Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A BOTTOM-UP CLUSTERING ALGORITHM WITH APPLICATIONS
TO CIRCUIT PARTITIONING IN VLSI DESIGNS

Jason Cong October 1992
M’Lissa Smith CSD-920055

A Bottom-up Clustering Algorithm
with Applications to
Circuit Partitioning in VLSI Design

Jason Cong and M’Lissa Smith
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90024

Abstract

In this paper, we present a bottom-up clustering algorithm based on recursive collapsing of
small cliques in a graph. The sizes of the small cliques are derived using random graph theory.
This clustering algorithm leads to a natural parallel implementation in which multiple processors
are used to identify clusters simultaneously. We also present a cluster-based partitioning method
in which our clustering algorithm is used as a preprocessing step to both the bisection algorithm
by Fiduccia and Mattheyses [FM82] and a ratio-cut algorithm by Wei and Cheng [WC89]. Our
results show that cluster-based partitioning obtains cut sizes up to41.3% smaller than the bisection
algorithm, and obtains ratio cut sizes up to 89.6% smaller than the ratio-cut algorithm. Moreover,
we show that cluster-based partitioning produces much stabler results than direct partitioning.

1 Introduction

1.1 Motivation

A cluster is group of strongly connected components in a circuit. The goal of clustering algorithms
is to identify the clusters in a circuit. In VLSI layout design, clustering algorithms can be used
to construct the natural hierarchy of the circuit. Many existing layout algorithms generate a
circuit hierarchy based on recursive top-down partitioning [Len90]. Not only does the time and
space required by partitioning algorithms increase as circuit sizes increase, but also the stability
and quality of their results deteriorate. For example, iterative improvement based partitioning
algorithms [KL70, FM82, WC89] do not perform well on very large circuits. These algorithms
try to avoid local optima in the solution space by allowing the cut size to temporarily increase.
However, as circuit sizes increase, the number of local optima becomes very large and these
algorithms often fail to discover a cut size close to the global optimum. A poor result early in
the top-down partitioning process imposes an unnatural circuit hierarchy and will likely lead to a
suboptimal solution.

Bottom-up clustering algorithms provide a solution to the problems encountered when par-
titioning very large circuits. A bottom-up clustering algorithm can be integrated into the par-
titioning process by using clustering as a preprocessing step to partitioning. First, clustering is
performed on the circuit to obtain a clustered circuit in which each cluster of components has
been collapsed to form a single component. Partitioning is then performed on the clustered circuit
instead of the original circuit. Since the number of components in a clustered circuit is usually
much smaller than that of the original circuit, the time and space required by the partitioning
algorithm is reduced significantly. Moreover, our study shows that partitioning the clustered cir-
cuit leads to better results than direct partitioning, since strongly connected components in each
cluster are not separated during the partitioning process.

1.2 Basic Concepts and Terminology
1.2.1 Definitions

Partitioning. The partitioning problem is to divide a circuit into two or more subcircuits of
(roughly) equal size while minimizing the cut size. The cut size is the number of nets connected
to compornents in more than one subcircuit. Due to the inherent complexity of the partitioning
problem, many heuristic algorithms have been proposed to obtain efficient solutions (KL70, FM82,
KJV83, WC89, HK91, CHK92].

Clique. An r-clique is a complete graph with 7 nodes. The number of edges in an 7-clique is

().

1.2.2 Graph Representations of Netlists

A netlist is best represented by a hypergraph with each component being represented by a node
and each net represented by a hyperedge. However, many clustering and partitioning algorithms
[BHJT.89, GPS90, KL70, HK91, CHK92], including the one presented in this paper, use a graph
representation of the netlist rather than a hypergraph representation. An r-terminal net is rep-
resented by an r-clique in the graph representation. The edges of the clique are usually weighted
according to the size of the net. Several weighting functions have been proposed, including ;E—l, %,
or ?Tmi_d—('r“!) [CP68, HK72, Don88]. In essence, these weighting functions assign smaller weights
to edges in larger nets. Qur clustering algorithm uses the weighting function % for an r-terminal

net.

1.2.3 Clustering Metrics

Once a cluster has been formed it is useful to know whether the cluster is good, i.e. whether the
nodes in the cluster are strongly connected. Several clustering metrics have been proposed as
follows.

Cluster Density. The density of a cluster is the ratio of the number of edges in the cluster
to the maximum number of edges that could be in the cluster. In particular, given a cluster of ¢
nodes, the cluster density is Mic’ where M, = (5) and I may be either the total number of edges
in the cluster or the total weight of those edges. Clusters with a higher density are considered
to be of higher quality. Although, the density metric is perhaps the simplest and most intuitive
of the three metrics, this metric is biased toward small clusters since the value of M, increases

rapidly as ¢ increases.

k-l-connectedness. Another metric is based on the notion of k-I-connectedness {GPS90]. In
a graph, two nodes are k-l-connected if and only if there exist & edge-disjoint paths connecting
them such that each path has length at most I The idea is that if two nodes are connected by
many separate paths, they are strongly connected. However, it is not obvious what values should
be assigned to k and I for any given circuit. This metric is more suitable for determining whether
two nodes should be in the same cluster than for comparing the quality of clusters.

Degree/Separation. A more recent metric for determining the quality of clusters is the
degree/separation (DS) metric [CHK91, HK92]. The cluster degree is the average number of
nets incident to each component in the cluster. The cluster separation is the average length of
a shortest path between two components in the cluster. Clusters with a higher DS value are of
higher quality. Since this metric considers the global connectivity information, it is a very robust
measurement. However, in general, it is costly to compute the DS value for large circuits since
computing cluster separation requires O(n?) time, where n is the number of components in the

cluster.

In this paper, we choose to use the density metric due to its simplicity. Certain adjustments
will be taken into consideration to correct the bias of the density metric toward small clusters.

1.3 Previous Work in Bottom-up Clustering

In this section, we summarize previous work in bottom-up clustering. In contrast to the top-
down clustering approaches which are based on recursive partitioning, these bottom-up clustering
algorithms repeatedly find locally strongly connected clusters.

The Compaction Algorithm. This method [BHJL89] was developed to improve the results
of partitioning algorithms such as the Kernighan-Lin algorithm [KL70] and simulated annealing
[KIV83]. Those partitioning algorithms tend to perform poorly on graphs with average degree
less than or equal to three [BHJL89]. The compaction heuristic increases the average degree
of a graph by finding a maximal random matching on the graph. FEach edge in the matching
represents a cluster, and the two nodes connected by a matching edge are collapsed to form a
single node in the compacted graph. Partitioning is performed on the compacted graph and the
result is used as the starting point for the partitioning algorithm to compute the partition of the
original graph. This clustering method can dramatically improve the results of Kernighan-Lin
and simulated annealing and can even decrease the time required to find a partition. However,
there is little or no improvement when the original graph has a high average degree. Also, this
method does not attempt to find natural clusters which are very useful in VLSI design.

The k-l-connectedness Algorithm. This is a constructive algorithm that forms clusters
defined by the transitive closure of the k-I-connectedness relation [GPS90]. For arbitrary k, the
complexity of this algorithm is O(d*~'n) where d is the maximum degree of the nodes. Although
this approach is more likely to find natural clusters than the compaction heuristic, it is not obvious
how to choose k and ! for any given netlist. Moreover, when & and [are large, the computational
complexity of the algorithin becomes prohibitive for large circuits.

The Random Walk Algorithms. Two bottom-up clustering algorithms that depend on
random walks have been developed [CHK91, HK92]. A random walk begins at one node in the
graph and takes a predetermined number of steps through the graph. At each step, the walk
extends to a node selected randomly among the nodes adjacent to the current node. Both random
walk algorithms begin by performing a random walk of n? steps on the graph. The clusters are
based on cycles in the node sequence of the random walk. The first algorithm, RW1 [CHK91], finds
the maximum cycle C(v) for each node v in the graph. C(v) is the longest sequence of distinct
nodes that begins and ends with ». Two nodes v; and v; are in the same cluster if v; € C(v;)
and v; € C(v;). The second random-walk based clustering algorithm, named RW-ST [HK92], is
based on the concept of the “sameness” of two nodes. The sameness of two nodes reflects the size
of the intersection of the cycles of the two nodes. Nodes with a sameness value greater than zero
are placed in the same cluster. Using RW-ST as a preprocessing step to the Fiduccia-Mattheyses
(FM) partitioning algorithm [FM82] resulted in cut sizes up to 17% lower than using the FM
algorithm alone. A disadvantage of both RW1 and RW-ST is that they have a time complexity
of O(n®), where n is the total number of nodes in the circuit.

1.4 Overview of the Paper

In this paper, we present a bottom-up clustering algorithm in which clusters are formed by recur-
sively collapsing 5-cliques, 4-cliques, and 3-cliques. Once a clique is found, if it satisfies the size
and density thresholds, the clique is collapsed to make a single node that represents the cluster.
The collapsed node may be further clustered allowing clusters of arbitrary size to be formed. The
parallel version of our algorithm allows cliques to be found simultaneously by multiple proces-
sors which reduces the time required for clustering. When combined with the FM partitioning
algorithm [FM82] and a ratio-cut partitioning algorithm [WCB89}, significantly better results are
obtained than when applying these partitioning algorithms directly.

The remainder of this paper is organized as follows. Section 2 begins with a discussion of
the theoretical background of our clustering algorithm. Then, we describe the basic algorithm
and its parallel implementation. Section 3 presents our cluster-based partitioning method and
the partitioning results obtained by our method. Section 4 concludes this paper and presents a
possible extension of our clustering algorithm to a cluster-based placement method.

2 The Clustering Algorithm

2.1 Theoretical Background

In our clustering algorithm, clusters are based on recursive collapsing of 5-cliques, 4-cliques, and
#cliques. The choice of these clique sizes can be explained as follows. In a random graph of
n nodes with edge probability p (i.e. p is the probability that there is an edge connecting two
nodes), the expected number of r-cliques is

[Bol85). For most values of n, there exists an integer ro such that X,, is much larger than one
and X,,41 is less than one. The formula for computing this value is

ro = 2log, n — 2log, log, n + 2log, % +1+0(1)

where b = % [Bol85). In other words, the value of ro is an approximation of the size of the largest
clique in the graph.

We applied the formulas for X, and rg to 17 test circuits taken from the MCNC Layout
Synthesis Workshop (see Table 1). The probability p was replaced by the density of the graph
representation of each circuit used by our clustering algorithm, where the density was computed as
p= —j‘% where FE is the total number of edges with weight greater than 0.2 and M, = (1«}) Table
1 shows the values obtained for X5, X4, X3, and r5. As can be seen in the table, rg is usually
around 4 or 5. Moreover, only one circuit is expected to contain any 5-cliques and only three

T test total | total | total | total X, *o
circuit cells pads nets pins r=5 | r=4 I r=3
ICs7 52 15 138 474 3.658 | 107.535 | 567.422 5.689
IC1i6 101 14 329 876 0.000 2.021 | 133.486 4.521
IC151 136 15 419 987 || 0.000 0.285 65.844 || 4.192
8870 469 33 494 1541 0.000 0.000 38.194 3.806
bm1l 752 131 902 2908 0.000 0.000 94.718 3.878
PrimGA1l 752 81 902 2908 || 0.000 0.000 | 112.633 || 3.918
PrimSC1 752 81 902 2008 i 0.000 0.000 | 112.633 | 3.918
5655 801 120 760 2967 || 0.000 0.000 80.963 || 3.844
Test (4 1489 26 1658 5975 | 0.000 0.000 89.628 || 3.791
Test03 1550 57 1618 5807 0.000 0.000 56.544 3.715
Test02 1602 61 1721 6135 || 0.000 0.000 2.248 || 3.644
Test06 1691 61 1674 6671 || 0.000 0.000 10.350 || 3.693
Test05 2540 55 2751 | 10,077 (| 0.000 0.000 0.819 || 3.653
19ks 2684 161 3282 | 10,547 (| 0.000 0.000 2.317 || 3.595
PrimGA2 2907 107 3029 | 11,219 0.000 0.000 8.077 || 3.771
PrimSC2 2907 107 3029 | 11,219 [0.000 0.000 8.077 || 3.771
industry2 12,142 0 12,949 | 47,193 0.000 0.000 0.078 || 3.524

Table 1: Expected Number of r-cliques (X,) and Approximate Size of Largest Clique (7o)

circuits are expected to contain any 4-cliques. Most circuits are expected to contain a number
of 3-cliques. However, since the formulas for X, and ro are derived for random graphs and real
circuits are usually more structured, our clustering algorithm always starts with searching for
5-cliques. Indeed, in all cases our algorithm successfully found a number of 5-cliques.

2.2 The Algorithm

The clustering algorithm consists of five major steps. First, the original netlist is converted to a
graph representation. Then, the next three steps search for and form clusters from 5-cliques, 4-
cliques, and 3-cliques in turn. Note that an r-clique (3 < r £ 5) does not automatically become a
cluster. It has to meet the size and density thresholds as discussed later. Finally, a post-processing
step is performed to further reduce the number of unclustered nodes. Details of the algorithm are
described in the following subsections.

2.2.1 Searching for Clusters

An iteration of one search algorithm constitutes a single pass through the entire graph. The search
algorithms traverse a list of the edges and a list of the nodes in the graph. The node list contains
both single nodes and clusters formed in previous iterations.

The 3-clique Search. For each edge e in the edge list, the node list is traversed until a node
that is connected to both ends of e is encountered. The complexity of this algorithm is O(m - n)
where m is the number of edges in the edge list and » is the number of nodes in the node list.

The 4-clique Search. For each edge e; in the edge list, the edge list is traversed until we
find another edge ey disjoint from e, such that there are four edges connecting the four end nodes
of e; and ez. The complexity of this algorithm is O(m?).

The 5-clique Search. For each edge e; in the edge list, the edge list is traversed until
another edge ey is found that forms a 4-clique with e; as in the 4-clique search algorithm. Then,
the node kst is traversed until we find a node that is connected to all four nodes in the 4-clique.
The complexity of this algorithm is O(m? - n).

In practice, the degree of each node in the graph is bounded by a small constant, which is
the number of pins in the component. Therefore, m = O(n), and the complexity of the 3-clique,
4-clique, and 5-clique search algorithms is bounded by O(n?), 0(n?), and O(n?), respectively.
The runtimes of these algorithms can be reduced significantly using the parallel implementation
presented in the next section.

The 5-clique search algorithm is always executed first, followed by the 4-clique search algo-
rithm, and then the 3-clique search algorithm. Each search algorithm is repeatedly executed until
it does not produce a sufficient number of clusters. Also, if after some iteration of the 5-clique
search algorithm, the value of rg is less than five, then the 4-clique search algorithm is executed
next to avoid unsuccessful searches for 5-cliques. (Recall that rp is an approximation of the size
of the largest clique in the graph and is defined in Section 2.1.)

2.2.2 Cluster Thresholds

A set of nodes in an r-clique (3 < r < 5) does not necessarily form a cluster. In order to qualify as
a cluster, the nodes and edges in an r-clique must satisfy two criteria: the area and size thresholds
and the density threshold.

Area and Size Thresholds. The purpose of the area and size thresholds is to keep each
cluster from becoming too large. The area of a cluster is the sum of the areas of the single nodes it
contains. The size of a cluster is the total number of single nodes it contains. The area threshold
is a percentage of the total area of the original graph, and the size threshold is a percentage of the
total number of nodes in the original graph. When a clique is encountered, in order to become a
cluster, its area must not exceed the area threshold, and its size must not exceed the size threshold.
The area threshold used in our implementation was 25% of the total area of the original graph,
and the size threshold was 33% of the number of nodes in the original graph.

Density Threshold. The purpose of the density threshold is to further ensure that the nodes
in a cluster are strongly connected. It also prevents cliques introduced by multi-terminal nets from
becoming clusters. The density of a cluster must be greater than or equal to the density threshold
to be accepted. The density threshold is e, - D where ay, is a predetermined factor and D is the

ab,c

Figure 1: Clustering Nodes a, b, and ¢ in a Graph

density of the graph representation of the original netlist. D is the ratio of the total edge weight
to (Q) as described in Section 1.2.3 where n is the number of nodes in the graph representation of
the original netlist. The value of @, determines how much higher the density of the clusters must
be than the density of the original graph. Since the density metric for measuring cluster quality is
biased toward small clusters, higher values of o, were used for the smaller test circuits and lower
values «, were used for the larger test circuits. In our implementation, o, = 4.75 for the four
smallest test circuits (n < 550), a, = 4.5 for the eight middle-sized test circuits (350 < n < 2000),
and o, = 4.25 for the five largest test circuits (n > 2000). Since large clusters tend to have lower
density, the density threshold also helps to control the size of clusters.

2.2.3 Construction of Clusters

If a clique satisfies the area, size, and density thresholds, the nodes in the clique are collapsed
to form a single cluster node. The edges that are internal to the clique are removed. For any
node v outside of the cluster, all edges that connect v to nodes in the cluster are bundled together
to form a new edge which connects the node v to the newly formed cluster node. In Figure 1,
nodes a, b, and ¢ are going to be clustered. The dotted edges are internal to the clique. After
being clustered, a, b, and ¢ have been collapsed into a single node, and the edges internal to the
cluster are no longer present. The weight of the edge between the new cluster node and node d is
2 because node d was connected to both nodes a and b by edges with weight 1.

2.2.4 Post Processing

After clustering, a post-processing step is executed on the clustered graph to reduce the number
of single, unclustered nodes. This helps to balance the sizes of the clusters and further reduce the
number of nodes in the clustered graph. In this step, a weighted matching is performed on the
clustered graph, and each qualified pair of matched nodes is collapsed into a single node in exactly
the same way as a clique. To be qualified, the pair must satisfy the same area, size, and density
thresholds as a clique. However, instead of searching for cliques one by one, the matching-based
clustering collapses many pairs of nodes simultaneously. Like the clique search algorithms, the

weighted matching algorithm is repeatedly executed until an insufficient number of clusters are
produced.

In our experimentation, there were two versions of the post-processing step. The first version
considers the entire clustered graph. The second version considers only the single nodes in the
clustered graph. In the second version, the first matching is performed only on the single nodes
in the clustered graph, and the subsequent matchings are performed on both the single nodes and
clusters that resulted from the previous matchings. In general, the first version results in fewer
single nodes in the final clustered graph. In the remainder of this paper, we refer to clustering
followed by the first version of the post-processing step as C1 and clustering followed by the second
version as C2. The results of C1 and C2 are given in the next subsection.

The weighted matching algorithm used for the post-processing step is based on the 0(n®)
weighted matching algorithm of Gabow [Gab73] and was implemented by Ed Rothberg.

2.2.5 Clustering Results

Table 2 shows the clustering results obtained by C1 and C2 for 17 test circuits from the MCNC
Layout Synthesis Workshop (see Table 1). In particular, the number of single, unclustered nodes
(singles), the number of clusters (clsirs), the average cluster size in nodes (avg), and the size in
nodes of the largest cluster (Igest) in the clustered graph are given in the table. Single nodes were
not included when computing the average cluster size.

C1 consistently produces fewer single nodes, larger clusters, and smaller graphs. On average,
C1 produces clustered graphs that are 6-13 times smaller than the original graphs, and C2 produces
clustered graphs that are 2-7 times smaller than the original graphs. C1 was selected when
implementing the parallel version of the clustering algorithm and when implementing cluster-
based partitioning since it lead to slightly lower net cut sizes and ratio cut sizes.

2.3 The Parallel Clustering Algorithm

We have developed a parallel version of the clustering algorithm to reduce the runtime for large
circuits. The basic idea of the parallel algorithm is to divide the graph among multiple processors.
Each processor searches for and forms clusters in its portion of the graph. The processors occa-
sionally swap part of their data to allow cliques that are divided among processors to be found.
As the size of the graph is reduced by the clustering process, the number of processors involved
decreases until there is only one processor. The coordination of the processors is controlled by a
driver. The parallel algorithm is described in more detail below.

2.3.1 Parallel Algorithm Description

The driver converts the netlist into the graph representation and divides this graph evenly among
the processors. After the processors have received all of the nodes and edges from the driver, they

test (0}] c2
circuit singles | clstrs l avg | lgest || singles | dstrs | avg | Igest
1C67 5 6 | 10.3 16 13 11 4.9 9
IC116 4 6 | 185 28 12 15 6.9 21
1C151 0 18 8.4 37 3 28 5.3 31
8870 55 17 | 26.3 154 T8 43 9.9 106
bm1i 86 37 | 21.5 222 107 59 | 13.1 161
PrimGA1l 77 24 1 31.5 272 94 42 | 17.6 162
PrimSC1 77 24 | 31.5 272 94 42 1 17.6 162
5655 T2 51 | 16.7 228 99 76 | 10.8 187
Test04 150 54 | 25.3 499 198 94 | 14.0 274
Test(03 189 67 | 21.2 526 218 97 | 14.3 322
Test02 93 40 | 39.3 548 144 132 | 11.5 269
Test06 144 30 | 53.6 378 180 93 | 16.9 294
Test05 221 70 | 33.9 856 279 166 | 14.0 427
19ks 326 109 | 23.1 580 372 154 | 16.1 512
PrimGA2 280 127 | 21.5 985 295 160 | 17.0 T05
PrimSC2 278 127 § 21.5 985 295 160 | 17.0 705
industry2 636 278 | 41.4 | 3035 1294 782 1 13.9 | 2256

Table 2: Clustering Results of C1 and C2

begin forming clusters. As in the sequential version, the processors search for and form clusters
from cliques of size five, followed by cliques of size four, and then cliques of size three. Once a
processor produces an insufficient number of clusters from cliques of the current size, it notifies
the driver.

Once all active processors have notified the driver that they are finished clustering, a swap
takes place. During the swap, the driver randomly pairs the processors. The driver directs each
pair of processors to perform one of two types of data swaps. The first type is a normal swap in
which each processor sends half of its nodes and the corresponding edges to the other processor.
The second type of swap is a collapsing swap in which the processor with fewer nodes sends all
of it nodes and edges to the other and becomes inactive. The type of swap to be performed
depends on the number of nodes the pair of processors contains and the amount by which each
processor has reduced its nodes since the time of the previous swap, i.e. the number of clusters
the processor produced. In our implementation, a collapsing swap was performed if the pair of
processors contained fewer than 3 X % nodes where 3 is a percentage, N is the number of nodes
in the original graph, and P is the initial number of processors.

After a swap, the active processors resume clustering in their own subgraphs. The driver
repeats the process of coordinating swaps until there is only one active processor left. The driver
allows this processor to finish clustering and to perform the post-processing step.

10

2.3.2 Implementation

The parallel clustering algorithm was implemented using Maisie [BL90, BL91}, a C-based parallel
language that enables the algorithm to execute in parallel in a multi-processor environment. The
driver and each processor are executed as processes by Maisie. A process is represented by an
entity which is similar to a function in C. There is one driver entity and one processor entity.
Execution begins in the driver entity. Then, the processor processes are started in the driver
entity by executing the processor entity P times to start P processor processes.

Sending data from the driver to the processors and exchanging data among the processors
require large amounts of data to be sent at one time. Sending large amounts of data at one time can
be very slow due to the memory requirements of the message queue. During our experimentation,
it was observed that sending the data in smaller pieces and allowing a number of pieces to be
received (processed) before sending more data helped reduce communication time. For this reason,
a limit was placed on the size of a message (40 nodes or edges) and on the number of messages
that can be sent before the sender has to wait for an acknowledgement (25 messages).

2.3.3 Parallel Clustering Results

Table 3 shows the clustering results and computation times obtained using one, two, and four
processors in the clustering algorithm for the 17 test circuits. The table gives the average number
of nodes in the clusters, the average density of the clusters in the clustered graph, and the total
computation time in seconds. Single, unclustered nodes are not included in the averages.

Table 3 shows that the average cluster sizes and densities obtained by the parallel algorithm are
fairly similar to those obtained by the sequential version. The average cluster densities obtained
by the 1, 2, and 4 processor versions for 13 of the 17 test circuits differ by less than 0.1. The
sequential version of the clustering algorithm is deterministic. However, due to random selection
of the nodes to send during a normal swap, the parallel version is non-deterministic. The fact that
the parallel results do not vary greatly from the sequential results would seem to imply that the
parallel version obtains clusterings that are as good as those obtained by the sequential version.

The computation times were recorded when executing on a network of Sun workstations con-
nected by an ethernet. As the driver does not do much computation, it resides on the same Sun
workstation as one of the processor processes. The computation times are in seconds and include
time spent executing in both the user and system modes. The times do not include communi-
cation time, i.e. any time a process was sleeping while waiting to receive a message. The total
computation time for all test circuits is give at the bottom of the table.

In general, the computation time for clustering is reduced significantly as the number of
processors increases. For most of the circuits, there is a larger decrease in computation time
when the number of processors is increased from one to two processors than when the number of
processors is increased from two to four processors. This is due to the fact that as the number of
processors increases the number of swaps increases. When there is a larger number of processors,

11

test Parallel Clustering
circuit 1 processor 2 processors 4 processors
name size | density | time size | density | time size | demsity | time
1C67 10.3 0.632 6.77 12.2 0.608 1.55 12.2 0.596 0.97
1C116 16.3 0.597 2.88 (| 22.0 0.295 1.89 (| 21.8 0.303 2.23
IC151 8.4 1.319 5.27 8.3 1.422 2.51 9.1 1.404 1.73
8870 32.4 0.533 21.30 || 26.3 0.622 11.85 || 38.8 0.509 9.94
bm1l 21.5 0.686 96.30 |{ 26.4 0.709 40.98 (| 22.7 0.705 26.84
PrimGA1l 31.5 0.499 85.24 || 37.8 0.565 35.94 44.8 0.520 24.34
PrimSC1 31.5 0.499 85.49 || 39.6 0.526 36.86 || 44.7 0.529 25.37
5655 18.4 0.489 113.29 || 15.3 0.563 47.32 { 14.1 0.586 43.80
Test04 30.4 0.494 230.46 [37.1 0.486 91.95 || 26.3 0.511 81.75
Test03 20.3 0.749 216.78 || 22.0 0.714 167.28 19.3 0.750 108.82
Test02 43.4 0.533 293.38 || 38.9 0.464 185.22 || 36.8 0.496 160.49
TestD6 49.5 0.491 193.27 || 42.2 0.610 122.84 || 35.0 0.586 99.83
TestD5 375 0.509 479.38 343 0.555 326.07 39.4 0.566 190.79
19ks 29.6 0.750 1110.40 || 24.6 0.722 375.48 || 29.3 0.795 386.36
PrimGA2 18.6 0.700 971.21 21.6 0.728 676.48 30.9 0.667 361.30
PrimSC2 18.6 0.700 971.66 [22.2 0.730 623.82 || 26.3 0.681 459.68
industry2 41.4 0.670 | 24,387.66 || 35.7 0.633 | 20,069.30 || 32.9 0.613 | 11,110.77

[Total Computation Time [29,270.74 || 22,817.34 || 13,095.01 |

Table 3: Parallel Clustering: Average Cluster Sizes and Densities and Total Computation Times

the processors find fewer clusters because each of them has less data. In this case, the processors
have to swap data more often to allow more clusters to be found. In some extreme cases, such
as the “19ks” circuit, the computation time of the 4-processor version is larger than that of the

2-processor version.

Aside from the fact that communication time is difficult to compute, the reason that commu-
nication time is not included in the table is that it is topology dependent. Qur implementation
uses a network of Suns connected by an ethernet, which is probably the worst-case topology since
all message passing shares the same communication line, and the bandwidth of an ethernet is
rather limited. Other topologies, such as a hypercube or a butterfly network, are designed to
support more efficient communication between processors. During our experimentation, the total
elapsed time (computation and communication time) for clustering was usually least when two
processors were used and usually greatest when only one processor was used. The elapsed time
was not least when using four processors due to the communication time for swaps over the net-
work. We expect that the elapsed time would decrease considerably for the parallel algorithm if a
multi-processor computer (such as a Sun SPARC-10) were used since the communication overhead

would be reduced significantly.

12

3 Cluster-based Partitioning

3.1 The Basic Approach

The cluster-based partitioning algorithm uses the clustering algorithm as a preprocessing step for
partitioning. Clustering is performed on the original graph, and then partitioning is performed on
the clustered graph instead of the original graph. Afterwards, the partitioned clustered graph is
unclustered without changing the partition. The areas of the two subsets formed by partitioning
may not be as close to equal as desired due to the existence of large clusters in the clustered
graph. Therefore, after unclustering it is usually necessary to refine the partition in order to
further balance the areas of the subsets.

Instead of completely unclustering the clusters in one step, our cluster-based partitioning
method gradually unclusters the clusters following the cluster hierarchy. After partitioning the
clustered graph into subsets V4 and V3, we replace each cluster node by the r nodes (clusters) in
the r-clique (2 < r < 5) used to form that cluster. The resulting subsets V{ and V; are used as
an initial partition for partitioning the next level of the cluster hierarchy. This process of gradual
unclustering and partitioning is repeated for a predetermined number of times. Then, refinement
is performed on the completely unclustered netlist. As the clusters gradually become smaller, the
areas of the two partitions gradually become more balanced.

3.2 Applications to Existing Partitioning Algorithms

We have incorporated two existing partitioning algorithms into our cluster-based partitioning
method. One is the bisection algorithm developed by Fiduccia and Mattheyses (the FM algorithm)
[FM82], and the other is a ratio-cut algorithm developed by Wei and Cheng (the RFM algorithm)
[WCR89]. Both of these are iterative improvement algorithms.

3.2.1 The FM Algorithm

The FM algorithm is an improvement of the partitioning algorithm by Kernighan and Lin [KL70].
The FM algorithm starts with a balanced initial partition. At each step, one component is
selected to move to the other side of the partition. Once a component is moved, it is locked for
the remainder of the current pass. A component is infeasible for moving if moving it to the other
side of the partition violates the balance constraint. The component to move is selected from
among the unlocked feasible components with the highest gain, where the gain of a component is
defined to be the amount that the cut size would be reduced by moving that component to the
other side of the partition. If moving a component would increase the cut size, the gain of that
component is negative. Moving components with negative gain is allowed by the algorithm in order
to avoid stopping at local minima in the solution space. When all components are either locked
or infeasible for moving, the current pass is complete and the best partition encountered during
the pass is saved as the initial partition for the next pass. When a pass makes no improvement

13

to the partitioning solution, the algorithm stops.

3.2.2 The RFM Algorithm

The RFM algorithm minimizes the ratio-cut metric and is based on the FM algorithm [WC&9).
The ratio-cut metric combines the goals of minimizing the cut size and balancing the areas into a
single objective function. The ratio cut size is the ratio of the cut size to the product of the two
subset areas, i.e. RC(Vy,V2) = m%%’f—avr%-(m. The RFM algorithm does not require the areas
of the two subsets to satisfy any balance constraints. As in the FM algorithm, at each step, the
RFM algorithm selects the component to move from among the unlocked components with the
highest gain. If there is a tie, the RFM algorithm selects the component that would cause the
greatest decrease in the current ratio cut size.

3.3 Partitioning Results

The clustering portion of the cluster-based partitioning method was implemented in Maisie a C-
based parallel language [BL90, BL91] as described in Section 2.3.2. The FM and RFM partitioning
algorithms were implemented in C as described in [FM82] and [WC89]. Experiments were executed
on a network of Sun workstations.

We compare the results obtained by our cluster-based partitioning method to the results
obtained using the partitioning algorithms directly on the 17 test circuits. FM and RFM refer
to the FM and the RFM algorithms when applied directly (without clustering) to the original
netlist. FMC and RFMC refer to the corresponding cluster-based partitioning.

Table 4 compares the best and average cut sizes for FM and FMC and compares the best and
average ratio cut sizes for RFM and RFMC. The best and average (ratio) cut sizes are obtained
from 10 executions. On average, the best cut size for FMC is 18.2% lower than the best cut size
for FM, and the average cut size for FMC is 24.7% lower than the average cut size for FM. In fact,
for 12 of the 17 test circuits, the average cut size produced by FMC is lower than the best cut size
produced by FM. On average, the best ratio cut size for RFMC is 29.7% lower than the best ratio
cut size for RFM, and the average ratio cut size for RFMC is 44.3% lower than the average ratio
cut size for RFM. And again, for 12 of the 17 test circuits, the everage ratio cut size produced
by RFMC is lower than the best ratio cut size produced by RFM. These results suggest that our
cluster-based partitioning algorithm produces much more stable results than the FM and RFM
algorithms.

Tables 5 and 6 show the partitioning results obtained when using the parallel clustering algo-
rithm with up to four processors. For FMC, the cut sizes produced by the 1-processor, 2-processor,
and 4-processor implementations are on average lower than the cut sizes for FM by 18.2%, 18.4%,
and 16.9%, respectively. For RFMC, the ratio cut sizes produced by the l-processor, 2-processor,
and 4-processor implementations are on average lower than the ratio cut sizes for REFM by 29.7%,
32.8%, and 26.7%, respectively. These results further confirm that our parallel clustering algo-

14

test Best Cut Average Cut Best Ratio Cut Average Ratio Cut
circuit FM [FMC || FM [FMC | RFM | RFMC RFM | RFMC
IC67 37 33 [39.4 | 34.5[1.54E-02 | 1.52E-02 | 2.64E-02 | 1.52E-02
IC116 28 28 || 280 | 28.0 || 8.55E-03 | 8.58E-03 || 8.55E-03 | 8.58E-03
IC151 50 49 || 510} 50.2 | 6.71E-03 | 6.7T1E-03 || 7.63E-03 | 6.T1E-03
8870 15 15 | 231 | 15.8 || 5.98E-05 | 2.50E-05 | 8.80E-05 | 3.40E-05
bm1 73 51 | 86.2| 67.4 || 1.75E-05 | 6.20E-06 || 2.58E-05 | 7T.49E-06
PrimGA1 72 63 [79.5 | 63.0 || 2.31E-05 | 1.29E-05 || 2.72E-05 | 1.29E-05
PrimSC1 70 54 || 3.3 | 62.1 || 3.22E-05 | 2.05E-05 || 4.03E-05 | 2.05E-05
5655 62 53 || 67.6 | 56.8 || 5.97E-06 | 8.50E-06 | 9.88E-06 | 8.50E-06
Test04 49 42 || 633 43.4 | 9.96E-08 | 9.57E-08 || 1.03E-07 | 9.92E-08
Test03 102 63 || 111.8 | 70.9 || 8.74B-07 | 3.78E-07 | 1.05E-06 | 4.75E-07
Test02 134 81 || 159.5 | 87.0 [5.68E-08 | 5.68E-08 || 1.28E-07 | 7.18E-08
Test06 59 65 || 76.3 | 67.6 || 1.49E-06 | 9.79E-07 || 1.75E-06 | 1.04E-06
Test05 75 44 || 111.4 | 46.0 | 3.25E-08 | 3.79E-08 || 4.94E-08 | 4.20E-08
19ks 157 | 173 || 192.6 | 182.6 || 5.22E-06 | 3.43E-06 || 7.45E-06 | 3.43E-06
PrimGA2 215 | 136 || 220.7 | 175.7 || 1.47E-05 | 5.20E-06 || 2.10E-05 | 5.20E-06
PrimSC2 200 | 137 || 275.3 | 181.4 || 2.62E-05 | 6.08E-06 || 2.62E-05 | 6.08E-06
industry2 432 | 281 || 749.4 | 395.2 || 1.36E-05 | 1.41E-06 || 2.19E-05 | 2.T6E-06
[Avg. Reduction || 18.2% | 24.7% || 29.7% || 44.3% |

Table 4: Best and Average Cut Sizes and Ratio Cut Sizes

rithm produces high-quality clusterings.

4 Conclusion

We have presented a bottom-up clustering algorithm that forms clusters by recursive collapsing
of cliques in a graph. Forming clusters based on cliques combined with the use of the density
threshold produces high-quality clusters composed of strongly-connected components. Qur clus-
tering algorithm reduces the size of a circuit significantly so that existing layout algorithms can
be applied to obtain efficient solutions. We have also presented a parallel version of the cluster-
ing algorithm which allows multiple processors to form clusters in different parts of the netlist
simultaneously. Our results show that increasing the number of processors used in our cluster-
ing algorithm reduces the required computation time and memory space without affecting the
clustering quality.

Finally, we have presented a cluster-based partitioning method which combines our clustering
algorithm with the FM and RFM algorithms. Our cluster-based partitioning method obtained cut
sizes that were on average 18% better than those obtained by the FM algorithm, and obtained ratio
cut sizes that were on average 30% better than those obtained by the RFM algorithm. Moreover,
our cluster-based partitioning method produces results that are much more consistent than those
of the two partitioning algorithms. When multiple runs were performed for each algorithm, our

15

test FM FMC
circuit 1 2 4
name cut cut | % red || cut | % red || cut | % red
1C67 37 33 10.8 34 8.1 33 10.8
IC116 28 28 0.0 28 0.0 28 0.0
IC151 50 49 2.0 49 2.0 30 0.0
8870 15 15 0.0 15 0.0 17 -13.3
bml 73 51 3041 68 6.9 46 37.0
PrimGAl 72 63 12,5 66 8.3 56 22.2
PrimSC1 70 54 22.9 52 25.7 50 28.6
5655 62 53 14.5 52 16,1 58 6.5
Test04 49 42 14.3 44 10.2 44 10.2
Test03 102 63 38.2 72 29.4 64 40.2
Test02 134 81 39.6 81 39.6 87 37.3
Test06 59 65 -10.2 55 6.8 90 -11.9
Test05 75 44 41.3 45 40.0 45 41.3
19ks 157 173 -10.2 133 15.3 141 3.2
PrimGA?2 215 136 36.7 || 138 35.8 146 34.9
PrimSC2 200 137 31.5 || 145 27.5 143 18.5
industry2 432 281 35.0 256 40.7 339 21.5
[Average Reduction | 18.2% ” 18.4% [[16.9% |

Table 5: Cut Sizes with Parallel Clustering

method obtained average cut sizes up to 58.7% better than those of the FM algorithm, and
obtained average ratio cut sizes up to 87.4% better than those of the RFM algorithm. In fact,
for many of the test circuits the average cluster-based partitioning result was better than the best
direct partitioning result.

Extension to Placement. Our clustering algorithm can also be applied to the large scale
placement problem. The basic approach of cluster-based placement would be similar to that of
cluster-based partitioning. After clustering, the clusters are first placed on the layout surface.
Then, as in cluster-based partitioning, the clusters are gradually unclustered, and placement
is performed within each cluster on the sub-clusters that result from one level of unclustering.
After placing the sub-clusters, placement is performed within the sub-clusters. This process can
be repeated a number of times until every component has been placed. Placement within the
clusters could take place in parallel. Finally, a global refinement can be performed to further
improve the placement solution. We believe that this cluster-based placement method can handle
designs of very high complexity and produce high-quality placement solutions.

16

test RFM RFMC
circuit 1 2 4
name ratio ratio | % red ratio | % red ratio I % red
I1C87 1.54E-02 1.52E-02 1.5 1.52E-02 1.5 1.52E-02 1.5
1C116 8.55E-03 8.58E-03 -0.4 || 8.58E-03 -0.4 8.58E-03 -0.4
IC151 6.71E-03 6.71E-03 0.0 6.71E-03 0.0 6.71E-03 0.0
8870 5.98E-05 2.50E-05 58.3 2.50E-05 58.3 3.55E-05 40.7
bml 1.75E-05 6.20E-06 64.6 6.20E-06 64.6 6.20E-06 64.6
PrimGA1 | 2.31E-05 1.29E-05 44.3 1.17E-05 49.5 9.68E-06 58.1
PrimSC1 3.22E-05 2.05E-05 36.3 1.10E-05 65.8 1.54E-05 52.2
5655 5.97E-06 8.50E-06 -42.4 8.50E-06 -42.4 8.50E-06 -42.4
Test04 9.96E-08 9.57E-08 3.9 9.54E-08 4.2 9.54E-08 4.2
TestD3 8.74E-07 3.78E-07 56.7 3.718E-07 56.7 5.67TE-07 35.1
Test02 5.68E-08 5.68E-08 0.0 5.68E-08 0.0 7.66E-08 -35.0
Test06 1.49E-06 9.79E-07 34.2 9.51E-07 36.1 9.87E-07 33.6
Test05 3.25E-08 3.79E-08 -16.5 3.56F-08 -9.4 3.56E-08 -9.5
19ks 5.22E-06 3.43E-06 34.2 2.61E-06 50.0 3.43E-06 34.2
PrimGAZ | 1.47E-05 5.20E-06 64.7 5.73E-06 61.1 6.08E-06 38.7
PrimSC2 | 2.62E-05 6.08E-06 76.8 7.18E-06 72.6 6.98E-06 73.4
industry2 | 1.36E-05 1.41E-06 80.6 1.41E-06 89.6 2.02E-06 85.1

Average Reduction [l 29.7% || 32.8% || 26.7% |

Table 6: Ratio Cut Sizes with Parallel Clustering

5 Acknowledgements

The Maisie programming language was developed by R. Bagrodia and W. Liao at UCLA [BL90,
BL91]. We are grateful for the funding from the Graduate Opportunity Fellowship and the
Graduate Student Research Assistantship provided by UCLA. This work is partially supported
by a grant from Cadence under the California MICRO program.

References

[BHJL89] T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the Performance of the
Kernighan-Lin and Simulated Annealing Graph Bisection Algorithms. 26th ACM/IEEE
DAC, pages 775-778, 1989.

[BL90] R.L. Bagrodia and W. Liao. Maisie: A language and optimizing environment for
distributed simulation. In Proc. of 1990 SCS Multiconference on Distributed Simulation,
pages 205-210, San Diego, CA, Jan. 1990.

[BLO1] R.L. Bagrodia and W. Liao. Maisie User Manual. Technical report, Computer Science
Department, UCLA, Los Angeles, CA 90024, Oct. 1991.

[Bol85] B. Bollobas. Random Graphs. Academic Press, London, 1985.

17

[CHK91]

[CHK92]

[CP6S]

[Don88)

[FM82]

[Gab73]

[GPS90]

[HK72]

[HK91]

[HK92]

[KIV83]

[KL70]

[Len90]

[WC89]

J. Cong, L. Hagen, and A. B. Kahng. Random Walks for Circuit Clustering. In Proc.
IEEE Intl. Conf. on ASIC, pages 14.2.1-14.2.4, June 1991.

J. Cong, L. Hagen, and A. B. Kahng. Net Partitions Yeild Better Module Partitions.
In Proc. ACM/IEEE Design Automation Conf., 1992.

H.R. Charney and D.L. Plato. Efficient Partitioning of Components. In Proc. of the
5th Annual Design Automation Workshop, pages 16-0 to 16-21, 1968.

W. E. Donath. Logic Partitioning. In Physical Design Automation of VLSI Systems,
B. Preas and M. Lorenzetti, editors, pages 65-86. Benjamin/Cummings, 1988.

C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In Proc. 19th Design Automation Conference, pages 175-181, 1982.

H. Gabow. Implementation of Algorithms for Mazimum Matching on Nonbipartite
G'raphs. PhD thesis, Stanford University, 1973.

J. Garbers, H.J. Promel, and A. Steger. Finding Clusters in VLSI Circuits. ICCAD90,
pages 520-523, 1990.

M. Hanan and J.M. Kurtzberg. A Review of the Placement and Quadratic Assignment
Problems. SIAM Review, 14:324-342, 1972.

L. Hagen and A. B. Kahng. Fast Spectral Methods for Ratio Cut Partitioning and
Clustering. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 10-13, 1991.

L. Hagen and A. B. Kahng. A New Approach to Effective Circuit Clustering. In Proc.
IEEE Intl. Conf. on Computer-Aided Design, Santa Clara, Nov. 1992.

S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by Simulated Annealing.
Science, 220:671-680, May 13 1983.

B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell System Technical Journal, 49:291-307, Feb. 1970.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley &
Sons, Chichester, 1990.

Y.C. Wei and C.K. Cheng. Towards Efficient Hierarchical Designs by Ratio Cut Par-
titioning. In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 298-301, 1989.

18

