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Abstract

By a predicate we mean a term in the HOL logic of type * -> bool, where * can be any
type. Boolean connectives, quantifiers and sequents in the HOL logic can all be lifted to operate
on predicates. The lifted logical operators and sequents form a Logic of Predicates (LP) whose
behavior resembles closely that of the unlified HOL logic. Of the applications of LP we describe
two in some detail: (1) a semantic embedding of Lamport’s Temporal Logic of Actions, and (2)
an alternative formulation of set theory. The main contribution of this paper is a systematic
approach for lifting tactics that works in the unlifted HOL logic to ones that works in LP, so
that one can enjoy the rich proof infrastructure of HOL when reasoning in LP. The power of
this approach is illustrated by examples from modal and temporal logics. The implementation
technique is briefly described.

Keyword Codes: F.4.1; 1.2.3

Keywords: Mathematical Logic; Deduction and Theorem Proving.

1 A Logic of Predicates

By a predicate we mean a term in the HOL [3] logic of type * ~> bool, where * is called the domain
of the predicate and can be any type. Boolean connectives and quantifiers in the HOL logic can all
be lifted to operate on predicates with the following definitions:

(TT)(x) = T
(FF)(x) = F
(*" P)(x) = "~ P(x)

(P /NN Q(x) = P(x) /\ Q(x)
(P AN/ (x) = P(x) \V Q(x)
(P ==>> Q)(x) = P{x) ==> Q(x}

(P == Q(x) = (P =Q(x))
(1Y RY(x) = 'i. (RiX{(x)
(77 R¥(x) = 7?1 . (R i)(x)

*To appear in the Proceedings of the 1992 HOL Workshop.
'Supported by IBM Graduate Fellowship.



where P and Q are predicates of type *+ -> bool and R : #** -> (* —> bool) is an indexed family of
predicates. Notice our notational convention of ‘doubling’ the symbols of the original operators to
form those of the lifted operators.

The last two definitions above need a little more explanation. The lifted quantifiers ¢! and 77
are actually implemented as binders so that for any predicate R[i] : # -> bool which may contain
i : ** among its free variables, the following equations hold:

(1 i L ROED () ' i ROEI(x)

(77 1 . RID (x) ? i . RIHIMx)
These equations have to be derived from the definitions of !! and ?? using f3-conversion for each
R[il.

Just as logical operators can be lifted, so can sequents. The lifted sequent with assumptions
Pi, ..., Pn and conclusion Q is defined as:

[Pi; ... ;Pnll=Q = Vv x. Pi(x) /\ ... /\ Pn(x) ==> Q(x)

Notice that, while it does not make sense to say whether a predicate is true or false, a lifted sequent
ig either true or false.

The lifted logical operators and sequents form a Logic of Predicates (LP)} whose behavior resem-
bles closely that of the unlifted HOL logic, in the sense that theorems, inference rules and tactics
in the unlifted HOL logic all have lifted counterparts in LP. For example, Modus Ponens can be
lifted:

L] I=(P==>>Q) L11l=P

L11=q
50 can DISCH_TAC:
[1 7= (P ==>>Q)

where 7= indicates that the lifted sequents containing it have not yet been proved. Indeed, the main
contribution of this paper is a systematic approach for liffing tactics that works in the unlifted HOL
logic to ones that works in LP, so that one can enjoy the rich proof infrastructure of HOL when
reasoning in LP.

It should be noted that the success of our approach depends crucially upon our adopting sequents
instead of formulas as the basis of our logic of predicates. Had we chosen to reason about the
validities of individual predicates, instead of sequents of predicates, by defining:

=9 = 1x. Q(x)
we would have obtained a lifted logic obeying a Hilbert style calculus of formulas (i.e., predicates),
which is incompatible with the natural deduction style calculus of sequents upon which the unlifted
HOL logic is based. Such a mismatch would render impossible the relatively straightforward lifting

of HOL tactics described in this paper, thus incurring a great deal of unnecessary work in the
process of mechanizing the lifted logic.

2 Applications of LP

Two applications of LP are discussed in this section: §2.1 contains a typical example of the semantic
embeddings of other logics in HOL, and §2.2 briefly describes the ‘predicates as sets’ formulation
of set theory using LP.



2.1 A Temporal Logic of Actions in HOL

A common method of semantically embedding various logics, such as programming logics [4] and
modal logics [2], in HOL is to use predicates in the HOL logic to represent propositions in the
embedded logic. The logical operators of the embedded logic are naturally represented by the
lifted logical operators of LP. The non-logical operators, such as modal operators, are embedded
by referring to the semantics of the domains of predicates. These ideas are nicely illustrated by the
semantic embedding of Lamport’s Temporal Logic of Actions (TLA) [5] described below, which is
an on-going project of the author’s.
In TLA there are three domains on which predicates are needed:

states : *state
transitions : *state # *state
behaviors : num -> #*state

That is, a state can be anything (usually a tuple of values of program variables), a transition is
a pair of states (representing a step of program execution), and a behavior is an infinite sequence
of states (representing an infinite program execution). Predicates on states are called state predi-
cates or simply predicates, predicates on transitions actions, and predicates on behaviors temporal
properties.

In addition to the lifted logical operators, there are two kinds of non-logical operators in TLA:
(type) coercion operators and temporal operators. Coercion operators are all defined by specializing
the inverse image operator. Let £ : %1 -> *2 be any mapping. For any predicate P : *2 -> bool,
the inverse image of P under £, (inv £ P) : *1 —-> bool, is defined by:

(inv £ P)(x) = P(f x)

(The more familiar notation for (inv £ P) is £71(P).) For instance, let map_b_s be the projection
that maps each behavior to the first state in that behavior:

map_b_s (b : num -> *state) = b(0) : *state
Then, by specializing the ¢ in (inv £) to map_b_s:
b_s = inv map_b_s : (*state —> bool) -> ({num -> *state) =-> bool)

we obtain a coercion operator that ‘coerces’ a state predicate into a temporal property by evaluating
the predicate at the first state of a behavior:

(b.s P)(b) = P(b(0))

There are several other coercion operators in TLA that allow one to view a predicate as an action,
an action as a temporal property, and so on.

The advantage of defining all coercion operators by specializing (inv £) is that one can prove
properties of coercion operators simply by specializing properties of inv, which have to be proved
only once. For instance, one can prove that (inv ) distributes over the lifted implication!:

t2 . VP Q. (dnv £)(P ==>> Q) = (inv £)(P) ==>> (inv £)(Q)
As a special case, b_s distributes over the lifted implication:

1 PQ . bos(P ==>>0Q) = b_s(P) ==>> b_s(Qq)

1As a matter of fact, (inv f) distributes over all lifted logical operators.



and so do all other coercion operators. All these facts can be proved by specializing the above
distributivity theorem for (inv £).

In TLA there are two basic modal operators [J (read: box) and <> (read: diamond) on temporal
properties which formalize the notions of, respectively, ‘always’ and ‘eventually’ (where ‘eventually’
includes ‘now’):

! n . G(suffix n b)
?n . G(suffix n b)

([ ¢)(b : num -> *state)
(<> G)(b : num -> *state)

where
suffixnb = \m . b(m + n)

denotes the n-th suffix of behavior b. In other words, a temporal property G is always (eventually)
true of a behavior b if and only if it is true of the n-th suffix of b for all (some) n. Other temporal
operators in TLA are defined in terms of [] and <>. For example,

(G "~> H) = [1(G ==>> <> H)

(read: 6 leads to H) expresses the notion that whenever G is true, B will eventually be true.

In TLA, not only the temporal properties of programs, but programs themselves are also ex-
pressed as predicates on behaviors. A program Prog which starts in a state satisfying the initial
condition Init, henceforth takes only steps allowed by action Next, and meets the fairness condition
Fair, is formalized as:?

Prog = b_s(Init) //\\ [1{b_t{Next)) //\\ Fair

The statement that program Prog satisfies temporal property Spec is expressed by:
[ 1 |= Prog ==>> Spec

(Do not confuse [1, the modal operator, with [ 1, the empty list!) Such a statement is to be proved
by a mixture of HOL and TLA reasoning. On the one hand, reasoning about individual predicates
and actions, such as proving a particular action preserves a particular invariant, is application-
specific and handled directly in HOL. On the other hand, temporal reasoning follows common
patterns and is handled by TLA inference rules, which are actually proved as HOL theorems. For
instance, the transitivity of —=»:

! PQR : (num -> *gtate) —> bool .
LY I= (P ~">Q) /AN (Q "> R)) ==>> (P ""> R)

can be proved as an HOL theorem and instantiated with particular temporal properties P, @ and R
when needed,

Comparison with Another Embedding of TLA

In [7] and [8], von Wright and Langbacka describe another semantic embedding of TLA in HOL
which is very similar to ours. As far as the main thrust of this paper is concerned, there are
two major differences between their embedding and ours. Firstly, von Wright and Langbacka
use curried functions to represent actions. For example, assuming the state consists only of two
numeric variables x and y, the action Inc_x that increments x by 1 but keeps y unchanged would
be formalized in their system as:

2This is an oversimplification, since TLA formulas takes the so-called stuttering into account; see [3).



Inc_x (x,y) (x’,y’) = {(x? =x+ 1) /\N(y’ =1y)
while in our system it would be formalized as:
Inc_x ((x,v), (x*,¥)) = (x? =x+ 1) /\ (y' = y)

As a consequence, they do not have a uniform treatment of logical operators at predicate, action
and temporal levels, nor can they define the coercion operators uniformly by specializing the inverse
image operator. Thus their work suffers from an unnecessary proliferation of similar but slightly
different definitions.

Secondly, von Wright and Langbacka’s embedding is based on a Hilbert style calculus of the
validities of single predicates, so their system does not enjoy the easy lifting of HOL reasoning to
TLA reasoning which our system does (see the last paragraph of Section 1).

2.2 Predicates as Sets

By identifying sets with their characteristic functions, predicates can be viewed as sets. Thus
viewed, a predicate P : * -> bool is the set of elements of type * which satisfies property P:

P = {x:=* | P(x)?2}

An extensive HOL library for predicates as sets, called the pred_sets library, has been written by
Melham {6] (based on earlier work of Kalker). Many operations and relations on sets have logical
interpretations if sets are identified with predicates. Using the notation of pred_sets, all of the
following are theorems:

UNIV = TT
EMPTY = FF
PINTERQ = P //\\Q
PUNION Q = P \\//Q
PDIFF Q@ = P //\\ ""Q
PSUBSETQ = [ ] |= P ==>>Q
DISJIOINT P Q = [1 I= (P //A\ Q) == FF

Furthermore, the lifted quantifiers 't and ?? provide, respectively, union and intersection over an
indexed family of sets, which are not available in pred_sets. The upshot is that the proof technique
described below can be used to reason about sets as well.

3 Lifting Tactics and Theorem Tactics

In principle one can always prove statements in an embedded logic, such as LP or the LP-based
embedding of TLA, by expanding the embedded operators with their definitions and reasoning
directly in HOL. But doing so defeats the very purpose of embedding: if all the reasoning is to
be done directly in HOL, then why bother with the embedding in the first place? An embedded
logic provides its user with not only more concise and elegant notations, but also (conceptually)
larger inference steps, than available in plain HOT. Hence it seems reasonable to accept as a general
principle that the user of an embedded logic should perform as much reasoning as possible in the
embedded logic. This is not to say that the actual inference steps executed by the HOL system
should contain few expansions of embedded operators. To the contrary, the technique described
below involves a lot of translating back and forth between LP and plain HOL. The point is that the
user should be shielded from the implementation details and be able to imagine that she or he is
doing proofs directly in the embedded logic.



In the rest of this section we shall describe, by means of a series of examples drawn from
propositional, modal and temporal logics, several tactie transformers which can lift tactics in plain
HOL to tactics in LP, thus supporting the illusion of ‘doing proofs directly in LP’. Due to limited
space, the implementation technique can only be outlined.

In the HOL sessions shown below, in order not to have to supply explicit type information too
often, we use anti-quotations with the following ML binding:

#let VALID = " (81= L 1) : (* —> bool) —> bool " ;; [ ]
VALID = "$|= [ 1" : term

Also, output from HOL is edited for ease of reading.

3.1 Tautology Checking

The tactic pred_TAUT_TAC is the lifted tautology checking tactic for LP, which is based on Boulton’s
tautology checker [1] for HOL.

#g" "VALID{ ((X ==>> ¥) ==>> X) ==>> X ) ";; 2 ]
"[1 1= ((X ==>>Y) ==>> X) ==>> X )"

#e( pred_TAUT_TAC );;

CK..

goal proved

I- L1 I= ( ((X ==>> ¥) ==>>X) ==>> X )

#g" "VALID( !! k : *= ., (ZX) \\// ""(Z k) ) ";;
L1 1= ('t k. (ZK) \N/ "2 K) D

#e( pred_TAUT_TAC );;
OK..

goal proved
- L3 I= (k. (2K N/ "7(Zk))

Incidentally, the examples above are known as the Peirce’s Law and the (indexed) Law of Excluded
Middle, both of which are intuitionistically invalid.

3.2 Lifting Tactics
Consider the following proof in the unlifted HOL logic:



#E“ p ==> q ==> (p VAN Q) "
“p ==> q ==> P /\ q"

#e( REPEAT DISCH_TAC );;
OK..
up /\ qu
[ p" ]

[ "g" ]
#e( ASM_REWRITE_TAC [ ] );;
OK..
goal proved

I-p/\ q
I-p==>q==>p/\gq

Now consider the same proof lifted:

#g" VALID( P ==>> Q ==>> (P //\\ Q) ) "
"C1 1= (P ==>>0Q==>> (P //\\Q) )"

#e( pred_TCL (REPEAT DISCH_TAC) );;
OK..
"[q; P] I=C(P//A\NQ)"

#e( pred _TCL (ASM_REWRITE_TAC [ 1) );;
0K..

goal proved
f-fQ;PlI=C(P//ANQ)

- T3 1= (CP==>>Q==>>(/\\Q)

The tactical pred_TCL : tactic -> tactic converts a tactic that works on unlifted sequents into

one that works on lifted sequents in exactly the same way.

Admittedly the above proof is unnecessarily arduous: calling the tautology checker is much
easier. But it is done to demonstrate, in as simple a setting as possible, how general tactics
are lifted. The reason why the lifting of general tactics is desirable is that when LP is used to
embed other logics, it may be necessary to mix logical reasoning with special-purpose, non-logical
reasoning, such as modal or temporal reasoning. Also, one needs to reason about lifted quantifiers
as well, which in general cannot be handled by tautology checking. Examples for all these appear

in the next subsection, which also introduces the lifting of theorem tactics.

The last result is needed later, so we bind it with an ML identifier:

#let Lemma 0 = top_thm () ;;
Lemma .0 = |- [ 1 I= (P ==>>Q==2>(P//A\\NQ))

=N

3.3 Lifting Theorem Tactics

A broad class of modal logics are the so-called normal logics [2], which are characterized by Schema

K and the Rule of Necessitation:



¥K_Schema :; | R
l= ' Q. [ ] I= C [P ==>>0) ==>> ([JP==>[Qq)

#Necessitation_Rule ;;

[- . [JIl=(P)==>[)I=(C0P)

For example, TLA is a normal logic and both K_Schema and Necessitation_Rule can be proved as
theorems of our embedding. But for our present purpose, it suffices to regard them as axioms for
the uninterpreted modal operator [0 : (* -> bool) -> (% -> bool).

Now consider the following goal:

#g" "VALID( ([T P /AN TT Q) ==>> [I(P /AN Q) ) "5 L7 ]
"TLI =@ P /ANDQ ==> [ /A\NDQ "

The first step is to strip the antecedent:

#e( pred_TCL STRIP_TAC );; [
0K..
*L0DQ; {1p1I=CI0CP/ANQ I

The following key lemma is derived from the result of the previous example using the Rule of
Necessitation:

#let Lemma_1

= MATCH_MP Necessitation_Rule Lemma_0O ;; ] 9
Lemma_1 = [- [ ] |

= ( [O(P ==>>Q ==>> (P //A\ G)) )

To add Lemma_1 to the assumption list of the current goal, we need to lift ASSUME_TAC. But ASSUME_TAC
is a theorem tactic, which is lifted by pred_TTCL rather than pred_TCL:

#e( pred_TICL ASSUME_TAC Lemma_i );; [0
OK..

"COE==>>Q==>> (P /A\NQ); I1q;0P°P]1I=COE/N\NQ I

Finally, applying the lifted TMP_RES_TAC twice with K_Schema as the implicative theorem finishes the
proof:

¥e( pred_TTCL IMP_RES_TAC K_Schema );; T

K. .

"CO@==>> (P //ANNQ) ; DP=>>Q==>>¢®/\N\Q); 1qg; OP] =
C [ICP /7NN Q) )

#e{ pred_TTCL IMP_RES_TAC K_Schema );;

CK..

goal proved

[- CO@==>>(/A\NQ) ; OF®==2>9==>>C/N\N®; 00;0°r1]I=
¢ 0P /AN Q) )

[« DP==>>Q==>>C®//\\Q) ; 0q; OP1 I=C0OC//\\Q)

-C@aq; 0OP°r1I1=C(0OC/AND )

- 01 1= C I P/ANDQ ==> [P //NNQ))

The next example shows that lifted quantifiers can also be handled:



#Reflexivity ;;
[-tw. L1 I=(P~">P)

#Transitivity ;;

-t QR [T I=CP"™>Q //N\(Q "™>R)) ==>> (P "">R) )

#g" “VALID( (!'! n . R(SUC n) ""> R(n)) ==>> (1! n . R(n) ""> R(0)) ) ";;
"C1I=C(t'n. R(SUC n) “~> R(n)) ==>> (!! n . R(n) ~~> R(O)) )"

#e( pred_TCL (DISCH_TAC THEN INDUCT_TAC) );;

OK..

2 subgoals

"L R(n) “"> R(O) ; !! n . R(SUC n) “~> R(n) ] I= ( R(SUC n) ~~> R(O) )"

“[ vt n . R(SUC n) "> R(n) 1 I= ( R(O) "> R(O) )"

#e( pred_TTCL MATCH_ACCEPT_TAC Reflexivity );;

OK..

goal proved

I- L' n. R(SUC n) “*> R(n) 1 |= ( R(O) "> R(0) )

Previous subproof:
"L R(n) *~> R(O) ; !! n . R(SUC n} ""> R{(n} ] I= ( R(SUC n) ""> R(0) "

#e( pred_TCL (FIRST_ASSUM (ASSUME_TAC ¢ SPEC "n:num")) };;

0K..

[ R(SUC n) ~*> R(n) ; R(n) ~~> R(O) ; !! n . R(SUC n) ~> R(n) ] |=
( R(SUC n) ~=> R(O) )"

#e( pred_TTCL IMP_RES_TAC Transitivity );;

OK..
goal proved
I- L R(SUC n) ~"> R(n) ; R{(n) ~"> R(O) ; !'* n . R(SUC n) “~> R(n) ] |=
( R(SUC n} ~"> R(0) )
I- LBR(nY "> R(0) ; "' n . R(SUC n) "> R{(n) J |I= ( R(SUC n) ~"> R(D) )

I-C1 1= ('!' n. R(SUC n) "> R(n)) ==>> (!t n . R{n) ~~> R(O)) )

=]

4 Outline of Implementation

Roughly speaking, the effect of applying the tactic (pred_TCL tac) to a goal is achieved in three

steps:
1. Unfold to eliminate lifted operators in the goal;
2. Apply tac;
3. Fold to re-introduce lifted operators.

For instance, this is what happens when (pred_TCL STRIP_TAC) is applied to a goal:



#g" "VALID( (P /7NN Q) ==>> (P \N7 Q@) ) 35 19
"[1 1= C(P/ANQ ==>> (PNV/ Q)"

#e( pred_SEQ_UNFOLD_TAC “x:*" )i
OK..
"Px/\NQx=>Px\Qzx"

#e( STRIP_TAC );;

OK..

"P x \/ Q x"
[L"Px']
L"Q x"]1]

#e( pred_SEQ_FOLD_TAG "x:*" );;
OK..
"LQg; P11 I=(CPAN\V// Q)

The tactic {pred_TTCL ttac th) follows a similar pattern except that the theorem th must also be
unfolded, while pred_TAUT_TAC does not need the folding phase at all.
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