Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PRUNING DUPLICATE NODES IN DEPTH-FIRST SEARCH

Larry A. Taylor October 1992
CSD-920049

Pruning Duplicate Nodes
in Depth-First Search

Larry A. Taylor

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90024
Itaylor@cs.ucla.edu

October 16, 1992

Abstract

Best-first search algorithms require exponential memory, while depth-
first algorithms require only linear memory. On graphs with cycles,
however, depth-first searches do not detect duplicate nodes, and hence
may generate asymptotically more nodes than best-first searches. We
present a technique for reducing the asymptotic complexity of depth-
first search by eliminating the generation of duplicate nodes. The
technique, the automatic discovery and application of a finite state
machine (FSM) that enforces pruning rules in a depth-first search,
has significantly extended the power of search in several domains. We
have implemented and tested the technique on a grid, the Fifteen Puz-
zle, the Twenty-Four Puzzle, and two versions of Rubik’s Cube. In
each case, the effective branching of the depth-first search is reduced,
reducing the asymptotic complexity of the search.

Contents
1 Introduction—The Problem

2 The FSM Pruning Rule Mechanism
2.1 Exploiting Structure L L.
2.2 Learningthe FSM
23 Usingthe FSMo,
2.4 Necessary Conditions for Pruning
2.5 Operator Preconditions

3 Experimental Results
3.1 The Fifteen Puzzle
3.2 The Twenty-Four Puzzle
3.3 RubiksCube

4 Conclusions

5 Acknowlegements

1 Introduction—The Problem

Search techniques are fundamental to artificial intelligence. The success of
an application often depends on implementing a search through a problem
space with limitations on memory and time. Most often, there is a choice of
operators to apply to a node, and the number of nodes grows exponentially.

Best-first searches, including breadth-first search, Dijkstra’s algorithm,
and A*, all depend on enough memory to store all generated nodes at the
same time. This gives the whole class of algorithms exponential space com-
plexity, making them impractical for many problems.

In contrast, depth-first searches, including iterative-deepening, run in
space linear in the depth of the search. However, a major disadvantage
of depth-first approaches is the generation of duplicate nodes in a graph with
cycles [11, 12, 9]. More than one combination of operators may produce
the same node, but since depth-first search does not store the nodes already
generated, it cannot detect the duplicates. As a result, the total number
of nodes generated by a depth-first search on a problem may be orders of
magnitude more than the number of nodes generated by a best-first search.

To illustrate, consider a search of a grid with the following operators: Up,
Down, Left and Right, each moving one unit. A depth-first search to depth r
would visit 4" nodes (figure 1), since 4 operators are applicable to each node.
But in fact only O(r?) distinct junctions are visited by a breadth-first search.
Thus, a depth-first search for this problem has exponential complexity, while
a breadth-first search has only polynomial complexity.

To reduce this effect, we would like to find a way to detect and prune
duplicates in a depth-first search. Unfortunately, there is no way to do this on
an arbitrary graph without storing all the nodes. On a randomly connected
explicit graph, for example, the only way to check for duplicate nodes is to
maintain a list of all the nodes already generated.

Short of storing all the nodes, two partial solutions have been suggested
[12]. In depth-first search, the path from the root to the current node is
available. The current node can be compared to nodes on the path. This
detects duplicates in the case that the path has made a complete cycle.
However, as we saw in the grid example, duplicates occur when the search
explores two halves of a cycle, such as up-left and left-up. Only a small
fraction of duplicates can be found by comparing nodes on the current path.

Another solution is to store some subset of the nodes. Potential duplicate

110,18 : P 5,17

...

...

Figure 1: The grid search space, explored depth-first to depth 2.

checking can be performed against the stored list of nodes. However, this
method can still detect only a fraction of all duplicates; the deeper the search
path, the smaller the ratio of all potential duplicates is detected.

Depth-m search by Ibaraki [8] maintains an ordered list of next nodes to
expand (best-first search), but limits the growth of the list. If a limit, m, is
exceeded, the node list switches to depth-first exploration of new nodes. As
a result, the space requirement is linear in the depth of the solution, instead
of exponential. At the limit, the nodes available for duplicate checking in
depth-m search are those of the current solution path, plus short branches
from that path.

Starting with a best-first search, the first nodes encountered may be
stored, and then depth-first search may proceed from the set of stored nodes,
checking each node to see if it has already been generated. The MREC
algorithm [13] executes best-first search until memory is almost full, then
performs IDA* below the stored frontier nodes. The memory is statically
allocated to the first nodes generated. In heuristic search, new nodes gener-
ated will have better heuristic values as the goal is approached, so that the
first nodes generated may not match nodes deeper in the search. On the
other hand, finding duplicates within the first nodes generated means that
they have been found high in the overall tree, which will increase the overall
savings.

Alternatively, we may save a variable set of nodes, replacing old nodes
with new ones as the search proceeds. The MA* algorithm [4] dynamically
stores the best nodes generated so far, pruning nodes of the highest cost to
maintain a maximum number of nodes in memory.

We will show a new technique for detecting duplicate nodes that does
not depend on stored nodes, but on another data structure that can detect
duplicate nodes that have been generating in the search’s past, and nodes
that will be generated in the future. This technique uses limited storage
efficiently, uses only a constant time per node searched, and which reduces
the effective branching factor, so that the reduction in duplicates pruned
increases with the depth of the search.

O
left

right
P right
left \ g
O right

up left

e

down START
down
down
left (S

right

down

Figure 2: FSM eliminating inverse operators.

2 The FSM Pruning Rule Mechanism

2.1 Exploiting Structure

We can take advantage of the fact that most combinatorial problems are
actually described implicitly. If a problem space is too large to be stored
as an explicit graph, then the problem space can only be generated by a
relatively small description. This means that there 1s structure that can be
exploited. Precisely the problems that generate too many nodes to store are
the ones that create duplicates that can be detected and eliminated.

For example, in the grid, the operator sequence Left-Right will always
produce a node that has already been examined in a depth-first search. Re-
jecting inverse operator pairs, including in addition Right-Left, Up-Down,
and Down-Up, reduces the branching factor by exactly one. The complexity
is thus reduced from O(4") to O(3"). Most depth-first search implementa-
tions already use this and similar optimizations, but we carry the principle
further.

Inverse operators can be eliminated by a finite state machine (FSM) as
shown in figure 2. Each state of this machine corresponds to a different last
move made. The FSM is used in a depth-first search as follows. Start the

search at the root node as usual, and start the machine at the START state.
For each new node, change the state of the machine based on the new operator
applied to the old state. For the machine in figure 2, the valid transitions
are given by the arrows which specify the possible next operators that may
be applied. Operators that are the inverse of the last operator applied do
not appear. This prunes all subtrees below such redundant nodes. The time
cost of this optimization is negligible.

Carrying the example further, suppose we restrict the search to the fol-
lowing rules: go straight in the X-direction first, if at all, and then straight
in the Y-direction, if at all, making at most one turn. As a result, each point
(X,Y) in the grid is generated only once in a depth-first search to depth r:
all Left moves or all Right moves to the value of X, and then all Up moves
or all Down moves to the value of Y. Figure 3 shows a search to depth two
carried out with these rules. Figure 4 shows an FSM that implements this
search strategy. The search now has time complexity O(r?), reducing the
complexity from exponential to quadratic.

The set of pruning rules we have just examined depend on the fact that
some paths will always generate duplicates of nodes generated by other paths.
These relations between paths can be discovered and characterized in differ-
ent domains. In the following section, a method is presented for automati-
cally learning a finite state machine that encodes such pruning rules from a
description of the problem.

2.2 Learning the FSM

The learning phase consists of two steps. First, a small breadth-first search
of the space is performed, and the resulting nodes are matched, to determine
a set of operator strings that produce duplicate nodes. The operator strings
represent portions of node generation paths. Then, the resulting set of strings
is used to create the FSM.

Suppose we apply the search for duplicate strings to the grid space. In
a breadth-first search to depth 2, 12 distinct nodes are generated, as well as
8 duplicate nodes, including 4 copies of the initial node (see figures 1, 5).
We need to match strings that produce the same nodes, and then make a
choice between members of the matched pairs of strings. We can sort the
nodes by their representations to make matches, and use the cost of the
operator strings to make the choices between the pairs. Ties are broken

7

.................................

I' 10
................................. \
T SO A R 3
................ ~ 8“4

12

....................................

Figure 3: Grid search space, explored depth-first to depth 2, with pruning.

§o

up
left up right,
O O up left right Q
.down STAR
down
down

Q down

Figure 4: FSM corresponding to the search in figure 3.

arbitrarily but systematically, such as alphabetically. If we order the op-
erators Right, Left, Up, Down, then the operator sequences that produce
duplicate nodes are: Right-Left, Left-Right, Up-Right, Up-Left, Up-Down,
Down-Right, Down-Left, and Down-Up. In other words, if we ever encounter
a string of operators from this set of duplicates, anywhere on the path from
the root to the current node, we can prune the resulting node, because we are
guaranteed that another path of equal or lower cost exists to that node. The
other path contains precisely the other half of the matched pair of strings.

The exploratory phase is a breadth-first search. We repeatedly gener-
ate nodes from more and more costlier paths, making matches and choices,
and eliminating duplicates. The breadth-first method guarantees that dupli-
cates are detected with the shortest possible operator string that leads to a
duplicate, meaning no duplicate string is a substring of any other.

All nodes previously generated must be stored, so the space requirement
of the breadth-first search is O(4¢), where b is the branching factor, and d
is the exploration depth. Duplicate checking can be done at a total cost
of O(Nlog N) = O(blogb*) = O(db*logb) if the nodes are kept in an in-
dexed data structure, or sorting is employed. This space requirement for
the breadth-first does not apply during the actual search itself. The actual
depth, d, employed will depend on the actual constant space available.

(1,0) yht)o (2,0)
Left

O Q0
O an

Down

Right, O (1,-1)

@WQ (0,0)
i Left
NO (20)
A O ('1?1)
(0’0) O Down O ('17'1)
N Rl/ght-o (1,1) *
Left O (1,1) *
O
Down O (0,0) *

Right
/g’o (1,1) *
Left

O O -

\UP
(Oa'lk O (010) *

(O 0,2

Figure 5: Searching the grid produces many duplicates, even at depth 2.

Down

10

The breadth-first exploration search is small compared to the size of the
depth-first problem-solving search. Asymptotic improvements can be ob-
tained by exploring only a small portion of the problem space, as shown by
the grid example. Furthermore, the exploratory phase can be regarded as
creating compiled knowledge in a pre-processing step. It only has to be done
once, and pays off for solutions of multiple problem instances. The results
presented below give examples of such savings.

This set of operator strings can be regarded as a set of forbidden words. If
the current search path contains one of these forbidden words, we stop at that
point, and prune the rest of the path. The reason is that another sequence
of operators that have not been eliminated will reach the same nodes. Thus,
we want to recognize the occurrence of these strings in the search path. The
problem is that of recognizing a set of keywords (i.e., the set of strings that
will produce duplicates) within a text string (i.e., the string of operators from
the root to the current node).

Once the set of duplicate strings to be used is determined, we apply a
well known algorithm to automatically create an FSM which recognizes the
set [1, 2, 3]. In this algorithm, a trie (a transition diagram in which each
state corresponds to a prefix of a keyword [3]) is constructed from the set
of keywords (in this case, the duplicate operator strings). The trie is a tree
in which the strings with shared prefixes are gathered together at the root,
creating branches as each sequence differs from the others.

This bare skeleton represents a recognition machine for matching key-
words that start at the beginning of the ‘text’ string. Keywords that begin
somewhere in the middle of the string must also be recognized. The machine
will follow along until it reaches an operator (symbol) that forces it to depart
from the skeleton. The machine must be returned to some point in the trie.
To calculate this point, the skeleton is filled in with a failure transition func-
tion. This function represents transitions for strings that mismatch (fail) the
keyword paths of the trie. The states chosen on ‘failure’ are on paths with
the greatest match between the suffix of the failed string and the paths of the
keyword trie. In the construction of the skeleton, and the calculation of the
rest of the transitions, the time and space required is at most O({), where !
is the sum of the lengths of the keywords.

The task of the algorithm is straightforward, but we wish to clarify some
points. We do not need to recognize a general set of regular expressions, but
only those that recognize a set of fixed keywords in a text (the bibliographic

11

search problem). We have chosen a straightforward method that is well
analyzed, efficient and popular (being used in the Unix utility command
fgrep and in other places).

Naturally, we wish to prune a search at the earliest point possible. In a
depth-first search, this means at the highest point in the tree. In terms of
operator paths, we want to detect a duplicate on the shortest possible string.
This consideration influences the choice of keyword recognition algorithms.
In keyword recognition terms, we can use no symbols ‘to the right’. We
cannot consider substring recognition algorithms that depend on ‘lookahead’
symbols.

A trie constructed from the duplicate string pairs from the grid example
is shown in figure 6. A machine for recognizing the grid space duplicate
string set is shown in figure 4. Notice that the arrows for rejecting duplicate
nodes are not shown. As long as the FSM stays on the paths shown, it is
producing original {non-duplicate) strings. The trie for the keywords used in
its construction contains these rejected paths. Figure 4 and figure 6 represent
the same machine, but are complementary. Figure 4 is the full base FSM
with the rejecting states and edges of figure 6 subtracted.

2.3 Using the FSM

Incorporating a FSM into a depth-first search is efficient in time and memory
used. For each operator application, checking the acceptance of the operator
consists of a few fixed instructions, e.g., a table lookup. The time requirement
per node generated is therefore O(1). The memory requirement for the state
transition table for the FSM is O(l), where [is the total length of all the
keywords found in the exploration phase. The actual number of strings
found, and the quality of the resulting pruning are both functions of the
problem description and the depth of the duplicate exploration. Results for
several domains are given below.

2.4 Necessary Conditions for Pruning

We must be careful in pruning a path to preserve at least one optimal solu-
tion, although additional optimal solutions may be pruned.

The following conditions will guarantee this. If A and B are operator
strings, B can be designated a duplicate if: (1) the cost of A is less than or

12

Down —_— O

Figure 6: A trie data structure recognizing the duplicate operator strings
found in the grid example. The heavy circles represent rejecting (absorbing)
states.

13

equal to the cost of B, {2) in every case that B can be applied, A can be
applied, and (3) A and B always generate identical nodes, starting from a
common node.

We can prove that following these rules means that if B is part of an
optimal solution, then A must also be part of an optimal solution. We may
lose the possibility of finding multiple solutions of the same cost, however.

In some circumstances, condition (3) can be slightly relaxed. If the goal
is broadly defined, then more than one goal node may exist. Condition (3)
would then require that A and B be equivalent with respect to the goal
condition, even if the nodes created are not identical. Implicit or partially
specified goals will have some relevant and some irrelevant portions of their
representations.

In all the examples we have looked at so far, all operators have unit
cost, but this is not a requirement of our technique. If different operators
have different costs, we have to make sure that given two different operator
strings that generate the same node, the string of higher cost is considered the
duplicate. This is done by performing a uniform-cost search [3] to generate
the duplicate operator strings, instead of a breadth-first search.

2.5 Operator Preconditions

The FSM pruning method in the form used here depends on treating every
node in the problem space alike. All operators are assumed to be applicable
at all times. However, the Fifteen Puzzle (figure 7) contains a significant
boundary condition. For example, when the blank is in the upper left corner,
moving the blank Left or Up is not valid.

Given a particular position for the blank square, some operator strings
are valid and some are not. This is the “operator precondition” problem,
and we must solve it for a particular search space to use the F'SM pruning.
To restate the problem, some operator strings that produce matching nodes,
starting from the same beginning node, may have different preconditions.
For example, the strings of figure 8 will produce the same node if executed
with the blank in a center square of the Fifteen Puzzle, but not if the blank
starts at the right edge. The direction indicates the movement of the blank.
String B accomplishes in two columns what string A needs three columuns to
do. Therefore A is not applicable in all situations that B is applicable, so B
cannot be considered a duplicate string for A.

14

112 14123 112 (3 |4
3143 415 |6 |7 516 (7819
617 |8 819 |10{11 10{ 11} 12| 13| 14
1213} 14| 15 15| 16| 17| 18] 19
20| 21 22| 23| 24

Figure 7: The Eight Puzzle, the Fifteen Puzzle, and the Twenty-Four Puzzle,
each in a goal configuration. All moves are made by swapping the blank tile
with the contents of an adjacent tile. The solution to a tile puzzle configu-
ration consists of a sequence of moves to a goal configuration.

A : Up-Right-Down-Down-Left-Up-Left-Down-Right-Right-Up-Up-Left
B : Left-Down-Right-Up-Up-Left-Down-Right-Down-Left-Up-Up-Right

Figure 8: Two operator strings for the Fifteen Puzzle that differ in necessary
preconditions.

For the Fifteen Puzzle, we deal with the problem in two steps. In order
to create a generalized beginning position, it was necessary to explore the
“Forty-eight Puzzle” (figure 9). That is, the blank was put at the center of
a Tx7 array for the start of the search. Any sequence of moves possible on
the Fifteen Puzzle board (which is 4x4) is possible starting from the center
of the Forty-eight Puzzle board, regardless of where the blank starts in the
Fifteen Puzazle.

The second part of the problem is to guarantee that given all possible
blank starting positions in the Fifteen Puzzle, no string of a pair is pruned
as a duplicate if the original string is not valid. To deal with this situation,
a routine was written to test the “bounding box” of the actions of a pair
of strings, A and B. B can be a duplicate if it is a match of A, and A
has a bounding box contained within or identical to that of B. In this
implementation, all such B strings are deleted from the candidate duplicate
set, so that only operator strings that are applicable at all nodes remain.

By eliminating some possible duplicates, we preserve the correctness and
optimality of the solution, while lowering the power of duplicate detection.
In the Twenty-Four Puzzle, only sixteen duplicates were eliminated by this

15

........

........

..............

Figure 9: How to represent all possible starting positions of the blank in the
Fifteen Puzzle.

test, all of length thirteen. These duplicate eliminations could be recovered
if blank position were incorporated into the FSM. In this case, reaching
a rejection state would be conditioned not only on the operator string, but
also on the position of the blank. Other domains may have more complicated
preconditions.

3 Experimental Results

3.1 The Fifteen Puzzle

Positive results were obtained using the FSM method combined with a Man-
hattan Distance heuristic in searching for solutions of random Fifteen Puzzle
instances. Heuristic functions, including the Manhattan Distance, are esti-
mates of remaining costs to the goal of a problem. The Manhattan Distance
is computed from the sum of the costs of moves of all the individual tiles
needed to separately move them to their goal positions. For the tile puzzles,
this is the sum of absolute values of the differences, in columns and rows,
of the location for each tile and the location of that tile in the goal con-
figuration. This “city block” value is a relaxation that ignores interactions.
Heuristic functions that never overestimate the costs guarantee an optimal
solution.

The Fifteen Puzzle was explored breadth-first to a depth of 14 in search-

16

Number of nodes generated in Fifteen Puzzle DFID

le+08 E 1 T T T T T 3
18+06 E
100000 3
10000 ¢ #nodes no FSM pruning &— v
3 #nodes with FSM pruning —— 3
! 1 | L i 1

1000
10 12 14 16 18 20 22
search depth

Figure 10: Nodes generated in the Fifteen Puzzle, with and without pruning
with an FSM table explored to depth 14.

ing for duplicate strings. A set of 16,442 strings was found, from which
an FSM with 55,441 states was created. The table representation for the
FSM required 222 thousand words. The inverse operators were found auto-
matically at depth 2. The thousands of other duplicate strings discovered
represent other non-trivial cycles.

The branching factor in a brute-force search was tested (figure 10). The
branching factor with just inverse operators eliminated is 2.13. This value has
also been derived analytically. Pruning with an FSM based on a discovery
phase to depth 14 improved this to 1.98. The effective branching factor
decreased as the depth of the discovery search was increased. Note that thisis
an asymptotic improvement in the complexity of the problem solving search,
from 0(2.139) to 0(1.98%), where d is the depth of the search. Consequently
the proportional savings in time for node generations increases with the depth
of the solution, and is unbounded.

Iterative-deepening A* using the Manhattan Distance heuristic was ap-
plied to the 100 random Fifteen Puzzle instances used in [9]. In iterative-
deepening A*, depth-first expansion is bounded by a cost function on the

17

nodes, f(z) = g(x) + h(x). The total cost estimate of any node z, f(x), is
the sum of the costs incurred to reach the node, g(z), and the estimated costs
to the goal, h(z). With only the inverse operators eliminated, an average of
359 million nodes were generated for each instance. The search employing
the FSM pruning generated only an average of 100.7 million nodes, a savings
of 72%.

This compares favorably with the savings in node generations achieved
by other techniques which use extra memory to save nodes. The FSM uses a
small number of instructions per node. If it replaces some method of inverse
operator checking, then there is no net decrease in speed. Korf [10] used
MREC [13] storing 100,000 nodes, reducing node generations by 41% over
IDA*, but running 64% slower per node. Korf’s implementation [10] of MA*
[4] on the Fifteen Puzzle ran 20 times as slow as IDA*, making it impractical
to use for solving randomly generated problem instances.

The creation of the FSM table is an efficient use of time and space. Some
millions of nodes were generated in the breadth-first search. Tens of thou-
sands of duplicate strings were found, and these were encoded in a table with
some tens of thousands of states. However, as reported above, this led to the
elimination of billions of node generations. Furthermore, the majority of the
pruning benefit reported occurs with the shorter strings (found early in the
exploration phase), and could be implemented with a FSM with 45 to a few
hundred states.

In addition to the experiments finding optimal solutions, weighted iterative-
deepening A* (WIDA*) was employed [10]. In WIDA™, the cost function f
is altered by placing higher weights on anticipated future costs than already
incurred path costs; f(z) = g(z)+wh(z), where w >= 1. The search weight-
ing is characterized by the proportion of the weight given to h. w = 1.0
weighting guarantees an optimal solution. Higher weighting allows subopti-
mal solutions to be found faster. This is the expected effect of relaxing the
optimality criteria.

A second effect, which I call “duplicate bloom,” is the increase in the num-
ber of nodes generated as the solution length gets longer. The two competing
effects are illustrated in the results found by Korf [10]. The average opti-
murn solution length for the test problems was 53.05, while an average of 359
million nodes were generated for each random Fifteen puzzle. The weighted
heuristic functions found longer solutions while generating fewer nodes as the
weight on h was increased. Korf found that WIDA* produced fewer nodes

18

as the weighting increased in favor of A, as it should for all related heuristic
search methods (figure 11). At w = 3.0 weighting, for instance, an average of
only 59 thousand nodes were generated, for average solution lengths of 98.23.
However, above w = 7.33, the number of nodes generated again increased.
For a run at w = 19.0, WIDA* without pruning generates an average of 1.2
million nodes for each of 100 random puzzle instances, with a solution length
of 580.93.

With FSM pruning, the average nodes generated for the same set at
w = 3.0 is reduced to 29 thousand nodes and an average solution length of
94.69, while at w = 19.0, the average nodes is reduced to 3,590, a reduction of
99.4%, and the solution length is 573.71. The FSM pruning method appears
to effectively eliminate the “duplicate bloom” effect on long solutions. In
figure 11, WIDA* with FSM pruning is shown to generate fewer nodes that
WA*. For an iterative-deepening depth-first search, the largest number of
nodes are generated in the last layer. The exact number of nodes generated
can be regarded as a random number between 1 and the maximum size of
this last layer, based on the effective branching factor, because the the search
stops at the first solution. Because of this, WIDA™ sometimes generates fewer
nodes than WA*, which is asymptotically optimal in the number of nodes
generated.

The results reported here support the hypothesis that this effect is caused
by duplication of nodes through the combinatorial rise of the number of
alternative paths to each node.

3.2 The Twenty-Four Puzzle

The FSM method was also employed on the Twenty-Four Puzzle. To date,
no optimal solution has been found for a randomly generated Twenty-Four
Puzzle instance. The FSM pruning method has allowed us to produce the
shortest solutions ever found, through a great reduction in the number of
duplicate nodes generated compared to IDA* without FSM. A generalized
beginning position, similar to that used for the Fifteen Puzzle above, was gen-
erated by using a 9x9 array (“Eighty Puzzle” board) with the blank starting
in the middle. The exploration phase generated strings up to 13 operators
long. A set of 4,201 duplicate strings was created, which produced a FSM
with 15,745 states. The table implementation of the FSM used 63 thousand
words.

19

Effect of FSM pruning on Fifteen puzzle weighted searches

Te+09 ¢ T T T T T T T T T E
; WA* ©—]
WIDA* without FSM —+—]
WIDA* with FSM pruning £~ |
le+08 =
le+07 .
a :
z :
n o let06 | -
o 3
d]
e]
g i
100000 | 3
10000 F o
[—£]]

1000 1 Il | | 1 1 J 1 1

o 2 4 6 & 10 12 14 16 18 20
w weighting, in f(z) = g(z) + w(zx)

Figure 11: Duplicate bloom: Average nodes generated per problem using

weighted heuristic search on the Fifteen puzzle: WIDA* without pruning,
WIDA* with pruning, and Weighted A* (WA*).

20

Weighted Tterative-Deepening A* (WIDA*) was applied to 10 random
Twenty-Four Puzzle instances. Korf [10] was able to achieve average solution
lengths of 168 moves (with 1000 problems, but at w = 3.0), which is believed
to be the shortest solutions found to that time. With FSM duplicate pruning
in WIDA*, the first ten problems in Korf’s list have yielded solutions at w =
1.50 weighting. They have an average solution length of 115, and generated
an average of 1.66 billion nodes each. They are the shortest solutions ever
found for the Twenty-Four Puzzle. These solutions were found using the
Manhattan Distance plus linear conflict heuristic function [7], as well as FSM
pruning. Linear conflict is a known way to boost the Manhattan distance
heuristic by counting tiles that may be the right row or column, but in the
wrong order. A minimum number of moves may be found that are necessary
to reorder each row and column, but are not counted in the Manhattan
Distance heuristic. With Manhattan Distance plus linear conflict, many
more nodes are pruned while preserving admissibility (optimal solutions).

The effectiveness of duplicate elimination can be measured at w = 3.0
weighting with and without FSM pruning. With Manhattan Distance {only)
WIDA* heuristic search, an average of 393 thousand nodes each were gen-
erated for 100 random puzzle instances, with an average solution length of
219.10. With Manhattan Distance WIDA* plus FSM pruning, an average of
only 22.6 thousand nodes were generated, a savings of 94.23%. The average
solution length was 217.32.

This node generation reduction of over an order of magnitude leads to
hope that an optimal solution to a randomly generated Twenty-Four Puzzle
instance may be found soon. Experiment shows that the FSM pruning tech-
nique usually finds solutions of slightly lower cost under given conditions as
well. The reason for this may be the pruning of high-cost paths as part of
the duplicate elimination.

A comparison was made to test the effect of pruning on problems with
shorter solution paths. 1,000 random Eight Puzzle instances were solved us-
ing the Manhattan Distance heuristic, both with FSM pruning and without
FSM pruning, but with the inverse operators rejected. For the Eight Puz-
zle, only 33.81% of nodes were saved by FSM pruning. This supports the
conjecture that FSM pruning is more effective for larger problems.

21

Figure 12: Rubik’s cubes, 2x2x2 and 3x3x3.

3.3 Rubik’s Cube

The Rubik’s Cube puzzle (figure 12) consists of a subdivided cube with
brightly colored tiled faces. The goal is to get faces to show only one color
on each of the six sides of the cube. A move is a twist of one of the faces
of the cube. The cubies are the small cubes which show on the faces, and
whose rotations form a large group. [6] describes a standard notation and
discusses the mathematics of the cube.

For the 2x2x2 Rubik’s cube, one corner may be regarded as being fixed,
with each of the other cubies participating in the rotations of three free faces.
Thus, there are nine operators.

The space was explored to depth 7, where 31,999 duplicate strings were
discovered. An FSM was created from this set which had 24,954 states. All
of the trivial optimizations were discovered automatically as strings of length
two. For instance, LL~! is a one-quarter clockwise twist of the Left face of
the cube, followed by the inverse operator, a one-quarter counter-clockwise
twist of the same face.

In a brute-force search, there would be a branching factor of 9.0. Elimi-
nating the inverse operators and consecutive moves of the same face, this is
reduced to 6.0. With the FSM pruning based on a learning phase to depth
seven, a branching factor of 4.73 was obtained.

For the full 3x3x3 cube, each of six faces may be rotated either Right, Left,
or 180 degrees. This makes a total of eighteen operators, which are always
applicable. For the large cube, it is assumed that all faces rotate (so that
no corner is fixed), but that the center cubies of each face are fixed. Move
sequences such as LR and RL produce duplicates, because the operators R
and L move faces that do not intersect.

22

The space was explored to depth 6, where 28,210 duplicate strings were
discovered. An FSM was created from this set which had 22,974 states. All
of the trivial optimizations were discovered automatically as strings of length
two. A number of interesting duplicates were discovered at depths 4 and 5
representing cycles of length 8.

For the Rubik’s cube without any pruning rules, the branching factor is
18.00 in a brute-force depth first search (no heuristic). By eliminating inverse
operators, moves of the same face twice in a row, and half of the consecutive
moves of non-intersecting faces, the branching factor for depth first search is
13.50. With the FSM pruning based on a learning phase to depth seven, a
branching factor of 13.26 was obtained.

4 Conclusions

We have presented a technique for reducing the number of duplicate nodes
generated by a depth-first search. The FSM method begins with a breadth-
first search to identify operator strings that produce duplicate nodes. These
redundant strings are then used to automatically generate a finite state ma-
chine that recognizes and rejects the duplicate strings. The FSM is then used
to generate operators in the depth-first search. Producing the FSM is a pre-
processing step that does not affect the complexity of the depth-first search.
The additional time overhead to use the FSM in the depth-first search is
negligible, although the FSM requires memory proportional to the number
of states in the machine. This technique reduces the asymptotic complexity
of depth-first search on a grid from O(3") to O(r?). On the Fifteen Puzzle, it
reduces the brute force branching factor from 2.13 to 1.98, and reduced the
time of an IDA™ search by 70%. On the Twenty-Four Puzzle, a similar FSM
reduced the time of WIDA* by 94.23%. It reduces the branching factor of
the 2x2x2 Rubik’s Cube from 6 to 4.73, and for the 3x3x3 Cube from 13.50
to 13.26.

5 Acknowlegements

Thanks to my advisor, Richard Korf, for overall direction and editing, and
for use of programs and data. This research was partially supported by NSF

23

Grant #IRI-9119825, and a grant from Rockwell International.

24

References

[1] Alfred V. Aho and M. J. Corasick. Efficient string matching: an aid
to bibliographic search. Communications of the ACM, 18(6):333-340,
1975.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1974,

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading, Mass., 1986.
The Dragon Book.

[4] P. P. Chakrabarti, S. Ghose, A. Acharya, and S. C. de Sarkar. Heuris-
tic search in restricted memory. Artificial Intelligence, 41:197-221,
(1989/90).

[5] E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik, 1:269-271, 1959.

[6] Alexander H. Frey, Jr. and David Singmaster. Handbook of Cubik Math.
Enslow Publishers, Hillside, New Jersey, 1982.

[7] Othar Hansson, A. Mayer, and M. Yung. Criticizing solutions to re-
laxed models yields powerful admissible heuristics. Information Sci-
ences, 63(3):207-227, September 15 1992.

[8] Toshihide Ibaraki. Depth_m search in branch and bound algorithms.
International Journal of Computer and Information Science, 7:315-343,
1978.

[9] R. E. Korf. Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence, 27:97-109, 1985.

[10] Richard E. Korf. Linear-space best-first search. Artificial Intelligence,
1992. to appear.

[11] Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufman
Publishers, Inc., Palo Alto, Calif., 1980.

25

[12] Judea Pearl. Heuristics. Addison-Wesley Publishing Company, Reading,
Mass., 1984.

[13] Anup K. Sen and A. Bagchi. Fast recursive formulations for best-
first search that allow controlled use of memory. In Proceedings of the
FEleventh International Joint Conference on Artificial Intelligence, pages
1:297-302, 1989. (IJCAI-89).

26

