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ABSTRACT OF THE THESIS

Neural Network Models of Illusory Contour

Perception

by

Brian Ringer
Master of Science in Computer Science
University of California, Los Angeles, 1992
Professor Josef Skrzypek, Chair

Illusory contours result from occlusion by a surface whose border is not defined
by a continuous discontinuity in any image attribute. This thesis presents a com-
putational model of illusory contour processing based on a neural architecture
which aggregates boundary and surface information. Ambiguous completions of
illusory contours are resolved through recurrent interactions between contrast
sensitive cells, hypercomplex cells and hypothesized surface neurons which com-
bine information from spatially separated contour features defining visual sur-
faces. Computer simulation results demonstrate that the model can extract all
perceptually salient contours in a variety of well known illusory contour patterns.
Furthermore, the model explains the three major perceptual effects associated
with illusory contours: oriented contour perception, depth effects and increased

brightness.
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CHAPTER 1

Introduction

The primary goal of a vision system is to provide an interpretation of a surround-
ing scene. Crucial to this process is finding the boundaries of the surfaces and
objects which make up the scene. Typical computer vision algorithms approach
this by finding discontinuities in one or more image attributes, for example bright-
ness, color, motion and depth [Hor86]. However, these algorithms frequently fail
in segmentation of images from unconstrained environments because all object
boundaries are not well represented as such discontinuities. Confounding ele-
ments include shadows and shading, uneven lighting and partial occlusions by
other objects. And yet, examples of human perception and recognition of objects
with missing data are widespread: objects are easily recognized despite being
partially occluded by other surfaces or objects (Fig. 1.1). Further, boundaries
which are not well defined as image discontinuities often do not prevent object

segmentation and identification (Fig. 1.1).

Examples such as these suggest that in human vision relatively little physical
data is needed in order to create a percept; “making up” missing information
seems to be a routine process. Evidence of similar processes are widespread, for
example the perceptual filling-in of retinal scotomas [RG91, PN91]. Here, the
path of the optic nerve prevents any retinal activity in a small area of the vi-

sual field. Information from nearby areas is filled-in over this region to maintain



(a) (b)

Figure 1.1: Perception and recognition is still possible in the absence of boundary
information. (a) An object whose boundaries are partially occluded by other
objects. (b) The boundaries of the object are not well represented as continuous

discontinuities. The object can still be identified (after Ramachandran, 1988).

consistency of perception. The missing information may-be filled-in to maintain
consistency with previously defined goals and expectations, based on past visual
experience. Apparently the visual system tries to arrive at a meaningful interpre-
tation of a scene even by imposition of subjective expectations and assumptions

on the actual reality of the visual sensation.

1.1 Illusory Contours

In attempting to provide accurate segmentation of a scene the human visual sys-
tem uses many clever techniques [Ram85b). Although visual primitives such as
brightness, color and texture typically vary at object boundaries, they can of-

ten be uniform between neighboring objects, or vary on the surface of an object



(such as the striped surface of a zebra). Depth boundaries however have a higher
correspondence to actual object boundaries [NSS89]. A typical visual scene con-
tains many partially overlapping surfaces. Thus it would be advantageous to
have visual mechanisms tuned specifically to the detection of overlapping surface
boundaries (occluding contours). Such a mechanism may exist in humans (as
well as other mammals [BBM88, RCC86, HPB84]) as evidenced by their ability

to perceive illusory contours !.

Illusory contours are boundaries of perceptually occluding surfaces which are
not defined by any physical luminance discontinuity (see Fig. 1.2 for several exam-
ples). Instead, the contour is perceptually induced by alignments of visual cues
which signal occlusion, such as sudden terminations of background structure, as
typified by line endings or corners. The human visual system is able to fill-in
an occluding contour using only a limited amount of visual data. In real world
situations aligned discontinuities have a high level of coexistence with occluding
contours, thus through evolution and visual experience they have become linked
in the human visual system [PSN89]. Such an approach appears to be quite effi-
cient; direct estimates of occluding boundaries, and thus of surface position and
extent, can be obtained through detection of a few key points, without having to
undergo the computational burden of processing the vast amounts of visual in-
formation present. Thus, the laboratory phenomenon marked by the perception
of “phantom” contours may in fact be an artifact of a powerful visual mechanism

used to rapidly compute depth segmentations.

Nllusory contours as a perceptual phenomenon have been documented as far

Hllusory contours have variously been called by many names, subjective or anomalous being
the two most commonly used others. The term illusory contours will be used throughout this
thesis.
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back as 1904 with Schumann’s work on contours perceived at broken intersec-
tions points in a grid {Sch04]. They were first brought to widespread attention
by Kanizsa [Kan34, Kan76], who demonstrated the power and flexibility of illu-
sory contours perception. Psychophysical research into illusory contours and their
role and visual perception increased through the 70’s and early 80’s (see [PC92b]
for an illustration of the dramatic rise in interest). In 1984 the first direct physi-
ological correlates to the perception were revealed by neuronal responses in early
layers of the monkey visual cortex to stimuli which induced the perception of
an illusory contour in humans [HPB84]. These results spurred a new wave of
analysis of illusory contours, increasingly focused on on defining the functional
specifications of the perception [Pra85, SG85, Ram86, PSN89]. Illusory contours
have now been implicated in the perception of camouflaged objects [Ram86],
contrast detection [SK90], figure/ground discrimination [Kan76], surface depth
determination [Cor72] and others. As their role in visual form perception be-

comes more apparent, illusory contours beginning to be addressed increasingly in

computational models of vision [GM85, KWT87, FE89, Mc(C90, SR92a).

1.2 Psychophysics

The psychophysical aspects of illusory perception have been studied extensively
over recent years (see [PM87] for a review). These experiments have shown the
ability to perceive illusory contours is extremely robust across human observers;
psychophysical experiments with illusory contours are repeatable and consistent.
Further, various experiments have shown that illusory contours are perceived by
other animals as well; confirmation exists for cats [BBMS88} and evidence has been

advanced for primates as well [HPB84]. The major psychophysical elements of



illusory contour perception are detailed below.

1.2.1 Depth Effects

Ilusory surfaces are usually accompanied by a strong impression of a perceptual
depth discontinuity [Cor72]. The illusory surface seems to be nearer in depth than
the background elements, corresponding to the location of an actual occluding
surface overlaying the background elements. Although there are cases where
this depth impression is reduced [Ken78], it is typically a fairly vivid and robust

companion of the perception of an illusory surface.

Further psychophysical experiments have illuminated the relationship between
illusory contours and depth. Experiments where stereoscopic depth information
is presented which is incompatible with the perception of an occluding surface
(ie. placing the illusory surface in the far disparity plane) reduces or removes the
perception of the illusory contour [GHT4]. There is a striking perceptual simi-
larity between illusory contours and other types of phantom contours generated
by direct manipulation of depth cues. The boundaries of surfaces offset in depth
by manipulation of stereoscopic information in random dot stereograms are per-
ceptually similar to illusory contours [Jul71]. Similar contours are seen bounding
surfaces which arise from stereoscopic images with unpaired image points (so

called Da Vinci occlusion) [NS90].

1.2.2 Surface Brightness

Illusory surfaces appear brighter than their backgrounds, even when the two are
stimulus identical [Kan76]. For example, a white illusory surface given by black

inducing elements will appear to be noticeably brighter than the background (see



Fig. 1.2). The increased brightness is dependent on perception of the illusory
contour themselves, and varies with the strength of the illusory percept. Ele-
ments which effect this perceptual strength, such as contrast and proximity of
the inducing elements, effects the perceived brightness difference [DLB90]. This
enhancement may be merely an artifact of the normal brightness enhancement
which occurs when an object is perceived as a “figure” [Par89], although the ef-
fect seems to be stronger than usual with illusory surfaces. An interesting case
is presented by illusory contours defined by opposite polarity brightness contrast
inducers [SG87]. Here the alteration in surface brightness is much perceptibly

reduced and non-uniform (Fig. 1.2).

1.2.3 Oriented Contour Perception

Hlusory contours are perceived as very real, salient contours. Results have shown
that the human visual system has the ability to discriminate the orientation of
an illusory contour at levels approaching those of regular contours [VO87]. Fur-
ther, there is an interaction between illusory contour and real contour orientation
discrimination abilities; practice with illusory contours increased ability with nor-
mal contours, suggesting that illusory and real contours may be at least partially

processed by the same visual mechanisms.

Hlusory contours have been shown to induce tilt aftereffects (the alteration
of perceived orientation through the repeated presentation of differently oriented
stimuli) similar to those perceived with normal contours [SO75, PSN89]. Further-
more, interocular exchange of these aftereffects has been reported [PSN89]. This
suggests that illusory contours are processed at binocular neurons, consistent

with the interaction between illusory contours and depth.



Research on the necessary conditions for the perception revealed evidence
which supports the extraction of illusory contours by early feature detection type
mechanisms. Completion of contour, although influenced by many factors, re-
quires the presence of sharp discontinuity information (a discontinuity in the
first derivative of the luminance profile) [SK90]. Psychophysical data has also
shown that there exists a maximum sized gap that can be perceptually crossed
by the contour [SG83]; the size is dependent upon retinal position of the contour,
increasing from a value of roughly 0.5 visual degrees in the fovea to a maximum
of almost 2° in the periphery. This fixed size can be correlated with a visual

receptive field size.

1.2.4 Interaction with Perceptual Primitives

Mlusory surfaces exhibit many of the same properties as normal surfaces, such
as stereo and motion capture {Ram85a). Furthermore, illusory contours disap-
pear at isoluminance; they cannot be generated by inducers which are defined
only through non-luminance based cues, such as isoluminant textures {[Ram86],
isoluminant colors [Ram86], stereopsis [Pra85] or flicker [Pra85]. This failure of
clearly perceptible inducers to generate illusory contours suggests that the per-

ception might lie with an early luminance based visual mechanism.

1.2.5 Higher Level Interactions

Many experiments have demonstrated that higher level, “cognitive” variables, if
not entirely responsible for illusory contour perception, at least have an impact
upon it. This is supported by the claim that illusory surfaces are perceived only

when they occlude figures which by themselves are not globally complete {Kan76].



A simple demonstration of this is a white square occluding one quadrant of a
circle. Qur assumption that the occluded object is a circle fulfills the requirements
of Gestalt principles; if parts of a form appear to be incomplete, an illusory

contour will result.

Additional evidence of high level interactions comes from results showing that
some illusory contours are not always immediately perceived. In noisy patterns
containing illusory surfaces, often the surface is not perceived until the pattern
is studied for a while, or the figure is pointed out to the observer, after which
the illusory surface is consistently perceived [CPT86] (see Fig. 1.3). Further, the
time to perception of some contours is dependent upon the perceptual set of the

viewer.

Other work has similarly demonstrated that illusory contour per.ception may
not be totally dependent on luminance stimulus array [BD75]. In figures involving
multiple illusory figures, which illusory contours are perceived can be modified
by what the observer is directed to see. However, in these examples, the different
sets of illusory contours were usually in competition with each other; perceiving
one set of contours makes the other perceptually impossible (for example because
of incompatible depth assignments). The varying perceptions in these cases may
have the same orgins as other examples of perceptual selection, for example the

Necker cube or Rubin’s famous faces/vases displays [Rub58].

The role of memory in the perception of illusory contours has been addressed,
with some results to support the claim that familiarity can increase the ability to
perceive the illusory surface [WS88]. However, the many examples of perception
of arbitrary irregular shapes [Kan76] indicates that familiarity with the object

defined by illusory contours is not a necessary precondition for the perception.



Figure 1.3: An illusory triangle can be seen with some effort among the incomplete

elements (after Coren, 86).



1.3 Physiology

Illusory contour perception has been studied physiologically as well as psychophys-
ically. Experiments with both monkeys and cats revealed neuronal responses to
stimuli which induce the perception of an illusory contour in humans [RCC86,
HPB84]. These results have contributed greatly to understanding the manner in

which illusory contours are processed in biological vision systems.

The widest body of evidence comes from experiments conducted by R. von
der Heydt, E. Peterhans and G. Baumgartner which demonstrated responses to
illusory contour stimuli in visual area V2 (pre-striate cortex) of alert, fixating
rhesus monkeys [HPB84, PH89, HP89]. While the monkeys performed a visual
discrimination task, simple illusory contour patterns (a thin illusory bar, and an
illusory grating border (see Fig. 1.2) were presented, and cells in areas V1 and
V2 were recorded from. Of cells which responded to the orientation contrast
boundary, roughly 40% in area V2 also responded to illusory contour stimuli.
No cells in area V1 responded to illusory contours. The strength of the relative
responses were found to vary widely from cell to cell, with either the illusory
contour or the real contour response being dominant, to all levels in between.
Orientation and directional selectivity were roughly equivalent for both types
of contour. The effects of perceptual set and attention were not measured in
the experiments so these factors cannot be discounted or affirmed. No attempt
was made to classify the cells into traditional hierarchies (simple, complex, etc.),

although it was noted that all identified cells were binocularly driven.

Alterations in the visual stimuli used in the experiments helped to further
illuminate the nature of the cellular responses [PH89, HP89]. For abutting grating

stimuli, experiments measured responses to variables such as number and phase of

11



the line segment endings and overlap/separation of the two regions. The resulting
responses showed a high degree of correlation with the perceptual strength of
the induced contour. Responses gradually increased with the number of line
segments, with a minimum of 4 or 5 lines to produce a response and reaching a
peak thresholded response at about 10 inducing lines. Altering the orientation of
the line segments away from the orthogonal to the contour lowered the response.
The distance between the segments was shown to be very important. Maximum
response was obtained with small gaps (.2 visual degrees) and deteriorated until
crossing a threshold (=2 1.6° but varying from cell to cell). In situations where
either half of the grating was presented without the other half no substantial

response was obtained.

Experiments involving an illusory bar (Fig. 1.2) showed similar response de-
pendence on perceptual salience. If the bar gap became too wide, above some
cellularly dependent threshold, the response was extinguished. If either one of the
inducing sections were removeed the response was extinguished. When the bar
sections were “closed”, meaning that small connecting lines were drawn across
the open end of the bar, the responses were also extinguished, in accordance with
human perception. Interestingly, cellular response levels for illusory bars were
typically much higher than would be predicted from the number of line segments
present obtained from abutting gratings. This seems to indicate that the cellular

response was dependent on more than just a simple summation of line endings.

Cells sensitive to illusory contours were reported in areas 17, 18 and the
dorsal lateral geniculate nucleus of anesthetized cats [RCC86]. Stimuli used were
illusory contours generated by abutting gratings. As with monkeys, the cellular

responses varying with perceptual salience of the stimuli. The differences of these

12



results with data from monkeys could be due to a number of reasons: the neuronal
organization differences between monkeys and cats, the use of anesthetized versus

alert subjects, or differences in recording procedure.

Lastly, preliminary results have been reported by Robert Shapley suggesting
that some illusory contours may be signaled by neurons in area V1 of the monkey
visual cortex. The stimuli used were very dense groups of lines, similar to abutting
gratings, which produce an illusory contour at their endings. This data has yet to
formally published, so no attempts at analysis of these results within the context

of other physiological data can be made.

All of these results suggest that illusory contour perception is at least par-
tially determined at early layers of visual processing. Feedback from higher cog-
nitive layers cannot be ruled out completely, but cellular response times are short
enough to seemingly rule out complex feedback processes. Further, the graded
response levels corresponding to perceptual strength of the contour argues against

a cognitive “decision making” process.

1.4 TIllusory Contours and Visual Perception

Recent visual theories have suggested that much of what is perceived is based on
limited data, which is then filled-in to arrive at a stable perception [RG91, PN91,
SG92]. Further, there has been speculation that human vision may use a variety
of special purpose “tricks” to rapidly solve problems which are too computa-
tionally demanding to solve directly. For example, work by V.S. Ramachandran
showed that when computing surface profiles from shading information, the hu-
man visual system uses the assumption that the light source (presumably the

sun) is always directly above the head [Ram8&6]; this assumption is typically valid

13



as humans spend the bulk of their time upright and removes the computational
burden of having to constantly recompute the position of the light source for
even rapid recognition. Illusory contours may be the result of a special purpose
visual mechanism used to detect occlusions based on cues which typically signal
the boundary of an overlapping surface. Once the occluding contour is signaled,
the surface and perceptual contour can be filled-in by active visual processes.
Following these examples may provide artificial vision systems with solutions to
problems which are computationally too expensive when using standard tech-
niques [PTK85].

The physiological data reported strongly suggest that illusory contours are a
fundamental perceptual primitive used by biclogical systems in image segmenta-
tion; to have such a large percentage of cells triggered by illusory contour stimuli
seems to indicate visual mechanisms specifically tuned to detect these types of
occlusion. The manner in which illusory contours are processed by biological
vision systems will probably illuminate many organizational principals of these
systems. Further, illusory contours represent a unique perceptual phenomenon
touching directly into issues such as form perception, filling-in, and integration
of top-down and bottom-up information among others. Lastly, a solution to illu-
sory contours may be part of a larger solution to occluding surface segmentation,
particularly in data impaired situations. Understanding such mechanisms would
be of enormous benefit for construction of artificial vision systems operating in

unconstrained environments.

However, the diversity of the psychophysical and physiological data makes
it difficult to evaluate hypothesized explanations without computational mod-

els enforcing explicitness of constraints and assumptions. The objective of this

14



thesis is to introduce a computational model of the neural structures underlying
illusory contours and to examine in depth the compatibility between physiologi-
cal, computational and psychological theories. A computational model of illusory
contour perception is described based on available anatomical, physiological and
psychophysical data. This model is then implemented as a neural network, and
simulation results presented showing that the network has the ability to detect

illusory contours in a wide variety of images.
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CHAPTER 2

Theories and Models of Illusory Contour

Perception

The wealth of available psychophysical and physiological data has produced many
theories and models of how illusory contours are processed by the human visual
system. These theories can be roughly broken into two broad categories: those
which attribute the major cause of illusory contour perception to cognitive top-
down processing, and those which opt instead for a bottom-up, computational
type approach. As with any classification system, there is not always a clear
boundary or grouping for each theory, and many theories and models take a little
from each category. The major proponents of each group as well as their relative
strengths and weaknesses will be discussed here. Finally, a computational model

of illusory contour perception will be described which is the focus of this thesis.

2.1 Cognitive Models

2.1.1 Gestalt of the Form

The most popular cognitive model attributes illusory contours to the Gestalt
Principles of form perception [Kan76]. Here, subjective contours result from the
prerogative of the visual system to perceive forms. Good form perception is

guided by Gestalt Principles including symmetry, regularity, closure and simplic-

16
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Figure 2.1: (a) An illusory surface occluding several other objects. (b) When the

background elements are replaced by fragments instead of complete objects, the

perceptual strength of the illusory contours is not diminished.

ity. Kanizsa differentiates between forms that arise from physical sensory data
and forms that are perceived because we have knowledge of them in absence of
complete sensory input. The latter case applies to forms that are occluded or
arise from perception of occluding surface, and can be explained in terms of an
unconscious inference made on the part of the perceiver. The visual system, in at-
tempting to observe the Gestalt rules of object formation arrives at a perception
involving illusory contours. Thus, illusory surfaces would be perceived only when
they occlude figures which by themselves are not globally complete [Kan76]. A
simple demonstration of this is a white square occluding one quadrant of a circle.
Our assumption that the occluded object is a circle fulfills the requirements of
Gestalt principles; if parts of a form appear to be incomplete, an illusory con-
tour will result. However, through rigid experimentation, counterexamples have
been found showing that even with properly aligned “complete” elements, illu-
sory contours can still be weakly perceived [DK83]. Another example challenging
this hypothesis is shown in Fig. 2.1; here the perceptual strength of the contours

is not diminished by the removal of possible amodal completions.
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Figure 2.2: Illusory surfaces induce a distinct perception of depth. Here, the
assingment in depth of the illusory triangle alters the perception of the relative

sizes of the two identical circles.

2.1.2 Occlusion

Depth information and perception of occluding surfaces has been suggested as
an explanation of subjective contours [Cor72]. In many examples this hypothesis
seems to be valid; illusory contours arise from edges of surfaces that occlude
real objects. The relationship between the judgement of apparent depth and an
illusory contour is best demonstrated in Fig. 2.2. Two circles subtended by the
same arc appear to be of different size; one placed on top of the perceived triangle
seems to be smaller due to the apparent nearness of the subjective triangular
surface. In some sense the occlusion and apparent depth hypothesis of Coren
could be subsumed by Kanizsa’s explanation: apparent surfaces in the foreground

result from the incompleteness of the background.
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Figure 2.3: (a) A bright illusory bar is seemingly induced by the dark image

elements. (b) The perceptual salience of the illusory bar is not reduced when the

contrast of the inducing elements is sharply reduced.

2.2 Computational Models

2.2.1 Brightness Contrast

One conjecture about the appearance of subjective surface is based on apparent
brightness contrast in the real image (Fig. 2.3(a)) [FC75]. Here, the bright illusory
bar seerns to be induced by the dark edges of all figures “occluded” by the bar; the
contours seem to be especially vivid where boundaries of the occluded surfaces
are represented by many points of discontinuous contrast. Mechanisms similar
to early visual spatial filtering could predict the presence of the illusory contour
[Gin75]. However, counter examples have been shown where very little brightness

contrast is needed to generate an illusory percept, invalidating this theory (Fig.

2.3(b)).
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2.2.2 Locality Conjecture

Ullman has suggested that illusory contours may result from real boundaries
which can be extended to produce a subjective contour by local operations [Ul176}.
Although this proposal is devoid of direct physiological support, it suggests that
a network could fill the gaps in a contour. Multiple layers of orientation detectors
receive data from a fixed range of orientations and contribute laterally to neigh-
boring neurons that are collinear with the center of the input range. Thus gaps
between edge segments would induce minimum curvature connections, resulting
in a global filling-in effect. This is analogous to fitting a curve with cubic splines.
However, counterexamples have been found [Kan79] (Fig. 1.2), where subjective
contours do not lie along the same direction as the real edges in the image and

in fact can be perpendicular.

2.2.3 Nonlinear Summation

The illusory contour detection process appears to be nonlinear. Arrangement
of pattern elements and cues outside of a cell’s normally defined receptive field
can induce a response across a physically homogeneous area. A simple nonlinear
summation mechanism to account for these illusory percepts has been proposed
by Shapley and Gordon [SG85]. The mechanism gates edge responses (of pos-
sibly opposite polarity) across a fixed sized gap, resulting in completion of the
border. Similar to Ullman’s model, the orientation of the illusory contour must
be coincidental with the edge pieces generating it. However, the model will
complete illusory contours across arbitrary gaps, possibly contradicting human

psychophysical performance.
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2.2.4 Recurrent Networks

Grossberg and Mignolla suggested that a computational model loosely based on
the organization of early layers of the primate visual system could account for
illusory contour perception [GMB85]. Their model is characterized by interactions
between a boundary contour system (BCS) which produces the edges of objects,
and a feature contour system (FCS) which fills in interior information. The BCS
is a cooperative/competitive circuit which uses recurrent iterations to complete
broken or fragmented outlines, based on the output of oriented edge filters (com-
plex cells). Line segments of similar orientation cooperate through a spatially
long range process to produce boundary completion. Line endings induce small
segments oriented orthogonally to the inducing segment. These small induced
segments can cooperate spatially to form a complete boundary. Pieces of the
boundary feedback through the competitive loop, producing a relaxation effect
between different border pieces which helps to eliminate spurious segments. Sim-
ulations of the BCS were reported suggesting its ability to fill in a fragmented
borders, as well as detect a limited subset of illusory contours [AK87]. However,
as the model relies solely on local luminance information to complete an illusory
contour, gaps between arbitrarily aligned segments which do not belong to the

same object are often completed.

2.2.5 Contour Neurons

R. Von der Heydt and E. Peterhans proposed a neural mechanism to explain
their recorded responses from cells in monkey visual cortex to illusory contour
stimuli [PIIB86]. They suggest that a subset of cells called “contour neurons”

exist in area V2 which respond to both real and illusory contours. Each of these

21



neurons sums two inputs originating in area V1; the first corresponds to oriented
luminance gradient contours. The second is based on occlusion cues, orthogonal
aligned discontinuities, detected by hypercomplex cells with asymmetrical end
inhibition. Such cells are thought to detect end points, curvature and corners
[KNM84, DZC87, VOL90, WRS9, HRH92). Orthogonal hypercomplex cell out-
puts are summed across the gap spanned by the illusory contour. This model
is the first attempt to explain illusory contour perception in terms of known

physiological and anatomical organizations of the visual cortex.

2.2.6 Snakes

A similar method of perceptual grouping which incorporates a method for or-
thogonally oriented completion is described by the “snakes” model [KWT8T].
Here, an energy minimizing contour spline (the snake) is fitted to low-level image
features such as edges or line endings. The fit can be controlled by the influence
of different image features and other constraints through the manipulation of
constants in an energy equation. Illusory contours can be detected by placing
increased importance on line terminations and edge segments as image features.
However, an initial high-level decision is needed to set the approximate position
of the snake, and the model contains no method for automatically determining

the relative importance of the various image cues.

2.2.7 Gestalt Groupings

A similar energy minimization framework can be used to control the grouping of
tokens based on Cestalt laws of similarity, proximity, continuity, etc., [McC90].

A given scene may theoretically be interpreted (grouped) in many different ways.
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However, one best interpretation needs to be selected, subject to criteria reflecting
properties of the real world (the problem of ill-posedness of vision [PTK85]).
One possible approach is to allow different local hypothesis to compete with each
other. The competition can be realized by minimizing energy that reflects the
intrinsic Gestalt property of each proposed grouping; tokens can be regrouped
until a sufficiently low energy solution is obtained. However, choosing the proper
energy functional to minimize the tokens to be grouped and the scale at which

to allow interaction between tokens to occur remain open problems.

2.2.8 Feature Groupings

The grouping of orthogonally oriented line terminations to determine illusory
contours has served as the basis for many more recent models. A recent effort by
Manjunath and Chellappa proposes that illusory contours are detected as part
of a hierarchical boundary detection scheme[MC91]. Here, orthogonally oriented
line terminator information, along with edges and “textural” boundaries, are fed
into a long range grouping mechanism. However, three immediate problems arise:
1) by not gating terminator information by similar activity on opposite sides of
a gap, lines are completed stretching well passed their true end points, 2) the
size of the grouping neighborhood must be set explicitly to allow detection of
illusory contours as opposed to other types of contours, and 3) the network has
difficulty detecting illusory contours marked by sparse line terminations, such as
the Kanizsa triangle ??. Further, as with the models proposed by Grossberg and

Shapley, no method for monitoring spurious responses is provided.
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2.2.9 Reentrant Processing

A recent computational model by Finkel and Edelman proposes that illusory con-
tours are completed as part of an occluding boundary detection process [FE89].
They construct a neural network which loosely parallels the functional anatomy
of several cortical areas in the primate visual cortex. Illusory contours are com-
pleted by orthogonal line termination responses, subject to modulation by a reen-
trant signal (analogous to feedback between visual cortical areas). Additional
constraints are placed on the completion process to suppress spurious responses;
they require that contour completions have line terminations from both directions
present. Although this allows some hypothetical completions between external
object boundaries to be eliminated, the requirement seems overly restrictive.
Many examples of illusory contours being completed between line terminations

of the same direction are available in the literature (see Fig. 1.2(¢)) and [KenT78].

2.2.10 Evidence Summation

The Hough transform provides a noise and occlusion insensitive technique for
the detection of arbitrary analytic or non-analytic curves in an image [Hou62,
DH72, Bal81]. This ability to function in cases of missing and limited data makes
the Hough transform a potential model for illusory contour perception; a neural
network implementation was simulated and evaluated as a computational model
of illusory contour processing [RS91]. Image feature points “vote” for curves
passing through them using a transformation to a parameter space. This space is
then searched for evidence of the curves being detected. Thus, instead of fitting
curves to data, a more tractable problem of detecting high density points in a

parameter space is addressed. For example, a simple straight line parametrization
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Figure 2.4: The geometry of the (p,#) transformation.

is in terms of p, the perpendicular distance of the line from the origin, and 8, the
angle of the normal to the line (see Fig. 2.4). Euclidean (z,y) coordinates are

transformed into {p, 8) space by p = zcos8 + ysinb.

Thresholded edge pixels are used as feature points; each increments a counter
representing the (p,d) parameters of all lines passing through the it. Thus,
collinear edge points increment the same (p,8) counter. Counters are stored
in a two-dimensional accumulator array, which is thresholded to yield parameter

combinations of high density, corresponding to lines present in the image.

Several modifications were made to the standard Hough transform model
described above. First is the use of oriented edge information [Bal81]; this has
the effect of uniquely constraining the set of lines passing through a feature point
(@ becomes fixed). Further, edges are detected at a variety of spatial scales to

ensure capturing all relevant edge information.

A well known problem of the Hough transform is its inability to localize
detected curves (see [IK88]); detected lines span the entire image. To solve this
problem, we allow edge points to vote for finite length lines spanning a local

neighborhood centered at the edge position. This line length is fixed across all
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spatial scales, and is typically in the range of 20 pixels in the simulations presented
here. For implementation simplicity, direct parameter representation is removed.
Instead, accumulator array counters correspond to pixel coordinates, and collect

evidence for oriented lines passing through their specific spatial positiomn.

The finite length voting process still results in slightly impaired line local-
ization. To address this problem, we introduce a filtering process which ensures
that completed line segments have support on both sides of a gap. This pro-
vides a mechanism for removing small spurious lines as well as trimming existing
line segments, allowing robust filling-in to be done without sacrificing line end

localization.

The enhanced Hough transform model contains four steps: 1) Edge Detection:
at a full spectrum of orientations and spatial scales. 2) Transformation: by
allowing feature points to vote for the line segments passing through them. 3)
Line End Localization: by filtering detected line segments. /) Recombination:
of line segments detected at each orientation and spatial scale. Implementation

details of each are discussed below.

2.2.10.1 The Evidence Summation Neural Network

Previous work has shown how the Hough transform can be cast in a connectionist
architecture [Sab85]. Pixel based feature properties (thresholded oriented edges)
are represented in neuron-like node elements, which cooperatively pass informa-
tion to similar node elements containing parameter space information. Nodes in
the parameter space record a level of confidence (vote totals); totals above some
threshold “fire” the neuron, indicating the presence of the parameterized object

in the image. The image to parameter space mapping determines the pattern of
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Figure 2.5: The enhanced Hough transform network. Edges are detected from the
image, and then compete using a winner-take-all mechanism. Remaining points
vote for lines passing through them using orientation and offset information.

Evidence layers are recombined to yield all lines present in the image.

connections in the network.

Our final architecture is multi-layer feed-forward network (Fig. 2.5). An input
image is filtered for oriented edges using a difference of offset Gaussian (DOOG)
model [You91] at every 22.5° of orientation, and at four separate spatial scales (4,
8, 12 and 14 cycles per degree). Each orientation and spatial scale combination
1s processed with a separate layer of nodes, where each node in the layer has an
identical connection pattern to encode the appropriate edge detection convolu-
tion. Within a spatial scale, orientations compete using a winner take all method;
each pixel may signal an edge at one orientation only. Remaining edge points
increment the confidence counter of nodes lying on an oriented line centered at
the edge. The thresholded outputs of these nodes signal the presence of a line

passing through the corresponding spatial position.
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End points of the detected line segments are then localized using the line end
filter described above. As with edge detection, the filter mask is encoded in the
connection strengths of a layer of processing nodes. For a given spatial scale, all
oriented line information is then combined by simply “and”ing information from
the separate orientation layers. Spatial scales are combined by taking final line

segments to be those which persist across two or more scales.

2.2.10.2 Hough Transform Simulation Results

The network is able to detect most real and illusory contours in simple input
images. Lines corresponding to the outline of a figure completed despite gaps in
the border are shown in Figure 2.6. The network was also able to fill-in illusory
contours which were collinear with their inducing segments (Fig. 2.7). Here,

normal contours as well as contours bounding the illusory bar were found.

The network also performed well with real world images (Fig. 2.8(a)). How-
ever, the network was unable to fill-in across gaps when they became too large.
Increasing the size of the voting neighborhood expanded the gap size that could be
crossed, but resulted in localization errors which could not be corrected through
the line end filtering process. The network also had problems in disambiguating
when to fill-in across a gap by completing lines which were not boundaries of
surfaces, real or illusory. Varying the size of the local voting neighborhood across
spatial scales might provide a method for addressing problems of this nature; our
architecture transforms each scale separately, making this possible. A more intel-
ligent (adaptive; uneven weightings of various cues) transformation and evidence
collection scheme will prove to be a valuable tool for some perceptual completion

tasks. However, this model of contour completion does not seem to be directly
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Figure 2.6: (a) An input image showing the broken outline of a figure. (b) The
network was able to detect lines corresponding to the complete boundary of the

figure despite gaps in the border.
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(a) (b)

Figure 2.7: (a) An illusory bar can be seen occluding the broken rectangles. (b)
Lines detected correspond to both normal contours and to the boundaries of the

illusory surface.
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Figure 2.8: (a) A cluttered gray level image, and (b) The lines detected by the

Hough transform network.

addressing the problem of illusory contour perception. The network is more likely
to make amodal (occluded) rather than modal (occluding and illusory contour)
completions [SN90]. In cases where the illusory contours are coincidental with the
orientation of the inducing segments successful completion is achieved, but when
the illusory contours are orthogonal (which is commonly the case), the occluded

boundary is completed instead typically (Fig. 2.9).

2.3 General Contour Neurons

Although top-down and bottom-up theories both agree on the basic cause of
illusory contour perception, the dividing issue is in where the mechanisms gen-
erating the perceptions are located. Much recent work has suggested that it

is fairly common for the brain to exhibit so called intelligent behavior in lower
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Figure 2.9: (a) An input image containing an illusory bar. (b) In cases where
the illusory contour was orthogonal to the inducing segments the network had a

tendency to make the amodal completions

level processes [Ram85b]. The tendency to attribute unexplained phenomena too
quickly to cognitive black-box explanations without sufficiently exploring lower
level rote mechanisms should be avoided. For illusory contours, this analysis

seems to particularly pertinent.

Available data now seems to strongly support the idea of the human visual
system beginning to extract occluding boundaries, and illusory contours at early
layers of processing. The physiological findings of cellular responses in monkeys
[HPB84] offer the most powerful support to this theory, with relevant data from
psychophysics strengthening the case. The fact that illusory contours are subject
to tilt after effects [PSN89], are insensitive to non-luminance defined cues [Pra85],

and have an easily measurable maximum retinal extent {SG87] all point towards
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a low-level visual function.

Discontinuous background structures, as typified by line terminations seem
to be an absolute condition for the perception of illusory contours [SK90]. The
correlation between line endings and occlusion has been noticed by many other
workers [SSN89], and serves as the basis for many other models of illusory contour
perception [PHB86, KWT87, McC90, MC91]. However, analysis and simulation
results have showed that any model which relies solely on local discontinuity infor-
mation for contour completion will produce spurious responses [SR92a, SR92b].
A simple illusory contour pattern helps to illuminate the cause for the failure of
models such as these. Fig. 2.10 shows how two patterns with nearly identical line
terminator information generate widely different illusory contour perceptions. A
model based solely on line terminator information will produce nearly identical

responses to both patterns.

Instead of merely linking line terminations, illusory contours define the bound-
aries of perceptual occluding surfaces [RG91]. The model proposed here uses the
well documented interactions between depth and illusory contours [Cor72, GHT74,
NS90] to resolve this ambiguity, by exploiting the differences in depth between

occluded versus occluding surfaces.

The model proposes the existence of binocular “General Contour Neurons”
located in area V2 which are sensitive to occluding borders and can thus be driven
by both real and illusory contours. Aligned sharp luminance discontinuities (line
terminations) provide the driving stimuli to the illusory contour component of
the neurons. The response of the neuron to these line terminations is modulated
by excitation from depth sensitive cells signaling foreground surfaces, allowing

the model to eliminate spurious completions. Furthermore, the model explains
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Figure 2.10: Minimal alteration of the image intensity profile in regions spatially

separated from the “gaps” dramatically alters the saliency of the illusory contours

perceived.

the three major perceptual effects associated with illusory contours: oriented
contour perception, depth effects and increased brightness. A neural network
implementation of the General Contour Neuron mode! is constructed and simu-
lated, providing insights into the computational abilities of the model, as well as
towards the type of information needed by an illusory contour detection mech-
anism. The network performs in correspondence with human psychophysical

results for a broader set of illusory contour patterns then any available model.
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CHAPTER 3
Computational Model

Our network consists of multiple layers of neuron-like nodes (cells), who's output
is a positive real number correlated with average firing frequency [RHW85, SM91].
Temporal patterns of neuronal responses are not analyzed. Early layers of the
network consist of computational models of simple, complex and hypercomplex
cells which filter out “features” (edges, line terminations, etc. ) to be aggregated
at later stages. The desired cell property and sensitivity is controlled by the
strength and topology of the connections within the cell’s receptive field. In
effect, each cell in the layer performs an appropriate convolution with the “image”
generated by previous layers to extract the desired “features”. No “learning” in
the classical sense is performed by the network; the connections within the entire
network are fixed, with two notable exceptions. The connections between cells
composing the layer of “surface neurons” fluctuate in strength as a function of the
input stimulus array to control activation spreading, and the connection strengths
of the line terminator inputs to the General Contour Neurons vary as a function

of the response of these surface neurons.

Hlusory contours are signaled through layers of cells called General Contour
Neurons proposed to exist in visual area V2. These neurons are an extension of
the “contour neurons” proposed earlier [PHB86] which serve as the basis for the

model described here. The GCNS are driven by two sets of striate inputs, one
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sensitive to luminance edges, and the other sensitive to illusory contours. The
latter input originates with proximal cells which are sensitive to contrast discon-
tinuities represented by line endings. Responses from rows of perpendicularly
oriented endstopped neurons are summed by interneurons over a spatial extent
beyond the normal edge response. This summation is gated by similar activity on
the opposite side of the elongated receptive field center. Discontinuity evidence is
needed on both sides of a “gap” covered by the receptive field center in order to
perform perceptual completion of an edge. Responses from this mechanism and
from normal edge detectors are combined at the final General Contour Neuron,

which is sensitive to both real and illusory contours (Fig. 3.1).

The response of the GCN to the line termination input is modulated by the
activity profile of a layer of “surface neurons”. These neurons signal an abstract
estimate of foreground surfaces present in an image by diffusively integrating
information from elements which define visual surfaces: corners, line termina-
tions and edges. Their functionality could be implemented by binocular neurons
in early visual layers (V2), or by neurons in areas further along in the cortical
hierarchy involved in form and depth perception (V5). Here, they represent a
lumped sum model of simple surface depth processing. The simple feedforward
explanation of illusory contours [PHB86] is expanded upon by adding: 1) explicit
grouping of line terminations in a manner which yields relative depth information
[HP87], 2) Detection of illusory curvature as well as straight segments to better
define illusory surfaces, and 3) excitation from layers of “surface neurons” to mod-
ulate the GCN response to line terminations. An overview of the computational
stages and information flow of the network is shown in Fig. 3.2. The three com-

ponents (Feedforward, Recurrent and General Contour Neuron) are described in
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Figure 3.1: The General Contour Neuron. The cell receives input from two
parallel sub-systems: luminance edges and illusory contours. The illusory contour
component is driven by summation of orthogonally oriented endstopped cells.

Recurrent excitation modulates the response of the cell to the grouping inputs.
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detail below.

3.1 Feedforward Component

The feedforward component of the network contains layers of cells tuned to “fea-
tures” to be aggregated by the General Contour Neurons. Qur model of edge de-
tection (simple cells) is a difference of offset Gaussian (DOOG) function [You86].
Layers of the network compute edge responses (F(z,y,8)) at different orienta-

tions (every 22.5°) by convolving DOOG filters with an image intensity profile

Iz,y) :
E(m,y,@) = (G(‘T - xo,y,a) - G(‘T: + woayse)) ® I(.’L‘,y) (31)

where:
E J_ 22 ! ’_ )2
]' _( I?a'xo + x"2;":’ )
e E b

2ro.oy

Glz,y,0) (3.2)

is a standard oriented (orientation 8) two-dimensional Gaussian kernel centered
at location (z,y). o, and o, are the width of the Gaussian in the z and y
directions respectively. (z,,y,) is the loci of the receptive field, and (z',y’) =
(zcosl + ysind, —zsinf + ycosl). Responses are half-wave rectified and passed

through a sigmoidal non-linearity [SM91].

Line terminations (T'(z, y,#)) are detected using a modification of a proposed
hypercomplex cell model [DZC87] based on a difference of simple cell responses.
The responses of two simple cells of the same orientation tuning but of different
spatial extents are combined to yield endstopping inhibition. The larger spatial
scale response is subtracted from the smaller one, resulting in a net receptive field
with inhibitory end regions and side lobes. Our model incorporates a slight offset

between the two receptive field centers to generate asymmetrical end-stopping
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Figure 3.2: (a) The network architecture. Inputs to the General Contour Neurons
are filtered by early layers of the network. Terminator outputs feed into a spatial
grouping layer which pools for information on both sides of the gap. General
Contour responses are a combination of edges, spatial grouping and recurrent

excitation from surface activation levels.
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inhibition. The resulting hypercomplex cell responds strongest to an oriented line
ending. To help alleviate false responses from the hypercomplex cells [[IRH92],
the larger (inhibitory) cell response is weighted slightly larger (A; > A; in equation
below). For a horizontal hypercomplex cell (simple cell receptive field centers

offset along the x-axis),
T(x,y,0) = \\Ei(z,y,0) — M Ej(z + z,,y,0) (3.3)

where A; and A; are response weighting constants, and E; and F; are different
layers of simple cell responses as defined in equation 3.1. Responses are again

half-wave rectified.

At each spatial position, feature responses are normalized by those of similar
features at all other orientations (ie. edges compete with other edge responses
across all orientations) [Hee90]. For a given feature at orientation @ and position
(z,y), the response R(z,y,8) is given by:

RIR(x,y,ﬂ)z
) = ]
B0 = §0 5 o Riw,y, ) (3:4)

where @ is a saturation constant, R; keeps the responses within the desired range
(here 0 - 255), and a sums over orientations. This introduces a degree of contrast
independence as well as response stabilization into the network; otherwise for
example, a 22° line terminator with high contrast may give a higher response at

45° than an actual 45° degree line ending with low contrast.

Edges and line terminations compose the feature set required to drive the
feedforward component of the network. Line terminations provide the primary
input to the illusory part of the General Contour Neurons; no illusory contours
can be completed without this input [SK90]. These terminations are grouped

to yield information about the relative position of the occluding illusory surface.
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Hlusory surfaces usually overlay a discontinuous background structure; knowing
the direction of the line terminations (from hypercomplex cells with asymmetrical
end inhibition) provides foreground/background data. Each GCN is tuned to an
illusory contour explicitly bounding an illusory surface. For example, in the case
of a vertical illusory contour, there are two “vertical” GCNs, one signaling the
edge of an illusory surface occluding “from the left”, and one “from the right”.
A GON signaling an occlusion “from the right” would require line terminations

abutting the illusory edge from the left (see Fig. 3.3).

To produce a response, a GCN requires evidence about line terminators on
each side of the receptive field center, corresponding to evidence on both sides of
a perceptual gap. The effective GCN receptive field is bimodal; responses on each
side of the receptive field center are summed separately, but responses from both
sides (defined as response summations above some threshold ¥) are necessary to
fire the GCN. In the immediate region of the GCN, only line terminations of the
preferred occlusion direction of the GCN are summed (from hypercomplex cells
with the proper endstopping profile). If this evidence is present on both sides of
the gap, then the total terminator summation can be possibly supplemented by
line terminators of the opposite direction, summed across a slightly larger region
(more distal image features such as corners cannot induce an illusory contour, but
can increase the perceptual strength of an existing illusory contour). Determining
the neighborhood size over which to integrate terminator information was an
open parameter in the model; we used values between 0.5 and 2.0 visual degrees,
in correspondence with psychophysical measurements of the maximum size gap

which can be perceptually crossed by an illusory contour [SG87]. For a horizontal
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GOCN (summation occurring along the x-axis),
T
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where T'S(z,y, 8) is total terminator evidence summation at position (z,y) and
orientation 8. T'(x,y, @) is line termination responses as per equation 3.3, and &&
represents a gating mechanism requiring responses on both sides of the receptive
field center. If the first component (from T(x,y,8)) is > 0, the second compo-
nent (from 7T'(z,y, 8+ 180)) is added to the response (F represents a conditional
addition). The width of the grouping is fairly small, usually equivalent to 2 or 3

pixels, producing a thin, oriented GCN receptive field.

In addition to GCNs tuned to straight illusory contours as described above,
our model includes a mechanism for the detection of illusory concavities (corners).
This 1s in accordance with the ability to perceive illusory corners in displays such
as the Ehrenstein illusion [Ehr41]. Here, the sections of the bimodal receptive
field of GCN are oriented orthogonal to each other (resulting in an “L” shaped
construct). Specific hypercomplex cell responses are once again summed to yield
the relative position of the occluding surface bounded by the illusory corner.
Our model currently includes GCNs detecting straight contours at 16 different
orientations (every 22.5°), and at right angle corners. The model can easily be

extended to detect illusory segments of any arbitrary degree of curvature.

42



Spni

R

Presumed Occluding
Surface

| Presumed Occluding
Surface

(a) (b)

Figure 3.3: The receptive field profile of line termination groupings for (a) a GCN
detecting a straight illusory contour, and (b) a GCN tuned to the detection of a
right angle corner. Each pools asymetrical hypercomplex cell responses consistent

with the relative position of the occluding surface.
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3.2 Recurrent Component

The second component controlling the activities of the GCNs is recurrent excita-
tion, which facilitates the GCN’s response to hypercomplex cells, enabling con-
tour completion. Illusory contours bound perceptual surfaces; thus the recurrent
excitation component is derived from estimates about visual surfaces present in a
scene, signaled by layers of surface neurons. Utilizing the foreground/background
interpretation of line termination grouping allows surface levels to provide con-

firming or contradictory evidence of a true surface boundary.

The visual surface estimate is generated by allowing contour features which
best seem to define foreground surfaces (concavities, terminations and contours),
to interact using a simple diffusive spreading activation mechanism [SHH87].
These features serve as a source of constant input and are thus the major deter-
minant of surface neuron responses. Contour points with high curvature (corners)
seem to be the most salient in capturing closed surface information [Att54], and
in our model they represent the strongest “sources” of the diffusion. The corners
(C{z,y)) are extracted by layers of cells which detect overlapping responses from

orthogonally oriented hypercomplex cells.

Clz,y) = (T(x,y,8) — ;) && (T(z,y,0+ 90) — ®,) (3.6)

where T'(z,y) is defined in equation 3.3. Once again, both hypercomplex cells
must respond (be activated at a level above some threshold @,) at the same

spatial location to drive the corner detection neuron.

Hypercomplex cell responses (7'(z,y,8)) are obtained as part of the feedfor-

ward mechanism, and also serve as sources of the diffusion process. The final
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source of diffusion is contours, as encoded by GCN outputs; the weighted com-
bination of the summation across all planes of these three features serves as the

time-dependent source (Si(z,y)) of the system.

Si(z,y) = Ky Z GCNy(z,y,0) + 52 Z T(z,y,0) + ngz C(z,y) (3.7)

The k; represent the relative contributions of the three components to the steady
state source; values used were k; = 0.1, k2 = 0.2, and &3 = 0.4. As the GCN
responses are themselves dependent on the surface neuron responses, the recur-
rent excitation mechanism of the network is an iterative, dynamic subsystem.
An analogy can be drawn to an integrated surface and edge based segmentation

scheme.

Activation spreads from salient points S;{z,y) through the layer of surface
neurons. Each surface neuron feeds activity to its neighbors according to a simple
diffusion equation [SHH87]. The level of activity at each time step is used to
determine the recurrent excitation fed to the GCNs, Thus, the GCN response

evolves in time as the surface neuron activity profile settles into a steady state.

Anatomically, the outlines of such a scheme seem to be plausible. The primate
visual cortex contains extensive feedback connections from higher visual areas (for
example, V5) which modulate the responses of cells in area V2 to stimuli within
their receptive field [LH88]. Conceivably, these connections carry more “global”
information about a scene which could restrict the way early feature responses are
processed. This “global” information may result from lateral interactions between

cortical cells mediated by long distance intracortical connections [Gil88].

Given a set, of variable strength sources S;(z,y) across an image, the activity

level (A:41(z,y)) of a cell at position (z,y) and time ¢ + 1 is modeled by the
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following equation:

At+1($1 y) = (l - p)At(ma y) + I/TL Z w(?‘v.])[At(xa y) - At(zsj)] + 7St(m1 y) (38)

1'-’

where: p is the decay rate (a positive number between 0 and 1}, n is the number
of neighbors of the cell (z,y), ¥(z,y) controls the strength of lateral connection
and « is a positive constant roughly equivalent to the decay rate. The term
[Adz,y) — Az, 7)] evaluates to 0 if A, (¢,7) > Az, y). ¥(z,y) is a function
of the strength of all computed contour response (3o GCN(z,y,8)) at the cell
position:

1

P(z,y) = N TSeGON Gy 0) (3.9)

where N is a positive constant.

Contour responses (Y, GCN(z,y,8)) decrease the interaction between neigh-
boring cells, providing a graded shunting of the diffusion process [GT88]. Cells
contributing to the activity level via the summation are those in an eight con-
nected neighborhood (n = 8) (see Fig. 3.4). Our simulations usually converged
in 20-30 iterations, depending on the spatial separation between features. The
precise interaction between surface activity levels (A¢(z,y)) and GCN responses

is described in the next section.

3.3 General Contour Neuron

The main driving input to the GCN is the feedforward component represented
by the summation of line-terminators (7'S(z,y,8}). The GCN’s response to this
input is modulated by feedback from surface neurons (A;(z,y)). Facilitation is
provided when the A,(z,y) response is high at the border of the illusory surface

signaled by a GCN. The relative level of surface neuron activities (AG(z,y,8))
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(a) (b)

Figure 3.4: The diffusion process. Activity levels are communicated through
connections between cells across the layer. Each cell connects to its 8 immediate
neighbors. Activation levels spread through the cellular network until a steady

state is achieved.

is determined by an interneuron which performs an oriented gradient detection
(using the DOOG model) to determine the surface neuron activity gradient near

the GCN.

AGi(z,y,0) = (G(z — z,,¥,0) — G(z + 2,,y,0)) ® Ai(x,y) (3.10)

The surface activity gradient must be compatible with the implicit depth
gradient of the illusory contour signaled by the GCN. The absence of this gradient
(or if it contradicts the depth preference of the GCN) reduces or removes the
recurrent excitation, making the GCN less responsive to its hypercomplex cell

inputs.

The spatial grouping (SG(z,y,#)) or illusory contour component of the Gen-
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eral Contour Neuron is a non-linear function of the strength of the termination
responses lying within its receptive field. This function is modulated by the ac-
tivity of the surface neurons by shifting the response profile curve. Where the
surface gradient is strong, it is possible for only limited terminator responses to
fire the cell; where it is weak or absent, very strong terminator responses are

required to produce a response.

1 I'(z,4,8)})—-TS(z,y,0
_ 6—‘1—)—(—-3—1,
SGy(z,y,0) = Kl p OSSR (3.11)
[ T
where
Tz, y,0) = Me mAG=v0) (3.12)

I'y(z,y,8) is an inverse exponential of the surface activity gradient which allows
proper shifting of the spatial grouping response profile function. K, M, m and 7

are positive constants and fixed parameters of the model.

Edges and spatial groupings are computed at multiple orientations at every
spatial position. These responses are combined at layers of General Contour
Neurons, each of which signals all contours, real or illusory, detected at a specific
orientation and spatial position. Accordingly, the combined response of the GCN
is given by:

GCNy(z,y,0) = E(z,y,0) + SGi(z,y,9) (3.13)

The network, with a labeling of each processing layer is shown in Fig. 3.2.
An input image is filtered for oriented edges by layers of simple cells (E(z,y,9)).
These edges serve as an input both to layers of hypercomplex cells (T(z,y,0)),

and to the GCNs themselves. Hypercomplex responses are summed (7°S(z, y,9)),
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and grouped (SG(z,y,8)). The grouping is controlled by the activity gradient
(AG(z,y,8)), obtained by performing a gradient detection on surface neuron
activity levels {A(x,y)). These activity levels are determined by a diffusive inter-
action between salient image points (T'(z,y,9),C(z,y) and GCN(z,y,)). The
integration of feedforward and recurrent components performed by the General

Contour Neuron is shown in Fig. 3.1.
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CHAPTER 4

Simulation Results

4.1 Methods

Simulations presented in this paper were performed using the UCLA-SFINX net-
work simulator [MS92] running on an RS/6000 workstation. UCLA-SFINX allows
the construction and simulation of large scale fixed or variable connection net-
works, with X-windows based graphics utilities for viewing simulation outputs.
The functionality of the network is specified by C language source code which is

linked in with the simulator core.

The network consists of mulitple 128x128 unit layers, with each unit linked
to a specific pixel location. Within each layer, all units had identical connection
patterns to encode their receptive field profile. The network contained 32 layers
of simple cells (16 orientations at 2 spatial scales), 16 layers of hypercomplex
cells (both asymetrical inhibition patterns for 8 orientations; contrast pairs of
simple cells, those at 180° orientation offsets, were combined to yield contrast
insensitivity), 16 layers of terminator summations (one summing across each layer
of hypercomplex cells), 4 layers of corner detection cells, 1 layer of surface neurons,
and 20 layers of General Contour Neurons (four corner detecting layers and one
for each terminator summation layer). All told, the network contained roughly

1,400,000 units, and in upwards of 40,000,000 connections. Simulation times were
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on the order of minutes, mostly spent performing convolutions to obtain simple

cell responses.

Input patterns were presented as 128x128 pixel grey level (256 grey levels)
images, representing an area of 16 square degrees of foveal vision. Patterns se-
lected for testing were from three categories: 1) standard illusory contour images
popular in the literature to test the basic computational abilities of the model,
2) illusory patterns which had proven difficult for existing models to process to
test the flexibility and robustness of the model, and 3) “real-world” patterns to
test the performance of the ability of the model to perform with normal images.
The General Contour Neuron is a model of visual processing and should perform

equally well with illusory contour and regular stimuli.

The parameter set used was identical for all simulations. Most parameter
values were determined by the geometry and connection patterns desired in the
network, however some, such as gain control thresholds, had their values deter-
mined after some experimentation. Once acceptable values were obtained, they
were fixed for all experiments. The contrast normalization of the network proved
useful here, allowing the parameters of the network to remain fixed despite alter-
ations in the range of grey scales in the input stimuli. A listing of all parameters

and their values is shown in Tables 4.1 and 4.2.

Simulation outputs are in the form of response profiles of layers of cells. Each
cell’s firing rate was scaled to a value between 0 and 255, with no response (level
0) represented by white, and maximal response (255) as black. Outputs shown are
SFINX renderings of actual network layer responses. Performance of the network

was evaluated by comparing the results to human psychophysical responses.
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Parameter | Equation Value

Oy Oy 3.2 3 : 1 aspect ratio

A 3.3 1.0

Aq 3.3 1.2

¢ 3.4 5000

R, 3.4 285 =274
®4+2552

T 3.5 100

§ 3.5 2

Y 3.3 0.8

Y2 3.5 1.2

&, 3.6 30

k 3.7 0.1

ky 3.7 0.2

ks 3.7 0.4

Table 4.1: The parameters used in the network.
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Parameter | Equation | Value
P 3.8 0.05
y 3.8 0.05
n 3.8 8
N 3.9 |
K 3.11 255
T 3.11 48
m 3.12 0.1
M 3.12 220

Table 4.2: Additional parameters used in the network.
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4.2 Results

The network is able to detect all luminance based and illusory contours in a vari-
ety of well-known illusory contour patterns. Additionally, the network produced
results which compare well with human psychophysics with more difficult stim-
uli, including those with potentially ambiguous completions. An example of the
network’s outputs when presented with a simple illusory bar stimuli is shown in
Fig. 4.1. Hypercomplex cells respond at the corners of the broken rectangles;
however, these responses are not by themselves enough to fire the General Con-
tour Neurons and complete any illusory contours. Corners, line terminations and
contours are aggregated to serve as the initial activity level of the surface neu-
rons. After several iterations, this process provides sufficient confirming evidence
to allow the beginning of contour completion on the boundaries of the illusory
bar. When a steady state is achieved, the boundaries of both the real horizontal

rectangles and the vertical illusory bar are signaled by layers of GCNs.

Note that if these line terminations alone were taken as sufficient evidence,
several extraneous completions would be generated (Fig. 4.2). The recurrent
excitation componenet allowed the network to avoid these completions. Contours
C & D were not completed due to lack of any surface neuron activity gradient
in their vicinity; the sparse line termination evidence by itself is not enough to
fire the GCNs in this area. A surface activity gradient exists in the region of
contours E & F, however this gradient contradicts the depth assignment given by
the line termination groupings to complete these contours. The direction of the
line terminations predicts an occluding surface at the center of the image; the
activity gradient is in the opposite direction, thus no completion occurs. Another

example is shown in Fig. 4.3. Here, the contours bounding a “Kanizsa” square

54



are completed when confirming evidence is received from the surface neurons.

The performance of the model for a variety of illusory and real stimuli is shown
in Figures 4.4 - 4.10. For each, the input image is shown (a), the final steady-
state surface neuron activity levels in (b), and (c) shows the resulting responses
of all General Contour Neurons in the network. The network provides good
completions of contours bounding illusory surfaces, while yielding surface neuron
activity profiles which correspond well to the foreground surfaces perceived in the
image.

Fig. 4.4 shows the result of the network when tested with an abutting grating
stimuli. The surplus of hypercomplex cell responses reduces the dependence upon
surface neurons, allowing the contour between the two halves of the grating to be
detected. The potential contour completions around the borders of the grating
were largely suppressed, something not achieved by models relying solely on local
termination information [GM85, PHB86], but clearly evident in physiological
experiments [HPB84, HP89, PH89]. Existing models of illusory contour detection
are often unable to detect both the abutting grating border and the boundaries of
a Kanizsa square without major modifications [MC91, McC90]; here both types

are completed with an identical network.

The network was able to detect the borders of a horizontal illusory bar given by
multiple inducers (Fig. 4.5). Here there are several possible completions which
can be made between line terminations; the network made only those which
are perceived by human observers. The network was also able to detect the
boundaries of the Kanizsa triangle (Fig. 4.6). Although all terminations here do
not lie orthogonal to the contours they induce, the hypercomplex cell responses

were still strong enough to allow completion.
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Figure 4.1: Simulation results of the network when presented with a simple illu-
sory bar stimuli. (a) Shows and input image and the original diffusion sources.
(b) Shows the time step output of the surface activation levels. (c) Shows the
time step responses of all General Contour Neuron layers. Time steps shown
are 0,10,20 and 30 iterations. As surface neuron activation levels spread, the
GCNs begin to respond and signal the contour completion. At steady state, the

boundaries of the illusory bar are clearly defined.
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Figure 4.2: Possible contour completions based on line terminations with an
illusory bar image. The General Contour Model makes only completions A &
B, in correspondence with human psychophysics. Completions C, D, E & F are

suppressed due to lack of recurrent excitation from surface neurons.

57



Figure 4.3: Simulation results of the network when presented with an illusory
square stimuli. (a) The input image and initial sources. (b) The time step
output of the surface activation levels. (c) The time step responses of all General

Contour Neuron layers. Time steps shown are 10, 20, 25 and 30 iterations.
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Nlusory contours can be seen between inducers of opposite contrast polarity
(see Fig. 1.2). The network was able to perform this type of completion because
the hypercomplex cells were insensitive to contrast polarity.through the contrast
independence of the hypercomplex cells (Fig. 4.7). Here also the contrast between
the pattern and its background is sharply reduced, but the contrast normaliza-
tion of the network performed well enough to allow the pattern to be processed
properly.

The network was able to complete the boundaries of an illusory square drawn
as a modification of the sun illusion [Ken78] (Fig. 4.8). The corners of the figure
were signaled (although with slightly impaired localization) by GCNs tuned to
illusory corners. Previous models have been unable to complete boundaries such
as these because they impose the unrealistic requirement of the presence of line

terminations from both directions [FE89].

Illusory contours are detected by the network through integration of cues
which normally signal visual occlusion. When presented with a stimuli where
the occluding boundary does have a luminance correlate, it is also detected by
the General Contour Neurons through these same cues (Fig. 4.9). Finally, when
presented with a “real-world” image, the network showed a limited ability to

detect boundaries not marked by any continuous discontinuities (Fig. 4.10).
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(a) (b) (c)

Figure 4.4: Simulation results. (a) Shows the input pattern presented to the
network. (b) The final steady state surface neuron activity levels. (c) All con-
tours detected by the network at steady state. The surplus of hypercomplex cell

responses decreased the dependence upon surface neuron activity levels.

(a) (b) (c)

Figure 4.5: Simulation results. (a) - (c) as before. Of the many possible comple-

tions, the network made only those perceived by human observers.
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(a) (b) (c)

Figure 4.6: Simulation results. (a) - (c) as before. Although the line terminations
were not orthogonal to the illusory contours, they were still detected by the

network.

(a) (b) (c)

Figure 4.7: Simulation results. (a) - (c) as before. The contrast independence of
the hypercomplex cell model allowed the network to complete between opposite

contrast polarity inducers.
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(a) (b) (c)

Figure 4.8: Simulation results. (a) - (c) as before. The corners of the square were
detected by GCNs tuned to corner detection. The boundaries were completed

despite the presence of line terminations from both directions.

(a) (b) (c)

Figure 4.9: Simulation results. (a) - (c) as before. The occluding border was

detected by the same mechanism used to detect illusory contours.
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(a) (b) (c)

Figure 4.10: Simulation results. (a) - (c) as before. The network was able to

partially detect the boundaries despite a lack of continuous discontinuities.
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CHAPTER 5

Discussion

Recent studies of computer vision and computational modeling of biological vi-
sion systems have stressed the important role illusory contours may play in the
visual segmentation process [Mar82, GM85, Ram87]. This thesis has attempted
to quantify that role, by developing a framework addressing the need for illu-
sory contours in the processing of images (ie. in the detection of occluding and
discontinuity impaired surfaces), and by providing a computational model of illu-
sory contour perception. The results presented here suggest that the apparently
complex cognitive methods by which humans efficiently extract information from
images can be explained through interactions of fairly simple neural networks

operating on primitive features.

The computational models of illusory contour processing reported in the liter-
ature often perform properly for only a limited subset of illusory contour patterns
[GMS85, FE89], or are forced to radically adjust the functioning of the network to
accommodate different types [McC90, MC91]. Our model’s performance is com-
parable to human psychophysical results for a wide variety of illusory contour
patterns, and is based directly on available physiological data. It can account for
the three most notable perceptual effects observed in the illusory contour phe-
nomenon: 1) Oriented contour perception, 2) Depth eflects, 3) Increased bright-

ness. Each is discussed below.
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5.1 Oriented Contour Perception

Ilusory contours have a very real perceptual feel, much like normal contours.
The General Contour Neuron model predicts that some orientation sensitive cells
in early visual layers (V2) which signal real contours also signal i1llusory contours
[HPB84]. Higher visual processes which interpet the output of these cells would
be unable to differentiate whether the response was due to an illusory or real
contour, rendering the two types perceptually indiscriminable. Support for this
comes from psychophysical data showing that illusory contours perform similarly

to normal contours in a variety of visual tasks [PSN89, Ram85a, Ram86].

5.2 Depth Perception

Nlusory surfaces often appear offset in depth from their background. The General
Contour Neurons signal illusory contours as the border of an occluding surface,
either illusory or real (Fig. 4.5, Fig. 4.9). Additionally, each GCN has an implicit
depth gradient (which determines its dependence upon surface neuron activity
levels). There is extensive psychophysical [Cor72, GHT4, Jul7l, N5589, NS90,
SN90] and physiological data [HPB84, PH89, HP89] to support the relationship

between illusory contours and depth.

The model predicts that orientation sensitive binocular cells tuned to a dis-
parity offset signal illusory contours as well as other types of depth boundaries.
This could be directly tested by recording the responses of cells which respond
to illusory contours to other types of depth boundaries, either stereoscopic or
monocular. Recent modeling efforts have suggested that contrast polarity in-

sensitive cells in early visual layers may be ideally suited to perform disparity
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detection [ODF90]; the GCNs fit this hypothesis. Further, there is evidence that
some depth boundaries can suppress illusory contour perception [GHT74], and per-
cepts similar to illusory contours can be generated by manipulation of depth cues

without a luminance discontinuity correlate [Jul71, NS90].

5.3 Brightness Perception

Mlusory surfaces are often marked by an unusual perception of brightness (or
darkness) beyond those of physically identical background elements. Much recent
work has focused on the possibility that what we perceive in visual surfaces is
merely filled in from contrast (color or lightness) at the boundary [RG91, SG92].
Thus, having a contrast polarity sensitive illusory contour would yield a lighter (or
darker) illusory surface, one whose brightness would appear all the more striking
due the lack of actual contours separating it from its physically homogeneous
background. Grouping of line terminations in a contrast polarity manner (ie. light
terminators on black backgrounds) would allow computation of illusory contours
with a luminance polarity [HP87]. Currently, our model combines contrasts of
both polarities, allowing the completion of illusory contours between opposite
luminance polarity inducers (Fig. 4.7). However, boundary detecting cells in V2
may be tuned for either contrast polarity or for foreground/background direction.
Both types of grouping could be done; contrast pairs could be combined to yield

relative disparity, and kept separate to allow brightness detection.
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5.4 Anatomical Considerations

Anatomical and physiological data have shown that processing in the primate
visual system is done through two functionally segregated pathways, the mag-
nocellular and parvocellular [DES5, LH88, ZS88]. This separation begins in the
retina and continues to higher visual layers, with limited pathway integration.
The parvocellular pathway is mainly selective for form and color processing, while
the magnocellular has been linked to the processing of depth, motion, and spatial
relationships among objects [LH88]. Thus, illusory contours are likely processed
in the magnocellular pathway. This is supported by psychophysical data; illusory
contours cannot be perceived when the inducing elements vary from the back-
ground in only color. Because the magnocellular pathway is largely color blind,

it would not be triggered by such a stimuli.

The General Contour model is based on physiological results showing re-
sponses of cells to illusory contours in area V2 [HPB84, HP89, PH89]. The
GCNs could be located in the thick stripes of area V2 (see Fig. 5.1). Feedforward
connections would come from from V1 simple cells and V1 or V2 high resolution
(parvocellular) asymmetrical hypercomplex cells. Cells with this asymmetrical
endstopping property have been reported in V2 by Peterhans et al. [PH91], and
there is evidence for extensive interaction between the magno and parvocellular

pathways in V2 [ZS88, EAF92].

General Contour Neurons receive recurrent excitation which modulates their
processing of line terminator information. Cells in the thick stripes of V2 recelve
three major types of connections, feedforward from V1, recurrent from V2 thick
and thin stripe regions, and feedback from higher visual layers, mainly V5 and

possibly V4 [ZS88, EA90]. The recurrent excitation could be generated from
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Figure 5.1: Speculative anatomical correlates of illusory contour processing by

the primate visual system.
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interactions between binocular neurons in area V2 which share data in order
to represent continuous surfaces in depth [MP76]. There is evidence for lateral
long-range connections between early visual cells which allow integration of infor-
mation across the visual field [GW90]. Alternatively, the excitation could come
through feedback from area V5, which has been implicated in depth and spatial
relationship processing. The feedback connections from V5 to the magnocellular
section of V2 are extensive; feedback connections outnumber feedforward con-
nections in the primate visual cortex. Further, the manner in which feedback
effects earlier processing seems to fit well with the role of recurrent excitation
in the model: “...backward connections seem not to excite cells in lower areas,
but instead influence the way they respond to stimuli within their smaller recep-
tive fields.” (from Zeki & Shipp, 1988). These feedback connections may serve
additional purposes; because feedback typically draws from many diverse areas
[DES85], it may represent the mechanism by which the various previously sepa-
rated perceptual primitives are integrated [KK89]. This integration may explain
the data showing interactions between illusory contours and other perceptual fea-
tures [Ram85a, Ram86, RGY1], or from “higher-level” variables such as memory

[WS88] or perceptual set [CPT86].

The recurrent excitation of the GCN model allows suppression of some re-
sponses to aligned terminations which do not correspond to perceptual illusory
contours. However, it could be that illusory contours and the spurious comple-
tions are both actually “seen” and signaled at V2, and that spurious completions
are not perceptually suppressed until later in visual processing [Hey92)]. Although
this hypothesis cannot be ruled out without physiological experiments, it seems

to stand in contrast to some organizational principles of the visual system. In-
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creasingly, seemingly “cognitive” visual tasks are being proposed to be computed
instead at early visual levels [Ram85b, N592]. With the multitude of recurrent
and feedback connections present, the information necessary to suppress these
responses is available at V2. Performing suppression at lower levels would allow
higher visual levels to focus computational processing on the surplus of interme-

diate level visual tasks which cannot be addressed at early visual levels.

5.5 Future Work

Although the General Contour Neuron model proved successful in the detection
of illusory contours, several shortcomings exist which should be addressed in
extensions to this work. Currently, line terminations are grouped at one receptive
field size only (y, = 1.4 visual degrees in equation 3.5). Grouping at multiple
scales, with possibly some interactions between the different scale groupings,
would make the model more robust. Multiple scale processing is a technique the
primate visual system has exploited to benefit other tasks [EAF92]. Multiple
scale grouping of line segment evidence was used in the Hough transform model
[RS91] to help the network cross gaps of different sizes, particularly with complex

stimuli.

The contrast normalization of the network, although effective, does not rep-
resent a complete model of the interactions between early visual features [Hee90].
There is now evidence of extensive interactions between orientation sensitive cells
in V1 [GW90, VDO89]. Tmplementation of interactions of these types would pro-
duce a better feature set for the GCNs, producing better results from operations
on these features [Mes92], as well as allowing early layers of the network serve as

a better model of area V1 processing.
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The curvature and contrast detection used in the model is oversimplified and
inadequate for complex, irregular stimuli. Currently, only right angle corners
are detected, using overlapping hypercomplex cell responses (equation 3.6). Ex-
tending the mechanism of curvature detection to arbitrary curved elements is
a necessity for processing of natural scenes, and essential for a model of visual
contour processing. Several models for general curvature detection using hyper-
complex cells exist [DZC87, WR89, VOL90], although none have been successfully

implemented, or been proven to be biologically accurate.

The GCN model proposes that illusory contours bound closed surfaces, which
are (at least partially) defined by corners and points of curvature. This assump-
tion appears to be valid. | However, there have been some recent reports of illu-
sory contours being marginally perceptible in situations where they do not bound
closed surfaces [PC92a]. These cases would limit the effectiveness of surface neu-
ron activity levels to aid in the completion process. However, the mechanism
through which line terminations are integrated still allows some contours to be
completed in absence of surface information (Fig. 4.4). Additionally, not all closed
surfaces are well defined by corner or curvature information, the major source of
initial surface neuron activity levels. Here though, the ability of multiple types
of image cues to define surfaces (such as line terminations) allows completion of

the boundaries of surface without this curvature information (Fig. 4.8).

5.6 Conclusions

We feel that our model provides a reasonable interpretation of evidence about
the visual processing of illusory contours. By using primitive estimates of fore-

ground/background depth information (from surface neuron activity levels), our
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model is able to successfully disambiguate potential illusory completions. A more
realistic implementation of the lower layers of the network will help provide ad-
ditional robustness. The model makes several predictions about organization of
early layers of the primate visual system, and outlines a number of interesting
experiments which would better address the computational mechanisms of this
system. As more data becomes available about the visual processing of depth,
the model can be expanded to make more concrete predictions, and to serve as a

better model for occlusion detection in artificial vision systems.
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