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Abstract

Simulated annealing (SA) [23] [6] has been widely used for heuristic global optimization in VLSI
layout design, and is attractive both for its observed high-quality results and for its ability, in theory, to
yield optimal solutions with probability one. Standard SA implementations use a monotone decreasing, or
“cooling”, temperature schedule motivated by the algorithm’s proof of optimality as well as an analogy with
statistical thermodynamics. In this paper, we challenge this motivation: the fact that cooling schedules are
“optimal” in theory does not have any relation to the practical performance of the algorithm. Our work is
based on a new “best-so-far”® (BSF) criterion that we propose as the proper measure of the practicalutility
of a given annealing schedule. TFor small instances of several classic VLSl CAD problem formulations,
including circuit placement and graph bisection, we determine annealing schedules that are optimal in
terms of expected quality of the output solution. When the goal is solely to optimize the quality of the
Just solution seen by the algorithm (the “where-you-are” criterion used in previous theoretical analysis),
we confirm the traditional wisdom of SA cooling schedules. However, if the goal is to optimize the best
solution quality seen over the emtire algorithm execution (what we call the “best-so-far” criterion}, we
give clear evidence that optimal schedules do not decrease monotonically toward zero, and are in fact
periodic or warming. These results open up many interesting research issues regarding the BSF analysis
of stochastic hill-climbing, and how to best apply stochastic hill-climbing to VLS layout design and other
difficult problem domains.

1 Preliminaries

Giiven a set S of feasible solutions and a real-valued cost function f : § — R, global optimization may without
loss of generality be formulated as the search for a global minimizer s € S such that f(s) < f(s') Vs’ € 5.
Typically, |S| is very large compared to the number of solutions that can be examined in practice. For
small instances of certain global optimizations, implicit enumeration (e.g., branch-and-bound) or polyhedral
approaches can prune the solution space and afford solutions within practical time limits; other problem
formulations may be tractable to problem-specific methods. However, many important global optimization
formulations are not only NP-complete (8], but also have no known problem-specific solution methods. There-

fore, general-purpose heuristics are of interest.
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1.1 Iterative Optimization Heuristics

General-purpose global optimization heuristics may almost always be viewed as iteratively applying the fol-

lowing two rules:

e Rule 1: Given the current solution s;, generate a new trial solution s’.

¢ Rule 2: Decide whether to set 5,41 = s; or 5;41 = §'.

Rule 1 induces the notion of a neighborhood structure over S, where the neighborhood N(s;) of the current
solution s; € S is the set of possible trial solutions s’ that can be generated from s;. The quality of all
the solutions in & defines a cost surface over the neighborhood structure, and global optimization is the
search for a global minimum in this cost surface. Typically, the neighborhoad N(s) consists of a set of slight
perturbations of the current solution s, e.g., a swap of two modules in a circuit placement or bisection, or a
swap of two city positions in a traveling salesman tour. In practice, Rule 1 simply picks a random s’ € N(s;)
from within “obvious” neighborhood structures such as those noted for the placement and bisection problems
[18]. Therefore, it is Rule 2 which determines the nature of an optimization heuristic as it traverses the cost

surface.

A simple instance of Rule 2 is, “Replace s; by ' if f(s') < f(s:),” which corresponds to greedy opti-
mization. Greed has been widely employed because of its simplicity and its acceptable success in a variety
of implementations, e.g., Johnson et al. [17] [18] have documented the utility of greed for several hard com-
binatorial problems. However, the performance of greedy methods is erratic, and achieving “stable” —1i.e.,
predictable - performance requires multiple random initial starting solutions. Johnson et al. [17] have de-
terimined that several thousand initial random starting configurations are necessary for greed to afford stable
solution quality for graph bisection instances of size n = 500; this number grows rapidly with n and becomes
hopeless for instance sizes of, e.g., » = 100,000 which arise in arenas such as VLSI circuit partitioning.
Moreover, central limit phenomena in the cost surface [4] imply that as problems grow large, random local
minima are almost surely of “average” quality, so that simple “multi-start” heuristics [40] fail.} In view of
these factors, global optimization heuristics must escape from local minima, i.e., perform “hill-climbing”, to

adequately explore the solution space of large problems.

1.2 Stochastic Hill-Climbing and the “Simulated Annealing” Analogy

Stochastic hill-climbing allows escape from local minima in the cost surface by probabilistically accepting dis-

improvements, or “uphill moves”. The most prominent such method, simulaied ennealing (SA), was proposed

1 For details on this subject, the reader is referred to discussions by Baum {4] and Kirkpatrick and Toulouse [24] on ]arge-scale
traveling salesman cost surfaces; by Kauflman and Levin [21] on optimization by genetic algorithms in “adaptive landscapes”;
and by Bui et al. [5] for the graph bisection problem.



independently by Kirkpatrick et al. [23] and Cerny (6] and is motivated by analogies between the solution space
of an optimization instance and microstates of a statistical thermodynamical ensemble. Figure 1 summarizes
the SA algorithm, which uses the following criteria for the above-mentioned Rule 2. If f(s") < f(s;), then
sip1 = &, Le., the new solution is adopted. If f(s’} > f(s), the “hill-climbing” disimprovement to si41 = &'
still has a nonzero probability of being adopted — the so-called Boltzmann acceptance criterion — which is
determined by both the magnitude of the disimprovement and the current value of a {emperature parameter
Ti. Over the M steps for which the SA algorithm is executed, a temperature schedule Ty, T1, ..., Tas—1 guides
the optimization process. Typical SA practice uses a large initial temperature and a final temperature of zero,
with 7; monetonically decreasing according to a predefined temperature schedule or some criterion for lowering
the temperature (e.g., based on the current 7; value, the number of iterations since the last improvement in

the cost function, or the objective of establishing “thermodynamic equilibration” at each temperature value).

SA Algorithm Template

0. 59 — random solution in S
1. Fori=0to M -1

2. Choose s’ — a random element from N{s;)

3. i f(s)) < f(so)

4, Si41 — S'

5 else

6. siy1 + s with probability e~ LEN=fLONT,
7. otherwise 8iy; — s

Figure 1: The simulated annealing algorithm for a given time bound of M steps.

The SA algorithm enjoys certain theoretical attractions. Using Markov chain arguments and basic aspects
of Gibbs-Boltzmann statistics, one can show that for any finite S, SA will converge to a globally optimal
solution given infinitely large M and a temperature schedule that converges to zero sufficiently slowly (31
[37], i.e.,

Prispge R)—1 as M — (1)

where R C S is the set of all globally optimum solutions. In other words, SA is “optimal” in the limit of
infinite time [25].2 Several groups have refined these results by noting specific temperature schedules which
guarantee convergence of SA to a global optimum. For example, Hajek [13] showed that “logarithmic cooling”
using T} = a/logi for sufficiently large a will suffice to this end. Other optimal schedules are surveyed in [2]
[25]. A recent result due to Sorkin [45] is that certain classes of geometric cooling schedules are efficient on

one-dimensional, deterministically fractal, error surfaces.?

2The proof views the annealing process as a sequence of homogeneous Markov processes at each temperature. The main idea
behind the proof is that the Boltzmann acceptance function implies that the likelihoods of two solutions 54,55 € S at stationarity
will be respectively proportional to exp{—f(A}/T:) and exp{-f(B)/T:), so that s, is exponentially more likely than sy it the
infinite-time limit if f(sa) < f(ss).

3This last result is particularly interesting because several recent works {e.g., (2] [20] {48]) have confirmed power-law scaling



Given its theoretical and practical successes, SA is now perhaps the most widely used heuristic for difficult
global optimizations [25]. Historically, the milestone advances in theory and application of SA are inseparable
from the field of VLSI design: the original paper of Kirkpatrick et al. [23] (treating circuit placement), along
with the works of Sangiovanni-Vincentelli and coanthors [34] {37], Sechen [41], Rose [38], Lam and Delosme
[26], Greene and Supowit [10], and Grover [11] [12], are just a few examples. In VLSI CAD, SA has been
applied to such topics as placement, floorplanning, routing, logic minimization, PLA folding, compaction,
and transistor sizing, as well as a host of other applications [2] [25] [49]; indeed. SA has become a dominant

methodology across the spectrum of synthesis and layout tools.

1.3 Motivations: Finite-Time Annealing

Despite the tremendous success of existing simulated annealing implementations, there are strong reasons to
pursue new ideas in annealing. Our central motivation is practical: given a problem instance, the ideal global
optimization algorithm should return a good solution in a prescribed, finite amount of time. Traditional SA
implementations are often ill-suited to prescribed time bounds, the template of Figure 1 notwithstanding.
Moreover, as noted by such researchers as Sorkin [44], the “infinite-time optimality” of SA is of questionable
utility: after all, even exhaustive search and random search are also “optimal” in the limit of infinite CPU

resources.

Through the study of practical, finite-time global optimization, we have discovered a fundamental in-
consistency in the simulated annealing methodology which stems from the theoretical, infinife-time analysis.
This inconsistency is crystallized in the dichotomy between what we term the “best-so-far” (BSF) and the
“where-you-are” (WYA} criteria for annealing schedules. Section 2 defines this BSF-WYA dichotomy, and
then presents an experimental methodology which tests the practical effect of choosing one criterion over the
other. Tn Section 3, we present extensive experimental results over a number of problem formulations, includ-
ing circuit placement and graph bisection. Our results show that use of the more realistic BSF criterion turns
the traditional wisdom of “cooling” schedules quite literally on its head: while cooling is appropriate for opti-
mizing the traditional WYA criterion, we find that BSF-optimal annealing schedules are both non-monotone
and non-cooling, and may even look like “warming” schedules. Together, our proposal of BSF analysis and the
actual solution of BSF-optimal annealing schedules provide the main contribution of this work. We conclude
in Section 4 by considering the implications of this work for real-scale annealing optimizations, and by listing

directions for future work.

relationships in the cost surfaces of large combinatorial optimization instances. These works also show very good statistical fits
of real cost surfaces to models of high-dimensionat fractional Brownian motions, which are a class of statistical fractals.



2 A New Look At Simulated Annealing
2.1 Best-So-Far Versus Where-You-Are

Throughont the literature on stochastic hill-climbing methods, the SA algorithm is universally implemented
with monotone decreasing temperature schedules. As surveyed in [2] [25] [49], hundreds of papers have been
written on various “cooling” and “equilibration” approaches, and many new fields (e.g., finite-time thermody-
namics [35) [39], rapid mixing of Markov chains [15], etc.) have opened up as a result of these investigations.
The thermodynamic analogy suggests that monotone decreasing temperature schedules allow SA to explore
“large features” of the cost surface at high T, then perform finer optimization at lower T'. In fact, this is the
basic idea behind the SA proof of optimality [31] [37]. However, our results below suggest that the analogy
with physical annealing, along with the theoretical analysis of hill-climbing, have together led researchers to
incorrectly concentrate on the “cooling” paradigm. Specifically, we note that the “optimality” of SA (Equation
1) has always been analyzed with respect to what we call a “where-you-are” (WYA) implementation of the
algorithm. According to the theoretical analysis, at the final time step M the SA algorithm simply returns the
last solution seen (i.e. sy, which is indeed “where you are”™), and it is this single solution that in the limit of
M — oo has probability 1 of being optimal (see Figure 2 (left)). This theoretical model is completely at odds
with common sense: in practice, no implementation will simply ignore all of the solutions s¢,s1,...,sm-1-
At the very least, we can remember the best solution seen so far, and return it if the final solution sps is not
as good (this is indicated in the “best-so-far” (BSF) template of Figure 2(right)). While any practical SA
implementation will return the best-so-far solution, this is never mentioned in any standard description of
SA. Moreover, the distinction between BSF and WYA is moot with respect to traditional convergence proofs,
since “optimality” of a WYA implementation trivially implies “optimality” of its BSF counterpart. Thus, the

BSF analysis of simulated annealing is for all purposes completely absent. from the literature.

SA WYA Implementation SA BSF Implementation

0. sy — random solution in S 0. s$¢ «— random solution in S

1. Fori=0to M -1 1. Fori=0to M —1

2. Choose s’ « a random element from N (s;) 2. Choose s' — a random element from N(s;)

3. Iff(s")y < f(s) 3. if f(s"} < flsi)

4, 8ig1 — 5r 4, Si41 — 8’

5.  else 5. else

6. 8,41 — §' with probability e UL = el T G. 8i41 — & with probability e U fLeOV/ T
T. otherwise 841 — s; 7. otherwise 8;4; — 3,

8. Return sar 8, Return s,, 0 < i < M, such that f(s;) is minimum.

Figure 2: (Bounded-time) simulated annealing templates, contrasting WYA and BSF
implementations in Line 8.



2.2 Related Work

As noted in Section 1, our main contributions lie in opening BSF annealing as a field of study, and in
determining optimal BSF schedules for a variety of problem classes. To the best of our knowledge (and after
extensive search through the literature), all of our contributions — the experimental protocol, our results, and
the implications of these results — are completely new. However, we have found two isolated hints of BSF
analysis in the existing literature on sitnulated annealing. The more direct hint is contained in the 1988 work
of Hajek [13], which establishes necessary and sufficient conditions under which a monotone decreasing cooling
schedule will be guaranteed to yield a globally optimum solution in infinite time. The result is established for
SA under the WYA criterion: however, the possibility of BSF analysis is briefly suggested by Iajek, in the
following sentence:* “It would be interesting to know the behavior of min,, <,V (X, ) rather than the behavior

of V(X3).”

A weaker allusion to BSF annealing analysis is contained in the 1989 paper of Hajek and Sasaki [14], which
discussed the possibility of non-conventional annealing schedules. The main result of [14] was showing the
existence of a special class of optimization problems for which monotone cooling schedules are suboptimal.
An ancillary result in the paper was that under a neighborhood structure in which the difference between the
cost of any two adjacent solutions is zero or a constant, there exists an optimal annealing schedule where all
Ti are either 0 or 400 {(cf. our results showing optimal “periodic” schedules in Section 3 below). While the
BSF criterion is not mentioned in [14], the authors of the paper suggest two measures of schedule quality;
the first measure is simply the WYA criterion, while the second is given by the expected number of steps
required to first encounter a solution with cost less than or equal to some constant ct. Clearly, this latter

quality measure holds some similarities to our BSF criterion.”

Finally, we note that our motivating studies of optimal schedules with prescribed lengths follows in the
direction established by Strenski and Kirkpatrick [46]. Strenski and Kirkpatrick studied a highly structured

graph bisection instance with eight nodes, and used numerical methods to estimate optimal schedules according

4(Here, we have quoted Hajek’s notation, which is clear from context.) As it turns out, the infinite-time optimality of BSF
schedules is amenable to some analysis. Recall from our earlier discussion that any optimal WYA schedule is trivially optimal in
the BSF sense. Moreover, under the weak assumption that the Markov chain for annealing at infinite temperature is irreducible,
it is easy to show that any temperature schedule bounded away from zero and given infinite time will reach the global optimum at
least once with probability 1. This yields a set of conditions which are sufficient, but not necessary, for a schedule to be optimal
under the BSF criterion. The main result in [13] is a necessary and sufficient condition for a schedule to be optimal under the

el
WYA criterion. To be speclic, if Z exp({—d*/T;} = 400, where d* is a constant depending on the configuration of the solution
=1
space S (more precisely, d* is the maximum “basin depth” around any local minimum that is not a global minimum,; see [13] for
a formal definition of basin depth}, then the schedule is optimal. Such a result is intuitively very reasonable (it simply means
that SA will expect to escape from any local minimum without requiring infinite time to do so), but it holds only for the class
of schedules that are monotone decreasing and have limit Toy = 0. We conjecture that the necessary conditions for infinite-time
optimality under BSF are essentially the same as Hajek's conditions for WYA optimality, except that the schedule need not be
either monotone decreasing or have a limiting value of zero.
5Two additional references to BSF implementation of the SA algorithm are given in [20] and [42]. However, each of these
works was concerned with “scaling” phenomena of large-scale optimization cost surfaces (recall the discussion of Footnote 3),
and did not treat any quality measure for BSF annealing schedules.



to the criterion of expected WYA solution quality. The optimum WYA schedules found in [46] are essentially
monotone decreasing to zero, except for a small initial run 7} = 0 before the monotone schedule kicks in.% In
what follows, we develop a technique which also estimates optiinal annealing schedules, and which can apply
to cither BSF or WYA analysis. In Section 3, we achieve a direct contrast with the optimal WYA annealing

schedules of [46] by estimating optimal BSF schedules for the same graph bisection instance.

2.3 Experimental Methodology: Computing Optimal Finite-Length Schedules

For any given finite schedule length A, an optimal schedule is one which yields best expected solution quality
after M steps. We compute optimal schedules based on one-step transition matrices A(T;) which are induced
over the solution space by each possible T; value. For a given T}, [A(T;)];& is the probability of moving from
solution s; to solution sp when the temperature parameter is equal to 7j. (Here, we abuse notation with
respect to the indices j and k, which are used for arbitrary solutions s;,s; € 5. We retain the original
interpretation for all other subscripts of s, e.g., s; still denotes the it* solution encountered during the SA
run.) We let C denote the |S| x 1 column vector of costs for each solution in 5, and we let P denote the
starting distribution, i.e., the |S| x 1 vector of probabilities that each solution in ' is chosen as the initial

solution sg.

e To optimize the WYA criterion, the expected WYA quality of a given schedule can be calculated by
simply taking the product of the transition matrices for all the T; in the schedule. In other words, the

expected WYA solution quality is given by

Elf(sar)] = C - A(Tar) - A(Tag—y) -+ - A(TY) - P.

To optimize the BSF criterion, we have developed a variation of this methodology where solution states
are converted into “sinks” in order to record whether they have ever been visited. To be specific, the solution
s; € § is converted into a sink by setting [4(7:)];; = 1 and [A(Ti)];x = 0 (k # j) for all T;. This leads to two

distinct BSF quality measures, each of which is amenable to optimization:

e To optimize the probability that the BSF solution is optimal, we first denote the global optimum solution
by s; € S, and then convert s; into a sink in order to vield perturbed transition matrices T]. We then
have

Priminggicm fisi) = f(s;)) = [A(Tar) - ATpr_q) - A{T) - PJ;. (2)
In other words, the 7*® component of the |S| x 1 matrix product shown will give the probability that

the M™ transition is {o the state s;. Since s; is set up as a sink, this j** component actually gives the

SIntuitively, the initial T; = 0 temperatures allow the SA algorithm to quickly reach the “interesting” region of the cost
surface, which are near the local minima. See the discussion of the “Energy Landscape Conjecture” that we propose below.

-1



probability that we reached s; at any point during the M steps of the annealing run.

e More generally, the probability of ever reaching a solution of cost < ¢ is obtained by converting alt
solutions with cost < ¢ into sinks, generating transition matrices T} just as above, and then summing
the entries of the |\S| x 1 matrix A(T},) - A(Thy_y) - A(T]) - P which correspond to solutions having
cost € ¢. By lowering ¢ from ¢ = f(s;) to ¢ = f(s;) — € and then observing the resulting change in this
sutn, we can obtain the probability that the BSF solution cost will be exactly f(s;). To compute the
expected BST solution cost, i.e., E[ming<i<m f(s:)], we compute the probability that each solution cost
f(sj} is the BSF cost. This yields a 1 x |S| row vector, and we take the appropriate weighted average

of the solution costs by computing the inner product of this vow vector with the cost vector C.

Note that the linear form of the WYA equation makes it relatively easy to calculate the partial derivative
of the WYA quality, i.e., E[f(sp)], with respect to each T;. Such a calculation was used by Strenski and
Kirkpatrick {46] in estimating optimal WYA schedules via a gradient method. Because the corresponding
equations for expected BSF solution quality do not lend themselves to an extension of this methodology, we

use a different and more general methodology in our work, as follows,

In our experiment, we select optimal schedules based on a discrete set of 100 evenly-spaced temperature
values T} such that the lowest possible T; is 0 and the highest possible value is effectively +o0c.” When
M is very small (e.g., M < & or M < 12 if fewer distinct T; values are allowed), we can exhaustively
enumerate all possibilities and determine globally optimal schedules. For larger values of M, exhaustive
enumeration of all possible temperature schedules is impossible, and we therefore use a perturbative method
to generate locally optimal schedules. Here, the current schedule is perturbed deterministically, and we adopt
the single-step change in a single temperature 7; which yields the greatest improvement in overall schedule
quality. The iterative process is terminated when a locally optimal schedule is found (note that this recalls
the gradient method used by Strenski and Kirkpatrick [46] to determine locally optimal WYA schedules).
For each estimation, we begin with several different initial schedules, some with all T; = some constant for
1 < i < M, and others with all 7; randomly chosen; we then adopt the hest-quality schedule found. With
respect to this point, we stress that we observed very few distinct locally minimum schedules, with all of these
locally minimum schedules (including the best one) being qualitatively very similar (in other words, simply
finding the locally optimal schedule obtainable from, say, an initial schedule of all T; = 100 would yield results
that are essentially identical to those we report). Furthermore, for all values of A up to the limits of our
available hardware (Sun Sparc 1+4), we have observed that exhaustively determined globally optimal schedules

are essentially identical to locally optimal schedules.

“We experimented with using T; € {1,2,...,100} as well as T; chosen such that the transition probabilities for an “average”
uphill move end up being 0.01,0.02,0.03,...,0.99, = 1.00. Results were gualitatively the same with either of these methodologies.



With respect to the BSF criterion, we have estimated optimal length-M schedules for each of the two
distinct objectives, E[BSF cost] and Pr(BSF cost = opt). We have found that the resulting schedules are
essentially identical. Below, we report schedules that are (locally) optimal with respect to E[BSF cost],
hecause we believe that in practice the average quality of the annealing solution is more useful information
than the probability that it is globally optimum. Finally, we note that because each A(T;) is of size |S] x |S],
this computation is only feasible for very small problem instances, since the solution space S often grows
exponentially with the problem size n (e.g., n = number of modules in a circuit placement instance corresponds

to § = nl),

3 Experimental Results: Optimal BSF Annealing Schedules

In this section, we study small instances of three combinatorial optimizations (graph bisection, graph place-
ment, and the traveling salesman problem) which are prominent in the VLSI CAD literature. We also study a
fourth optimization that is embedded into a synthetic, “levels-oriented” cost structure which captures recent
scaling models for large-scale optimization cost surfaces. For each of these four examples, we use the method-
ology of Section 2.3 above to solve for locally optimal BSF (expected ming<i<ar f(s:)) and WYA {expected

f(sar)) schedules; we then evaluate each schedule according to both the BSF and the WYA criteria.

3.1 Graph Bisection

The graph bisection problem is stated as follows: Given a graph G = (V, E) with |V]| even, partition V into
disjoint I/ and W, with |U/| = {W/, such that the number of edges (v, w) € E with v € U, w € W is minimized.
Graph bisection is basic to recursive netlist partitioning in top-down layout design, as well as floorplanning,
area estimation, etc. Use of annealing to solve the graph bisection problem is less common than use of such
iterative greedy methods as the Kernighan-Lin algorithm [22] or its enhancement by Fiduccia and Mattheyses
[7). Nevertheless, SA has been well-studied in the context of graph bisection, notably by Johnson et al. [17].
The annealing algorithm has also been carefully compared against iterative methods by Bui et al. [5] and

[47).

We first study the same highly-structured instance that was treated by Strenski and Kirkpatrick in [46].
This instance consists of a complete graph of eight nodes, with edge weights calculated as shown in Figure
3(a). Each of the eight nodes is represented by a leaf in the height-3 binary tree shown in the figure; the
edge between any two nodes has weight a®, where k is the height of the least common ancestor between the
two nodes in the binary tree. Both our experiments and those of [46] use & = 3. The globally optimum
partition is {1,2,3,4}{5,6,7,8}, which corresponds to solution A in Figure 3(b) with cost = 16. Because

of the symmetries in the edge weight construction, there are only five classes of equivalent-cost solutions.



However, the multiplicities of these classes, and the relative probabilities of the transitions among them,
are both highly non-uniform, as seen in Figure 3(b). Following the experimental protocol described above,
we computed locally optimal SA temperature sequences using the discrete range of possible temperatures
{0,1,2,...,100}. Assuming that all initial temperature sequences are equally likely, a locally optimal WYA
schedule for M = 30 is

Twya ={0,0,0,0,6,6,6,55,55,5,55,5,5,5,4,4,4,4,3,0,0,0,0,0,0,0,0}

which almost exactly matches the results of [46], while at the same time confirming the traditional cooling

intuition. On the other hand, the locally optimal BSF schedule is completely different:
Tesr = {0,0,0,0,0,100,0,0,0,0,0,100,0,0, 100,0,0,0,100,0,0,0,0, 0,100, 0,0,0,0, 0.}

In terms of the expected WYA solution cost E[f(s3p)], observe that Twy 4 has cost 23.2534 while Tggr for
the optimal BSF schedule is much worse, with cost 31.4629. However, the expected BSF solution cost of
Tesr is 20.8978, while for Ty 4 the expected BSF cost is 22.2717. Clearly, the optimal schedule in terms of
the traditional objective turns out to be suboptimal when measured by its practical, BSF utility. It should be
noted that the optimum BSF schedule seems periodic, and is evocative of the “iterated descent” methodologies

discussed by Baum [4] and Johnson [19].
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Figure 3: Edge weight calculation and state transition diagram for the complete graph
used as a bisection instance by Strenski and Kirkpatrick.

Figure 4 shows the practical win of BSY annealing schedules. The figure plots the expected BSF solution
quality (i.e., the “real” quality) of both locally optimal BSF schedules and the locally optimal WYA schedules.
From the scaling properties of these two curves, it is apparent that a “horizontal displacement” occurs: by
optimizing WYA, one will be forced to use proportionally more and more time steps in order to match the

solution quality of the BST solution. For example, in order to match the expected solution quality that the
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Number Expected Expected
of Steps | BSF Quality | WYA Quality Schedule

5 2.038 2.038 0 Q Q [i] 0

Optimize 10 1.780 1.981 0 0 [4] 0 100 Q 0 0 0 Q

BSF 15 1.603 1.978 [€ 0 0 0] 0 100 0 0 0 100
0 0 0 0 0

20 1.475 1.920 8] i 0 0 0 100 0 0 0 100

0 0 0 100 0 Q 0 0 0 Q

30 1.306 1.967 [¢] 0 [1] 1] 0 100 [1] 0 0 [4]

0 100 0 0 100 0 0 0 100 0

0 0 0 0 100 0 0 0 0 0

40 1.202 1.969 0 0 9] 0 (] 100 [9] [1] 0 0

o] 100 a 0 Q 0 100 G o] 100

0 0 0 0 100 ] 0 4] 100 0

0 10 0 0 100 0 0 0 0 0

50 1.135% 1.870 [{] 0 0 0 [ 100 0 [4] 0 100

0 0 100 0 0 0 0 100 o} 4]

100 0 0 0 100 o] 0 0 a 100

0 0 0 100 o 0 11 Q 0 100

0 0 0 0 100 0 0 Q 0 0

70 1.063 2048 0 0 0 [4] 0 100 0 fi] 0 0

100 G 0 12 0 0 100 0 0 12

0 0 100 Q 0 12 0 1] 100 0

0] 12 0 0 100 0 0 12 0 0

100 o Q 12 0 0 100 0 0 13

0 0 100 0 0 o 0 100 0 0

100 0 0 0 0 100 Q 0 0 0
5 2.038 2.038 0 Q 3] 0 0

Optimize 10 1.797 1.797 [§ 0 0 [1] [1] 0 [}] 0 0

WYA 15 1.661 1.675 i 0 0 0 5 5 0 0 0 [4]
0 1] 0 0 0

20 1.548 1.586 & 0 0 [} 6 6 5 5 5 5

4 0 0 0 0 0 0 0 0 Q

30 1.396 1.453 [} 0 0 0 [ 6 3 5 5 3

5 5 5 5 5 5 5 4 4 4

4 3 Y] 0 0 0 0 Y 0 0

40 1.298 1.358 0 0 [1] 0 6 6 6 5 5 [

5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4

3 3 0 0 0 0 0 0 0 0

50 1.231 1.28% 0 0 a [« [ G 6 5 5 5

S 5 5 5 5 5 5 5 5 5

5 5 4 5 4 4 4 4 4 4

4 4 4 4 4 9 4 4 4 3

3 3 0 0 0 0 0 0 0 0

70 1.143 1.120 Q 0 0 0 8 [ [ 5 5 5

5 5 5 B 5 5 5 5 5 5

4 5 4 5 4 5 4 4 4 4

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 3 3 3 3

3 3 0 0 0 0 0 Q ] 0

Table 1: Locally optimal annealing schedules for the highly structured 8-node graph bisection
instance of Strenski and Kirkpatrick [XXX]. Note that all costs are written as multiples of the
optimum solation cost, which is f(s") = 16.0.

optimal 50-step BSF schedule can achieve, the WYA methodology would have to use a schedule over 70 steps

in length.

The construction used by Strenski and Kirkpatrick can be generalized to the complete graph on 2% nodes.
For example, we may define a 16-node instance using edge weights from the set {1,a, a?, o), and again use
the value a = 3. For this 16-node instance, symmetries in the solution space allow us to reduce the number
of solution classes to 28. To determine the effects of scaling on the results we obtain, we computed locally
optimal BSF and WYA schedules for this larger bisection instance; the results are shown in Table 2. Here,

the key observations are that the optimal BSF schedules are no longet periodic, and that for runs with 50
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Figure 4: BSF solution qualities for BSF-optimal and WYA-optimal schedules on the
eight-node graph bisection instance of Strenski and Kirkpatrick.

steps the WYA and BST optimal schedules are very similar. This is probably due to the fact that the global
minimum solution has very low cost (64) compared to its neighboring solutions {which have cost 160). It is

thus very difficult to leave the global optimum solution once it has been visited.

Number Expected Expected
of Steps | BSF Quality WYA Quality Schedule
25 2643 2.655 [i] g 0 0 a 0 [§] 0 [¢] 4
Optimize 5 [ ] [ 6 [ 6 6§ 6 [
BSF g 6 5 [ Y]
50 2374 2313 0 0 0 a 0 [ 0 [i} 4 6
7 8 8 9 9 9 2 10 10 10
10 10 10 10 10 10 10 1¢ 10 10
10 10 10 10 10 9 ] 9 9 9
G 9 el 8 8 -] & 8 8 0
75 2.035 2.081
100 1.856 1.806
150 1.606 1.644
25 2.646 2646 0 0 0 0 i 0 [i] 0 3
Optimize 3 3 3 3 3 o 2 0 0 0
BSF 0 0 0 0 0
50 2.280 7396 0 0 0 0 ] [1] 0 4] [ i
8 8 g b4 9 9 9 <] 9 b4
9 9 9 8 8 8 -1 8 a 7
ki 7 T 7 7 6 6 5 i 5
5 5 4 ] 3 2 0 0 0 0
75 2.042 2.061
100 1.863 1.884
150 1611 1.629

Table 2: Locally optimal annealing schedules for the 16-node generalization of the bisection
instance given by Strenski and Kirkpatrick. Schedules of length M > 50 are qualitatively
similar to the 50-step schedules and are not reported.
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3.2 Graph Placement

We next study another NP-complete problem, that of graph placement. The graph placement problem is
defined as follows. Given an edge-weighted graph & with n nodes, a set L of n locations, and the distances
between all pairs of locations, determine a one-to-one mapping from the nodes of G onto L which minimizes
the weighted sum of distances for the edges of G. Note that this formulation captures minimum-wirelength
module placement in VLSI CAD [29], which has historically provided much impetus to research in simulated
annealing. As two examples, we note that the original work of Kirkpatrick et al. [23] as well as “the” annealing

package (Timberwolf) [41] were both aimed at the graph placement problem.

Consider the six-node instance of the graph placement problem shown in Figure 5. If we choose the
neighborhood operator to be a swap of locations for some pair of nodes, we find that there are 17 distinct
solutions when symmetries are discounted; Figure 5 shows the global minimum and the unique local minimum
configurations with the edge weight o = 5. For this example, we have again solved numerically for local

optimum annealing schedules of all lengths up to M = 70, using both the BSF and WYA criteria.

The results shown in Figure 6 are quite dramatic. The optimum 70-step WYA schedule is monotone
decreasing, again as would be expected from the body of results in the current literature. However, the
optimum 70-step BSF schedule is monotone increasing, and even though it is not very good in terms of the

WYA objective, it is clearly superior to the optimal WYA schedule when judged by the “practical” BSF

8

criterion.

2
|
2
[
(a) graph G (b) locations (¢) global optimum {d) local optimum

Figure 5: Six-node graph placement problem with edge weights as shown in (a); thick
edges have weight o = 5. Available locations are in the Manhattan (L) plane, as
shown in (h). The global optimum and the local optimum solutions are respectively
given in (c¢) and {d}).

Finally, we plot in Figure 7 the expected BSF quality of both the optimal WYA schedules and the
optimal BSF schedules. Here, the separation between the curves is not as large as for the graph bisection

instance, seemingly indicating that the optimal WYA strategy is reasonably good in terms of the BSF criterion.

3By way of clarification, it should be noted that in BSF annealing, the last temperature Tar_) is irrelevant in the sense that
an improving move s' will always be accepted no matter what the value of Thy_) might be. We break ties lexicographically and
hence simply write Tay = 0 for the reported locally optimal BSF schedule.
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B E [BSF cost = 1.024129, E [WY A cost =1.

cost(S* cost{S*)

local opt T-sequence based on WYA measure .
L EIBSE cost] - 47490, EIVEAcou] = 065930 —

O = R W s ot S~ o W
% T

cost(5*) cost(5*)
1 ! L 1 L L \
0 10 20 30 40 50 60 70
time step

Figure 6: Locally optimal annealing schedules for linear placement example, determined
by BSF and WYA measures. S* denotes the optimum sclution.

However, closer examination of the data shows that again, fairly large “horizontal” displacements arise as M
grows larger: for example, the BSF quality of the longest WYA-optimal schedule can be achieved by a

BSF-optimal schedule that is over 20% shorter.

Figure 7: BSF solution qualities for the BSF-optimal and WYA-optimal schedules on
the six-node placement instance,
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Number Expected Expected
of Steps | BSF Quality | WYA Quality Schedule
5 1.471 1473 0.6 1.0 1.2 1.3 0.0
Optimize 10 1.312 1326 0.8 1.6 2.1 2.5 28 3.1 3.2 3.2 3.1 0.0
BSF 15 1.221 1.268 1.6 2.1 a6 31 35 3.7 4.0 4.1 4.5 4.6
4.8 4.8 48 4.6 0.0
20 1.765 1.25% 26 2.6 31 35 3.5 4.2 EX] 4.6 I8 49
5.1 5.2 5.4 5.5 5.6 5.7 6.0 6.6 6.0 0.0
25 1.128 1.257 2.6 30 35 3.9 4.3 1.5 4.8 5.0 5.0 5.2
5.2 5.4 5.4 5.7 5.7 5.9 5.9 5.9 6.2 6.2
6.5 6.8 68 7.1 0.0
30 1.102 1.264 29 33 335 41 4.5 4.8 5.0 5.2 52 54
5.4 5.7 57 37 59 5.9 5.9 5.9 6.2 6.2
6.2 6.2 6.5 6.5 6.8 6.8 7.1 7.5 7.9 0.0
35 1.083 1.270 31 3.5 1.0 4.5 4.8 2.0 5.2 5.4 5.4 5.7
5.7 5.7 5.9 5.9 5.9 5.9 5.9 5.9 6.2 6.2
6.2 6.2 6.2 85 6.5 6.5 6.5 6.8 6.8 7.1
T.1 7.5 7.9 8.4 0.0
40 1.069 1.276 33 3.7 4.1 4.6 5.0 5.2 5.4 5.4 5.7 5.7
39 5.9 5.9 5.8 59 5.9 8.2 6.2 6.2 6.2
6.2 §3.2 6.2 6.2 6.2 6.5 &5 6.5 6.3 6.5
588 6.8 6.8 7.1 7.1 7.5 Ta 8.4 8.4 0.0
5 1.471 1.471 .0 Q.0 0.0 0.0 Q.0
Cptimize 10 1.314 1.315 0% 1.3 1.5 1.5 1.3 0.0 0.0 0.0 0.0
WYA 15 1.227 1.230 1.8 21 24 2.5 2.6 2.6 2.4 23 2.1 1.8
1.2 0.0 0.0 0.0 0.0
20 1.176 1.182 2.6 28 3.0 3.1 3.2 3.2 3.2 32 3.1 2.9
2.8 26 2.4 21 1.9 1.3 0.0 0.0 0.0 0.0
23 1.143 1.152 30 33 34 35 3.6 3.6 3.6 36 35 3.5
3.4 33 3.2 31 3.0 2.8 2.8 2.4 2.1 1.9
1.4 0.0 0.0 G.0 0.0
30 1.120 1.132 3.4 35 3.7 3.9 3.9 3.9 3.9 39 37 3T
3.7 386 36 35 3.4 3.4 33 32 3.0 2.9
2.7 2.6 23 z1 1.8 1.4 0.0 0.0 0.0 0.0
35 1.103 1.117 3.6 3.7 3u 4.0 4.0 4.0 4.0 4.0 4.0 3.9
3.9 3.9 3T 3.7 3.6 3.6 3.5 35 34 3.3
3.2 3.2 31 25 2.8 2.6 25 2.3 2.1 1.8
1.4 0.0 0.0 0.0 Q.0
40 1.080 1.105 3.7 3.9 4.0 4.1 4.1 4.1 4.1 4.1 4.0 4.0
4.0 3.9 3.9 39 arv 3.7 36 3.6 35 as
3.4 3.4 3.3 33 32 3.1 3.0 2.9 28 27
2.6 2.4 2.2 2.0 18 1.4 a0 0.0 0.0 Q.0

Table 3: Locally optimal annealing schedules for the 3 x 2 graph placement problem.

3.3 The Traveling Salesman Problem

Our third set of experiments was performed on a small instance of the traveling salesman problem (TSP) with
n = 6 cities. In addition to being one of the most well studied problems in the combinatorial optimization
literature [28], the TSP has received attention in various application areas of electronic design automation.
These areas include mask lithography, plotting, PCB drilling (see, e.g., {30]), and daisy-chain signal routing;
more tecently, the TSP has proved critical to the efficient probe-testing of MCM substrates (e.g., [50] and

others).

Here, we study a six-city TSP instance that is embedded in the Manhattan plane with city coordinates
4 = (0,0), B = (100,0), ¢ = (100,200), D = (0,200), £ = (40,95) and F = (40,105). In this instance,
|5| = 5!/2 = 60, and there exists one globally optimal solution (ABCDEF(A)), along with three other locally
optimal solutions (ABFECD(A)). (ABECDF(A)), and (ABFCDE(A)). We use the Lin 2-opt neighborhood

operator that is usual in studies of the TSP [28]: a 2-opt move deletes two edges of the current solution s; and

15



{0,200} {100, 200)

(25,125)
{25,75)

(0.0) {100, Q)

(a) {b) {c)
cost = 650 cost = 750 cost = 800

Figure 8: Traveling Salesman Problem (TSP) instance with 6 cities. The global min-
imum (a) and two local minima are depicted. The remaining local minimum is sym-
metric to {¢), and is not shown,

30 T T | T T T T T T

local opt T-sequence based on BSF criteria

E [BSF cost] _ 1.007242, ELHZXﬁ_%Eﬂ = 1.105827

cost(8*) cost(S*

50

40

30

20 rlocal opt T-sequence based on WYA criteria
10 | ELESE col = ) o17105, ELEEA ] = 1023765

0r OO

time step

Figure 9: Locally optimal annealing schedules for 6-city TSP example, determined
by BST and WYA measures. S denotes the optimal TSP solution.

then reconnects the two resulting paths into the “other” tour. The neighborhood size is |[N| = C(6,2) -6 =9
in a six-city instance: we consider swaps of all pairs of edges except for adjacent pairs, since these will yield
no change in the tour. For this example, we have again solved numerically for locally optimum annealing
schedules of all lengths up to M = 50, using both the BSF and WYA criteria. Again, the results shown
in Figure 9 provide a stark contrast: the optimum 50-step WYA schedule is monotone decreasing (agaln,

as would be expected from the body of results in the current literature), while the optimum 50-step BSF
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schedule is nearly monotone inereasing. As with all of our previous examples, even though the optimum BSF
is hopeless when measured by the WYA objective (expectation of 1.1058 versus 1.0238 times optimal), it is
clearly superior to the optimum WYA schedule (1.0072 versus 1.0171 times optimal) when judged by the

“real-life” BSF criterion.

Number Expected Expected
of Steps | BSF Quality WYA Quality Schedule
5 1.153 1.154 0 8 12 15 Q
Optimize 10 1.078 17050 16 18 20 22 25 28 32 35 38 0
BSF 135 1045 1.08% 23 2§ 39733 37 39 43 44 46 48
48 48 50 52 0
20 1.034 1.091 27 31 35 39 44 48 30 52 55 55
57 57 57 57 57 55 37 57 60 Q
[E] 1.035 1.056 30 ¥4 T3% TI4T 48 B2 53 57 60 60

63 63 63 63 63 63 63 63 63 60
50 B0 60 B3 Q
30 1019 1.100 33 37 41 46 30 5% 57 60 63 &5

35 1.015 1.102 34 38 43 48 52 57 50 63 64 66
70 70 70 70 70 70 70 70 70 70
70 70 70 70 70 70 70 66 68 66
63 63 63 56 0

40 1011 1104 3539 34 ol 55 FE] 66 66 70
70 70 70 7o 70 73 7 73 73 7
70 3 70 3 70 7 il 73 70 T
70 70 79 56 56 66 64 63 66 0

o0 1.00% 1.106 37 41 46 50 55 60 63 66 70 70
70 73 73 73 73 7T 73 73 73 7

5 1.154 1.154 0 0 0 0 0
Optimize 10 1.07% 1.079 14 13 10 0 0 0 0 0 [} 0
WYA 13 1.052 1.053 23730 19 1 [1] [ 0 0 0 0
0 0 0 0 0
20 1.040 1.041 33 32 31 2 27 FEEY 0 0 0
0 0 0 0 0 0 0 0 0 0
25 1.033 1.03% 41 41 3% 38 37 34 37 30 M| I%
20 0 0 0 0 0 0 0 0 0
0 0 0 0 0
30 1.028 1.031 46 44 44 43 4l 41 3% 37 35 34
32 3 27 25 21 o] 0 0 0 J
0 0 0 0 0 0 0 o 0 0
EE] 1.024 1.028 48 48 40 d6 4 i3 43 47 35 38
3r 3 34 3 3l 29 27 25 0 0
0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0

40 1.021 1.024 50 48 48 48 4o 46 44 44 43 43
34 33 3@ 32 31 30 2% 28 ¥ 25

23 21 Q 0 0 0 0 0 0 ¥

0 0 0 0 0 ] 0 0 0 1}

Table 4: Locally optimal annealing schedules for the 6-city TSP instance.

3.4 A Scaling Model for Large-Scale Optimizations

For all three problem classes above, we have obtained clear differences between the optimal BSF and optimal
WYA annealing schedules. However, the significance of these experiments may possibly be limited by scaling
effects: the small instances may somehow fail to contain the attributes that make larger instances hard to
solve, or the phenomena that we observe might be manifested only when the schedule length M is large relative
to the size of the solution space. To help assess whether our results are due to such scaling artifacts, we have

also tested the BSF-WYA distinction on a levels model which captures the scaling structure of large-scale
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optimization cost surfaces.

Our levels model abstracts large solution spaces by grouping the solutions into a small number of classes,
each of which is associated with a particular range of solution costs and/or a particular type of local structure
i0 the cost surface. The levels model captures several key attributes that are common to the various structural
models proposed in the literature to describe large-scale optimization cost surfaces. In particular, we have

attempted to capture the following statistics that have been observed in actual cost surfaces:

I. Aarts et al. [1] [25] have postulated that the distribution of solutions near the global optimum is
distributed exponentially in relation to their distance from the global optimum. In other words, if Copy
is the cost of the global optimum, then for some constant v > 0. the number of states with cost C, is
given by

w(C) o ezp{(C — Copt }7}-

2. Aarts et al. {1] [25] also postulate that the set of solution costs f(s) over the entire solution space S will
follow a normal distribution. Since the best simulated annealing schedule will intuitively spend most of
its time in the region of relatively good solutions {what we call the “Energy Landscape” below), we may
assume that the number of solutions with a given cost will follow an exponential distribution in this

region of interest. Note that this assumption is also in agreement with the model proposed by Baum in

(4].

3 The model of Baum [4} also implies that near the optimum solution, the numbers of local minima with
given solution costs will also follow an exponential distribution. There are perhaps more sophisticated
models that can be coerced to yield distributions for the quality of local minima in the cost surface, but

we have not yet performed such analyses.®

4. A number of authors, ranging from [13] to [44], use the notion of “basins of attraction” to describe the
progress of the annealing algorithm within the cost surface The term “basin” connotes the fact that
from any given solution, only a limited subset of the local minima in the solution space may be reached

without resorting to uphill moves.

To capture these relative incidences of both solution costs and locally minimum solution costs, our levels

model is as exemplified in Figure 10. The figure illustrates the structure of the 5-level version of our model.

®In particular, the fractal scaling model of Sorkin [44) (also see {20] and [48]) seems promising, since it has been found to
closely match the correlations of real optimization cost surfaces. The autocorrelations implicit in Sorkin's model {which views
cost surfaces as high-dimensional fractional Brownian motions) can yield distributions of local minimum solution costs in the
region of the global optimum solution. Kirkpatrick and Toulouse [24] give evidence that local optima of combinatorial problems
(specifically, the TSP) are embedded in an ultrametric space under a very natural distance function. By results of Baldi and
Baum [3], the ultrametricity of local optima can imply very tight bounds on the number of local minimum solutions that can
exist in the cost surface, However, the ultrametric assumption does not easily yield a distribution on the costs of these local
minima.
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Figure 10: Levels model with five different levels. Each square, diamond, or circle
represents a class of interchangeable (i.e., identical) states. The squares represent local
minima; the diamonds represent solutions that arc within a “basin of attraction”, and
the circles represent solutions that are neither locally minimum nor within any basin of
attraction. Besides o and 3, a further parameter, §, determines neighborhood structure
by limiting the span of any single uphill move. Two classes can be neighboers only if
there is a directed path of length j or less between them. Note that this includes
directed paths of length zero, i.e., self-loops in the solution space.

Each solution in the solution space has an integer cost, corresponding to its level, lying in the range 0 to 4.
In the model there are eleven classes of solutions; all solutions in a given class have identical properties, and
induce only a single column and row in the (11 x 11) transition matrices that are used in our methodology of

Section 2.2 above. The details of any instance of the model are determined by three parameters «, 3, and j:

e « determines the number of solutions in a level i: if S is the set of solutions at level 7, then |S;| = o'

e 3 < a determines the number of local minima (shown as squares in Figure 10), [LM;|, at level i.
The parameter 3 also determines the number [CN;| of solutions at level i (denoted by diamonds n
the Figure) which are “closest neighbors” to local minima at level i — 1. |LM;| = B, and |CN;| =

BH()Sioa ] = My ).

e ;j limits the size of a “jump” that can be made in a single step of the algorithm. To be specific: two
classes are neighbors exactly when there is a directed path of length j or less between them. This

includes directed paths of length zero, so that self-loops in the solution space are allowed.

As an example, if j = 3, then groups 0 and 8 in Figure 10 are neighbors, but groups 6 and 10 are not.
Again, we point out that our model allows “basins of attraction” for each local minimum: note that any path
of moves from a local minimum or its “closest neighbor” class must make a disimproving move in order to

reach a group in a different column (i.e., basin of attraction).

To establish the transition probabilities between states (classes) in our model, we use the notion of a
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neighbor selection matriz, denoted by R, which is the transition matrix for temperature T = +o00. Our aim
is to enforce the bidirectional nature of all adjacencies in the neighborhood structure when the annealing
algorithm is executed. To this end, if we let |c;| denote the number of solutions in a class ¢;, and use N(¢;)

to denote the set of classes that are neighbors of ¢;,
Rir * |ex] = Rys * |es|, Ver € N{ei)

(Note that this is a very reasonable way of enforcing bidirectional transitions; it also holds for any neighborhood
structure with constant neighorhood size |N| that can be described by an undirected graph.) We complete
the neighbor selection matrix by defining N(c;)* to be the neighbors of group ¢; with cost greater than
or equal to the cost of ¢;, and similarly defining N(c;)™ to be the set of neighbors of ¢; with lower cost.
The neighbor selection matrix R is then completed by using the balance constraint above and the following
recursive formula:

(1= 3 e n(en- i)
vk € N(e)¥, Ra=—— A’f(’c"_()‘;)l

In other words, the possible transitions from ¢; that are not “used up” by previously defined transitions to

N({e;)~ are evenly divided among groups of solutions in N(c;)T.

Table 5 shows the locally optimal BSF and WYA schedules for our levels model, computed with respect
to various combinations of the parameters « and 3, and using j = 3 always. These optimal schedules reflect
the “regimes” observed for the combinatorial problems in the three previous subsections: for example, we
can readily identify highly periodic (or iterated descent-like) BSF solutions, as well as a BSF schedule that
appears to be similar to “warming”. The BSF schedules become more random as M increases, suggesting
that the best marginal nse of the extra steps (in terms of optimizing BSF solution quality!) is attained by
simply “wandering” around the cost surface. In contrast, WYA schedules are very conservative, since they
are constrained by the desire to end up in a good solution at the M?™ time step. As with the examples of
the previous subsections, we observe marked differences in BSF quality between the BSF-optimal and WYA-
optimal schedules. Ongoing work is aimed at refining the levels model and calculation of longer BS¥- and

WYA-optimal schedules for a greater number of levels (i.e., a more “fine-grain” model).

3.5 Extensions To A Real-Scale Placement Instance

At this point, we can only point to very limited computational experience, mostly because detailed exper-
imentation with annealing on real-scale benchmarks requires inordinate CPU resources. For example, we
have implemented various annealing schedules for placement, of the small ILLIAC IV benchmark circuit IC67,
which has 67 modules. For our experiments, we used the sum of net bounding-box semiperimeters as the

objective function, and placed the modules into a fixed (square with three extra slots) array of slots.
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Optimality | Number Expected Expected

o il Criterion of Steps | BSF Quality WYA Quality Schedule
2.0 1.2 BSF 40 485 1.418 0 0 0 0 0 [§] 0 3.6 20 20
20 20 20 0 20 0 20 0 20 0
20 0 20 0 20 0 20 1.6 20 20
20 20 0 0 o] 0 0 0 0 Q
2.0 1.2 60 270 1.406 1] 1] 0 [i] 0 [1] 0 26 3.4 20
20 20 20 0 20 V] 20 0 20 1
1.6 20 o] 20 0 20 0 20 0 20
G 20 0 20 0 20 0 20 Q 20
o 20 0 20 0 2.2 0 20 20 20
20 20 0 0 0 0 0 [ 0 0
WYA 40 704 835 [§) 0 0 0 4 1 1 1 1 1
1 1 8 1 B 1 B 1 8 H
8 1 8 1.8 0 0 o 0 0 0
0 a 0 0 Q 0 ¢ 0 Q 0
€0 5232 705 0 [4 a 0 0 1 1 1 1 1
1 1 .8 1 8 1 8 1 .8 8
B 8 8 8 8 8 8 8 8 8
8 8 & 8 8 8 8 8 8 6
B 8 8 8 E-1 5 Q o 0 4]
0 Q 0 0 0 0 0 0 0 0
2.0 1.5 BSF 40 865 i.826 0 0 Q 0 20 Q 20 1] 20 20
20 0 20 0 20 20 20 20 0 20
0 20 0 20 0 20 0 20 0 20
20 20 20 20 0 0 8] 0 0 0
&0 706 1.886 0 0 1 0 0 0 20 0 20 [i]
20 0 20 0 20 0 20 0 20 0
20 0 20 0 20 0 20 0 20 0
20 0 20 0 20 0 20 0 20 ¢}
20 0 20 Q 20 0 20 0 20 o]
20 Y] 20 20 20 0 0 0 0 0
WYA 40 989 1167 [¢) 0 0 ] 20 0 [4] [} 20 [1]
0 0 28 0 ¢ 0 20 6] 0 0
0 0 0 0 9.4 0 0 0 0 0
0 0 0 0 0 0 0 0 8] 0
WYA 60 876 1.089 0 0 0 0 20 0 0 0 20 0
0 0 4 0 Q 0 4.6 Q 0 0
3.8 0 G 0 2.6 0 0 2 3.2 0
0 0 2 Q 0 o 3 0 0 0
1.4 0 0 0 2.4 0 0 0 o Q
0 4] 0 0 0 0 Q 4] 0 0
2.5 1.2 BSF 40 534 1.058 0 [§] 0 1] 0 Q [i] 1] 0 0
0 0 Al 0 .6 1.4 9.6 20 20 20
20 20 20 Q 0 [ 0 0 0 Q
0 0 0 G Q 0 "] Q 0 0
WYA 40 674 723 0 0 0 0 0 5] 0 .6 .6 .8
8 .8 8 K] 8 B 8 8 5 4
0 0 0 0 0 0 0 0 o a
0 0 0 0 0 0 0 0 G 0
2.5 1.5 BSE a0 703 1.377 0 0 0 0 Q 0 0 o 0 0
0 0 .6 1.2 2.4 114 20 20 20 8
8.2 20 20 20 20 20 0 0 o] 0
Q 0 0 ) Q 0 0 0 0 Q
WYA 40 EXki 552 0 0 4 i 0 [4 3] K] 8 E}
8 8 .8 8 8 8 8 8 8 8
8 L) 4 0 0 0 0 0 0 G
0 0 0 [\] 0 Q 0 0 0 0
2.5 2.0 BSF 40 1.158 2.070 0 8] [4] 0 0] Q [i] 0 0 20
0 20 0 20 20 20 20 20 20 0
0 i} 4] 0 0 20 0 20 20 20
20 20 0 0 0 0 V] Q 0 ]
W¥YA 40 1.275 1.365 0 0 0 & 3.2 0 0 0 20 0
0 0 1] 0 0 b} 20 0 0 0
0 o] 0 0 0 0 0 0 o 0
o 0 0 0 1] 0 0 0 4 0

Table 5: Locally optimal annealing schedules, computed with respect to our levels model in
Figure 6. Note that 20 is the highest temperature allowed and may be assumed to represent
a temperature of +oc.

QOur first trials compared over 50 different linear and logarithmic temperature schedules with M ranging

from 10,000 to 100,000. Each schedule was parameterized by either a Ty value (for logarithmic cooling) or by
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a (Ty, Tar) pair (for linear schedules), and was run from 15 random starting solutions. Surprisingly, careful
study showed that linear cooling schedules were clearly better than logarithmic cooling for this benchmark.
Also surprising were the degree of variation in solution quality with the parameterization of the schedule, and
the fact that the best (linear) schedule for all M values consistently started with approximately the same
temperature, and cooled to Tay = 0. Warming schedules and constant-temperature schedules were generally
not competitive with the linear cooling ones. It is not clear why our results for small examples were not
substantiated by this medium-sized example; we suspect that the lengths of our schedules are still so short
that essentially greedy methods are still optimal, but there may also be a fundamental difference between
our small examples and larger problems. In any case, what kinds of schedules are most efficient using the

best-so-far criterion for real problems remains an important open question.

It should be noted that even with the IC87 benchmark we have found some signs of promise in the
BSF perspective. For example, the “horizontal offset” hetween BSF quality of optimal WYA and BSF
schedules suggests that a BSF-motivated annealing schedule will reach better solutions faster than traditional
cooling. Another intuition is that the WYA objective of minimizing f(sar) forces WYA schedules to be far too
conservative (cf. the results pertaining to the levels model in Section 3.4). Thus, even a simple non-monotone
heuristic, e.g., which invokes iterated-descent methods after taking the time to ensure a visit to at least one
local optimum, may be more successful than generic cooling. With this in mind, we tested periodic schedules
with all T; € {0, 0o} which were designed in a hicrarchical fashion: given a “period” N and a constant factor
k. we use T; = 0 as long as ¢ is not divisible by N. If ¢ is divisible by N, then we execute one move at
temperature +oo. If i is divisible by k * N, then we execute two moves at oo, and in general, if ¢ is divisible

by k" * N, we execute » + 1 consecutive moves at +oc.

Our experiments showed these hierarchical/periodic schedules also to be unsuccessful versus linear cooling,
exept when a “hybrid” methodology was applied: first linear cooling was run for 85% of the schedule and
then a periodic schedule for the remaining portion. Our motivation for such a schedule was that since linear
cooling is so conservative, the last part of its schedule might be profitably used to search in the area of the
BSF solution enough to visit as many other local minima as possible. In other words, we investigated the
simplest consequence of the BSF criterion: it is unnecessary to quench at the end of a schedule to minimize
the cost of the very last state visited. In this set of experiments, small improvements over the best cooling
schedules were obtained (however, recall that these cooling schedules were the best over a large number of

schedules examined).
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4 Conclusions

At this stage in our work, many new questions are opened up even as we try to address any single issue.
The contributions of this work have been the demonstration that best-so-far analysis points to completely
new hill-climbing regimes for further investigation, and the opening of an entirely new theoretical front (e.g.,
with respect to Markov analysis of best-so-far annealing). On the other hand, the main unanswered question
is whether knowing that non-cooling schedules are better than cooling schedules will ever yield practical

speedups or performance improvements to large-scale hill-climbing optimizations.

For the examples that we have tested, the best-so-far criterion has led to dramatic changes in our view of
how the SA algorithm should be applied. We have found that the best temperature schedules are no longer
monotone cooling, but rather periodic or even warming; moreover, this is such a pervasive phenomenon that
we are literally forced to discard the original physical “annealing” analogy. The results of Section 3 point to
a number of possible hill-climbing “regimes” which may be closely tied to measures of “reachability” within
the neighborhood structure (recall the qualitative difference between optimal BSF schedules for the 8- and
16-node bisection instances). We also believe that adaptive methods, and methods that are tuned to statistical

parameters of optimization cost surfaces [44] [20] will provide important research directions.
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