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Abstract

Motivated by analysis of distributed RC delay in routing trees, we propose a direct tradeoff
between Prim’s minimum spanning tree algorithm and Dijkstra’s shortest path tree algorithm which
yields a new tree construction for performance-driven global routing. This direct combination of
two objective functions and their corresponding optimal algorithms contrasts with the more indirect
“shallow-light” methods of [1, 5, 12]. Our method achieves routing trees which satisfy a given bound
on the routing tree radius, using less wire than previous methods. Moreover, detailed simulation
experiments show that this wirelength savings translates into significantly improved delay in both
IC and maulti-chip module (MCM) interconnect technologies. For example, average and worst-case
source-sink delays in signal nets with 8 sinks (MCM technology) are reduced by 8.5% and 14.2%,
respectively, over the method of [5]. These figures also represent 32.6% and 33.8% improvements,
respectively, over the standard minimum spanning tree global routing.

1 Introduction

With scaling of VLSI device technologies, interconnection delay has become increasingly significant
in determining circuit speed, and can contribute up to 50% to 70% of the clock cycle in dense, high
performance circuits [7, 20]. Due to this trend, performance-driven layout design has been actively
studied in the past several years. Initial work in this area centered on timing-driven placement, where
modules in timing-critical paths are placed close together, with critical paths being determined by static
timing analysis (see, e.g., [7, 10, 14, 15, 11, 20]). More recently, timing-driven interconnection algorithms
have been developed which afford routing trees compatible with timing-driven placements: for a given
signal net, the goal of the timing-driven interconnection is to minimize the average (or maximuin)
signal delay from the source pin to (any of) the sink pins. To this end, Dunlop et al. [8] used the

static timing analysis performed within the iterative place/route paradigm to prioritize signal nets; the
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assumption was that nets which are routed earlier will enjoy fewer detours and fewer feedthroughs, thus
enhancing performance. Subsequently, Kuh, Jackson and Marek-Sadowska {13] gave an approach tuned
to hierarchical building-block layouts and Prastjutrakul and Kubitz [16] used A* heuristic search for a

similar problem domain.

In 1991, Cohoon and Randall [3] proposed a heuristic which simultaneously tried to reduce both the
longest source-sink pathlength of the tree (i.e., the tree radius) as well as the tree cost. A more powerful
approach was given by Cong, Kahng, Robins, Sarrafzadeh and Wong {4], wherein a maximum permissible
routing tree radius could be specified by the user. Later, [5] proposed the “provably good” BRBC
(bounded-radius, bounded-cost) algorithm, which afforded both radius and cost simultaneously within
constant factors of optimal. The BRBC method, along with the work of Awerbuch et al. [1] and Khuller
et al. [12], belongs to a class of “shallow-light” tree constructions. These methods embody a goal similar
to the one we consider below, namely, achieving a smooth tradeoff between the competing “minimum
radius” and “minimum cost” interconnection objectives. We will discuss this class of “shallow-light”

tree constructions in more detail in Section 1.2 below.

1.1 Definitions and Motivation

In our discussion, a signal net V = {vg,v1,...,v,} is a set of n+1 terminals, or nodes, in the Manhattan
plane. We say that vy € V is the source terminal, and that the remaining terminals are sinks. The
locations of the terminals in V induce a weighted complete graph G = (V, E) where each edge ¢;; € F has
weight, or cost, equal to the Manhattan distance d;; between v; and v;j. A routing tree is a (connected)
tree T = (V,E') with E' C E and |E'] = n, i.e., T is a spanning subgraph of G with n edges. The
cost of a routing tree, ¢(T), is the sum of the costs of its edges; the radius of the tree, denoted #(T), is
the cost of the longest source-sink path in T. Note that these definitions may be easily extended to the
general graph case, where the edge weights do not necessarily correspond to any embedding of V in the

geometric plane.

For a given signal net, the proper criterion to use in efficiently constructing a “performance-driven
routing tree” has not yet been well-established. However, the scaling of IC technology, as well as
the properties of alternate interconnect and device technologies (e.g., for multi-chip module (MCM)
packaging), provide insight into the “proper” objective for performance-driven routing. Consider the
Elmore delay model [9], which uses the first-order moment of the impulse response when the routing tree
is treated as a distributed RC tree. The Elmore delay is computed as follows: Given an interconnection

tree T over source vy and sinks v;, we use the shorthand notation e; to denote the edge from node v; to



its parent when we root the tree at vg. The resistance and capacitance of e; are respectively given by
re, and ¢.;. Let T; denote the subtree of T rooted at v;, and let ¢; denote the node capacitance of v;.
The tree capacitance C; of T; is the sum of node and edge capacitances in T; [9, 19]. The Elmeore delay
is then given by

LEimore(V0, ¥i) = z e (ce, /2 + Cj). (1)

ejEpath(ve,u;)

The Elmore delay equation reveals the effect of technology in the choice of optimal routing topologies.
Observe that the formula seems to imply that to minimize the maximum source-sink delay, we can simply
use a separate wire of minimum possible length (that is, a monotone path) from the source to each sink,
resulting in the “star-like” topology of Figure 1(a). However, this fails to capture the effect of driver
size; indeed, close examination of Equation 1 reveals that it contains an implicit assumption of zero
resistance and capacitance at the source (i.e., driver) node. We may capture the reality of non-zero
driver resistance by introducing a wire from a new Svirtual source” #} to the original source v, with

the original routing tree topology still incident to vg.

®
(a) (b) (c)

Figure 1: Various routing trees for the same net with vy at the center: (a) the shortest path tree; (b)
the minimum spanning tree; and (¢} a routing tree which “trades off” between the two constructions.

A small v)-vp wirelength corresponds to small driver resistance {relative to wire resistance), and this
arises, e.g., with multi-chip module interconnects. In this regime, monotonicity of all source-sink paths
remains more important than overall tree cost, and star-like topologies give better performance. When
we increase the length of the v)-to wire (i.e., increase the driver resistance), the Elmore delay becomes
more dependent on total tree cost, and less dependent on the directness of source-sink connections.
In other words, large driver resistance means that a minimum-cost routing is increasingly preferable;
this model reflects the previous generation of IC technologies and confirms the utility of the minimum

Steiner and spanning tree constructions used by existing global routers (see Figure 1(b)). Because the



interconnect objective is technology-dependent, our experiments described in Section 3 below consider

interconnect parameters for both IC and MCM technologies.

1.2 Previous Work: The Shallow-Light Approach

We have seen that minimizing the source-sink Elmore delay involves conflicting min-cost and min-
radius goals, and that the prevailing technology determines wheih objective dominates. For a given net
V and the implicit underlying graph G = (V, E), a shortest path tree (SPT), Tspr, provides a routing
where every wvp-v; pathlength is equal to the shortest vp-v; pathlength in G (Figure 1{a)), while at the
other extreme a minimum spanning {ree (MST), Tast, provides a min-cost routing tree as shown in
Figure 1{(b). The tradeoff between these extremes (see Figure 1{c)) may be captured by the following

formulation.

MST-SPT Tradeoff: Given a net V and a desired tree radius R*, construct a routing tree T' that

has radius r{T") = R* and minimum cost.

In addressing this problem, the class of shallow-light tree constructions [1, 5, 12] is of particular
interest. Each of these algorithms accepts an input parameter o and constructs a routing tree T' with
radius at most o times optimal, ie., »{T) < « - r(Tspr) (Note that r(Tspyr) = do; where v; is the
furthest sink from the source vp). Thus, these algorithms actually solve a bounded-radius variant of the

MST-SPT Tradeoff problem:

MST-SPT Bounded-Radius Tradeoff: Given a net V, a radius parameter «, and a cost parameter
3, construct a routing tree 7" which has radius at most « - r(Tspr) and cost at most 3 - c(Taysr). (We

call such a tree an («, 3)-tree.)

Notice that while each of these shallow-light algorithms guarantees a routing tree that satisfies the radius
bound, @ - r{(Tspr), the tree may have radius significantly less than this value. Since we can lower cost
by increasing radius, this output tree will probably not be a good sclution to the original MST-SPT
Tradeoff formulation. However, if we view each algorithm as inducing a family of output trees over
the entire range of a values for a given instance, we may address the desired MST-SPT Tradeoff more
accurately by choosing the family member with radius closest to R*. This technique will find a tree with
lower cost than would be obtained by simply applying the given radius bound, but which yet satisfies
r(T) < a-r(Tspr)). With this observation in mind, the experimental results of Section 3 will compare
heuristics by juxtaposing the best results over the families of outputs that can be obtained via each of

the heuristics’ respective versions of the MST-SPT tradeoff.



The “shallow-light” tree construction of Awerbuch, Baratz and Peleg [1], yields an (2¢+1,2(1+1/¢))-
tree, for ¢ > 0, in the sense of the above formulation. Using ideas from {1], Cong et al. [5] and Khuller
et al. [12] developed similar constructions which more effectively solve the MST-SPT Bounded-Radius
tradeoff problem.? The BRBC algorithm of Cong et al., shown in Figure 2, constructs an (1+¢, 1+2/¢)-
tree for any non-negative value of the ¢ parameter.?2 Khuller et al. [12] construct an («, 142/(cr—1))-tree
when given the MST and the SPT; these bounds are very similar to those of [5]. Khuller et al. go on to
show that their algorithm is in some sense optimal, since the problem of determining whether a given

graph contains an (a, #)-tree for 1 < 8 <1+ 2/(« — 1) is NP-complete.

BRBC Algorithm [5] for computing a (1 + ¢,1+ £)-tree

Input: V' = signal net
G = complete graph of distances over VV
R = maximum distance from source vy to any sink

Compute M STg and SPTg
/* e.g., using Prim’s and Dijkstra’s algorithms, respectively */

Q= MSTg
L = depth-first tour of M 8T
5=0

fori=1to|L| -1
S=5+ d(L,ﬁ, L,‘+1)
if 5 > ¢e-d(vo, Liy1) then
Q = Q@ Uminpathg(vo, Lit1)
5=0
Output T = shortest-path tree of @

Figure 2: BRBC algorithm of [5] for computing an {a, §)-tree T using parameter e. T satisfies
a=(1+¢) andﬁ:l—i—%.

In what follows, we present the main contribution of this paper, namely, a new algorithm that
elegantly trades off between the MST and SPT constructions. Qur method is based on directly combining
the well-known constructions of Prim [17] and Dijkstra [6], and in some sense our tradeoff is the most

direct that is possible.

1The work of Awerbuch et al. [1] actually addressed the closely related problem of computing a bounded-diameter,
rather than bounded-radius, tree. Note that the MST-SPT tradeoff can be more generally stated as follows [12]: Given a
graph G = (V, E) with non-negative edge weights and identified source vy, construct a spanning tree T with the path cost
from vg to any other node v; being less than o times the cost of the shortest shortest path from v to »; in G, and with
total tree cost o(T") at most 8-e{Trs 7). Here, for each sink the source-sink pathlength is bounded by o times the optimum
distance for that particular sink, rather than by o times the “generic”, maximum source-sink distance. Khuller et al, solve
this more node-dependent formulation, and the Ph.D. thesis of G. Robins [18] gives exactly the same construction as that
of Khuller et al., in also addressing this extension.

2In the BRBC template, recall that (7 is the complete graph of distances among the terminals. We use M ST and
SPTs to respectively denote the minimum spanning tree over G and the shortest-path tree over G, with the additional
term sminpath defined in the obvious manner. Notice that € = oo will allow BRBC to return a minimum spanning tree,
and e = 0 in some sense leads to a shortest-path tree.



2 The AHHK Algorithm

The shallow-light heuristics [1, 5, 12] described above all use the same basic idea: make a depth first
traversal of the minimum spanning tree, and if the pathlength from the source to some sink becomes
too large, modify the tree to reduce this source-sink pathlength. In contrast, our new approach unifies
the minimum-cost and minimum-radius objectives by directly combining the MST algorithm of Prim

(7] with the SPT algorithm of Dijkstra [6].3

Prim’s algorithm begins initially with the trivial tree consisting only of the source vs. The algorithm

iteratively adds the edge e;; and the node v; to T, where v; and v; are chosen to minimize

dij st v €T uweV-T (2)

Dijkstra’s algorithm also begins with the trivial tree consisting only of the source vg. The algorithm

iteratively adds the edge e;; and the node v; to ', where v; and v; are chosen to minimize
[J' + d.‘j st. v € T, vieV-T (3)
where I; is the cost of the path from vg to v; in T'.

The key observation is that these two constructions are extremely similar: Prim’s algorithm adds
the node v; that minimizes d;;, while Dijkstra’s algorithm adds the node that minimizes {; + d;;. This
naturally suggests that a middle ground can be reached by compromising between these objectives,
namely, we propose to iteratively add the edge e;; and the node v; to T, where v; and v; are chosen to
minimize

(e-lj)+di; st. v eT, ueV-T (4)

for some choice of 0 < ¢ < 1 (see the template of Figure 2).

The complexity of the AHHK algorithm can be no worse than that of Dijkstra’s algorithm, i.e.,
O(n?). In practice, the value for ¢ should be chosen based on the relative importance of minimizing
cost versus minimizing the longest source-sink path. When ¢ = 0, the algorithm constructs a tree with
minimum cost. As ¢ increases, AHHK constructs a tree with increasingly higher cost but with lower
radius. When ¢ = 1, AHHK is identical to Dijkstra‘s algorithm and constructs a tree with minimum

radius but possibly unbounded cost.

For a fixed value of ¢, AHHK is guaranieed to construct a spanning tree with radius less than or

equal to 1/¢ times the optimal radius:

30ur tradeoff of two competing cbjectives, via a tradeoff of algorithms that are respectively optimal for these objectives,
is unusual in the literature.



AHHK Algorithm to trade off MST and SPT constructions

Input: V = signal net
G = (V, £) = complete graph of distances over V
¢ = tradeoff parameter, 0 < ¢ <1

T = (V' E") = (v,0)

while |V/| < |V]|
Select v; € V' and v; € V — V/ minimizing (c - ;) + dj;
V=V U{u} B = E e}

Output T

Figure 3;: The AHHK algorithm outputs a routing tree with MST-SPT tradeoff governed by param-
eter ¢, with 0 < ¢ < 1. Choosing ¢ = 0 yields an MST, while choosing ¢ = 1 yields an SPT.

Theorem 1 The AHHK algorithm will construct a tree T with redius et most r(T) < "(Tser)

[

Proof: After the tree T has been constructed, let v; be the terminal such that {; is maximum, i.e.,
r(T) = I;. Let v; be the parent of v;. Clearly, do; € r(Tspr). Moreover, we may rewrite the cost of the
vg-v; path as {; = I; + di;. Since we always have the option of making a direct source-sink connection,

we have ¢ {; + dij < dp;. Combining these inequalities and using the fact that ¢ <1, we have:
c-ly <ec (I +di) e -l +diy < do; < r{Tspr)

Hence, ¢ l; < r(Tspr) or equivalently, r(T) < ﬂTZ—PTl 0

We note that for any fixed value of ¢, there exists a general graph instance on which the AHHK
algorithm will yield a routing tree with unbounded cost; this is shown in the example of Figure 4.
However, we conjecture that the cost is bounded when the input net ¥V is embedded in the Manhattan

plane.

3 Experimental Results

The MST-SPT Tradeoff problem formulation requires that an algorithm accepts an input parameter o
and produces a tree with radius at most « times optimal. Our AHHK algorithm uses the parameter
0 < ¢ €1 to trade off between the Prim and Dijkstra algorithms, and returns a tree with radius at
most 1/c times optimal. Thus, we may view ¢ as equivalent to 1/a. Similarly, the BRBC algorithm [5]
takes a parameter ¢ > 0 and produces a routing tree with radius at most 1 + ¢ times optimal; thus, ¢

is equivalent to @ — 1. By rewriting these relationships, we see that for a fixed e, our parameter ¢ is



(b)

Pigure 4: For any given value of ¢, we construct a pathological general graph input G for the AHHK
algorithm as follows. G has a path of closely-spaced sinks, of length % — e, between vy and vy (for
some e small). G also contains edges of length e from v to all other sinks that are not in this path.
Edges in G shown as dotted lines are of length 1, and remaining edges (not shown) have prohibitively
large cost. The MST in (a) will contain the path from vy to v of length % — ¢, along with edges of
length e. The AHHK tree in (b) has cost ¢(Tapgmx) an unbounded factor greater than ¢(Tast)-

equivalent to 1/(1 + ¢).

In our experiments, we computed AHHK trees for 21 values of ¢ ranging from 0 to 1 at intervals of
0.05; we also computed BRBC trees with the corresponding € values, which ranged from oo to 0. As
noted in the discussion above, these trees represent a family of output trees that may be generated by
each algorithm over the range of ¢ or ¢ values.* In the experimental results of Tables 1-3 (see Appendix
for all tables), AHHK and BRBC may be compared with respect to any given radius value (rather than

by a radius bound) by determining which algorithm returns the tree with lesser cost and/or lesser delay.

We ran the AHHK and BRBC algorithms on n random sets of sink locations with n = 4, 8, 16 and
32 sinks; the source location was also random, and all locations were chosen from a uniformn distribution
in the unit square. Due to limited space, we only show results for n = 16 (Tables 1-3); however, we
have included summary results for all four net sizes in Table 4. All numbers represent averages over 50

point sets.

In Table 1, we report the average cost (normalized to MST cost) and radius (normalized to SPT
radius) of the routing trees generated. In Tables 2-3, we report the results of delay simulations. Our
inputs correspond to two distinct technologies: (i) IC is a representative 0.8 CMOS process, and (ii}

MCM is typical of current MCM technologies, with lower driver resistance and unit wire resistance.’

1For ¢ = 1.00, we actually used ¢ = 0.9999: this will also yield an SPT, but reduces total tree cost by breaking ties to
take advantage of the fact that staircase paths are also shortest paths in the Manhattan geometry.

5Specifics of the technology files (IC,MCM): driver resistance = (100,25) {; wire resistance = (0.03,0.008) 2/pm; wire
inductance = {492,380) fH/um; sink loading capacitance = (15.3,1000) fF; wire capacitance = (0.352,0.06) fF/um;



The delays at all sink nodes were measured using the two-pole circuit simulator proposed by Zhou et
al. [21] and discussed in [2]). This simulator is a computationally efficient code which has produced very
accurate results (within a few percent) when tested against the commonly used circuit simulator SPICE.
Table 2 gives results for the [C parameters, and Table 3 gives results for the MCM parameters. We
consider both the average delay (taken over all sinks} and the worst-case delay (i.e., the latest arrival
time of the signal to any sink); all results are normalized to the corresponding values for the MST

routing,.

We make the following observations.

1. BRBC tends to yield lower tree cost any fixed «, but this may be explained by observing the
AHHK radius does not approach the 1/¢ bound as closely as the BRBC radius approaches its 1+¢
bound. Indeed, if we consider the family of trees over each instance, we see that for any given tree

radius, the AHHK solution will almost always have lower cost.

2. In view of the relationship between tree cost and delay, we would expect that the AHHK solutions
would have lower signal delay than the BRBC solutions, and this is clearly the case (Tables 2
- 4) with respect to both the worst-case and average-case criteria. For example, the summary
results of Table 4 show that AHHK solutions entail 16.0% less signal delay in the worst case, and
20.9% less in the average case, when compared against BRBC for nets with 16 sinks in the MCM
technology. The same data also shows that AHHK yields improvements of 46.0% and 45.0% in
terms of worst-case delay and average-case delay when compared with the standard MST global

routing.

3. With respect to the two sets of interconnect parameters, note that the Elmore delay has greater
dependence on tree cost in the IC technology; hence, any tree that approximates the minimum
spanning tree should have reasonably good delay. Therefore, although AHHK outperforms BRBC,
the differences between the algorithms are small since both will closely approximate the MST for
those values of & that minimize delay. On the other hand, tree radius is more dominant in the
Elmore delay medel for the MCM interconnects, and thus the AHHK delay savings over the MST

routing are larger than those obtained by BRBC.

4, As the nets become larger, the MST radius similarly becomes much greater than the BRBC
or AHHK radius; in particular, the delay improvements from the AHHK solution become more

obvious.

layout area = (102, 100%) mm?.



5. Finally, we obtain a great deal of intuition as to the “proper” values of ¢ to use, by analyzing
the ¢ values that afford lowest signal delay over the entire family of 21 trees generated by each
algorithm for each instance. The “best” column in Tables 2 - 3 records the number of times that a
particular ¢ or ¢ value resulted in the tree with lowest delay; the average “best” parameterization
is reported in Table 4. The “best” parameter value clearly shifts with the interconnect technology
and the net size; if one wishes to avoid generating the entire family of routing trees, we believe

that ¢ values should be chosen according to the results of these studies.

4 Conclusion and Future Work

Analysis of distributed RC delay shows that performance-driven routing depends on tree constructions
that can smoothly trade off cost and radius, depending on interconnect technology, the size of a signal
net, etc. Previous approaches [1, 5, 12] have used *“shallow-light” constructions to achieve such a
tradeofl; these methods essentially rely on a depth first traversal of the MST and insert shortest paths as
needed to maintain a prescribed radius bound. In contrast, our new AHHK approach directly combines
the recurrences for Prim’s MST algorithm and Dijkstra’s SPT algorithm. The result is an elegant
tradeoff between radius and cost which empirically yields lower-cost trees than the BRBC algorithm
[5] for any given tree radius. Simulation results show that the AHHK algorithm constructs routing
trees with significantly less maximum and average delay than the BRBC method, in both IC and
MOCM interconnect technologies. Thus, we will pursue the integration of the AHHK construction within

existing performance-driven global routing methodologies.

For general graphs, AHHK can yield tree cost an unbounded factor greater than the MST cost.
However, we conjecture that the AHHK tree has bounded cost for instances that are embedded in the
Manhattan plane, i.e., there exists a constant 4 such that AHHK will always produce a (1/e, 5)-tree for

any given value of c. We also leave open the question of determining the minimum possible value for 5.

Appendix: Tables and References
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AHHK | BRBC | Ave Cost vs. MS5T | Ave Radius vs. SPT
c € AHHK BRBC AHHK BRBC
0.00 o0 1.000 1.000 1.616 1.616
0.05 19.00 1.002 1.000 1.576 1.616
0.10 9.00 1.008 1.000 1.411 1.616
0.15 5.67 1.018 1.000 1.359 1.616
0.20 4,00 1.028 1.000 1.288 1.616
0.25 3.00 1.041 1.000 1.237 1.616
0.30 2.33 1.053 1.000 1.192 1.616
0.35 1.88 1.074 1.000 1.144 1.616
0.40 1.50 1.094 1.000 1.113 1.610
.45 1.22 1.103 1.005 1.101 1.594
0.50 1.00 1.119 1.026 1.082 1.548
0.55 0.82 1.131 1.040 1.061 1.491
0.60 0.67 1177 1.047 1.045 1.438
0.65 0.54 1.206 1.875 1.028 1.400
0.70 0.43 1.232 1.097 1.020 1.332
0.7% 0.33 1.262 1.111 1.015 1.253
0.80 0.25 1.316 1.134 1.008 1.195
0.85 0.18 1.357 1.185 1.005 1.133
0.90 0.11 1.416 1.196 1.001 1.075
0.95 0.05 1.485 1.249 1.000 1.023
1.00 0.00 1.540 1.277 1.000 1.000

Table 1: Normalized cost (versus MST cost) and radius (versus SPT radius), for nets with 16 sinks.
Data are averaged over 50 instances generated randomly in the unit square. We portray the entire
families of routing trees generated by AHHK for ¢ at intervals of 0.05 and by BRBC for corresponding
¢ values. For a given average radius value, AHHK tends to yield lower tree cost than BRBC.

Parameter Max Delay vs. MST Ave Delay vs. MST
AHHK | BRBC AHHK BRBC AHHK BREC
e € Delay | best ¢ | Delay | best ¢ ave | bestc | ave | beste
0.00 o0 1.000 0 1.000 4 1.000 o 1.000 6
0.05 19.00 0.5981 0 1.000 0 0.981 1] 1.000 4]
0.10 9.00 0.895 0 1.000 0 0.908 0 1.000 0
0.15 5.67 0.859 1] 1.000 o] 0.867 1 1.000 0
0.20 4.00 0.817 2 1.000 0 0.833 4 1.000 )]
0.25 3.00 0.786 3 1.000 0 0.809 2 1.000 1)
0.30 2.33 0.761 1 1.000 4] 0.791 3 1.000 1]
0.35 1.86 0.743 2 1.000 0 0.782 2 1.000 )]
0.40 1.50 0.728 5 1.000 0 0.770 5 1.000 ]
0.45 1.22 0.720 6 1.002 0 0.761 5 1.005 0
0.50 1.00 0.716 7 1.005 0 (.760 8 1.014 )
0.55 0.82 0.720 5 0.992 0 0.763 3 1.009 0
0.60 0.67 0.718 7 0.966 0 0.762 5 0.990 4]
0.85 0.54 0.717 3 0.974 0 0.762 3 0.996 1
0.70 0.43 0.722 2 0.967 0 0.766 4 0.997 4]
0.75 0.33 0.730 1 0.923 2 0.774 3 0.970 2
0.80 0.25 0.741 3 0.904 1 0.793 4] 0.966 a
0.85 0.18 0.749 i 0.898 4 0.804 0 0.967 6
0.90 11 0.763 1 0.858 6 0.819 2 0,932 ]
0.95 0.05 0.785 1 0.853 7 0.846 0 0.934 6
1.00 0.00 0.803 ] 0.795 26 0.868 0 D.872 24

Table 2: Comparison of signal delays (computed using two-pole simulator of [21]) using IC technology
interconnect parameters, for nets with 16 sinks. Data are averaged over 50 instances generated
randomly in the unit square. Max data uses maximum delay to any sink; Ave data uses average
delay over all sinks. Best column tabulates the number of instances for which a particular value of
¢ or ¢ yielded the iowest delay within the family of trees generated. Comparing the performance of
AHHK versus BRBC at each value of «, we find that AHHK yielded 18.0% improvement in max
delay, and 16.5% improvement in average delay, over the BRBC results.
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Parameter Max Delay vs. MST Ave Delay vs, MST
AHHK | BRBC AHHK BRBC AHHK BRBC
c € ave best ¢ ave best ¢ ave best ¢ ave best ¢
0.00 [o') 1.000 0 1.000 3 1.000 0 1.000 3
0.05 19.00 0.965 0 1.000 0 0.962 0 1.000 0
0.10 9.00 0.854 0 1.000 0 0.859 0 1.000 0
0.15 5.67 0.813 0 1.000 0 0.808 0 1.000 0
0.20 4.00 0.754 0 1.000 0 0.753 1} 1.000 ]
0.25 3.00 0.715 2 1.000 0 0.718 1 1.000 0
0.30 2.33 0.677 0 1.000 0 0.685 0 1.000 0
0.35 1.86 0.645 2 1.000 0 0.662 1 1.000 ]
0.40 1.50 0.626 0 1.000 0 0.638 1 1.000 0
0.45 1.22 0.610 5 1.000 0 0.621 1 1.004 t]
0.50 1.00 0.603 5 0.995 0 0.614 3 1.006 [
0.55 0.82 0.596 3 0.976 0 0.602 2 0.994 0
0.60 0.67 6.590 4 0.943 0 0.595 6 0.969 0
0.65 0.54 0.579 3 0.941 0 0.582 3 0.967 0
0.70 0.43 0.578 5 (.921 0 0.575 ki 0.954 0
0.75 0.33 0.580 2 0.868 i 0.578 4 0.920 1
0.80 0.25 0.573 8 0.835 1 0.576 5 0.900 0
0.85 0.18 0.575 5 0.809 1 0.576 9 0,877 4
0.90 0.11 0.575 4 0.753 4 0.574 3 0.822 4
0.95 0.05 0.585 2 0.734 9 0.582 2 0.803 8
1.00 0.00 0.594 0 0.653 31 0.593 0 0.709 30

Table 3: Comparison of signal delays (computed using two-pole simulator of [21]) using MCM
technology interconnect parameters, for nets with 16 sinks. Data are averaged over 50 instances
generated randomly in the unit square. Max data uses maximum delay to any sink; Ave data uses
average delay over all sinks. Best column tabulates the number of instances for which a particular
value of ¢ or ¢ yielded the lowest delay within the family of trees generated. Comparing the perfor-
mance of AHHK versus BRBC at each value of o, we find that AHHK yielded 27.2% improvement
in max delay, and 28.9% improvement in average delay, over the BRBC results.

IC Parameters MCM Parameters

#sinks | ALG. | Max Delay vs. MST | Ave Delay vs. MST | Max Delay vs. MST [ Ave Delay vs. MST
4 AHHK | 0.881 (ave c = 0.28) | 0.903 (ave ¢ = 0.29) | 0.803 (ave c = 0.38) | 0.801 (ave c = 0.47)
4 BRBC | 0.883 0.909 0.813 0.879
8 AHHK | 0.787 (ave c = 0.48) | 0.811 (ave ¢ = 0.48) | 0.674 (ave c = 0.59) | 0.662 (ave c = 0.71)
8 BRBC | 0.839 0.879 0.736 0.771
16 AHHEK | 0.690 {ave c = 0.53) | 0.739 (ave ¢ = 0.49) } 0.540 (ave ¢ = 0.66) | 0.550 (ave ¢ = 0.71)
16 BRBC | 0.769 0.837 0.643 0.695
32 AHHK | 0.602 (ave ¢ = 0.468) | 0.644 (ave c == 0.45) | 0.429 (ave c = 0.64) | 0.451 (ave c = 0.69)
32 BRBC | 0.695 0.805 0.558 0.604

Table 4: Summary Table. Direct comparison of AHHK and BRBC algorithms using the data from
the best tree for each problem instance {using the max or average criterion as appropriate). Results
are averaged over 50 random instances, except for BRBC data for 32 sinks (average of 10 random
instances). We also report the average value of the parameter ¢ that yielded the tree with best
delay. We suggest using this information to determine an appropriate parameter ¢ if the user wishes
to generate only one or two representatives from the entire family of routing trees. For nets with 8
sinks, AHHK trees offer delay improvements ranging from 6.2% to 14.2% over BRBC, depending on
which technology and criterion are chosen.
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