Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ON AREA/DEPTH TRADE-OFF IN LUT-BASED
FPGA TECHNOLOGY MAPPING

Jason Cong October 1992
Yuzheng Ding CSD-920053

On Area/Depth Trade-off
in LUT-Based FPGA Technology Mapping

Jason Cong and Yuzheng Ding

Department of Computer Science
University of California, Los Angeles, CA 90024

October 23, 1992

Abstract

In this paper, we study the area and depth trade-off in lookup-table (LUT) based FPGA
technology mapping. Starting from a depth-optimal mapping solution, we perform a number of
depth relaxation operations to obtain a new network with bounded increase in depth so that it is
advantageous 10 subsequent re-mapping for area minimization. We then re-map the resulting
network to obtain an area-minimized mapping solution with bounded depth. By gradually
increasing the depth bound, for each design we are able to produce a set of mapping solutions
with smooth area and depth trade-off, while most existing mapping methods produce only a
single solution. As the core of the area minimization step, we have developed a polynomial-time
optimal algorithm for computing an area-minimum mapping solution without node duplication
for a general Boolean network, which makes a significant step towards complete understanding of
the general arca minimization problem in FPGA technology mapping. The experimental results
on MCNC benchmark circuits show that our solution sets outperform the solutions produced by
many existing mapping algorithms in terms of both area and depth minimization.

2.

1. Introduction

The field programmable gate array (FPGA) has become a very popular technology in VLSI
ASIC design and system prototyping duc to its short implementation cycle and low
manufacturing cost. An FPGA chip consists of programmable logic blocks, programmable
interconnections, and programmable 1/O pads. The lookup table (LUT) based FPGA architecture
is produced by several FPGA manufacturers [Xi92, Hi91], in which the basic programmable logic
block is a K-input lookup table. A K-input LUT (K-LUT) can implement any Boolean function
of up to K variables. The technology mapping problem for LUT-based FPGA designs is to
convert a general Boolean network into a functionally equivalent K-LUT network.

Previous technology mapping algorithms for LUT-based FPGA design can be roughly
divided into three categories according to their optimization objectives. The algorithms in the
first category emphasize on minimizing the number of LUTs used in the mapping solution. These
algorithms include Chortle-crf {[FrRV91la], MIS-pga [Mu%), MuSB91b], XMap [Ka9la],
VisMap [W091], and TechMap [SaTh92]. The algorithms in the second category emphasize on
minimizing the delay of the mapping solution. These algorithms include Chortle-d [FrRV91b],
MIS-pga(delay) [MuSB9la], TechMap-L. [SaTh92], DAG-Map [CoKT92, ChCD92], and
FlowMap [CoDi92]. The algorithms in the third category, including RMap [ScK(C92] and the
algorithm reported in [BhHi92], emphasize on maximizing the routability of the mapping result.
Most of these algorithms are based on heuristic techniques, except FlowMap which guarantees to
produce depth-optimal mapping solutions in polynomial time. It remains open if the area-optimal
mapping problem for LUT-based FPGAs can be solved in polynomial time.

Although many of the existing algorithms showed encouraging results, they have a common
limitation that for a given design, each algorithm produces only a single mapping solution
optimized under a fixed objective, while other good mapping solutions under different
optimization objectives are ignored. As an example, Figure 1 compares the 5-LUT mapping
results by some of the existing algorithms on one of the MCNC benchmark circuits named rot.
The depth and the number of LUTs of these solutions vary significantly. In general, the area-
minimized solutions have much larger depth, while delay-minimized solutions use much more
LUTs. However, it is very likely that in practice the best design does not come from one of these

two extremes. It is important to let the system designer have the flexibility to choose from a set of

mapping solutions with smooth trade-off between area and depth.

In this paper we study the trade-off between area and depth in LUT-based FPGA
technology mapping. Specifically, we are interested in obtaining a set of mapping solutions for
each design, which can meet various arca and depth requirements. In practice, the designer
usually has to produce the most compact design satisfying certain depth bound determined by
performance specification. To satisfy such a need, our algorithm produces a set of area-

minimized mapping solutions under various depth bounds.

The basic approach of our algorithm is as follows. Starting from a depth-optimal mapping
solution (computed by the FlowMap algorithm[CoDi92]), we perform a number of depth
relaxation operations to obtain a new network with bounded increase in depth so that it is
advantageous to subsequent re-mapping for area minimization. We then re-map the resulting
network to obtain an area-minimized mapping solution with bounded depth. By gradually
increasing the depth bounds, for cach design we are able to produce a set of mapping solutions
with smooth arca and depth trade-off. As the core of the area minimization step, we have
developed a polynomial-time algorithm for computing an area-optimal mapping solution without
node duplication for a general Boolean network, which makes a significant step towards complete
understanding of the general area optimization problem in FPGA technology mapping.

We have tested our algorithm on the MCNC benchmark circuits and obtained very
encouraging results. For most circuits we are able to produce a set of mapping solutions with
smooth area and depth trade-off. At one end, we are able to produce depth-optimal solutions that

E_ y
12
MIS-pg2 Chortic-crf
11
10
9 -
8 MIS-pga(delay)
7 =
6 =
H FlowMap DAG-Map Chonle-d
i
... I T T T 1 T T T T T T T T T -
0 200 250 300 #of 5-LUTs

Figure 1 Mapping solutions of various algorithms for rot (K=5).

g

use smaller area than the existing depth minimization mapping algorithms, including Chortle-d,
MIS-pga(delay), and FlowMap. At another end, we are able to produce solutions with both
smaller arca and smaller depth compared to the existing area minimization mapping algorithms,
including Chortle-crf and MIS-pga.

The remainder of this paper is organized as follows. Section 2 formulates the problem and
introduces several concepts and definitions. Section 3 presents an overview of our algorithm. In
Sections 4 and 5, the details of the two phases of our algorithm, i.e. depth relaxation and area
minimization, are discussed. Section 6 presents the experimental results. Conclusions and future
extensions are presented in Section 7.

2. Problem Formulation

A general Boolean network can be represented as a directed acyclic graph where each node
represents a logic gate and a directed edge (i, j) exists if the output of gate i is an input of gate j.
A primary input (PI) node has no incoming edge and a primary output (PO) node has no outgoing
edge. We use input (v) to denote the set of nodes which are the fanins of node v, and output (v) to
denote the set of nodes which are the fanouts of node v. Given a subgraph H of the Boolean
network, input (H) denotes the set of distinct nodes outside H which supply inputs to the gates in
H. The level (or depth) of a node v is the length of the longest path from any PI node to v. The
level of a PI node is zero. The depth of a network is the largest node level in the network, A
Boolean network is K-bounded if | input (v)| <K for each node v. In the rest of this paper, we

consider only K-bounded networks.

For a node v in the network, a cone of v, denoted C,, is a subgraph of logic gates (excluding

PIs) consisting of v and its predecessors? such that any path connecting a node in C, and v lies
entirely in C,. We call v the root of C,. A fanout-free cone (FFC) at v, denoted FFC,, is a cone
of v such that for any node u#v in FFC,, output (uy c FFC,. A K-feasible cone of v is a cone C,
such that |input (C,)|<K.

We assume that each programmable logic block in an FPGA is a K-input 1-output lookup-
table (K-LUT) that can implement any Boolean function of up to K variables. Thus, each K-LUT
can implement (or cover) any K-feasible FFC in a Boolean network. If a K-LUT LUT,
implements a K-feasible FFC of v, we say that LUT, implements node v and that v is the root of
LUT,. If the K-feasible cone C, is not fanout free, we have to duplicate the non-root nodes in C,

' Tf a network is not K-bounded, there are a few algorithms to transformn it in to a K-bounded network. For example, the DMIG
algorithm in [ChCD92] iransforms a general network of simple gates into a K-bounded network with minimum depth.

* Node u is a predecessor of node v if there is a directed path from u to v.

————m————— o

(b) ()

Figure 2 Technology mapping for LUT-base FPGA (K=3).
(a) original network; (b) mapping with node duplication; (¢) mapping without duplication.

that have fanouts outside of C, in order to cover C, by a K-LUT. Given a K-bounded network,
the technology mapping problem for K-LUT based FPGA designs is to cover the network with
K-feasible FFCs (possibly with node duplications). A technology mapping solution S is a
directed acyclic graph where each node is a K-feasible FFC (equivalently, a K-LUT) and the edge
(Cy, C,) exists if u is in input(C,). Figure 2 shows a Boolean network and two mapping

solutions, one with node duplication and the other without node duplication.

We say an LUT mapping solution satisfies the depth bound D if the depth of the LUT
network is no more than D. Given a depth bound D, the slack on node v is defined as follows: If v
is not a P1 or PQ, the slack of v is D —(L,+P,), where L, is the level of v in the network, and P, is
the length of the longest path from v to any PO node. I v is a PI or PO, the slack of v is zero. A
node is critical if it has zero slack. A path from a PI to a PO consisting of only critical nodes is a

critical path.

3. Basic Operations and Outline of the Algorithm

In this section, we shall discuss the effect of depth relaxation and node duplication, which
are two important factors in determining the area and depth trade-off. Then, we shall give an
overview of our algorithm, First, we briefly describe the FlowMap algorithm, which we use to

compute a depth-optimal mapping solution as our starting point.

3.1. The FlowMap Algorithm

FlowMap [CoDi92] is an LUT-based FPGA technology mapper that produces depth-

optimal mapping solutions for general Boolean networks in polynomial time. The basic idea of

-6-

the FlowMap algorithm is to find a depth-optimal mapping for each node in the network,
according to the topological order starting from the PI nodes. The depth-optimal mapping of a
node v is achieved by computing a minimum height K-feasibie cut in the subnetwork consisting of
all the transitive fanins of v, It was shown that such a cut can be computed in polynomial time. It
worths noticing that in a FlowMap mapping solution, every node (LUT) has the minimum
possible depth,

3.2. Effect of Depth Relaxation

Insisting minimum depth for every node, including the non-critical ones, may lead to
inefficient usc of LUTs. Figure 3(a) shows a Boolean network. The mapping solution by
FlowMap is shown in Figure 3(b). Another solution is shown in Figure 3(d), which has the same
depth as the one in (b) but uses one fewer LUT. Note that LUT, in (b) has the minimum depth.
However, since it is not critical, LUT", does not have the minimum depth in (d). In fact, solution
(d) can be obtained from (b) by decomposing LUT, to exclude gate w, as shown in (c), and then
pack LUT, into LUT,. Since the decomposition increases the depth of the LUT,, we call it a
depth relaxation operation. When LUT, is not critical, this operation does not increase the depth
of the network. Depth relaxation is discussed in detail in Section 4.

3.3. Effect of Node Duplication

Node duplication is performed when we use an LUT 1o cover a K-feasible cone C which
has a non-root node with a fanout node outside of C (see Figure 2(b)). In general, node

duplication is very important to depth optimization. Without node duplication, we may have to

(a)

Figure 3 Depth relaxation for area reduction (K=3). The numbers indicate node levels.
(a) original network; (b) solution of FlowMap; (c) after depth relaxation; (d) after re-mapping for area minimization.

implement many multi-fanout nodes explicitly with LUTs, which may lead to large depth in the
mapping solution. In the FlowMap mapping solutions, node duplication is heavily used to
guarantee the optimal depth. For example, in the mapping solution of the MCNC benchmark
circuit rot, 90% of the multi-fanout nodes are duplicated. However, node duplication may not be
very beneficial to area minimization. If we make m duplications of a node, we need to cover this
node by m LUTs, and it may use certain input capacity of each LUT. Therefore, excessive node
duplication will very likely result in large number of LUTs. (See Figure 2 for an example.)

In our algorithm, node duplication is automatically carried out by FlowMap for depth
minimization. In each of the subsequent depth retaxation steps, we try to eliminate unnecessary
node duplications for non-critical nodes, until all the remaining duplications are necessary to
satisfy the depth bound. Then, we carry out re-mapping for area minimization without
introducing new node duplications. Finally, we apply two post-processing operations that allow

necessary node duplications for further area reduction.

3.4. Overview of the Algorithm

Our algorithm starts with the depth-optimal mapping solution produced by FlowMap. For
each given depth bound of the mapping solution, our algorithm consists of two phases. During
the first phase, we apply a number of depth relaxation operations to produce an intermediate
network for subsequent area minimization. In the second phase, we carry out re-mapping for arca
minimization on the intermediate network. First, we use the DF-Map procedure to compute an
area-optimal mapping solution without node duplication. The details of DF-Map will be
presented in Section 5. Then, we carry out two post-processing procedures which allow necessary
node duplications for further area minimization. The two procedures are MP-Pack, a multi-fanout
predecessor packing procedure from the DAG-Map package ([ChCD92), and Flow-Pack, a flow-

based area minimization procedure from the FlowMap package [CoDi92].

To generate a set of mapping solutions, we gradually increase the depth bound for the
mapping solution and repeat the two-phase process for each depth bound. The algorithm stops
when no improvement on area is available by further increase of the depth bound. Clearly, the
number of iterations is bounded by the depth of the original network. Our algorithm, named

FlowMap-r, is outlined as follows.

8-

algorithm FlowMap-r
call FlowMap to produce a depth-optimal mapping solution;
repeat
/* phase 1: depth relaxation */
compute slacks;
while there are nodes with non-zero slacks do
select a node with non-zero slack;
apply a depth relaxation operation to decompose the node;
recompute slacks;
end-while;
/* phase 2. area minimization */
call FFC-Map 1o perform arca-optimal mapping without node duplication;
call MP-Pack to perform matching based predecessor packing with node duplication;
call Flow-Pack to perform maximum volume packing with node duplication;
output mapping solution;
increase the depth bound by 1;
until no improvement in area reduction;
end-algorithm.

4. Depth Relaxation

Given a non-critical LUT LUT, rooted at a node v and some node w € LUT,, the depth
relaxation operation decomposes LUT, into LUT’, and LUT,,, so that LUT,, becomes a fanin of
LUT',. In the case where w is a duplicated node in LUT, and LUT,, already exists in the mapping
solution, the depth relaxation simply replaces LUT, with LUT', and let LUT,, be a fanin of
LUT,, as in Figure 3(c). Otherwise, LUT,, needs to be created explicitly. Normally, we will
choose v and w in such a way that after the depth relaxation operation, LUT", and LUT,, can be
packed with existing LUTs during subsequent re-mapping. Since the depth relaxation operation
may lead to different results when applied on different LUTSs, we want to apply it to the more
promising LUTS first. Figure 4 illustrates three types of depth relaxation, which are considered in

our algorithm.

In Figure 4(a), LUT, contains a duplication of node w, and LUT,, is already in the network.
If we apply depth relaxation operation on LUT, to exclude w, no new LUT needs to be created.
Moreover, the input size of LUT, will be reduced in most cases, so that it may be packed with
other LUTs. In this example, LUT, can be packed either with LUT, or with LUT,. Furthermore,
elimination of the duplication w also reduces the fanout size of the fanin LUTs of w, which may
either enable further packing of LUT, with the fanin LUT (in this example, LUT,), or the
elimination of a redundant duplication of the fanin node (in this example, node x).

In Figure 4(b), the two duplications of node w are in LUT, and LUT,. Since LUT,, needs to
be explicitly created, this case is not as favorable as case (a). However, By applying depth
relaxation on LUT,, the input size of LUT, is reduced, therefore further packing may be possible.

9.

(a) (b) (c)

Figure 4 Three types of depth relaxation operations (assume K=5 and LUT, has non-zero slack).

In this example, LUT, can be packed with LUT, or with LUT, and LUT,. Moreover, if we can
later apply depth relaxation on LUT,, no new LUT will be generated for node w.

In Figure 4(c), LUT, contains node w which has single fanout. However, decompose LUT,
to exclude w may lead to further packing to merge LUT, with LUT,, and to merge LUT,, with
LUT,. In this case the depth relaxation is also applicable.

In general, the potential of area reduction after a depth relaxation operation varies. Our
algorithm always chooses the operation which will result in the most reduction. Afier the depth
relaxation operation, the slacks of related nodes are recomputed, and the process is repeated until
no slack is available. Note that the re-mapping is not performed immediately after a single depth
relaxation operation. It is invoked after ali slacks are exhausted under the current depth bound so

that it can perform global optimization for area minimization.

-10-

The computational cost of this phase consists of the cost of slack computation for each LUT
and the cost of computing potential reduction of each eligibie depth relaxation operation. Slack
computation takes linear time. Each potential is computed locally and takes constant time.

Therefore, the total cost of the depth relaxation procedure for each depth is no more than Q (n2).

5. Area Optimal Mapping without Node Duplication

In this section we present a polynomial time algorithm for an area-optimal mapping without
node duplication (duplication-free mapping, or DF-mapping) in general Boolean networks, which
is the core of the re-mapping phase for area minimization. Note that DF-mapping is not
equivalent to tree-based mapping. Figure 5 shows a simple example where the optimal DF-
mapping uses 2 LUTs, while the optimal tree-based mapping uses 6 LUTs. Our algorithm is

based on an important concept called the maximum fanout free cone.

5.1. Maximum Fanout Free Cone

The maximum fanout free cone (MFFC) of v, denoted MFFC,, is an FFC of v such that for
any non-PI node w, if ouput (w) c MFFC,, then w e MFFC,. Figure 6 shows the MFFC of
each node (the smallest shadowed area) in a network. Clearly, MFFC is unique for every node,
and any FFC of v is contained in MFFC,. Moreover, MFFC has the following important
properties.

Lemmal Ifw e MFFC,, then MFFC,, ¢ MFFC,.

Proof For any node ¥ € MFFC,,, if there is a path from « to a PO node that does not pass
w, let w’ be the last node in MFFC,, along the path, then output (W) & MFFC,,, which contradicts
the assumption that w' € MFFC,,. Therefore, every path from u to a PO node must pass w.

Figure 5 Duplication-free mapping vs. tree-based mapping (K=3).
(a) original network; (b) duplication-free mapping; (c) tree-based mapping.

11-

SmmmeTmmeemasoTy

Figure 6 Maximum fanout free cones.

Similarly, since w € MFFC,, every path from w to a PO node must pass v. This implies that
every path from u to a PO node must pass v, so output (u) c MFFC,, i.e. u € MFFC,. Therefore,
MFFC,, ¢ MFFC,. O

Lemma 2 Two MFFCs are cither disjoint or one must contain another.

Proof If MFFC, and MFFC,, are not disjoint, let u € MFFC, "MFFC,,. Then, every
path from u to a PO node must pass both v and w. Assume that a path from u first passes w then
passes v. Then, every path from w to a PO node must alsc pass v. This implies w € MFFC,, and
according to Lemma 1, MFFC,, c MFFC,. O

Lemma 3 If LUT,, is in a DF-mapping solution §, then for any v, node w € MFFC,
implies LUT,, ¢ MFFC,.

Proof Since there is no node duplication, it is clear that LUT,, implements an FFC rooted
at w. Therefore, LUT, c MFFC,,. Since we MFF(C,, according to LLemma 1 we know
MFFC, c MFFC,. Thus, LUT, c MFFC,. O

These properties of MFFC allows us to carry out optimal DF-mapping efficiently.

5.2. MFFC Partitioning of General Network

First, we show that a general Boolean network can be decomposed into a set of disjoint
MFFCs such that the optimal DF-mapping for the entire network can be carried out in each
MFFC independently.

Theorem 1 Let v be a PO node of a general Boolean network N. Then, any optimal DF-
mapping solution § of N also induces an optimal DF-mapping solution §, of MFFC,.

-12-

Proof For any LUT, in S, if u e MFFC,, according to Lemma 3, LUT, c MFFC,. If
ud¢ MFFC,, since vis a PO, v ¢ MFFC,. Then, according to Lemma 2, MFFC, " MFF(C, =0,
which implies LUT, " MFFC, = 3. Therefore, any LUT in § is either contained in MFFC, or
disjoint with it. As a result, § induces a mapping solution S, in MFFC,. Moreover, S, is also
optimal (otherwise S can be further improved). O

According to Theorem 1, we can partition the network N into MFFC, and N — MFFC, for
any PO node v. An optimal DF-mapping solution consists of an optimal DF-mapping solution of
MFFC, and an optimal DF-mapping solution of N —MFFC,. By applying this theorem
recursively on N — MFFC,, we can partition the entire network N into a set of disjoint MFFCs so
that we can compute the optimal DF-mapping for each MFFC independently to obtain an optimal
DF-mapping solution of N. In Figure 6, the MFFCs of nodes p, ¢, r, s, and ¢ form a disjoint
partition of the network. In the next subsection we shall discuss how to compute an optimal DF-
mapping for an MFFC.,

5.3. Optimal DF-Mapping for MFFCs

Assume that we want to computc an area-optimal® DF-mapping solution of MFFC,. First,

we introduce some basic concepts about cuts in MFFC,.

A cut of MFFC, is a partition (X, X) of MFFC, such that X is an FFC of v. The size of a cut
(X, X } is defined to be | input (f) 1. A cut is K-feasible if its size is no more than K. Clearly, a
cut (X, X Yof MFFC, is K-feasible if and only if X can be covered by a K-LUT rooted at v.

For each K-feasible cut P = (X, X) of MFFC,, we can cover X with a K-LUT LUT?, and
partition X = MFFC, —X into a set of disjoint MFFCs MFFCy, MFFCy, ..., MFFC,,. Then,

we recursively compute the area-optimal DF-mapping of each MFFC\r (1<i<m). The cost of the
m

cut P is defined to be cost(P)=1+ Y area(MFFC,), where area(MFFC,) is the area of the
i=1

area-optimal DF-mapping of MFFC,». Clearly, cost(P) gives the area of the best DF-mapping

solution of MFFC, if X is covered by LUTY . Therefore, We generate cach K-feasible cut of

MFFC, and choose the cut with least cost. Each cut cost computation involves recursively

solving a set of DF-mappings for MFFCs of smaller sizes.

It is not difficult to see that there are only polynomial number of K-feasible cuts, since the

total number of possible combinations of X or fewer nodes is O (n®), where n is the number of

3 It is easy to see that the discussion can be applied 1o depth-optimal DF-mapping by simply altering the cost function.

13-

nodes in the MFFC. In practice, however, examining all these combinations to compute the K-
feasible cut with least cost is too expensive, since most of them do not form a K-feasible cut. In
the following two subsections we present a more efficient algorithm to generate the K-feasible
cuts in MFFC,.

For simplicity of the discussion, in the remainder of this section, we represent a cut (X, X)
by a string vv, - - - v,,, where input(f)z {v1, v2, ..., viy}. For our purpose, the order of the
nodes in the string is irrelevant, e.g. vyvy -V, =vavy - Vv,. Moreover, we define the
operator * on two cuts to be the concatenation of the two corresponding strings, i.e.,

ViVy oV Ry Uy =V V" Vel Uy " Uy
5.3.1. Cut Generation for Trees

Assume that MFFC, is atree T, v has f fanin nodes vy, v3, ..., v¢ (f £K). Let T; denote the
subtree in T rooted at v; (1<i<f). Clearly, any cut of size X in T induces a K;-cut of T;, with
Z!_K,- =K, and vice versa. Let Cp(K) denote the set of cuts of size K in T, and define

Cr(1)={ v}, where v is the root of T. Then, we have (for K >1)

Cr(K)= Y (Cr (K *x Cp,(Kp) * -+ % Cr(Kp),

YK =K, K21
i=l

¢y

where for two sets of cuts A and B, A * Bisdefinedtobe {c; *c, | c; € A, ¢ € B}.

Based on the recursive equation (1), we can generate all K-feasible cuts of a tree. Note that
in this case, the number of cuts generated according to this equation is bounded by a constant that

depends only on K and is independent of the size of MFFC,,.

5.3.2. Cut Generation for Non-Trees

If MFFC, is not a tree, We first construct a spanning tree T rooted at v, and then carry out
the recursion on the spanning tree. Again, we assume that node v has f fanin nodes vy, v, ..., vr
(f £K), and let T; denote the subtree in 7 rooted at v; (1<i<f). However, a simple combination of
the cuts in Ty, T2, ..., Ty does not always give a cut of MFFC,. In Figure 7, The MFFC in (a)
has a spanning tree shown in (b) where the dashed edge is not in the spanning tree. A
combination of a cut su in the left subtree with a cut xy in the right subtree does not form a cut in
the MFFC, since the edge <v, w> provides a path connecting the root p to nodes outside of the
MFFC. On the other hand, the cut suvxy of the MFFC cannot be generated from the
combinations of the cuts in the two subtrees, since suv is not a cut of the left subtree.

(a) (b)

Figure 7 Complication in cut generation.

The problem occurs because of the existence of the edges not in the spanning tree (calted
non-tree edges). If a non-tree edge <u;, u;> crosses two subtrees 7; and T; of the spanning tree 7,
we call 4; an escape node of T; and u; an entrance node of T;. False cuts can be easily eliminated
by examining the entrance nodes. In order to generate the cuts that are not combinations of the
cuts of the subtreecs, we generalize the concept of a cut. A generalized cut in a subtree of the
spanning tree of an MFFC is a combination of a cut with some escape nodes. In Figure 7, suvis a
generalized cut of the left subtree.

it is not difficult to show that the generalized cuts of tree T can be generated from the
generalized cuts of its subtrees Ty, T3, ..., Ty Let C7{K) denote the set of generalized cuts of
size K in tree T, and E4(K) denote the set of all the combinations of K escape nodes in T. Then,

we have

el U (Cn&)*Cr ks o x Cr &l v (v) * EK-D].

b -x @

Note that the last term { v } * E,(K—1) represents the generalized cuts that cannot be generated

from the combinations of the generalized cuts in the subtrees.

In fact, the set of all the combinations of K escape nodes, Er(K), can be recursively

computed as well according to the following relation

Er(Kyc U (Er, (K)*ET,(K2)* -+ * (ET,(Kp),
éKs:K

i=l

3

where

.15.

Er (K;), ify;isnotanescapenodeinT

Er(K)= Er (K[{v;)*Er(K;—1)], ifv;isanescapenodeinT @)

Based on recursive equations (2), (3), and (4), we can compute all the generalized cuts of
size no more than X in the spanning tree T of MFFC, efficiently, which include all the K-feasible
cuts in MFFC,.

Cut generation for general networks is more costly than for trees due to the existence of the
escape nodes. Our experimental results showed that in practice, the above recursion (2) often
quickly reaches the point where the subtree does not contain any e¢scape node. In this case, the
normal tree cuts generation algorithm is applied, which gencrates only a constant number of cuts
(assuming that X is a constant). Our cut generation algorithm is much more efficient than the
straight forward enumeration of K-node combinations. For K =5, the number of all possible K-
node combinations is @ (n°), while our experimental results showed that on average, the total
number of cuts generated by our algorithms is much smaller than n3, where n is the number of
nodes in an MFFC.

5.4. The Optimal DF-Mapping Algorithm

First, we show that we can collapse every K-feasible MFFC into its root prior to the
mapping, without affecting the optimality of the subsequent DF-mapping.

Theorem 2 There exists an optimal DF-mapping solution in which every K-feasible MFFC
is contained in a K-LUT.

Proof Let MFFC, be a K-feasible MFF(C that is not contained in any K-LUT in an DF-
mapping solution §. We will show that we can transform § into another solution §” that is at least
as good as S, such that a K-LUT in §” contains MFFC,,.

Let LUT, be the K-LUT in S that covers v. If ¥ = v, we construct §* by replacing LUT,, with
LUT , =MFFC, and eliminating all the LUTs implementing nodes in MFFC,. Otherwise, let
W={w|we MFFC,,w¢ LUT,, output(w) c LUT, }. Clearly, | Wizl Let
Va=MFFC, n"LUT,, and U =LUT, -V, Since v is the only node in MFFC, that may have
fanout to U, | input (U) | =| input (LUT,) | — | W | + 1 < | input (LUT,) |. Therefore, U is also
K-feasible. Since any K-LUT in § that implements a node in MFFC, must be contained by
MFFC, (Lemma 3), we can transform § into §” by replacing LUT, with LUT', = U, creating
LUT,=MFFC,, and eliminating all the LUTs implementing the nodes in MFFC, (since

-16-

| W | =1, there exists at least one). In both cases the transformation does not increase the number
of K-LUTs, and MFFC, is contained in an LUT. Moreover, for any other K-feasible MFFC, if it
is contained in a K-LUT in §, it is also contained in a K-LUTin §’. O

According to this theorem, we first collapse each K-feasible MFFC, into node v before the
DF-mapping. According to our experimental results, this usually reduces the network size by
25% to 50% (when K =5). Then, we use the dynamic programming approach to compute an
optimal DF-mapping solution of MFFC, for each node v according to the topological order
starting from the PI nodes. This order guarantees that when we compute the DF-mapping of
MFFC,, the optimal DF-mapping solutions of all the MFFCs inside MFFC, have been
computed, so that we can evaluate the cost of each cut in MFFC, very easily. Finally, according
to Theorem 1, we generate the optimal DF-mapping solution for the entire network starting from
the PO nodes. Our area-optimal DF-mapping algorithm, called DF-Map, is summarized as
follows.

algorithm DF-Map
/* phase 0: collapse K-feasible MFFCs */
for each node v do
if MFFC, is K-feasible then
collapse MFFC, into v;
end-for;
/* phase 1: compute optimal mapping for MFFCs */
for each node v, in topological order starting from PI nodes, do
compute MFFC,;
f* compute optimal DF-mapping for MFFC, */
mincost ;= oo} _
for each K-feasible cut P =(X, X) of MFFC, do
decompose X into disjoint MFFCs MFFC.., 1<i<m;
”

cost(P) ;= 1+ 3, arca(MFFC\);
i=1
if mincost > cost(P) then
LUT, = X; mincost ;= cost(P);
end-for,
area(MFF(C,) ;= mincost;
end-for;
/* phase 2: generate optimal mapping solution */
L :=list of PO nodes; S =;
whileL # & do
remove anode v from L;
S =S u { optimal DF-mapping of MFFC, };
L:=Lwvinput(MFFC,);
end-while;
output S;
end-algorithm.

.17-

Based on the discussion in Sections 5.2 and 5.3, we have

Theorem 3 The DF-mapping problem for general Boolean networks in LUT-based FPGA
designs can be solved optimally in polynomial time. [

6. Experimental Results

We have implemented the FlowMap-r algorithm on SUN Sparc workstations and tested it
on a set of MCNC benchmark circuits. In order to make fair comparison with previous
algorithms, we used the same initial networks as used by Chortle-crf/Chortle-d [FrRV91b],
DAG-Map [ChCD92], and FlowMap [CoDi%2]. These initial networks are synthesized using a
MIS script {BrRS87] which performs technology independent optimization.

Table 1 shows the mapping solution sets computed by FlowMap-r. In general, larger
networks have more room for area and depth trade-off. The area/depth trade-off curves for rort,
alu4, and des are shown in Figure 8. For most circuits, as we increase the depth bound, the
number of LUTs decreases considerably. The area reduction is usually more significant at the
first a few steps of depth bound increase.

We also compared the the area- and depth-minimization solutions generated by FlowMap-r
with those generated by some ¢xisting mapping algorithms. The data for these algorithms are
quoted from [FrRV91b, CoDi92, MuSB91a)®. Table 2 compares the arca minimum solutions
generated by FlowMap-r with those generated by area minimization mapping algorithms,
including Chortle-crf and MIS-pga. Overall, the area-minimum solutions of FlowMap-r use 4%
fewer LUTs and 15% fewer levels than Chortle-crf, and 2% fewer LUTs and 9% fewer levels
than MIS-pga (on available data). Table 3 compares the depth-minimum solutions generated by
FlowMap-r with those generated by depth minimization mapping algorithms, including
FlowMap, MIS-pga(delay), and Chortle-d. Overall, the depth-optimal solutions of FlowMap-r
use the same number of levels and 11% fewer LUTs than FlowMap, 8% fewer levels and 9%
fewer LUTs than MIS-pga(delay), and 5% fewer levels and 41% fewer LUTs than Chortle-d.
The improved version of MIS-pga program, MIS-pga(new) [MuSB91b], outperforms FlowMap-r
in terms of area, but the depths of their solutions were not reported. It is important to point out
that FlowMap-r is solely based on combinatorial optimization techniques, therefore runs faster

than Boolean optimization based algorithms for large circuits. In our experiments, the largest

* There are a few benchmark circuits for which FlowMap-r cannot improve the startig solution of FlowMap by increasing the
depth bounds, since for these circuits the solutions generated by FlowMap have optimal depth and near-optimal area. These circuits ei-
ther are very small, or have tree-like structures.

% All the algorithms in the comparison, except MIS-pga{delay), are started with the same set of initial circuits that are initially
used by Chortle-d. The data for MIS-pga on des is not available.

10

-18-

FlowMap-r Mapping Results for S-LUT FPGAs

No. of 5-LUTs For Different Depths

Circuit | Opt. Depth

Aopt Aopt0 | dppetl | dpp+2 | dpp+3 | dypt+d
Sxpl 3 23 22 - - -
C499 5 151 130 - - -
C880 8 211 195 179 172 -
alu2 8 148 140 133 - 125
alud 10 245 244 240 231 223
apexo 4 232 221 220 - -
apex7 4 80 76 - - -
count 4 73 57 - - -
des 5 1087 1003 987 969 934
duke2 4 187 172 161 151 -
rd84 4 43 42 38 - -
rot 6 243 218 213 210 -

alud

Table 1 Mapping solutions of FlowMap-r.*

T T T

—T* ¥#of53-LUTs

250

des

100>

Figure 8 Arca/depth trade-off in FlowMap-r (K=5).

1
1100

of 5-LUTs

-19-

5-LUT Mapping Result Comparison:
FlowMap-r vs. Area Minimization Algorithms
FlowMap-r Chortle-crf Mis-pga

Circuit

LUTs | Depth | LUTs | Depth | LUTs | Depth
Sxpl 22 4 27 4 26 4
9sym 61 5 65 8 65 8
9symml 58 5 62 7 65 7
C499 130 6 141 8 123 7
C880 172 11 172 13 172 11
alu2 125 12 128 13 127 15
alud 223 14 231 17 234 16
apext 220 6 235 6 221 6
apex7 76 5 78 6 72 5
count 57 5 58 5 59 5
des 934 9 981 10 - -
duke2 151 7 152 7 161 7
misexl 15 2 18 4 16 3
rd84 38 6 41 7 40 6
rot 209 11 214 11 203 11
vg2 38 4 39 5 37 5
zédml 13 3 13 4 10 3
total 2542 115 2655 135 - -

Table 2 Comparison with Chortle-crf and MIS-pga.

circuit des is mapped by FlowMap-r within 5 minutes of CPU time on a SUN Sparc IPC.
Moreover, FlowMap-r produces a sct of mapping solutions, each of them satisfies an explicitly

assigned depth bound. Therefore, FlowMap-r gives designer more choices.

Finally, we have tested the effectiveness of the post-processing steps that are performed
after DF-Map to further minimize the arca of the mapping solution by necessary node
duplications. Overall, the reduction on the number of LUTs is 5% to 10%. Considering the fact
that the percentage of multi-fanout nodes is much larger than this, it further justified the
assumption that an area-optimal mapping solution should not have large number of node

duplications.

7. Conclusion

In this paper we have presented a technology mapping algorithm for LUT-based FPGA
designs that is able to generate a set of mapping solutions with smooth arca and depth trade-off.
As part of the algorithm, we have developed an efficient method to compute an optimal mapping

solution without node duplication for a general Boolean nctwork, which is used for area

20-

5-LUT Mapping Result Comparison:
FlowMap-r vs. Depth Minimization Algorithms
FlowMap-r FlowMap Mis-pga(delay) Chortle-d

Circuit

LUTs | Depth | LUTs | Depth | LUTs | Depth | LUTs | Depth
Sxpl 23 3 25 3 21 2 26 3
gsym 61 5 61 5 7 3 63 5
Gsymmi 58 5 58 5 7 3 59 5
C499 151 5 154 5 199 8 382 6
C3880 211 8 232 8 259 9 329 8
alu2 148 8 162 8 122 6 227 9
alud 245 10 268 10 259 11 500 10
apext 232 4 257 4 274 5 308 4
apex? 80 4 89 4 95 4 108 4
count 73 4 76 3 81 4 91 4
des 1087 5 1308 5 1397 11 2086 6
duke2 187 4 187 4 164 6 241 4
misexl 15 2 15 2 17 2 19 2
rd84 43 4 43 4 13 3 61 4
rot 243 6 268 6 322 7 326 6
vg2 38 4 45 4 39 4 55 4
24ml 13 3 13 3 10 2 25 3
total 2508 83 3261 83 3182 90 | 4906 87

Table 3 Comparison with FlowMap, MIS-pga(delay), and Chortle-d.

minimization in our algorithm. The concept of a maximum fanout free cone plays an important
role in our optimal duplication-free mapping algorithm, and it may finds applications to other
logic synthesis problems as well. The solution set generated by our algorithm outperforms the
solutions by many existing algorithms in terms of both arca and depth. Although the unit delay
model is used when describing the algorithm, we can generalize the algorithm to the case where
an arbitrary delay is assigned to a net (for example, we can also handle the nominal delay model

proposed by [ScCK91]). Due to the length restriction, this generalization is not presented in this
paper.

During depth relaxation, we use only structural information to decompose the LUTs. It is
also possible to use Boolean optimization techniques to re-synthesize the LUT network locally to

explore more possibilities, at the expense of longer computation time.

The areca-optimal mapping problem with node duplication for LUT-base FPGA designs
remains an open problem. We are currently studying the problem of area-optimal mapping with
bounded node duplications.

21-

Acknowledgment

We thank Dr. K.C. Chen and Dr. Bryan Preas for their helpful discussions. We thank Bob

Francis and Rajeev Murgai for their assistance in our comparative study. This research is

partially supported by a grant from Xilinx Inc. under the State of California MICRO program

N0.92-030 and a grant from Fujitsu America Inc..

References

[BhHi92]

[BIRS87]

[Ch(CD92]

[CoDi92]

[CoKT92]

[FrRV91a]

[FTIRV91b]

[Hi91]

[Ka91a]

Bhat, N. and D. Hill, ‘*Routable Technology Mapping for FPGAs,”" First Int'l
ACM/SIGDA Workshop on Field Programmable Gate Arrays, pp. 143-148, Feb.
1992,

Brayton, R. K., R. Rudell, and A. L. Sangiovanni-Vincentelli, *‘MIS; A Multiple-
Level Logic Optimization,”” IEEE Transactions on CAD, pp. 1062-1081, November
1987.

Chen, K. C,, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “*“DAG-Map: Graph-
based FPGA Technology Mapping for Delay Optimization,’’ IEEE Design and Test
af Computers, Sep. 1992,

Cong, J. and Y. Ding, *‘An Optimal Technology Mapping Algorithm fo Delay
Optimization in Lookup-Table Based FPGA Designs,”’ IEEE Int’l Conf. on
Computer Aided Design, Nov. 1992.

Cong, J., A. Kahng, P. Trajmar, and K. C. Chen, ‘‘Graph Based FPGA Technology
Mapping For Delay Optimization,”” ACM Int'] Workshop on Field Programmable
Gate Arrays, pp. 77-82, Feb. 1992,

Francis, R. 1., J. Rose, and Z. Vranesic, ‘‘Chortle-ctf: Fast Technology Mapping for
Lookup Table-Based FPGAs,”” Proceedings 28th ACM/IEEE Design Automation
Conference, pp. 613-619, 1991,

Francis, R. J., J. Rose, and Z. Vranesic, ‘‘Technology Mapping for Delay
Optimization of Lookup Table-Based FPGAs,”” MCNC Logic Synthesis Workshop,
1991.

Hill, D., **A CAD System for the Design of Field Programmable Gate Arrays,’’
Proc. ACM/IEEE Design Automation Conference, pp. 187-192, 1991,

Karplus, K., “Xmap: A Technology Mapper for Table-lookup Field-Programmable
Gate Arrays,”’ Proc. 28th ACM/IEEE Design Automation Conference, pp. 240-243,

«22.

1991,

[Mu90] Murgai, R., et al, *‘Logic Synthesis Algorithms for Programmable Gate Arrays,”
Proc. 27th ACM/IEEE Design Automation Conf., pp. 620-625, 1990.

[MuSB$%1a]
Murgai, R., N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
‘‘Performance Directed Synthesis for Table Look Up Programmable Gate Arrays,’
Proc. Int’l Conf. Computer-Aided Design, pp. 572-575, Nov., 1991.

[MuSB91b]
Murgai, R., N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Improved
Logic Synthesis Algorithms for Table Look Up Architecturcs ,”’ Proc. Int’'I Conf.
Computer-Aided Design, pp. 564-567, Nov., 1991.

[SaTh92] Sawkar, P. and D. Thomas, ‘‘Technology Mapping for Table-Look-Up Based Field
Programmable Gate Arrays,”’ ACM/SIGDA Workshop on Field Programmable Gate
Arrays, pp. 83-88, Feb. 1992.

[ScCK91] Schlag, M., P. Chan, and J. Kong, ‘““Empirical Evaluation of Multilevel Logic
Minimization Tools for a Field Programmable Gate Array Technology.”” Proc. st
Int’ Il Workshop on Field Programmable Logic and Applications, Sept. 1991.

[ScKC92] Schlag, M., J. Kong, and P. K. Chan, ‘‘Routability-Driven Technology Mapping for
Lookup Table-Based FPGAs,'" Proc. 1992 IEEE International Conference on
Computer Design, Oct. 1992,

[Wo91] Woo, N.-S., ““A Heuristic Method for FPGA Technology Mapping Based on the
Edge Visibility,”” Proc. 28th ACM/IEEE Design Automation Conference, pp. 248-
251, 1991.

[Xi92] Xilinx, The Programmable Gate Array Data Book, Xilinx, San Jose (1992).

