Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A NOTE ON INTERACTIVE THEOREM PROVING WITH
THEOREM CONTINUATION FUNCTIONS
(Revised of TR #920025)

C.-T. Chou October 1992
CSD-920046

A Note on Interactive Theorem Proving with
Theorem Continuation Functions®

Ching-Tsun Chou!

chou®cs.ucla.edu

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024, U.S.A.

October 6, 1992

Abstract

A simple technique for using theorem continuation functions interactively with HOL’s sub-
goal package is presented. An interesting aspect of the technique is that it hinges on the existence
of assignable variables in ML.

Keyword Codes: F.4.1;1.2.3
Keywords: Mathematical Logic; Deduction and Theorem Proving.
1 An Example

Suppose we wish to provea /\ b ==> b /\ a using HOL’s subgoal package [1]:

#g "a /\ b ==> b /\ a" ;; L1]
"a /A b ==>b /\ a”

The natural proof is to assume the antecedent a /\ b to be true and then deduce the succedent
b /\ a from the assumed antecedent, which is called an assumption. In HOL there are, broadly
speaking, two methods by which assumptions are manipulated. The first method is to add the
assumption to the assumption list of the goal:

#expand(DISCH_TAC);; L2
OK..
"y /\ a"
I: g /\ B"]

and then prove the the conclusion of the goal using the assumption list:
#expand(ASM_REWRITE_TAC []);; L3
OK..
goal proved

- b /\ a

[-a/\Nb==>b/\a

*To appear in the Proceedings of the 1992 HOL Workshop.
'Supported by IBM Graduate Fellowship.

where ASM_REWRITE_TAC [] rewrites the conclusion with the assumptions as rewrite rules.

The second method is used when one does not want to add an assumption to the assumption
list. One such situation is when the new assumption can be used in a way not involving existing
assumptions. Then it may be preferable to use the new assumption directly without first adding
it to the assumption list, which may already contain many assumptions. Another such situation is
when, if added to the assumption list, it will become difficult to get hold of and manipulate the new
assumption in intricate ways. The main reason for this is that the assumption list of a goal is better
viewed as an unordered set than as an ordered list, since the order in which assumptions appear
on the assumption list often depends on implementation details which are best left unspecified.
Hence it may be desirable to ‘intercept’ an assumption before it is added to the assumption list
and not have to later worry about how to get hold of it in an unordered set. Whatever the reason,
in order to avoid adding an assumption to the assumption list, one has to understand of the notion
of theorem continuation functions, which is explained below.

A theorem continuation! is an ML function of type thm -> tactic (abbreviated as thm_tactic},
which converts a theorem into a tactic for continuing the (goal-oriented backward) proof. A simple
example is:

#let ttac : thm_tactic = I
Nt . let (1,r) = CONJ_PAIR t in

CONJ_TAC THEKL [ACCEPT_TAC r; ACCEPT_TAC 1] ;;

ttac = - : thm_tactic

Theorem continuation ttac splits the input theorem t (which must be a conjunction) into its
left conjunct 1 and right conjunct r using CONJ_PAIR, then reduces the goal (which must also be a
conjunction) into two subgoals corresponding to its two conjuncts using CONJ_TAC, and finally solves
the left (right) subgoal with theorem r (1) using ACCEPT_TAC. Theorem continuation functions are
higher-order ML functions that take theorem continuations as arguments, an example of which is:

#DISCH_THEN ;; | 2
- 1 (thm_tactic -> tactic)

When applied to an implicative goal, DISCH_THEN removes the antecedent from the goal, creates a
theorem by assuming the antecedent, produces a tactic by applying its first argument (which is a
theorem continuation) to that theorem, and reduces the succedent of the original goal using the
resulting tactic. Schematically, if

===zz=== ttac (t |- t)

============== DISCH_THER ttac

(read: to prove t ==> u, it suffices to prove v). The point here is that the assumption ¢ is not added
to the assumption list, but rather it is used directly by the theorem continuation ttac. This is in
contrast 10 how DISCH_TAC works:

1There is a resemblance between theorem continuations in HOL and continuations in Denotational Semantics,
but the reader need not know the latter in order to understand the former or the technique presented in this note.

S==TS==S=STES DISCH_TAC
t 7- 1

Plugging ttac into DISCH.THEK produces a tactic that can solvea /\ b ==> b /\ a in one step:

#g "'a /\ b ==> b /\ a" ;; N
"a /A b ==>01b /\ a"

#expand(DISCH_THEN ttac);;
0X..

goal proved
j-a/ANb==>b/\a

The pattern of inference effected by (DISCH_THEN ttac) corresponds closely to the intuitive ar-
gument one uses to prove a /\ b ==> b /\ a. Expanding with the definition of ttac, the tactic
(DISCH_THER ttac) becomes:

DISCH_THEN \ t© .
let (1,r) = CONJ_PAIR t in
CONJ_TAC THEKL
[ACCEPT_TAC r ;
ACCEPT_TAC 1 1]

which can be read line-for-line as expressing the following informal proof:

Assume the antecedent t = a /\ b is true.

1. Hence both 1 = a and r = b are true.

2. To prove b /\ a, it suffices to prove both b and a.
2.1. Assumption r proves b.
2.2. Assumption 1 proves a.

All built-in theorem continuation functions in HOL88 (viz., those ML functions with names ending
with ‘_THEN’, ‘_THENL’ or ‘_THER2’) afford equally intuitive interpretations.

2 The Technique

In the above example the goal a /\ b ==> b /\ a is so simple that it is trivial to figure out what
the theorem continuation argument ttac of DISCE.THEN should be. Indeed, there is no need to use
DISCH.THEN at all; the more conventional solution with DISCE.TAC is actually simpler. But what
if our proof goal is more complicated and, for one reason or another, we have decided to use
a theorem continuation function like DISCH_THER and hence must somehow construct a complex
theorem continuation argument?

In HOL a complex tactic is constructed by interactively building, traversing and sometimes
backtracking over a proof tree using the subgoal package [1]. It is crucial to be able to perform the
proof search interactively, for theorem proving is computationally too hard to be fully automated,
and to have a tool like the subgoal package to do all the bookkeeping, for it is too tedious and
error-prone for a human to keep track of all the details. But can we construct complex theorem
continuations, not just tactics, interactively using the subgoal package?

A theorem continuation ttac has type thm -> tactic. Obviously, without knowing the value of
its theorem argument (call it t), ttac (more precisely, the part of ttac that has been constructed)
cannot be interactively tested using the subgoal package. The problem is: How does the user
generate the correct value of t during an interactive session?

When a theorem continuation ttac is used as an argument of a theorem continuation function
tecl, ttac’s input theorem t is produced by tcl either from the goal to be proved via the inverse
of an introduction tule (e.g., when tcl is DISCH.THEN), or from an already generated theorem
via an elimination rule (e.g., when tcl is CHOOSE_THEN; see the example in Section 3), or from
a combination of both. It is possible, in principle at least, to generate the correct value of t by
mimicking tel manually. But this approach is as tedious and error-prone as doing interactive proofs
manually without the help of the subgoal package. The contribution of this note is a technique for
overcoming this difficulty.

The basic idea behind the technique is very simple: Let ttac assign the value of its theorem
argument to an assignable variable which is global and hence can be accessed from outside ttac.

#letref t = ARB_THM ;; ¥ Initialize t to some arbitrary theorem Y% [
t=]- 8= = =

#let ttac : thm_tactic = (\t* . t := t' ; ALL_TAC } ;;
ttac = - : thm_tactic

Tt is essential that t be an assignable variable, since non-assignable variables (i.e., those variables
declared with 1et instead of letref) cannot be re-assigned a new value. Let us examine the behavior
of ttac by re-doing the previous example:

#g "a /\ b ==> b /\ a" ;; [2
"a /A b ==>b /\ a"

#expandf(DISCH_THEN ttac);;
OK..
"H /\ an

#t 5
a/ANbl-a/\b

Thus the theorem that DISCR.THEN feeds ttac with has been ‘captured’ and stored in t, which can
now be accessed from anywhere. Continuing with the proof:

#let (1,r) = CONJ_PAIR t ;; E
l=a/\bl|l-a
r=a/\b|-Db

#expandf(CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 11);; L4

OK..

goal proved
I~b /\ a

[-a/\Ab==>b/\a

Notice that we must use expandf instead of expand in the last step:

#backup () ;; LS]
llb /\ au

#expand(CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT.TAC 11)
0K..
evaluation failed Invalid tactic

The reason why expand fails is that since we have used DISCH_THEN, the last goal has no assumption
at all. But theorems 1 and r both have the assumption a /\ b, which causes the validity check of
expand to fail. Since our technique results in a proof style which is often incompatible with the
default validity check of expand, we will in the sequel use expand? exclusively during interactive
construction of theorem continuations and adopt the following abbreviation:

#let £ = expandf ;; | 1 |
f = - : (tactic -> void)

But we will continue to use expand to test the final tactics for solving top-level goals.

The basic technique can be refined. The assignable variable to which ttac assigns the value of its
theorem argument does not really have to be global. It is sufficient to have a local and anonymous
assignable variable to hold the ‘captured’ theorem, which is then returned as a function value.
Furthermore, instead of writing a special piece of code for (the initial skeleton of} each theorem
continuation that we might want to plug into DISCHE_THEN, we can define a uniform transformation
for all theorem continuation functions of type thm_tactic -> tactic. Below the prefix ‘f_" arises
(obviously) from our abbreviating expandf as f.

#let I_ttac tac (ttac_tac : thm_tactic -> tactic) : void -> thm = 2]
1letref th = ARB_THM in

let ttac : thm tactic = (\ th’ . th := th’ ; ALL_TAC) in

(\ () . f (ttac_tac ttac) ; th)

#5,

f_ttac_tac = — : ((thm_tactic -> tactic) =-> void -> thm)

#let f_DISCH_THEN = f_ttac_tac DISCE_THEN ;;
f£_DISCH_THEN = - : {(void ~> thm)

Now we can have an interactive proof which is almost identical to the previous one:

#g "a /N b ==> b /\ a" 3
gy /\ b==>b%b /\ a"

#let t = f_DISCH_THEN () ;;
0KX..
Il‘b /\ an

t=a/Abl-a/\b

#let (1,r) = CONJ_PAIR t ;;
l1=a/\bl-a
r=a/\bil-b

#f(CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 1]);;
OK..
goal proved
I-b /\ a
I-a/\Ab==>b/\a

3 Another Example

The theorem continuation function

CHOOSE_THEN : thm_tactic -> thm -> tactic

can be described schematically as follows. If

-1
======== ttac (t[x’/x] i_ t[x’/x])
- v
then
-1
===z==== CHOOSE_THEN ttac (|- 7x.t)
- v

where x* is a variant of x chosen not to be free in the assumption list of the goal. In other words,
CHOOSE_THEN uses an existentially quantified theorem by instantiating it to a particular but arbitrary
witness. Analogous to f_ttac_tac and f£_DISCH_THEN, we can define:

#let f_ttac_ttac (ttac_ttac : thm_tactic -> thm -> tactic) [|
+ void -> thm -> thm =

letref th = ARB_THM in

let ttac : thm_tactic = (\ th? . th := th’ ; ALL_TAC } in

2 (N0 t . f (ttac_ttac ttac t) ; th)

L HH

i

ttac_ttac = - : (thm_tactical ~> void -> thm -> thm)

#let f_CHOOSE_THEN = f_ttac_ttac CHOOSE_THEN ;;
f_CHOOSE_THEN = - : (void -> thm -> thm)

Furthermore we shall suppress the printing of the assumption lists of theorems, since they can be
very long:

#top_print print_thm ;; L5]
- : (thm —> void)

Now consider the goal:

¥g "(7ni. 'n. o >= ni ==> P1 n) /\ (?n2. 'n. n >= n2 ==> P2 n) ==> (6]
(3. 'n. n >= 13 ==> P1 n /\ P2 n})" ;;

"(?ni. 'n. n >= n1l ==> P1 n) /\ (?n2. 'n. n >= n2 ==> P2 n) ==>

(?n3. 'n. n >= n3 ==> P1 n /\ P2 n)"

Since the goal is implicative, we can strip and assume the antecedent:

#1et p = f_DISCH_THEN () ;; L]
OK. .
“?n3, In. n >= n3 ==> PL n /\ P2 n"

p=.Il-(ni. 'n. n > n1==>P1n) /\ (702, !n. n > n2 ==> P2 n)
#let (p1,p2) = CONJ_PAIR p ;;

pl = . |- 7nl. in. n> nl ==>Pln
p2=. |- 2. ln. n > n2 ==> P2 n

Now we have two existentially quantified theorems p1 and p2 which we can use by means of
CHOOSE_THEXN:

#let pl’' = f_CHOOSE_THEXN () p1 ;; I 8
OK..
"en3. in. n >= n3 ==> P1 a /\ P2 n"

pt’ = . |- n. n>n1l ==>Pln
#let p2’ = f_CHODSE_THEN () p2 ;;
OK..

#?n3, In. n »= n3 ==> P1 n /\ P2 n"

p2’ = . |- 'n. n>=n2 ==> P2 n

Now we are ready to solve the existential goal. A suitable witness for n3 is a1 + n2:

#f(EXISTS_TAC "nl + n2");; ER
OK..
"ip, n»= (ni + n2) ==> P1 n /\ P2 n"

#2£{ GEN_TAC);;
OK..
LS - (ni + n2) ==>» Pin /\ P2 n"

#let ¢ = f_DISCH_THEN () ;;
OK..
"P1{ n /\ P2 n"

q=. |l-n> (nl+ n2)

Suppose the following theorems have already been proved:

#(thi, th2) ;; [30]
(]- 'n1 n2 n. n >= (n1 + n2) ==> n >= ni,

- 1n1 n2 n. n >= (nl + n2) ==> n >= n2)

(thm # thm)

Then some forward reasoning will generate suitable theorems to finish the proof:

#let q1 = itlist MATCH_MP [pi’; thi] g I
#and q2 = itlist MATCH_MP [p2’; th2] q ;;

gl =.. [-Pln

Q2 = .. |-P2n

#£{ ACCEPT_TAC (CONJ qi q2));;

0K..

goal proved

|I-P1n/\P2n

|- n > (nl + n2) ==>PLl n /\P2n
|- n. n>= (nl + n2) ==> Pin /\P2n
{= ?n3. 'n. n> n3 ==> Pl n/\P2n
|- ?03. 'n. n > n3 ==> P1 n/\NP2n
[-%n3. 'n. n>n3 ==>Pln/\P2n

{- (?n1. !n. m >= n1 ==> P1 n) /\ (?n2. 'n. n >= n2 ==> P2 n) ==
(?n3. In. n > n3 ==> P1 n /\ P2 n)

Finally, the whole proof session can be condensed into a single tactic, which we use expand to test:

#g "(zni. 'n. n >= nl ==> P1 n) /\ (?n2. !n, n >= n2 ==> P2 n) == 12]

(3. 'n. n >= n3 ==> P1 n /\ P2 n)" ;;

“(?ni, !'n. n >= nl ==> P1 n) /\ (7n2. !'m. n >= n2 ==> P2 n) ==>
(?n3. 'm. n »>= n3 ==> P1 n /\ P2 n)"

#expand(
DISCH_THEN \ p .
let (p1,p2) = CONJ_PAIR p in

CHOOSE_THEN (\ p1’

CHOOSE_THEN (\ p2* .

EXISTS_TAC "ni + n2" THEN

GEN_TAC THEN

DISCH_THEN \ q .

let q1 = itlist MATCH_MP [pi’; thi] q
and g2 = itlist MATCH_MP [p2’; th2] q in
ACCEPT_TAC (CONJ qi q2)

) p2

) pl

#);;

OK..

goal proved
|- (*ni. fn. n >= nl1 ==> P1 n) /\ (7n2. !n. n >= n2 ==> P2 n) ==>
(?n3. 'n. n >= n3 ==> P1 n /\ P2 n)

Appendix: The Code

Analogous to £_ttac_tac and f_ttac_ttac, we can define a uniform transformation for each type
of built-in theorem continuation functions in HOLS8. Notice that these definitions are needed
only during interactive construction of theorem continuation arguments of theorem continuation
functions. Once a proof is completed, the record of interaction can be condensed into a single
tactic containing no ‘f_...’ functions, as demonstrated in the last example. Also notice that our
technique applies, mutatis mutandis, to other LCF-style systems, such as Cambridge LCF (2], as
well.

let £ = expandf ;;

let f_ttac_tac (ttac_tac :

: void -> thm =
letref th = ARB_THM
in

thn_tactic -> tactie)

let ttac : thm_tactic = (\ th’ . th := th’ ; ALL_TAC)
in
(\ () . f (ttac_tac ttac) ; th)
let £_DISCH_THEN = f_ttac_tac DISCH_THEN
and f_INDUCT_THEN (th : thm) = f_ttac_tac (INDUCT_THEN th)
and f_RES_THEN = 4¥_ttac_tac RES_THEN
and f_STRIP_GOAL_THEN = f_ttac_tac STRIP_GOAL_THEN
and f_SUBGOAL_THEN (t : term) = f_ttac_tac (SUBGOAL_THEN t)
let f_ttac_ttac (ttac_ttac : thm_tactic -> thm -> tactic)

; void => thm —> thm =

letref th = ARB_THM

in

let ttac : thm_tactic = (\ th’ . th := th’ ; ALL_TAC)

in

(N ()t . f (ttac_ttac ttac t} ; th)
let f_ALL_THEN = f_ttac_ttac ALL_THEN
and f£_ANTE_RES_THEN = f_ttac_ttac ANTE_RES_THEN
and f_CHOCSE_THEN = f_ttac_ttac CHOOSE.THEN
and f_CONJUNCTS_THEN = f_ttac_ttac CONJUNCTS_THEN
and f£f_DISJ_CASES_THEN = f_ttac_ttac DISJ_CASES_THEN
and f_FREEZE_THEN = f_ttac_ttac FREEZE_THEN
and f_IMP_RES_THEN = f_ttac_ttac IMP_RES_THEN
and £ _NO_THEN = f_ttac_ttac NO_THEN
and f_STRIP_THM_THEN = f_ttac_ttac STRIP_THM_THEN
and T_X_CASES_THEK (x1l: term list list) = f_ttac.ttac (X_CASES_THEN x11)
and £_X_CHOOSE_THEN (x : term) = f_ttac_ttac (X_CHOOSE_THEN x)
let f_ttac_ftac (ttac_ftac : thm_tactic -> term -> tactic)

: void -> term -> thm =

letref th = ARB_THM
in

let ttac :

thm_tactic = { \ th’ . th

in

:= th’ ; ALL_TAC)

(N O x . f (ttac_ftac

let f_FILTER_DISCH_THEN
and £_FILTER_STRIP_THEN

..
¥ 3

ttac x) ; th)

f_ttac_ftac FILTER_DISCH_THEN
f_ttac_ftac FILTER_STRIP_THEN

let f_ttac_ttac_ttac (ttac_ttac_ttac : thm_tactic -> thm_tactic ->
thm -> tactic)
: void -> wvoid -> thm -> (thm # thm) =
letref thl = ARB_THM and th2 = ARB_THM
in
let ttacl : thm_tactic
and ttac2 : thm_tactic
in
(N O Ot . f (ttac_ttac_ttac ttacl ttac2 t) ; (th1,th2))

(\ thi’ . thi := thi’ ; ALL_TAC)
(\ th2’ . th2 := th2’ ; ALL_TAC)

n
[}

f_ttac_ttac_ttac CONJUNCTS_THEN2
f_ttac_ttac_ttac DISJ_CASES_THEN2

let f_CONJUNCTS_THEN2
and f_DISJ_CASES_THEN2

1.
L3

let f_ttacl_ttac (ttacl_ttac : thm_tactic list -> thm -> tactic)
: void list ~> thm -> thm list =
letref thl = [] : thm list
in
let ttacl : int —> thm_tactic list =
letrec ttacl’ (m : int) =
if (m = 0) then [1
else (\ th’ . thl := thl @ [th’] ; ALL_TAC).(ttacl’ (m - 1))
in
(\Nn. thl := []; ttacl’ n)
in
(\ vit . f (ttacl_ttac (ttacl (length vl)) t) ; thl)

L3

f_ttacl_ttac CASES_THENL
f_ttacl_ttac DISJ_CASES_THENL
f_ttacl_ttac (X_CASES_THENL x11)

let f_CASES_THENL
and f_DISJ_CASES_THENL
and f_X_CASES_THENL (x11: term list list)

e

Acknowledgements

Tom Melham reminded me of the existence of assignable variables in ML. Ray Toal prompted me
to write this note and also read an early draft. Peter Homeler, Sara Kalvala, Phil Windley and the
anonymous referee made suggestions which greatly improved the presentation of this note. ITam
grateful to all of them.

References

[1] DSTO and SRI International, The HOL System: DESCRIPTION, (1991).

[2] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge
Tracts in Theoretical Computer Science 2 (Cambridge University Press, 1987).

10

