is always *.* /2, this pair is not stored
on the heap. Instead, list descriptors simply refer to the head element of list.

The list’s tail is assumed to be stored in the next heap cell.

To illustrate how longer lists can be created on the heap, consider the list
[1, 2] which can also be written as *.’(1, *.2(2, [1)). Figure 3.3 dis-

plays the representation of this list in the heap.
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(1020}
List Descriptor -

Heap Storage

Figure 3.2: Allocation of [10 | 20] on the DFAM heap.

[2]

LS

List Descriptor to
(1, 2]

Heap Storage

Figure 3.3: Allocation of [1, 2] on the DFAM heap.
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3.7 Local Storage
Each DFAM function can have three types of local storage (local registers):

Function Arguments These local registers are of type data, and are used to
store the arguments passed to the current function. The register x_N, is used
to access the Nth argument to the current function. In DFAM, all function
arguments are “input”. That is, function arguments are not modified by the

callee.

Local Data Registers Data registers may contain any object of type data. The

register d_N, is used to access the Nth local data register.

These registers are usually used for storing intermediate results of computa-
tions. For instance, a data register can be used to save the return value from

a call to a DFAM function or result of a reduction of a DFAM term.

Local Address Registers These registers are of type address and contain point-
ers to datalocations. The register a_N, is used to access the N'th local address
register. These registers are similar to pointers in a conventional program-
ming language and are usuvally used when traversing DFAM data structures

stored on the heap.

The DFAM local registers are analogous to local variables in C. They exit only
for the duration of the function, and they are accessible only within the current

function.
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The DFAM does not limit the number of registers used in a function. The
number of local registers provided depends on the resources available on the host

system, and is therefore dependent on the given implementation.

3.8 Heap Related Instructions

In this section we introduce the DFAM instructions which are used to create
and manipulate F* structures on the heap. Note that unlike the WAM, some of
the DFAM instructions are functional and can return values. Return values form
these instructions can then be placed in registers or sent as arguments to other

instructions.

d_N = D Assigns data value D to data register d_N.
a_.N = A Assigns address value A to address register a_N.

push(D) Pushes D, which is an object of type data onto the the heap, increment-
ing the heap-top counter. This is the only DFAM instruction that actually

allocates storage on the heap. For instance, consider the following F* rule:

f => c(10,20,30).

Given that in the above rule, “c” is a constructor symbol, every time the term
“t” 1s reduced, we return the structure c¢(10,20,30). This structure can be

constructed in heap at runtime using the following DFAM code segment:

push(c/3)
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Heaptop Pointer
30 ‘
1
20
2 } ¢(10,20,30)
10
3
Structure Descriptor c/3
d_1 = mkstr(4) 4 J
Heap Storage

Figure 3.4: d_1 refers to the allocation of ¢(10,20,30) on the DFAM heap.

push(10)
push(20)
push(30)

The resulting structure on the heap is displayed in Figure 3.1.

mkstr(IN) Returns a structure descriptor which identifies a structure whose head
functor is N cells from the top of the heap. Therefore, after executing the
push instructions in the previous example, mkstr(4) would return a structure
descriptor for the term ¢(10,20,30) on the heap. For instance, consider the

following assignment:

d_1 = mkstr(4)

After this assignment, the data register d_1 contains a reference to the struc-

ture created on the heap. Figure 3.4 displays the result of this assignment.
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Heaptop Pointer

l]

List Descriptor - 1
d_1 = mkist(2)

(1]

Heap Storage

Figure 3.5: d_1 refers to the allocation of [1] on the DFAM heap.
mklst(N) Returns a list descriptor for a list whose head element is N cells from
the top of the heap. This instruction is very similar to mkstr and is used
to create descriptors that refer to lists stored on the heap. For instance,

consider the following code fragment;

push(1)
push([])
d_1 = mklst(2)

After the execution of this code fragment, d_1 contains a reference to the

newly created [1] list on the heap. Figure 3.5 displays the result of this

assignment,

tostr(R) Given a structure descriptor D, returns the address of the structure’s
head functor. This instruction is used to translate a structure descriptor into
a physical address in the heap where the structure is stored. This address
can then be used to access the various components of the structure. For

instance, given the following code:
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push{c/1)

push(100)

d_1 = mkstr(2)

a_1l = tostr(d_1)
After the execution of this code fragment, d_1 will contain a structure de-
scriptor which refers to the term c(100) on the heap. Also, the address

register a_1 will contain the address of the functor/arity pair, ¢/1, on the

heap.

tolst(D) Given a list descriptor D, returns the address of head element of the
list. This instruction is very similar to tostr and is used to translate a list

descriptor into a physical address in the heap where the list is stored.

*A Returns the data value stored at address A. This is similar to a pointer

dereference in a conventional programming language such as C.

next(a_IN) Advances the address stored in local address register a_N to point
to the next heap address. This instruction is used in traversing structure

elements. Consider the following code fragment:

push(1)

push([])

d_1 = mklst(2) % d_1 refers to list (1]

a_l = tolst(d_ 1) % a_1 contains address to list
d_2 = *a_1 4 d_2 gets head of list, 1
next(a_1) % increment a_1

d_3 = *a_1 4 d_3 gets tail of list, []

After the execution of this code fragment, the list [1] is created on the heap

with the list descriptor d_1, The a_1 register contains the address of the head
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of the list on the heap after the tolst instruction is executed. Subsequently,
d.2 is assigned the contents at address a_1. Since a_1 points to the head
of the list, after the execution of d_2 = *a_1, d_2 is assigned the value 1.
After the next instruction, a.1 in incremented and points to the next cell
in the heap, the tail of the list. Therefore, the final assignment in the code

fragment, sets the value of d_3 to *[]°.

goto(L) Transfers control to code at label L. This instruction is similar to a goto

statement in a conventional programming language.

test(C, Op) If condition C' is not true, perform operation Op. Currently, the
compiler generates only goto instructions for Op. Refer to the next section

for an explanation of conditional expressions in DFAM,

3.9 Conditional Expressions

The following is the list of conditional expressions that can be used in conjunc-

tions with the test instruction:

D1 == D2 Evaluates to true if and only if D1 and D2, both of type data, are

equal.
isstr(D) Evaluates to true if and only if D is a structure descriptor.

islst(D) Evaluates to true if and only if D is a list descriptor.
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These instructions are primarily used in the implementation of F* unification

and are further explained in Section 3.11.

3.10 DFAM: Call/Return Instructions

As was previously mentioned, the DFAM instruction set is very similar to a
procedural programming language. Groups of DF* rules which have the same
principal functor and arity, are compiled into a single DFAM function.

To illustrate the compilation of DF* into DFAM instructions, consider the

following simple DF* rule:

square(X) => times(X,X).

The square rule reduces to the multiplication of its argument, X, with itself.

square is compiled into the following DFAM function:

square(x_1)

[
data d_1; % declare local variable d_1
d_1 = times(x_1,x_1); % d_1 = x_1*x_1
dreturn{d_1); % return d_1 as result

]

The DFAM function square, takes one argument represented by x_1. The
data statement declares a single local data register d_1. Subsequently, the times
function is called, the result of which will be the multiplication of x_1 by x_1. The
result is placed in the d.1 register and returned using the dreturn instruction.

The following is the set of instructions used in the DFAM calling mechanism:
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F(D1, ..., Dn) Call DFAM function F sending it arguments D1, ..., Dn. Every

such function call will return a value of type data.

dreduce(D, d_N) Reduce data value D and put the resulting value in data reg-
ister d_N. Note that if D is a function term, the function is called and the

result is placed in d_N. Otherwise, we simply copy D into d_N.

dreturn(D) Return data value D from the current DFAM function. Control is

passed to the caller.

3.11 Unification

To implement term matching in F*, we generate a sequence of test-and-branch
DFAM instructions. For instance, given the following F* rules:
father(’Tom’) => ’Dick’.
father(’Dick’) => ’Harry’.
we generate the following code for the DFAM “father” function:

father(x_1)

L
data d_1;
dreduce(x_1,d_1)
test(d_1 == ’Tom’, goto(father0))
dreturn(’Dick’)
fatherQ:
test(d_1 == ’Dick’, goto(fatherti))
dreturn(’Harry’)
fatherl:
dreturn(fail)
]
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In this function, the test instructions are used to check whether reduction of the
argument x_1 (placed in d_1) matches either the Tom or Dick atoms. The DFAM

function above can be thought of as executing the following pseudo-code:

father(x_1)

{
d_1 = reduce(x_1);
if (d_1 == ’Tom’)
dreturn(’Dick’);
else if (d == ’Dick’)
dreturn(’Harry’);
else dreturn(fail);
}

When more complex term unification is required, the compiler will generate
code that traverses the structure of the two terms being unified. For instance,

given the following F* rule:

car([X1Y]) => X.

The following DFAM code is generated (note that anything appearing after a “%”

is a comment).

car(xz_1)

[
addr a_l;
data d_4,4._3,d_2,d_1; % local data declarations

dreduce(x_1,d_1) % reduce 1st arg into d_1

% if d.1 not a list goto car0
test(islst(d_1), gote(car0))

a_l = tolst(d_1) % a_1 points to the list’s head
d_2 = *a_1 % d_2 <- head of list
next(a_1) % a_1l points to the list’s tail
d_3 = *a_1 % d_3 <- tail of list
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dreduce(d_2,d_4) % reduce head of list into d_4
dreturn(d_4) % return d_4

car(;:
dreturn(fail) % fail

As is evident from the comments in the DFAM code, the structure of the
argument to the car function is traversed. If the argument is not a list, the
function fails. Otherwise, 4.2 will hold the list head and d_3 its tail. Obviously,
the code that finds the tail of the list is not necessary. The d_3 register is never
used after its assignment. This is one of the many possible optimizations not yet

implemented.}

3.12 Function Terms

Lazy evaluation in F* leads to the occurrence of “lazy function call” terms

(function terms for short). For instance, given the following F* program:

£(X,Y) => X.

g => [£(10,20)1.
When g is reduced, the result of the reduction is not [10], but rather [£(10,20)1,
where £(10,20) is a function term invocation. Ideally, such a function invocation
should be represented on the heap as a structure containing a reference to the
function to be invoked and the list of arguments to be passed to the function upon

invocation.

!Many optimizations that have been successfully applied too compiling Prolog programs, such
as indezing and tail recursion optimization (see [Gabr 85, Warr 83]) can also be used in an F*
implementation. The impact of such optimizations is discussed later in this work.
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Unfortunately, since SICStus Prolog data structures are used for the implemen-
tation of DFAM terms, we were not able to directly implement function terms as
distinct structures on the heap. This is, of course, due to the fact that SICStus
Prolog does not support function terms.

In our current implementation, we represent function terms with terms whose
head functor is ’LF’. For instance, in the previous example, the term [£(10,20)]

is represented as:

[ ’LF’ (Index0f_f, 10, 20) ]

“IndexOf £ is an internal index that will be generated by the system and will be
used to locate the DFAM function f. The last 2 structure arguments to *LF’ are

the arguments to be passed £, once the function term is called (i.e. reduced).

3.13 Translating DFAM to C

The translation of DFAM into C requires two components:

¢ Implementation of the DFAM data types in C.

¢ Implementation of a set of C macros to which individual DFAM statements

can be translated.

3.13.1 DFAM Data Types in C

The datatype in DFAM is mapped to type DATA in C which is simply a synonym

for the 32-bit long int type. DFAM, however, is polymorphic. That is, an object
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of type data may contain integers, floats, atoms, structure descriptors, etc. To
implement DFAM’s polymorphism in C, we use a 3-bit tag on DATA types. This
tag allows us to determine the type of object stored in a DATA cell (i.e. whether it
is an integer, float, atom, etc.).

DFAM objects of type address are represented by ADDR types in C. The ADDR

type is defined in C as a pointer to an object of type DATA.

3.13.2 DFAM Statements in C

The translation of DFAM into C is simply a matter of providing a set of C
macro definitions. All DFAM statements map directly into these C macros.

DFAM functions are directly translated into C functions, returning values of
type DATA. Similarly, function call and return statements also map directly into

C’s call/return mechanism. For instance, given the following F* function:

father(’Tom’) => ’Dick’.

we generate the following DFAM function:

father(x_1)

L
data d_1;
dreduce(x_1,d_1)
test(d_1 == ’Tom’, goto(fathero0))
dreturn{(’Dick’)
father0:
dreturn(fail)
]

This DFAM function has the following C translation:
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DATA father_1(x_1)

DATA x_1;
{
DATA d_1;
DREDUCE(x_1,d_1);
TEST(d_1 == STUBO, GOTO(father0)); % STUBO is ’Tom’
return(STUB1) ; % STUB1 is ’Dick’
father0:
return(LOGF_FAIL);
}

The father.1 function takes one argument, x_1. x_1 is reduced into the local
data register d_1 using the DREDUCE macro. This macro is used to check whether
or not its first argument is a DFAM function term. If so, the function is called
and the result is placed in the second argument. Otherwise, the first argument is
simply copied into the the second.

In the current implementation of the CFC, F* atoms are hashed. Therefore,
when comparing atoms, we need only compare their hash values. In the C code for
the father_1 function, STUBO and STUB1 represent macro definitions for the hash
values of the “Tom” and “Dick” atoms respectively. The values of these macros are
determined at load time by the CFC link editor, the function of which is explained
in Section 5.2.1.

The TEST macro is used to match the function’s argument with the “Tom”
atom (or STUBO). The operation of this staternent is equivalent to the following C

code:

if (d_1 != STUBO) goto father0;

If unification succeeds, the atom “Dick” (represented by STUB1) is returned. Qth-
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erwise, the LOGF FAIL atom is returned (i.e. the father_1 function fails).

Compilation of the following F* rule illustrates heap allocation in DFAM and C.

cons(X, Y) => [X]Y].

This F* rule is translated to the DFAM function:

cons(x_1,x_2)

[
push(x_1)
push(x_2)
dreturn(mklst(2))
]

This DFAM function can be translated to the following C function:

DATA cons_2(x_1,x_2)
DATA x_1,x_2;

{
PUSH(x_1);
PUSH(x_2);
return(MKLST(2));
}

The PUSH macro operates on a “top of the heap” pointer. This pointer, called
global_top, indicates the location of heap storage not presently allocated. Thus,

PUSH(somedata), is equivalent to the C statement:

*global_top++ = some_data;

Therefore, cons.2 creates the list [X|Y] by allocating heap storage for X and
Y, and returning a list descriptor to X on the heap. In the MKLST(N) macro, N is

subtracted from the global_top pointer and the result is tagged as a list descriptor.
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Figure 3.6: Allocation of [X | Y] on the CF* heap.

3.13.3 Function Terms in C

The CFC environment keeps track of all functions loaded into the system via
the usage of a function table. When a new function is added, its address and name
are stored in the function table and the function is given an index.

Previously we mentioned that function terms are represented using the follow-

ing structure on the heap:

'LF’ (Index0f_Function, A1, ... An)

Where A1, ..., An are the function arguments, and Index0f Function is the
index given to the function at load time. When a function term is reduced, the
index is used to look for the function’s address in the function table. Once the

address is identified, the function is invoked with the arguments, A1, ..., An.
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CHAPTER 4

Compiling Non-Deterministic F*

This chapter describes the compilation of non-deterministic F* programs in
the CFC environment. The main topic of this chapter is defining extensions to
the DFAM instruction set and the C programming language needed to support

non-determinism.

4.1 FAM: The F* Abstract Machine

In this section we describe the compilation of non-deterministic F* into FAM,
a superset of the DFAM instruction set. FAM data types and the instructions
which manipulate data structures are the same as DFAM. FAM, however, contains
extra control structures which permit the implementation of a non-deterministic

function call mechanism.

4.1.1 Design Principles

To implement non-determinism in FAM, it is necessary to extend the DFAM
function call mechanism such that functions are allowed to return more than one
value. Therefore, when a non-deterministic function fis called, it needs to return

a continuation along with the usual function return value. The continuation can
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4.1.3 Non-Deterministic Terms

As was previously mentioned, F* terms may contain function call terms. Since
such calls can also return multiple values, F* terms can also be non-deterministic.
For instance, given the previous definition of the F* function g, the term [g] can
be unified with either [1] or [2].

Such non-deterministic terms can appear as arguments in function calls or as
nested terms within larger terms. To illustrate how such terms are handled within

FAM, consider the following F* rule:

h(10, 20) => 30.

In any given call to function h the first and the second arguments can be non-
deterministic terms. Therefore, when reducing the arguments to h, we need to
consider the possibility that such a reduction may return more than one value.

The following FAM function is generated when h is compiled:

h(x_1,x_2)
L
data d_2,d_1;
reduce(x_1,d_1)
reduce(x_2,d_2)
% check to see if reduced 1st arg
test(d_.1 == 10, goto(h0))

10

% check to see if reduced 2nd arg = 20
test(d_2 == 20, goto(h0))

% continue with return value 30
cont (30)
ho:
end_reduce
end_reduce
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return(fail)

In the FAM function above, both x_1 and x_2 can be non-deterministic terms.
Therefore, the compiler generates code which executes the RHS of h with all pos-
sible combinations of reductions for the first and second arguments. This is done
by nesting the reduction block for the second argument inside the reduction block

of the first.

4.2 Translating FAM to CF*

In this section we describe CF*, an extension to the C language, used in the
implementation of FAM. CF* extends C by allowing functions to return more than
one value. In CF*, functions can save their current state of execution before re-
turning. This feature allows a CF* function to be called and subsequently restarted
to continue where it “left off”.

We believe that the addition of non-deterministic control to C is a is a major
contribution of this work. We will show that such constructs can be easily and

efficiently implemented on conventional computer architectures.

4.3 Non-deterministic Control Constructs

Non-determinism in CF* is provided through the use of the following new

control constructs;
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FORALL_CALL(F(AL,...,An), d_N) ... FORALL_END ! This construct is
analogous to the FAM call/call end instructions. We iterate over all values
returned from the CF* function # until there are no more return values
available. The values returned are placed in the C variable, d_N, and the
code block up to the FORALL_END instruction is executed, We repeat

the call to F until there are no further values to be returned.

CONT(D) This construct returns the value D from the current function. The
state of execution of the current function is preserved and, therefore, its
execution may be resumed by the caller. If resumed, the current function

continues executing as if it had never encountered the CONT instruction.

RETURN(D) Return value D from the current CF* function. This instruction

is equivalent to the FAM return instruction.

FORALL_REDUCE(D, d_N) ... FORALL_END This construct is similar
to the FAM reduce and end_reduce instructions. Since the term D can
be a function term, the reduction of D may result in more than one value.
Therefore, we iterate over every reduction of D, placing the result in dN,
and executing the code inside the FORALL REDUCE block. The block is exited

when there are no further reductions.

!The reader should note that, in practice, we have actually used a different syntax for the
implementation of the FORALL_CALL statement. It suffices to mention, however, that the syntactic
representation given here is simply a sugar-coated version of the actual syntax. The reason for not
using this syntax in the implementation is due to the limitations of the C language preprocessor.
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Due to the similarity of their contro} constructs, the translation of FAM to
CF* is straightforward. For instance, consider the following FAM functions from

a previous example:

gQ

[
cont(1);
cont(2);
return(fail);

]

40

[
data d_1;
call(g(), 4.1);

cont(d_1);

end_call;
return(fail);

]

The following CF* translation is produced:

DATA g_00)
{
CONT(STUBO) ; % STUBO and STUB1 are macros for
CONT(STUB1) ; % atoms ’1’ and ’2’ respectively.
RETURN(LOGF_FAIL); % Their function is explained later.
}
DATA £_0()
{
DATA d_1;
FORALL_CALL{g_0C, d_1);
CONT(d_1);
FORALL_END;
RETURN(LOGF_FAIL);
¥
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4.4 Implementation of CF* Control Constructs

The CF* constructs (i.e. FORALL.CALL, CONT, RETURN, etc.) are imple-
mented using a combination of C and assembly macro definitions. These macros
allow us to enhance the C calling mechanism such that the state of any CF* rou-
tine can be saved during a CONT instruction, and then restored from the calling

function.

4.4.1 CF* Procedure Call Mechanism

At any given point in the execution of a C function, the state of the function

can be described using the following elements:
¢ The arguments with which the function was called.
¢ Local storage area used for storing local variables.

¢ Return address of the caller. This is the address to which this function

returns.

 Values of the machine registers. These include all regular registers and the

program counter (PC), stack pointer (SP), etc.

If, somehow, the function’s state information can be saved at some point during
its execution, it can be restarted to resume execution from the point that its state

was saved.
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In fact, most of the state information needed to save the state of a function is
already available on the system stack. To understand our implementation of the
CF* control constructs, we will briefly review the procedure calling mechanisms

on conventional machine architectures.

4.4.2 Procedure Calling Conventions

The implementation of the C language procedure call mechanism is very similar
among conventional machine architectures. For our purposes, it will suffice to
explain the standard procedure calling mechanism on a Motorola 68000 processor.

Most architectures such as the M68k reserve a register which acts as a frame
pointer (FP). This register is used to access local variables and procedure argu-
ments on the stack, and eventually to retrieve the caller’s return address. There-
fore, the FP can be used to access much of the information needed to restore the
state of a function,

Consider the following C code fragment:

10
{

f2(al, ..., an);

f2(x1, ..., xn)

When function £2 is called from £1, the following operations are performed (Fig-
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ure 4.1 illustrates f2’s C stack frame generated by these operations):

1. al,...,an, which are the arguments to function £2, are pushed onto the

stack.

2. The current program counter (PC) and frame pointer (FP) are pushed onto

the stack.
3. FP is set to point to the top of the stack (i.e. FP « SP).
4. Storage is allocated on top of the stack for £2's local variables.
5. PC is set to the top of the £2 function, and the execution of £2 begins.
6. To return, £2 places the return value in the return register (d0).
7. £2s local storage is removed from the stack by resetting SP.

8. FP and PC are restored from the stack, and therefore control is passed to £1

and £2’s arguments are popped from the stack.

9. The remaining code in £1 is executed.

By step (5), £2’s frame has already been created on the stack, and is illustrated by
Figure 4.1. The system FP is able to address £2’s local storage, arguments and
the saved FP and PC from the point at which £2 was called. The saved PC and

FP will be used to restore the caller’s state when we return from £2.
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| al, ..., an

Stack Frames of
f2's Ancestors

Figure 4.1: f2’s stack frame on the C stack after being called from f1.

4.4.3 Non-Deterministic CF* Functions

In our previous example, the reader may have noticed that most of a function’s
state information, which was alluded to earlier, is available in the function’s stack
frame. The only missing state information is the current values of machine registers
(i.e. PC, SP, and FP).2

In conventional procedural languages, procedure stack frames are created when
a procedure is called, and are subsequently removed (popped) when the procedure

returns. Therefore, control is always within the function whose frame is on top of

the stack.

Note that other general machine registers also constitute state information. For the sake of
simplicity, we will delay discussion of these registers for later sections,
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In CF*, however, we allow control to pass back to the calling function without
removing the current function’s frame from the stack. Thus allowing CF* functions
to be restarted where they “left off”. To see how the CONT instruction works,

let’s examine the following CF* code fragment:

£10)

{
FORALL_CALL(f2(al, ..., an) , d_1);
FORALL_END;

}

£f2(x1, ..., xn)

{
CONT(v) ;

f2.restart:

}

After £2 is called from f1, the CONT(v) instruction in £2 is executed and the

following operations are performed:
1. The program counter {marked by the label £2_restart) is saved in the cur-

rent frame,

2. The current FP and the value v are placed in return registers as return values
from £2. The current FP is returned as a continuation, so that £2 may be

restarted at some later point.

3. Control is passed back to the calling function £1, so that it may resume its

execution.
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Figure 4.2 illustrates the state of the CF* call stack after the execution of the

CONT (v) instruction.

4.4.4 The CF* FORALL_CALL Construct

As was previously mentioned, the CF* FORALL_CALL construct calls a given
CF* function, and iterates over all its return values. For instance, consider the

following CF* function:

DATA f1()
{
DATA d_t;
FORALL_CALL(f2, d_1);
/* Some CF* Code */

FORALL_END;

RETURN(LOGF_FAIL);

The FORALL_CALL and FORALL_END macros are implemented using C and as-
sembly macros. The following pseudo-code translation of the CF* code, above,

illustrates the implementation of these constructs:

DATA £1()

{
DATA d_1;
[*

% d_1 is set to the value returned from £2. f2_£fp is

** set to the frame pointer value which was also returned
** by the call to function f2.

*/

<d_1, f2_fp> = £2();
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while (d_1 '= LOGF_FAIL) {
/* Some CF* Code */
if (f2_fp == NULL_THREAD)
break;

<d_1, f2_fp> = RECALL(f2_fp);

RETURN(LOGF _FAIL);

In the above example, when £2() is called and subsequently passes control
back to £1, it returns two values. The return value of £2 is placed in d_1. £2 also
returns its FP value which is placed in £2_fp.

If the return value from the called function is LOGF_FAIL, there are no further
return values and we exit the call block. Otherwise the code within the call block
is executed. Afterwards, RECALL(f2.fp) restarts the execution of £2. As with a
call, a RECALL returns a <value, continuation> pair. When there are no further
values to be returned from the call to £2, the call block is exited.

Before the £2_fp frame pointer is used to restart £2’s execution, we check to
see whether £2_fp is has the value NULL_THREAD, If so, there are no further values

from the function and we exit the call block.
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4.4.5 The CF* RETURN Construct

As was previously mentioned, the CF* RETURN is used as an optimization.
Like CONT, it too returns a <value, continuation> pair. The continuation,

however, is always set to NULL_THREAD, indicating that the thread of execution for

the called CF* function has terminated.

4.4.6 The CF* FORALL_REDUCE Construct

The CF* FORALL REDUCE construct operates very similarly to FORALL_CALL. In
a FORALL REDUCE block, however, it is necessary to determine whether the object
being reduced is a function term. If so, the function is invoked and we iterate
over the values returned from the call. For instance, consider the following CF*

function:

DATA f1(x_1)

{
DATA  d_1;
FORALL_REDUCE(x_1, d_1);
/* Some CF* Code */
FURALL,Eﬁb;
RETURN (LOGF_FAIL);
}

The following pseudo-code translation of CF* code, above, illustrates the im-
plementation of the FORALL REDUCE blocks:

DATA f1(x_1)
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DATA d_1;

/*
** Check to see if argument x_1 is a function term. If so
** we call it, assigning the value/continuation pair.
*% Otherwise, x_1 has no further reductions and d_1 is set
** to x_1, and f2_fp is set to NULL_THREAD.
*/
if (IS_LAZY_FUNCTION(x_1)) {
<d_1, f2_fp> = LAZY_CALL(x.1);

}
else {

d_1 =x_1;

f2_fp = NULL_THREAD;
}

while (d_1 != LOGF_FAIL) {
/* Some CF* Code x/
if (f2_fp == NULL_THREAD)
break;

<d_1, f2_fp> = RECALL(f2_fp);
}

RETURN(LOGF_FAIL);

The IS_LAZY FUNCTION macro is used to check whether argument x_1 is a func-
tion term. If so, the function is invoked using the LAZY_CALL macro which behaves
exactly like a direct call to a CF* function and so a <value, continuation> pair
is returned. If x_1 is not a function term, it has only one reduction, and that is x_1.
Therefore, we assign NULL_THREAD to £2_fp, indicating that there are no further

reductions.
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4.4.7 CF* Portability

We feel that the implementation of the CF* constructs on architectures other
than the Motorola 68000 would also be straightforward. Our current implementa-
tion has been developed primarily in C and only 40 lines of M68k assembly were

required to implement the non-deterministic function calls.
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CHAPTER 5
Architecture of the CFC
The CFC system consists of two primary components, the runtime and compile

time environments. F* programs are compiled to CF* using the F* compiler. CF*

programs are then linked and executed within the CFC runtime environment.

5.1 The F* Compiler

The CFC compiler is responsible for the compilation of F* programs to FAM
or CF*. The F* compiler, which has been written in Prolog, is divided into the

following modules:

Syntax Verification The compiler reads in the F* rules and verifies adherence

to restrictions (a) through (e) (see section 1)

Determinacy Detection The compiler determines whether restrictions (f) and
(g) are met. If the program is deterministic, a flag is turned on inside the com-

piler which tells the code generator to produce deterministic FAM (DFAM).

LHS Processing In processing the LHS, the compiler determines the steps re-

quired for the unification of F* terms with the LHS. This involves possible
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reduction of arguments, and performing the necessary pattern matching op-

erations.

RHS Processing In compiling the RHS components of F* rules, the compiler de-
termines the steps needed in calling functions and creation of data structures

(on the global heap) to be returned from the current function.

Code Generation The code generation (or the back-end) component of the F*
compiler is responsible for the translation of the compiler’s internal repre-
sentation of code to FAM or CF*. Based on a flag generated by the deter-
minacy detection analysis, the back-end will generate either deterministic or

non-deterministic code.

As of yet, the F* compiler lacks an optimization component. Such an optimizer
could perform better register allocation, dead code elimination, tail recursion op-
timization, etc. We shall show later that these optimizations can greatly improve

the performance of compiled F* programs.

5.2 The Runtime Environment

Early in the design phase of CFC, it was decided that we would build a pro-
totype of the CFC environment on top of an existing Prolog system (SICStus

Prolog). Such an implementations has several advantages:

Integration With Prolog: By building the our system on SICStus Prolog, we

were able to provide an interface for the execution of F* functions from
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Prolog. Therefore, much of the testing of CFC was done using the Prolog

interface. Also, a simple F* shell was implemented using the Prolog interface.

Compatible Data Types Since compatibility was retained with SICStus Prolog
data types in our F* implementation, many internal SICStus Prolog func-

tions such as arithmetic, structure manipulation (e.g. functor/3, *°

222
v ]

etc.), database functions (e.g. assert, retract), etc., were automatically

made available to F* programmers.

Dynamic Loading: SICStus Prolog provides support for dynamic loading of
compiled object modules. This allowed us to dynamically load our compiled

F* modules with the aid of a CF* link-editor written in Prolog.

Garbage Collection: Since the SICStus Prolog heap storage was used in stor-
ing F* terms, we were able to utilize the SICStus Prolog garbage collection

mechanisms.

Using SICStus Prolog in the implementation of F* greatly reduced the time
needed in developing support software, and freed us to experiment with F*. Such a
“piggy-back” implementation is not without its problems, however. As previously
mentioned, due to the fact that Prolog data representation was used to store F*

terms, we were not able to directly represent F* function terms.
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5.2.1 Runtime Link Editor

The CFC environment provides facilities for dynamically linking CF* functions
to the runtime environment. The dynamic linker allows for loading of multiple CF*
files by resolving external function calls and references to atoms. To perform this
task, the CF* linker produces a “stub definitions file” which contains two sets of

information:

Atom Definitions Since Prolog atoms are represented using their hash values,
their values are not known until runtime. The F* compiler places atom stubs
in the CF* file when generating references to atoms. The dynamic object
linker determines the hash value for each atom at link time and generates a

macro definition for each of these atom stubs.

Function Definitions The target function term is identified using its index into
the CFC function table (see Section 3.13.3). Since the value of this index is
not available until runtime, the compiler places function stubs in the places of
a function index when generating function term. The linker determines the
correct function index for each function loaded. It then generates a macro

definition for each of these function stubs.

Having generated the stub definitions, the CF* runtime linker uses a C compiler

to compile CF* files together with stub definitions into an object module.! Object

! Compilation of CF* files is performed by GNU C. The primary reason for the usage of this C
compiler is the availability of a flexible mechanism for inlining assembly instructions in C code.
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CF* File — Stub | .. CF*File + | GNUC
Generator Stub Definitions Compiler

Object File

CFC/SICS Prolog Environment

Figure 5.1: Linkage of CF* files in the CFC runtime environment.

modules are then dynamically loaded using SICStus Prolog facilities mentioned
earlier.

In our present implementation, we provide a simple interface for calling com-
piled F* functions (i.e. CF* functions) from Prolog. A Prolog predicate is provided
which translates terms from their Prolog representation to F* and vice versa. Also,
a reduce/2 predicate is defined which behaves like the Log(F) reduce.

Based on these primitives, a we have built a simple F* shell. A sample session

which illustrates the usage of the F* shell is provided in appendix A.
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CHAPTER 6

F* Programming and Extensions

6.1 Unification

As was discussed in Section 1, restriction (c) which limits the depth of uni-
fication in F* rules has been relaxed in our implementation. Even though this
restriction was used in [Nar 88] solely for the purpose of simplifying the theoreti-
cal analysis of F*, it remains intact in the Log(F) implementation.

The following is an example of a rule which violates restriction (c), but is

accepted by CFC.

listOfList([[X|Y]IZ]) => true.

This rule is compiled into the following DFAM function:

list0fList(x_1)

L
addr a_1;
data d_2,d_1;
dreduce(x_1,d_1) % reduce 1st arg to d_1
test(islst(d_1), goto(listOfList0)) % is d_1 a list?
a_l = tolst(d_1) % a_1 points to head
d_2 = dreduce(*a_1) % d_2 is the reduction
% of the list’s head
test(islst(d_2), goto(listOfList0)) ¥% is d_2 a list?
dreturn(true) % return true
list0fList0:
dreturn(fail) % return fail
]
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In addition, CFC provides a general unification function, called eq. This func-
tion is able to unify 2 complex terms which may contain function terms invocations,

by recursively traversing and reducing the terms.!

6.2 Eager Reduction

From a programming perspective, one of the more useful extensions that was
implemented in CFC has been the eager operator, “=>". By using the “=>" opera-
tor, programmers can force the reduction of expressions which would otherwise be
evaluated lazily. Forcing early reduction of certain terms, may result in substantial

performance improvements. For instance, given the following F* rule:

square(X) => times(X, X).

If the argument send to the square rule is a function term, it will be evaluated
twice, inside the multiplication function. Therefore, to avoid this problem, we can
rewrite the square rule as:

square(X) => times(=>(X), X).

In the above rule, the argument X is reduced before it is sent to the multiplication

function. That is, the following DFAM code is generated:
square(x_1)
[

data d_2,d_1;

dreduce(x_1,d_1);

!Note that Log(F) also provides “=" as a unification operator. Unfortunately, “=" does not
properly handle terms with embedded function call terms.
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d_2 = times(d_1,d_1);
dreturn(d_2);

The eager reduction operator can be used to reduce not only variables, but
also any F* expression. Therefore, it can be used by the programmer to explicitly

eliminate common subexpressions in F* rules.?

6.3 External Interface

In order for F* terms to be passed to external systems (e.g. Prolog, relational
database, etc.), the function term invocations within those terms must be com-
pletely evaluated. That is, each term must be structurally traversed, and any
function terms evaluated.

In the following F* program, the totally reduce rule can be used to com-

pletely reduce any given F* term.

extern([univ/1, vinu/1]).
totally_reduce(X) => vinu(reduce_univ(univ(X))).
reduce_univ([X|L]) => [X | =>(reduce_list(L))].

reduce_1list([]) => [].
reduce_list([XIL]) => [=>(totally_reduce(X)) | =>(reduce_list(L))].

The univ library function behaves exactly as the Prolog =../2. That is, it returns

a list containing the principal functor of the term and its arguments. The vinu

%It is possible perform eager reductions in a similar manner in Bop. The programmer can
force the reduction of any Bop term within the Condition component of a rule. For instance, the
rule for square would be written in Bop as:

square(X) = times(Y,Y): —X =3 Y.
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routine performs the inverse.
As an example, the effect of applying totally reduce to the term [1+1,

c(2%2, 11-3)] would be the list [2, <(4, 8)].

6.4 Function Inlining

Presently, many often used operation such as if/3, eq/2, and/2, or/2, +,
-, *, etc. are implemented as library routines. Although this implementation
greatly simplifies the F* compiler, it is rather inefficient. The addition of a func-
tion inlining feature to the compiler can considerably improve the performance of

compiled F* code.
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CHAPTER 7

Performance Measurements

In this chapter we compare the performance of CFC with Log(F) and Prolog.
Unlike the comparison of CFC with Log(F), comparing the performance of a F*
system with Prolog is a rather dubious task. Several factors affect the usefulness

of any such comparison:

e In F*, function arguments are “input-only”. That is, these arguments are
not modified by the callee. In Prolog, however, variables can become bound
as result of being passed to a predicate, and subsequently become unbound
upon backtracking. Keeping track of current variable bindings is one of the

major overheads in any Prolog implementation.

e Since F* terms can be lazy function calls, before performing any operation
on terms, we must perform a reduction. Additionally, in F*, any such re-
duction may result in multiple non-deterministic values. That is, unlike
Prolog in which only predicates are non-deterministic, any F* term may be
non-deterministic. This adds to the complexity of implementing the non-

deterministic control structures of F*.
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® As was stated previously, the CFC implementation of lazy function terms is
less than optimal. Therefore, any performance comparisons which heavily

utilize lazy function terms in CFC are bound to be unfavorable to CFC.,

e Many optimizations such as tail recursion optimization, better register allo-

cation, tail call detection, dead code removal, etc. have not been implemented

in CFC.

» Basic operations such as if/3, eq/2, etc. are not directly supported by the

CFC compiler and are implemented as library calls.

In our performance comparisons we have tried to sidestep many of the issues
mentioned above. The following sections provide results from several benchmarks
which measure various aspects of CFC’s performance. All measurements were
performed on a Sun-3/260 with 8MB of main mermory. Also, version 0.6 of the

SICStus Prolog interpreter was used for the execution of the Prolog benchmarks.

7.1 Reverse Benchmark

The following implementations of revn, in Prolog and F*, reverse a given list
N times.

Prolog:

reva([], L, L, 1) :- 1.
revn([], L1, L2, N) :-

NN is N-1,

revn(L1, [], L2, NN).
revn({X|L1], L2, L3, N) :-

revn(Ll, [X|L2], L3, N).
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F*:

reva([], L, N) => if(eq(N,1), L, revn(L, [], N-1)).
revn([XIL1], L2, N) => revn(L1, [XIL2], N).

Results:

DFAM/C | FAM/CF* | Log(F) | Prolog | Hand-optimized DFAM/C

265 394 2925 360 126

The table shows performance results with time displayed in milliseconds. All
measurements were performed on a list of 450 elements. Many different values
were used for the iteration argument to revn. The results displayed above are for
30 iterations (the iteration count did not affect the relative performance of the
entries),

The DFAM/C entry represents the benchmark for F* code compiled into C. We
subsequently hand-optimized the generated C code and placed the resulting run
times in the “Hand-optimized DFAM/C” column. The optimizations performed
were tail recursion optimization, dead code removal, register optimization, and
inlining of the system library calls (all of which can be performed by an optimizing
compiler).

Even though the revn F* rules are deterministic, for the purposes of this com-
parison, the CFC compiler was instructed to generate non-deterministic code in
the form of CF*. This benchmark appears as the FAM/CF* entry.

The revn benchmark is primarily a measure of the unification (pattern match-
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ing) performance. The Prolog, DFAM/C, and FAM/CF* entries seer to have very
similar performance. The hand optimized DFAM/C entry, however, is approxi-
mately 2 times faster. The performance gains mainly resulted from tail recursion
optimization.

On this benchmark, Log(F) is approximately an order of magnitude slower than

the other entries. Similar results have been observed on other benchmarks.

7.2 Call Benchmark

In the following benchmark we measured function call (or predicate invocation)
performance. The following Prolog and F* programs where used in this compari-
son:

Prolog:

calls :- a0(1).

a0(X) :- at(X), a1(X).
al(X) :- a2{X), a2(x).
a2(X) :- a3(X), a3(X).
a3(X) :- ada(X), a4(X).
a4(X) :- aS(X), a5(X).
ab(X) :- a6(X), a6(X).
a6(X) := a7(X), a7(X).
a7(X) :- a8(X), a8(X).
a8(X) :- ag9(X), a9 (X).
a9(X) :- a10(X), aio(X).
alo(X) :- a11(X), a11(X).
al1(X) :- a12(X), a12(X).
al2{X) :- a13(X), a13(X).
a13(X) :- a14(X), a14(x).
a14(X) :- a15(X), a156(Xx).
al5(X) :- ai6(X), a16(X).
al6(1) :- 1,
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F*:
calls => a0(1).

a0(N) => a1(=>(al(N))).
al(N) => a2(=>(a2())).
a2(N) => a3(=>(a3(N))).
a3(N) => a4(=>(ad())).
ad(N) => a5(=>(a5(N))).
ab(N) => a6(=>(a6(lN))).
a6(N) => a7(=>(a7(N))).
a7(N) => a8(=>(a8(N))).
a8(N) => ag9(=>(ag(N))).
a9(N) => a10(=>(a10(N))).
alo(N) => a11(=>(ati(N))).
ali(N) => ai12(=>(a12(N))).
al2(N) => a13(=>(al13(N))).
al3(N) => a14(=>(a14(N))).
a14(N) => a165(=>(a15(N))).
al5(N) => a16(=>(a16(N))).
al6(1) => 1.

Results:

DFAM/C | FAM/CF* | Log(F) | Prolog

580 1610 8660 2400

The table above shows the overhead resulting from the usage of CF* calling

mechanism over that of C.

7.3 Deep Backtracking

To compare the performance of DFAM/CF* non-deterministic function call
mechanism, the following Prolog and F* programs where benchmarked.

Prolog:



do_fail :- fail.

back(0).

back(N) :- x(V), do_fail.

back(N) :- NN is N-1, back(NN).

¥

44 x/1 provides 210 choice points

%4

x(1). x(2). x(3). x(4). x(5). x(6). x(7). x(8). x(9). x(0).

A&ii. x(2). x(3). x(4). x(5). x(6). x(7). x(8). x(9). x(0).

F*.

do_fail(X) => fail.

It
v

true.
do_fail(=>(x)).
back(N-1).

back(0)
back(N)
back(N)

non
v Vv

LTh)

W

%% x can be reduced to 210 values.

%

x=>1, x=>2. x=>3. x=>4. x=>5. x=26. x=>7. x=>8. x=>9. x=>0.

x=>1. x=>2. x=>3. x=>4, x=>5. x=>6. x=>7. x=>8. x=>9. x=>0.

Results:

N | FAM/CF* | Log(F) | Prolog

50 120 800 419
100 210 1600 850
200 450 3200 1690

The table shows the run times for the various systems, using different values of

73



N. This benchmark is useful in the measurement of the systems’ deep backiracking

performance,

7.4 Shallow Backtracking

The following Prolog and F* programs were used to measure the performance
of shallow backtracking.
Prolog:
do_fail :- fail.
back(0).
back(N) :- x(1,2), do_fail.
back(N) :~ NN is N-1, back(NN).
x(X,1). x(X,1). x(X,1). x(X,1). x(X,1).
(L1 x(,1) . x(X,1). x(X,1). x(K,1).
x(X,2).
F*:
do_fail(X) => fail.
> true.

> do_fail(=>(x(1,2))).
> back(=>(N-1)).

H

back(0)
back(N)
back(N)

x(X,1)=>true. x(X,1)=>true. x(X,1)=>true. x(X,1)=>true.

x(X,1)=>true. x(X,1)=>true. x(X,1)=>true. x(X,1)=>true.
x(X,2)=>true.

Results:
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N | FAM/CIF* | Log(F) | Prolog

50 40 320 60
100 120 640 100
1000 1060 6440 1020

These measurement show that the CF* shallow backtracking performance is
essentially equivalent to that of Prolog. The Log{F) implementation is usually

slower by a factor of 6.
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CHAPTER 8

Conclusions

The primary impetus for this work came from our desire to implement an effi-
cient stream processing environment based on F*. Even though F* was originally
envisioned as an extension to Prolog, we have extended it to a full-fledged general
purpose programming language. The resulting implementation offers a simple and
efficient environment which elegantly combines logic programming, rewriting, and
lazy evaluation.

This thesis has presented a mechanism whereby deterministic F* programs can
be compiled into an abstract machine language called DFAM. We have shown that
that it is possible to directly translate DFAM programs into C. The resulting C code
runs better than an order of magnitude faster than the Log(F) implementation of
F*. It was also shown that with the aid of further compiler optimizations, compiled
DF* programs can run as much as 3 times faster than their Prolog counterparts
running under SICStus Prolog.

The more general F* Abstract Machine (FAM) has been described in detail,
We have shown that non-deterministic F* programs can be readily compiled into
FAM programs. Furthermore, CF* was introduced as a novel extension to the

C programming language, providing a non-deterministic function call mechanism.
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A simple of mapping of the FAM instruction set to CF* was described. It was
further shown that CF* can be efficiently implemented on conventional computer
architectures.

We have also explored the possibility of utilizing the C programming language
as an intermediate language for the compiler backend. This approach allowed us to
create a highly portable compiler which provides reasonable performance, without
the need to develop a machine code generator. Of course, the quality of machine
code generated depends substantially on the C compiler used as the backend. We
were fortunate to be using the outstanding GNU Optimizing C Compiler as the
backend for the CFC environment.

This thesis has also explored the possibilities of extending F* into a full-fledged
general purpose programming language. Even though the present implementation
of the CFC system relies heavily on the availability of the SICStus Prolog C library,
we believe that creating a stand-alone version of the system is not a difficult task.

In our work with the CFC, we have experimented with many new concepts in
the implementation of stream processing systems. We believe that the underlying
design decisions are sound and that with the addition of the optimizations and ex-
tensions suggested throughout this thesis, the CFC can become a truly “industrial

strength” stream processing environment.
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APPENDIX A

Sample Programs

In this appendix, we present some simple F* programs and sample sessions

with the CFC’s F* shell. In interacting with the F* shell, the user is given a =>

prompt, to which the user types F'* expressions. Expressions of the form 1oad (file),

dynamically load a compiled F* file.

A.1 Math

The math library is a collection of C routines which implements F*’s arithmetic

operations such as addition, subtraction, etc. The following is a sample session

which illustrates the usage of this library:

=> load(math).
=> 2+2.

4 7

=> 100/50.

2.0 7

=> 1+2+3+4,
10 7

=> {(1+42)*(3+4) .

21 7

=> (2%2)-4.
o7

=> 100 mod 4.
07

=> 20 mod 7.
6 7

=2

% load the math library
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A.2 Append

The following are the rules for the F* append program:
append([], L) => L.
append([X|L1], L2) => [X|append(L1,L2)].
A sample session which illustrates the usage of append follows:
=> load(append).
=> append([1,2], [3,4]).
[11'LF’(8,[2],03,4])] 7
=> load([terms, reduce]). % load totally_reduce
=> totally_reduce(append([1,2], [3,4])).

[1,2,3,4] 7
=>

The first reduction of append results in a list where the head element is 1,
and the tail is a function term equivalent to append([2],13,4]). In the second
invocation of append the result is send to the totally.reduce rule which was

described in Section 6.3.

A.3 Member

The following are the rules to the member function. When passed a list, it

returns all elements in the list, non-deterministically.
member ([X]_]) => X.
member ([_IL]) => member(L).

A sample session which illustrates the usage of member follows:
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=> load{math).
=> load{member).
=> member([1,2,3]).
17 ;
27 ;

37 ;

fail

=> member([2,2+2]).

27,

4 7 ;

fail

=> member([member([1,2]), 3]).
17 ;

27 ;

37 ;

fail

=>

A.4 N-queens

The following is a F* program for finding solutions to the N-queens problem:
extern([(+)/2, (-)/2, abs/1, not/1, (eq)/2, if/3]).
queens(X) => safe(perm(X)).

perm([]) => [1.
perm([U|V]) => insert(U,perm(V)).

insert(U,X) => [U]|X].
insert(U,[AIB]) => [Alinsert(U,B)].

safe([]) => [].
safe([U|V]) => [U|safe(nodiagonal(U,V,1))].

nodiagonal(U,[1,N) => [].
nodiagonal(U, {AIB],N) =>
if (noattack(U,A,N), [Alnodiagonal (U,B,N+1)] ,none).

noattack(U,A,N) => not(eq(abs(U-4),N)).
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To run the program, the queens rule must be passes a list [1,2,...,N], where N is

the size of the chess-board. A sample run for a 4x4 chess-board follows:
=> load([eq, logic, mathl).

=> load(queens).

=> totally_reduce(queens([1,2,3,4])).

[2,4,1,3] 7 ;

{3,1,4,21 7 ;

[3,1,4,2] 7 ;

[2,4,1,3] 7 ;

fail

=>

Therefore, there are a total of two unique solutions: [2,4,1,3] and [3,1,4,2].

A.5 Primes

The following F* program computes a list of primes using Eratosthenes’ sieves
method,
extern( [if/3, (eq)/2, (+)/2, (mod)/2] ).
primes => sieve(intfrom(2)).
intfrom(X) => [X|intfrom(X+1)].
sieve([U|V]) => [U | sieve(filter(u,V))].
filter(a,[1) => [1.
filter(A,[UIV]) =>

if (multiple(U,A),filter(A,V), [Ulfilter(A,V)]1).

multiple(U,A) => eq(U mod A, 0).

In the following sample run, the reduce n library routine is used to totally

reduce the first 10 elements of the list returned by the primes rule.
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=> load([eq, logic, math]).

=> load({terms, reduce]).

=> load(prime).

=> primes.

[21’LF’ (19, ’LF’ (20,2, ’LF’ (18,’LF’(3,2,1))))] 7
=> reduce_n(primes, 10).
{2,3,5,7,11,13,17,19,23,29] 7

=>
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