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Abstract

Placement is the most important yet the most difficult step in VLSI layout design. The simulated
annealing based placement algorithms have been widely used in practice. The best known algorithm in
this class is TimberWolf, which produces high quality placement solutions compared to other existing
methods at the expense of long computation time. Little progress has been made in the past a few years in
developing new placement methods which can consistently outperform TimberWolf by a significant
margin in both runtime and the quality of the solution. In this paper, we present a new placement method
for large-scale cell-based IC designs. Compared with TimberWolf6.0 on the MCNC benchmarks of sizes
ranging from a few hundred cells to over 12,000 cells, on average our placement algorithm reduces the
runtime by a factor of 10, reduces the total wirclength by 37%, reduces the total number of tracks by
14%, and reduces the total number of feedthroughs by a factor of 155. Our algorithm successfully
reduces the two-dimensional placement problem into a sequence of one-dimensional placement problems
so that each of them can be solved independently using the rectilinear distance facility location
formulation. The complexity of our algorithm is O (nlogn) (where n is the number of cells in the
design), which makes it very efficient for large-scale IC designs.



1. Introduction

Due 1o its inherent complexity, the VLSI layout design process is divided in general into two steps:
placement and routing. The goal of the placement step is to map the circuit components onto positions on
a layout surface. The objective of the routing step is to connect these placed components properly
according to the netlist specification.

Placement is the most crucial step in the layout design process since the placement result affects
significantly the quality of the subsequent routing solution. Due to its theoretical and practical
importance, the placement problem has been studied extensively in the past two decades. The existing
placement algorithms can be divided in two major categories: constructive placement or iterative
placement. Constructive placement algorithms start with an unplaced netlist and construct a complete
placement. The algorithms in this class include the cluster growth algorithms [Ku65, HaKu72, ScUl72,
CoCa80, Ka83, OdIW85, OdHI87], the partitioning-based algorithms [Br77, StLKK79, KaCK82, KoTI83,
DuK835, LaDig86, GaVL91, GaVL92], the analytical placement algorithms (based on linear assignment
[Ak81, JaKu89, SiDJ91, Yak92], quadratic or convex optimization [Ha70, HaKu72, KISJ91, SrCK91,
GaVL91, GaVL92], or network flows [[DoJS92]), and the branch-and-bound algorithms [Gi62, HaKu72].
On the other hand, iterative placement algorithms start with a given complete placement and go through a
number of local refinement steps to obtain an improved placement solution. The algorithms in the class
include the pairwise interchange methods [HaWA76, Sc76, KhP77, IoKB83], the force directed methods
[HaWA76, QuBr79, Go81] , and the simulated annealing based methods [KiGV83, SeS84, SeL.e87].
More detailed survey of the existing placement algorithms can be found in [PrLo88] and [Le90]. Among
these methods, the simulated annealing algorithm has been used widely in practice. The best known
algorithm in this class is TimberWolf, which is the core of many commercial and in-house placement
tools used in industry. Despite its long runtime, the TimberWolf package consistently produces high
quality placement solutions compared to other existing placement methods. Many attempts have been
made in the past few years in searching for more effective placement methods, but little progress has
made in terms of improving the quality of the TimberWolf placement solutions (although some recent
placement algorithms can reduce the runtime considerably). In the most recent placement contest (named
Hinting Timberwolves) at the 1992 MCNC International Layout Synthesis Workshop, the
Gordian/Domino placement package [KISJ91, DoJS92] challenged TimberWolf. Gordian uses the
linearly constrained quadratic programming formulation for global optimization, and Domino is a
recently developed iterative improvement procedure based on the network flow formulation which is used
to further refine the placement solution by Gordian. TimberWolf and Gordian/Domino were compared
on a real design of 13770 cells and 16642 nets (the example was not revealed to the two groups before the
contest so that problem specific tuning was not possible). Although Gordian/Domino ran S times faster
than TimberWolf (2.9 hours versus 14.3 hours), the quality of the two placement solutions were almost
identical (the difference in the final layout area is less than 1%). This result and other experimental
results lead to an interesting question, that is, if the placement solution produced by the simulated
annealing algorithm is indeed very close to optimal. On the other hand, rapid advances in VLSI



technology has increased the packing density by a factor of 10 to 100 in the past decade. The drastic
increase in design complexity has made the simulated annealing based methods unacceptable due to their
extremely long runtime. The technological advance poses another pressing and challenging question to
the layout community: Is it possible to develop a much faster placement algorithm which can produce
equivalent or even better results than the simulated annealing algorithm?

These questions motivate our research on fast placement algorithms for very large-scale IC designs.
Our answers to these questions are surprising: we have developed a new placement algorithm, named
AKROPOLIS, which consistently outperforms TimberWolf in terms of both runtime and the quality of
the placement solution by a significant margin on the MCNC layout benchmarks of sizes ranging from a
few hundred cells to over 12,000 cells. On average, AKROPOLIS reduces the runtime by a factor of 10,
reduces the total wirelength by a 37%, reduces the total number of tracks by 14%, and reduces the total
number of feedthroughs by a factor of 155 compared to TimberWolf6.0. Our algorithm is a combination
of the partitioning-based technique and the analytical placement technique. It successfully reduces the
two-dimensional placement problem into a sequence of one-dimensional placement problems so that each
of them can be solved independently using the rectilinear distance facility location formulation. The
complexity of our algorithm is O (nlogn) (where n is the number of cells in the design), which makes it
very efficient for very large-scale IC layout designs.

As the VLSI fabrication technology reaches submicron device dimension and gigahertz frequency,
interconnection delay has become the dominant factor in determining system performance. This leads to
recent interests in performance-driven placement in which main objective is to minimize the
interconnection delay. The performance-driven placement algorithms can be broadly grouped in two
categories: net-based algorithms [Do90, SuSh90, LiDu90, GaVL92] and path-based algorithms [STCK91,
JaKu89, MaLi89, HaNY87]. In our formulation, nets can be assigned variable weights determined by
critical path analysis, and timing-critical nets can be optimized with higher prioritics by our placement
algorithm. Since AKROPOLIS obtains drastic reduction in total wirelength (up to 54%), we expect that
its placement solution has a much shorter interconnection delay in general as well.

The remainder of this paper is organized as follows: Section 2 presents the formulation of the
problem. Section 3 discusses our placement algorithm in detail. The experimental results and comparative
study are presented in Section 4. Finally, conclusions and future extensions are presented in Section 5.

2. Formulation of the Problem

A circuit consists of a set of components and a set of primary inputfoutput (I/O) pads.
Interconnections among the components and the /0 pads are specified by a netlist, in which each net
specifies a set of pins that have to be electrically connected. The goal of placement is to compute a
mapping of the components in a circuit onto positions on a layout surface while optimizing certain
objective functions.

Several objective functions have been proposed. Commonly used objectives are the minimization
of the total wirclength, the minimization of the layout area and the maximization of the routability of the



circuit. Performance-driven placement algorithms emphasize the minimization of interconnection delay
to maximize the circuit speed.

The algorithm presented in this paper, called AKROPOLIS, solves the placement problem for row-
based gate array and standard cell designs. In gate array designs, the components of the circuit are
mapped onto a prefabricated, two-dimensional array of uncommitted simple gates. In standard cell
designs, each component (cell) is from a predesigned finite cell library. The cells have approximately the
same height, but their width may vary considerably. In both gate-array and standard cell designs, the
components are rectangular in shape and are to be placed in rows of roughly equal length. The I/O pads
are on the periphery of the chip. In our formulation we assume that the /O pad positions are preassigned.!
The connections between the cells are realized by metal wires in the rectangular routing areas between the
cell rows (called channels). An example of a standard cell design is shown in Figure 2.1. The objective
function used in AKROPOLIS is the minimization of the total weighted wirelength ¥ w;{;, where I; is

i€
the wirelength of net i, computed by the half perimeter of the minimum bounding box of the net, w; is
the weight of net /, indicating the criticality of the net, and IT s the set of nets in the design.

3. The AKROPOLIS Placement Algorithm

Most partitioning-based algorithms reduce a two-dimensional placement problem into a set of two-
dimensional placement problems of smaller size by repeatedly bipartitioning the circuit in alternating
directions. The main contribution of AKROPOLIS is the transformation of the two-dimensional
placement problem into a sequence of one-dimensional placement problems which can be solved
independently. The input of AKROPOLIS consists of a netlist and cell descriptions, the I/0 pad positions
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Figure 2.1: A standard cell design

VIf 1/0 pads are not placed, our algorithm uses the TimberWolfMC to determine the 1/ pad positions. In Section 5 we
shall discuss how to extend our algorithm to handle the case when the I/0 pad positions are not given.



and the number of cell rows in the design (determined according to the given chip aspect ratio). The
output specifies the exact positions of all the circuit cells. Our algorithm consists of two phases

- Phase 1: Placement of cells into rows

- Phase 2: Placement of cells in each row

Phase 1 assigns the cells to the rows in the design. Phase 2 processes the rows of the design one by
one and determines the exact position of each cell inside the row.

In the following two sections, the details of the two phases are presented.

3.1. Phase 1: Placement of Cells into Rows

Phase 1 is relatively simple. During this phase, we assign each cell to one of the cell rows in the
design, based on recursive bipartitioning of the cells in the design. The bipartitioning algorithm is based
on a modification of the min-cut heuristic? procedure of Fiduccia and Mattheyses (the FM algorithm)
[FiMa82]. The goal of the FM algorithm is to partition the components into two blocks of approximately
equal size while minimizing the number of connections (net cut) between them. The FM algorithm goes
through a number of passes to improve an initial partitioning. The time complexity of each pass of the
FM algorithm was shown to be linear in terms of the total number of pins in the design. Experimental
results showed that a very small number of passes is required in practice (2-5 passes) [FiMa82]. In our
application of the FM algorithm, we added the following two simple enhancements:

(1) The capability of specifying "fixed" cells. The assignment of the fixed cells to the two blocks is

specified by the user. This can be easily accomplished by "locking” the fixed cells before each pass.
(2) We introduce two parameters r and s to specify the balancing condition as follows :

(IA+[B |)(r=s)<|A|<(|A |+|B |y (r+s)

where r is the desired fraction of the total area of block A and s is a user specified deviation percentage
(e.g. if we set r=60% and s=5% the balancing condition is met if the area of block A is within the range
of 55% 10 65% of the total area).

Assume that there are M rows in the design. We number these rows 1,2,.,M starting with the
bottom row. During this phase all the cells of the circuit are recursively bipartitioned until each cell
belongs to only one row. Initially, each cell can be assigned to any of the rows in the design. After each
bipartition, the range of permissible rows for each cell decreases by a factor of two. The process stops
when each cell is assigned to a unique row.

During each recursion, we distinguish three classes of cells.

(1) The set of cells U that are going to be partitioned in this level, with the permissible row range
llow_row, high_row ] (low_row <high_row).

% The bipartitioning problem is proved to be NP-complete



(2) The cells that have already been confined to rows [1, low _row) (low_row>1).
(3) The cells that have already been confined to rows (high_row, M (high_row <M).

Let cells (a) denote the set of cells connected by net a. We collapse all cells in class 2 (if any)
together with all the bottom ¥/O pads into a supercell called the source. For any net a, the source belongs
to cells(a) if any cell in the source belongs to cells(a). We consider the source occupies zero area.
Similarly, all cells in class 3 (if any) together with all the top I/O pads are collapsed into a supereell
called the sink. For any net a, the sink belongs to cells (a) if any cell in the sink belongs to cells (a). The
sink is considered to occupy zero area as well. For the first recursion, the source contains only the bottom
1/O pads and the sink only the top I/O pads. It is clear that the addition of the two supercells to the set of
cells being partitioned provides global interconnection information, which improves the quality of the
final partition. (Note that the addition of supercells is similar to the terminal propagation technique
discussed in [DuK85]. However, since we are solving a one-dimensional placement problem in this
phase, our solution is much simpler.) We partition the set of cells U together with the source and the sink
into two blocks A and B using the modified FM algorithm according to the following specifications:

(1) Block A has to contain the source.
(2) Block B has to contain the sink.

(3) Let mid_row=|tow_r ow-;high YOW |, The desired area ratio of block A is

;= mid_row
low_row +high row’

which allows the final size of block A to differ from its targeted value by s percent.

Moreover, the user can specify a parameter s, called balance deviation

After partitioning, cells in block A are confined to rows [low_row, mid_row] and cells in block B
are confined to rows (mid_row, high_row]. Because the partition computed by the modified FM
algorithm is non-deterministic (the result depends on a random initial partition), we call the partitioning
procedure i1 times at each step and use the best partitioning result, where /1 is a user specified parameter
that affects both the running time of this phase and the quality of the result. In general, a larger value of
il leads to better partitions but longer computational time. The parameter s affects the rowlength
deviation. Smaller s leads to designs of more even rowlength.

At the end of phase 1 each cell has been assigned to one of the rows. The exact positions of the cells
in each row are to be determined by the next phase.

3.2. Phase 2: Placement of Cells Inside Each Row

During this phase, the cells in each row are assigned to their exact locations, We process all the
Tows On a one-by-one basis starting from the bottom row. The placement of the cells in each row depends
on the cell positions in the already placed rows undemeath the current row and the I/O pad positions.

For each row, we have developed an analytical placement technique which determines the positions
of all the cells in the row simultaneously. In particular, we formulate the single row placement problem as
a generalization of the Rectilinear Distance Facility Location (RDFL) problem. In the next subsection we
first describe the classical RDFL problem and the solution by Picard and Ratliff [PiRa78].



3.2.1. The Classical RDFL Problem and its Solution

The RDFL problem is a well studied problem in location theory. It is formulated as follows:
Assuming that there are m old facilities located at coordinates (a;,b;) (1€i<m) in the plane, determine
the optimal locations of n new facilities in the plane such that the sum of weighted rectilinear distances
between all facilities is minimized.

Formally, let w;; denote the amount of interconnection between an old facility i and a new facility
J (1si€m, 1<j<n) and u;; denote the amount of interconnection between two new facilities i and
J (1=i=n, 15j<n). Then, the RDFL problem is to find the coordinates (x;,y;) for each new facility i
(1<i<n) such that the function;

ZX.Y)= Ei Zwﬂ(lx, —a; | +]y;—b; I)+(1/2)E ):u.,(lx,—leﬂy, =¥ (E1)
=1 j=1 i=] j=1

is minimized, where X =(x;,x3,..,x,) and Y=(y,y2,..,¥» ). Note that wij =wy; and uy;; = uy; are implied in
the formulation.

Since Z(X,Y) is separable in terms of X and ¥, it suffices 1o consider two one-dimensional RDFL
problems independently:

minimize : G(X)= z Ewﬂ lx;—a; | +(1/2)Z Zuu | xi—x; | (E2)
=1 j=1 i=1 j=1

minimize : H(Y)= Xi Zw_,, lyj=bi| +(1!2)z Z“u lyi—y; | (E3)
i =1 j=1

According to the resulis in [CaFS70] we know that there exists an optimum solution with
xjefay,...an} for each j=1,.n. Moreover it is sufficient to consider the case where a;.1-a;=1 for
i=1,..,m—1. Therefore, the one-dimensional RDFL problem can be simplified to the following form:
Compute X ={x,...x, } where x; € {1,..,m} (1<i<n) such that:

n n
F(X)= E Zw,, =i 1+ (172) 3, 3wy | xi—x; | (E4)

=1 j=1 i=] j=1
is minimum.

For each i=1,..,m—1, we denote the line segment from i to {41 as segment i . Then, for any given X
satisfying x;e {1,..m} (j=1,.,n) we can decompose F(X) into m—1 components, such that each
component corresponds to the contribution to F(X) by one of the m—1 line segments. Specifically, let
S;=(jtx;<q} and §’;={j | x; >q }. Then, the contribution of segment ¢, denoted as C,, can be written as:

Ce(Sq.89)= 23, Z wji + E iji DI IR 7 (ES)

JeS, i=q+] JES, 1= Jjes, ke,

and F(X) can be written as :



m-1
F(X)= Z]Cq(sq’s’q) (E6)
q=

For any given ¢, we say that the partition (S, §';) is optimal if §,\JS",={1,...n}, S, S’ ;= and
Cq(Sq, 8 5) is minimum. A key result in [PiRa78] showed that for any g, if partition (§,, §',) is optimal,
then there exists an optimal solution X * ={x7,...x1} to the one-dimensional RDFL problem such that x;'<q
ifieS, and x'2q+1 if i €§’'y. Clearly, by recursively finding the optimal partition (S4,8"4) for each ¢,
we can obtain an optimal solution to the one-dimensional RDFL problem. It was shown that the problem
of computing an optimal partition (S,, $’;) for any ¢ can be solved by finding a min-cut in a network.

For any g, we construct a network, called the g—locale network , as follows : there is one node for
each new facility j (j=1,..,n) plus two nodes, called s (source) and ¢t (sink). There are threc types of
undirected arcs in the network:

(1) (s, j) with capacities c (s, j) = iwij forj=1,.n
1=
) (. ) with capacities ¢ (1, )= 3" w; for j=1,.n
i=q+1
(3) (, k) with capacities ¢ (j, k) =uz forj =1,.,n and k = 1,...n with j#k

Figure 3.1 shows a g -locale network with 3 new facilities and m old facilities.

If we partition the vertices {1,..,n} of the ¢ -locale network into two sets S, and §’,, then the vertex
sets {s \JS,; and {r}\JS’, define a cut in the g-locale network. We denote this cut by (X;,X'y). Then,
we have the following observations :

(1) The cost of the cut (Xq,X’q) (i.c., the total capacity of the edges across the cut) in the g-locale

network equals C, (S, §’;) defined in Equation (ES).
(2) Finding an optimal partition (S,,5’,) is equivalent to finding a minimum cut in the g-locale
network.

Figure 3.1: A g-locale network with m old and 3 new facilities



Since the min-cut problem in a network can be solved efficiently based on the max-flow
computation [FoFu62], the optimal partition (S,,$’;) can be computed in polynomial time. For any
segment g, after we compute the optimal partition (S,, §',), the new facilities are partitioned into two
sets: those located at positions less than or equal to ¢ and those located at positions greater or equal to
g+1. After we compute the optimal partition for each of the m—1 segments, cach new facility is
constrained to a unique location and a complete solution to the RDFL problem is obtained.

Let L, denote the set of facilities restricted to the positions less than or equal to ¢, and G, the set of
facilities restricted to positions greater than or equal to ¢ . The following algorithm computes an optimal
solution to the RDFL problem :

Step0. SetN={1,.,n},L,=G1=N,L;=D (i =1,.m-1),G; =@ (i=2,..m) and I ={1,..,m—1}.

Step 1. IfI =0 goto Step 5. Otherwise pick any ¢ from 7 and let / =/~{q}.
Step2. Let L,=\UL; and G ;= \J G;. Consider the new facilities in L, as old facilities located at ¢
i<q

i2q+l1
and the new facilities in G, as old facilities located at g +1. Consider N ~{L\JG 441} as the

set of new facilities to be located. Construct the g -locale network for this problem.
Step 3. Find the minimum cut (S,, §;) in the ¢ -locale network defined in Step 2.
Step4.  Set L;=L,\JS,; and G, 1=G,,\JS’,. Goto Step 1.
Step5. Foreach 1<i<n, if ie L;MG; then x;=/.
The method requires the solution of at most m—1 min-cut problems on networks with at most n+2
vertices.

3.2.2. The Single-Row Placement Algorithm

The central part of Phase 2 of our algorithm is to solve the single-row placement problem. In order
to place the cells in the current row we take into consideration the following three factors
(1) The connections to all the already placed cells that are below the current row.

(2) The connections to all the 1/O pads in the design.
(3) The connections among the cells in the current row.

The single-row placement algorithm consists of two stages. The first stage solves the generalized
one-dimensional RDFL problem where the old facilities are the I/O pads and the cells that have already
been placed, and the new facilities are the cells of the current row. Assume that there are n cells in the
current row. If the placed cells and the 1/O pads have m distinct x-coordinates a1<a,< .. <an, according
to the result in [CaFS70] we can assume that a;=i (1<i<m). Then, the solution to the one-dimensional
RDFL problem gives the x-coordinate of each cell in the current row 1<x;<m (1<j<n), which specifies
the relative ordering of the cells in the current row. Without loss of generality, we assume that m=2* for
some £ in the following discussions. Note that overlap between cells in the current row may exist since
the solution to the RDFL problem does not guarantee that each new facility occupies a distinct position.

The second stage of the single-row placement algorithm removes all the overlaps of the cells in the
current row. That is, we decide the relative ordering of all new facilities placed at the same position, as
determined in the first stage. Figure 3.2 illustrates the output of each of the two stages.
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Figure 3.2: (a) Single-row placement based on the solution to the generalized RDFL problem,
(b) Single-row placement after removing overlaps.

3.2.2.1. Stage 1: Solution to the Generalized RDFL Problem

Two difficulties arise when applying the classical RDFL problem to the single-row placement
problem. First, the interconnection information of the circuit is usually a netlist (i.c. a hypergraph) instead
of a simple graph, which makes the cost computation of a cut in the g-locale network complicated.
Consider for example the g -locale network in Figure 3.3. If some net connects nodes 1,2,3 and ¢, the
contribution of the net to the cost of the cut is just 1 instead of 3 as would be computed by adding the
number of common connections between node ¢ and each of the nodes 1,2 and 3.

Figure 3.3: Computing the cost of a cut in the ¢-locale network



Second, based on the optimal solution to the one-dimensional RDFL problem, many cells in the
current row may overlap. In our experiments, we observed that as many as 50% of the cells in the current
row could occupy the same location. While in general overlaps are allowed during this stage, excessive
overlap of the cells defies the purpose of determining relative cell ordering in the current row and is
certainly not desirable.

In order to overcome these two difficulties, we modified the RDFL problem formulation to handle
hypergraph interconnections and to limit overlap at each facility location. We call the resulting problem
the generalized RDFL problem.3 In our solution 10 the generalized RDFL problem, instead of finding a
min-cut in each g-locale network, we find the minimum area-balanced cut in the g—locale hypergraph
(to be defined below) using the modified FM partitioning method presented in Subsection 3.1. Although
with this modification an optimal solution is no longer guaranteed, the application of the modified FM
algorithm can easily handle interconnection information in the netlist form. Moreover, if we compute an
area-balanced cut in each g-locale hypergraph, cells are evenly distributed over all the possible facility
locations and the overlap is greatly reduced?. Our algorithm for solving the generalized RDFL problem is
described as follows.

For each net a, let A_cells(a) be the subset of cells (a) that contains the cells of net g that are
assigned to the highest row (row with the highest index) below the current row. We assume that the
global router will not introduce unnecessary feedthroughs when connecting cells in the same net. That is,
if a net connects three cells in rows {,j and & with { <j <k, the global router will try to connect the cells
inrows i and j and the cells in rows j and &, instead of connecting cells in rows i and & directly using
feedthroughs. Therefore, when we place the cells in the current row, we consider only their connections to
the cells in a%_l)_rh_cells (a) and connections to the corresponding I/O pads, where IT" is the set of nets

connecting to some cells in the current row.

During each iteration of our algorithm for solving the generalized RDFL problem, instead of
constructing a ¢ -locale network for each selected segment g, we construct the g—locale hypergraph
defined as follows:

(1) The hypergraph contains one vertex for each new facility of this iteration, plus two vertices s
(source) and ¢ (sink).

(2) Foreachneta incident to some new facility, a hyperedge H, is defined as follows:
H; = {cell |cell ecells{a) and cell is a new facility \ P\ QO

where

*The classic RDFL formulation was also used by Marek-Sadowska and Lin [MaLi89]. They applied it directly 1o the two-
dimensional placement problem. Moreover, they did not have overlap control in their formulation. Excessive overlaps were al-
lowed and they were resolved afterwards using a procedure similar to the min-cut placement algorithm.

*Another advantage of using the modified FM algorithm is that it reduces the time complexity of the min-cut algorithm.
The modified FM algorithm runs in linear time in practice while the min-cut algorithm requires cubic time for maximum flow
computation,

10



{s} if net a contains an I/O pad assigned the left side of the chip or
P = h_cells (a) contains an old facility whose x—coordinate < ¢

1) otherwise

and

{t}  ifnet a contains an IfO pad assigned the right side of the chip or
0= h_cells (@) contains an old facility whose x—coordinate = g+1

& otherwise

The weight of hyperedge H, is set to be the same as the weight of net a. A cut in the ¢-locale
hypergraph is a vertex partition (X, X”) of the hypergraph such that se X and teX’. The cost of a cut in
the g-locale hypergraph is the sum of the weights of all the hyperedges across the cut. Then, we can
generalize the results in {PiRa78] as follows.

Theorem 1: Given X =(x 1,x2,...x, ), let S;={x; | x;<q} and §';=(x; | x;2g+1}. Then, X is an optimal
solution to the RDFL problem with hyperedge connections if and only if (S;, §’;) is an optimal partition
of the q -locale hypergraph foreach g.

The proof of the theorem is similar to that in [PiRa78]. Based on this theorem, the generalized
RDFL algorithm works as follows:
Step0. SetN={l1,..n},L,=G=N,L,=0(=1,.,m-1),G, =D (i=2,..m)and I ={1,..,m-1},
Step1. IfI =% goto Step 5. Otherwise pick ¢ according to the binary search ordering (defined below)

from/ and let / =1—-{q}.
Step2. Letl, —UL and G,.= \JJ G;. Consider the cells in L, as old facilities located at ¢ and the

izg+l
cells in Gq+1 as old facilities located at ¢ +1. Consider N—{L,\JG,,1} as the set of new cells to

be located. Construct the g -locale hypergraph for this problem.
Step 3. Find the minimum area balanced cut (S;, §';) in the g-locale hypergraph defined in Step 2,

using the FM method with a user specified balance deviation s.
Step4.  Set L,=L,\JS,; and G, 1=G,..\JS’;. Goto Step 1.
Step5. Foreach 1isn, if ie L;MG; then x;=.

The order by which the segment g is chosen during Step 2 of the algorithm is according to the

binary search ordering defined by the sequence: 7 , %— T —'g’— 28@ —58"1 18"1 -+ which is the

sequence that we follow to carry out binary search on interval [1, m]. Initially, the cells in the current row

belong to the interval [1, m]. After q=% is processed, each cell belongs to either interval {1, -’5‘—] or

interval [-’%’-H,m]. After =1 is processed, cach cell belongs to one of the intervals [1, %],

[%H, %], or [%H, 1]. At each iteration, one interval is refined (being split into two smaller intervals

of equal length). At any time, each cell in the current row belongs to one of the intervals. However, the

11



exact location of the cell in that interval is yet to be determined. This sequence was chosen because it
enhances the even distribution of the cells in the current row over the m possible positions. In particular,
we have the following result:

Theorem 2: Assuming that the cells of each row are of uniform length’, the number of overlapping
cells at each facility location in our solution to the generalized RDFL problem is no more than

(145 Ylogm . ;n"—] where s is the balance deviation parameter used in the modified FM algorithm in Step

3.

Proof: Note that “‘—1] is a lower bound of the number of overlapping cells when we place n cells

into m locations. Assume that m=2*. We shall show by induction that during the execution of our

k—q .
algorithm, an interval of length 29 (g <k) contains at most lll;k)_q_q—"] cells.

For g=k it is trivial to see that the interval with length 2% (=m) contains n cells. Assume that the
statement is true for ¢. We shall show that it is also true for ¢ —1. The interval of length 29-! is obtained
by partitioning an interval of length 27 using the modified FM algorithm. If the balance deviation of this
algorithm is s , according to the induction hypothesis, the interval of length 29— contains at most

L1+sk)"“? ‘n (1+s3"“1 n Conl 1)
259 . 2k _ | (Qs)atinl | (14s)9- g
y) ts y) =1 TorgE ]‘{ 22—'(4—15 ]

cells.

Since this is true for any ¢, then for =0 we obtain that the maximum number of cells at each old
facility location (i.e. a unit length interval) is

(I+s)-n | _
-Es n]_

Usually, m and n are roughly equal since Phase 1 tries to balance the row lengths. In this case, the

(145 )logm . j_’l__]
" 0

maximum number of overlapping cells is bounded by 2-(1+s )87 _ It is clear that smaller s leads to fewer
overlapping cells.

Upon completion of Stage 1, all cells in the current row have been assigned to one of the positions
1,..,m defined by the old facilities. This assignment specifies a partial order among the cells in the current
row. The cell (or the group of cells) assigned to position i is (are) going to be placed to the left of the cell
(or the group of cells) assigned to position j if i <.

% Althought our algorithm handles variable cell lengths, this assumption is made for the sake of the simplicity of the
analysis.
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3.2.2.2. Stage 2: Overlap Removal

Each set of cells that are placed at the same position in the current row after Stage 1 forms a group .
The objective of Stage 2 is to determine the relative ordering of the cells in each group. Let G; denote the
i-th cell group from the left in the current cell row. Moreover, let L; represent the sum of cell lengths in
G;. Then, cells in G will occupy the interval [0, L]. The cells in G, will occupy the interval

[L1, L1+Lo]. In general, the cells in G; will occupy the interval { ZLk , ELk 1.

For each group, the overlap removal problem is formulated as a maximum bipartite matching
problem. If the cardinality of G; is n;, then the n; cells of the group are to be matched to an equal number
of positions. We assume that all the cells in G; have the average cell length of G;, denoted I;, and all the

candidate positions for the cells in G; are equally spaced in [ ):Lk , ELk ]. In addition, all the pins in
each cell are assumed to be located in the middle of the cell.

Each vertex in one side of the bipartite graph represents a cell, and each vertex in the other side of
the bipartite graph represents a position. The x-coordinate of the center of position r is:

i-1 -
X = L+ r-3)
k=1

The weight ¢ of the edge connecting cell j to position 7 in the bipartite graph represents the cost
of assigning cell j to position r:

i—1
G = PPy | T Lx Xy |

where Pj* is the number of nets whose minimum bounding box perimeter will increase when we move

i=1
cell j from ¥ L, to X, and P, is the number of nets whose minimum bounding box perimeter will
£=1
i1
decrease when we move cell j from Y L, to X,. Therefore, cost cjr represents the increase of total
k=1
i-1
wirelength when we shift cell j from ¥ L; to X,.
=1

Let {x; } be a set of /1 integer variables for j=1,..,n; and r=1,..,n;. Solution xj=1 means that the

matching includes the assignment of celt j to position r whereas x;,=0 means that it does not. Clearly, we
n;
want to compute a complete bipartite matching suchthat 3 (cj - xj) is minimized.
jk=1

The minimum weighted complete bipartite matching problem can be efficiently solved using the
algorithm presented in [PaSt82). The solution of the bipartite matching problem defines the relative
ordering of the cells inside each group. Since the relative order of the groups has been determined in
Stage 1, after solving the minimum weighted complete bipartite matching problem for each group of cells
during Stage 2, the relative order of all the cells in the current row has been decided and all the overlaps
have been removed.

13



3.3. Overall Time Complexity

Let n be the number of cells in the design. We assume that the number of pins on each cell is
bounded by a constant. In Phase 1, the modified FM partitioning algorithm is applied to 1 netlist of n
cells, 2 netlists each of n/2 cells, 4 netlists each of n/4 cells, ..., and so on. Since each pass of the
modified FM algorithm runs in linear time, the time complexity of Phase 1 is

kpp O (n) + 2kpp O (n/2) + dkppg O (n/4) + - -+ =kgpy O (nlogn)

where ks is the number of passes executed by the FM algorithm, which is usually a small constant (2-5)
[FiMa82]. Without loss of generality, assume that there are r rows and that each row has ng cells after
Phase 1. In Phase 2, for each single row placement problem, the modified FM algorithm is applied to 1
q-locale hypergraph with no nodes, 2 g-locale hypergraphs each of ny/2 nodes, 4 g-locale hypergraphs
each of ny/4 nodes, ..., and so on. The complexity of Stage 1 of the single row placement algorithm is

kem O (ng) + 2kpp O (ng/2) + dkpp -0 (no/d) + - - - = kpayg -0 (nglogng)

If we set the balance deviation parameter s in the modified FM algorithm to be very small, the number of
overlapping cells after Stage 1 is practically a small constant.® In this case, Stage 2 for overlap removal
takes linear time in terms of no. Therefore, the complexity of each single row placement algorithm is
kra O (nologng). Note that r-ng=n. Thus, the complexity of Phase 2 is

rkey O (nologno) = kpa -O (r-nglogno) = kppye -0 (nlogn )

In order to obtain good results, the modified FM partitioning algorithm is executed i1 times for each
partition in Phase 1 and i2 times for each partition in Phase 2. Therefore, the overall complexity of the
algorithm is

il-kpps O (nlogn) + i2-kpp-O (nlogn) = (i1 + 2)-kppe-O (nlogn)

Since i, i2, and kpyy are all constants, the overall complexity of the algorithm is O (nlogn ) in practice.

4. Experimental Results

The algorithm proposed in this paper, AKROPOLIS, was implemented using C under Unix on Sun
SPARC workstations. We tested the algorithm on the MCNC standard cell placement benchmarks. The
description of these circuits is shown in Table 4.1. The first column represents the number of standard
cells in the designs. The second and third columns represent the number of 1/0 pads and the number of
the nets in the designs, respectively. Finally, the fourth column represents the number of rows used in our
designs.

We compared our results with the ones produced by the TimberWolf6.0 placement and global
routing package. In order to get a fair comparison of the placement solutions, we used the TimberWolf
global router to route both our placement and the placement produced by TimberWolf,

[

8 If we want to bound the number of overlapping cells by a constant ¢, we cansets €2 < 08701,
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circuit cells pads nets rOws
fract 125 24 147 6
primaryl 752 81 504 16
struct 1888 64 1920 20
industryl 2271 814 2593 24
primary?2 2907 107 3029 28
biomed 6417 97 5742 44
industry2 12142 495 13419 69

Table 4.1: Description of the MCNC standard cell benchmarks

We followed the guideline given by MCNC about the design rules for these benchmarks. In
particular, benchmarks fract, struct, biomed and industry? were routed according to the MOSIS
SCMOS 2.0p design rules with wl=sl=3um, w2=3um, s2=4um, where wil and w2 represent the
minimum width of horizontal and vertical wires, respectively, and s1 and 52 represent the minimum
spacing between horizontal wires and between vertical wires, respectively. Benchmarks primary 1 and
primary2 were routed with wl=w2=sl=s2=5um. Finally benchmark industry1 was routed with
wl=s1=s2=2um and w2=2.8um. All the net weights are set to one, since timing information was not
available.

The comparison with Timberwolf6.0 is shown in Table 4.2. Columns 3 to 6 show the number of
routing tracks, the total wirelength, the number of inserted feedthroughs, and the total area, respectively.
The last column shows the runtime of each algorithm. Runtimes were recorded on a Sun SPARCIH
station with 32M memory. The fast parameter used by TimberWolf was set to zero for all circuits except
struct and industry 2 for which it was set to 5 (TimberWolf could not produce a solution after 48 hours, if
the fast parameter was set to zero for these two examples).

From Table 4.2 it is clear that AKROPOLIS outperforms TimberWolf in every term compared. On
average, AKROPOLIS reduces the total wirelength by 36.8%, reduces the chip area by 11.75%, reduces
the number of inserted feedthroughs by a factor of 155 and reduces the runtime by a factor of 10.

The AKROPOLIS package can take four user specified parameters. Parameters i1 and i2 specify the
number of times the modified FM partitioning algorithm is invoked for each bipartition in Phases 1 and 2,
respectively. Parameters 51 and s2 specify the percentage of the area balance deviation allowed for each
bipartitioning in Phases 1 and 2, respectively. Parameter s1 controls the rowlength difference. Parameter
52 controls the amount of overlap allowed in the first stage of Phase 2.

Table 4.3 shows the results produced by AKROPOLIS when the values of parameters i1 and 2 are
adjusted. From Table 4.3 the trade-off between the quality of the placement solution and runtime
becomes apparent. The larger the parameters i1 and i2 are, the better the quality of the results but the
longer the running time. However, even for very small values of these parameters (i1=i2=10) the quality
of the result is compared to TimberWolf while a factor of 147 speed-up is achicved. Running
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circuit algorithm | tracks | wirelength (um) feeds area (mm?) | time (s)
fract TW 82 58710 187 0.575 185
AKR 61 37580 36 0.483 89
primary1 Tw 295 2018940 794 27.766 3374
AKR 271 1421112 0 26.214+ 1174
struct TW 347 1017950 3243 8.617 102730
AKR 253 468404 156 6.703 2725
industry1 ™ 876 2704622 11178 20.708 57493
AKR 782 1987649 5535 17.851 5611
primary2 Tw 822 8305016 7609 109.321 50787
AKR 757 5507915 78 101.457+ 8936
biomed T™W 1148 4807366 15822 53.081 242284
AKR 1075 3178506 1872 50.042 23889
. ™ - 56228978 - - 39922
industry2*™* AKR X 31565352 - . 27137
ave. factor of improvement 1.18 1.61 154.6 1.14 10.03

* If the MOSIS SCMOS 2.0 rules are applied, the primary 1 solution by AKROPOLIS occupies 20.65mm>.
** 1f the MOSIS SCMOS 2.0 rules are applied, the primary 2 solution by AKROPOLIS occupies 75.356mm?,
* Due to the memory limitation, industry 2 could not be routed by the TimberWolf global router.

Table 4.2: Comparison of the TimberWwolf6.0 and AKROPOLIS placement results

AKROPOLIS with small i1 and 12 is very useful for fast and accurate area and delay estimation.

Table 4.4 shows the results produced by AKROPOLIS for different values of parameter s1. Smaller

5. Conclusions and Extensions

51 leads to smaller rowlength difference, which in general results in smaller area and total wirelength,

We have presented a new constructive approach to the placement problem for large row-based

standard cell and gate array designs. The two-dimensional placement problem is transformed into a
sequence of one-dimensional problems, and each of them can be solved independently using the
generalized rectilinear distance facility location formulation. Extensive experimental results have
confirmed that our algorithm is very efficient for large-scale IC designs and produces very high quality

il i2 wirelength (um) area (mm?) time (s)
10 10 563917 7.863 697
50 50 518122 7.490 1238
100 100 466981 6.878 1985
150 150 468404 6.703 2725

values (s1=0.5%, 2=25%).
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sl tracks wirelength (Lm) rowlength dif. (um) area (mm?)
0.5% 253 468404 71 6.703
1.0% 269 468264 214 7.118
1.5% 269 468504 262 7251
2.0% a0 518105 338 7.804

Table 4.4: AKROPOLIS placement results for the struct benchmark using different 51 parameter
values (11=i2=150, s2=25%).

placement solutions. On average, AKROPOLIS reduces the total wirelength by 37%, reduces the chip
area by 12%, reduces the number of inserted feedthroughs by a factor of 155, and reduces the runtime by
a factor of 10 as compared to TimberWolf6.0.

Currently, we are enhancing the AKROPOLIS package to include several additional featres. One
extension is to handle the pre-placed macro-cells in the design. Special considerations are needed in the
partitioning procedure used in Phase 1 and Phase 2 to handle the unequal row lengths due the existence of
pre-placed macro-cells. Another extension is to handle the placement of I/O pads when their positions are
not given. The I/O pad positions can be determined in Phase 1 where they are partitioned together with
the cells at each iteration. An additional balance constraint is needed for the I/O pads during each
partitioning so that the I/O pads are distributed evenly along the chip boundary, We also plan to
dynamically update the weights of the nets, as the cells are partially placed, so that the interconnection
delay can be further minimized.
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