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Abstract

Maisie is a C-based discrete-event simulation language that was designed to cleanly separate
a simulation model from the underlying algorithm (sequential or parallel) used for the execution
of the model. With few modifications, a Maisie program may be executed using a sequential
simulation algorithin, a parallel conservative algorithm or a parallel optimistic algorithm. The
language constructs allow the runtime system to transparently implement optimizations that
reduce recomputation and state saving overheads for optimistic simulations and synchronization
overheads for conservative implementations, This paper presents the Maisie simulation language,
describes a set of optimizations and illustrates the use of the language in the design of efficient
parallel simulations.

1 Introduction

Distributed (or parallel) simulation refers to the execution of a simulation program on parallel
computers. A number of algorithms[Mis86, CS89a, CS89b, Jef85, GLI0] have been suggested for
distributed simulation and many experimental studies have been conducted to evaluate the speedups
that may be obtained from these algorithms and their variants. Experience with parallel simulators
suggests that the reduction in the completion time of a simulation depends significantly on the
application as well as the specific algorithm used to execute the model on a parallel architecture.
For some applications, multiple independent replications of a sequential model may be more efficient
than parallel execution of the model. In the absence of a priori knowledge about the suitability
of a specific simulation algorithm to a given application, it is desirable to develop languages that
separate the model from the underlying algorithm. Such notations would allow the analyst to
develop a model and subsequently select the most suitable algorithm for its execution.

This paper describes a simulation language called Maisie. Maisie is among the few languages
that supports the design of discrete-event simulation models such that the model may be executed
using a sequential algorithm, a parallel conservative algorithm, or a parallel optimistic algorithm.
In general, efficient implementation of a model using a particular simulation algorithm requires that
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the models reflect some aspect of the underlying algorithm. However, it is possible to develop an
initial Maisie model that abstracts these differences and instead focuses on modeling the physical
system at an appropriate level of detail. Subsequent refinements to the model may be used to
improve its efficiency with respect to a specific simulation algorithm. Step-wise refinements have
often been used in the top-down design of programs to iteratively increase the level of detail in the
design of program modules. In contrast, the iterative refinements used in this paper are concerned
primarily with improving the execution efficiency of the simulation model.

The purpose of the initial model is to ensure that the simulation program is an appropriate
model of the physical system. At this stage, the emphasis is on rapid model design, rather than
its efficient execution. Maisie constructs allow events and their enabling conditions to be specified
at a high level of abstraction. Many queueing network models may be described graphically using
an interactive icon-based model definition facility[GRCMO1]. After defining and validating the
initial model, it may possibly be refined to improve its efficiency. Simple monitoring facilities
are transparently attached to a Maisie program to allow the analyst to identify the set of events
whose implementation efficiency may be improved. If necessary, the enabling conditions for the
corresponding events may be elaborated in terms of other Maisie constructs to improve efficiency. At
the initial stage, the program is executed using a sequential simulation algorithm. If the completion
time of the sequential program is not acceptable, parallel implementations may be explored.

To execute the program on a parallel architecture, the initial refinements to the sequential
program simply allocate Maisie processes among the available processors. In particular, at this
stage the analyst need not be concerned with the specific simulation algorithm that is used to
execute the program on the parallel architecture. The final refinements to the program are dictated
by the specifics of a particular simulation algorithm that is to be used. If an optimistic algorithm
is used, these refinements can be targeted to reduce state saving and recomputation overheads for
the program. In contrast, if a conservative algorithm is to be used, the optimizations could reduce
the synchronization overheads. The goal at this stage is to exploit the specifics of the application
and the simulation algorithm to generate an efficient implementation. Note that the availability of
an equivalent sequential implementation permits consistent comparisons of the relative efficiency
of the sequential and parallel implementations of a given model.

In addition to the user-directed optimizations, the Maisie run-time system also implements
transparent optimizations of rollback overheads for optimistic simulations. In a subsequent section,
we introduce the concept of artificial rollbacks and describe how these can be detected transparently
by the Maisie runtime system to reduce overheads for optimistic algorithms. We also indicate how
the Maisie constructs allow lookahead characteristics of some applications to be extracted trans-
parently from the program to reduce the synchronization overheads for conservative algorithms.

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3
describes the primary constructs of the Maisie simulation language; this section also describes
the refinements that may be used to improve the efficiency of the model for sequential imple-
mentations. Section 4 indicates how Maisie programs may be executed transparently using three
different parallel simulation algorithms. Section 5 is devoted to reducing the overhead of optimistic
implementations and section 6 discusses optimizations for conservative implementations. Model
refinements to improve the efficiency of parallel implementations are also described. Section 7
addresses implementation issues and section 8 is the conclusion.



2 Related Work

A large number of sequential simulation languages have been designed including Simula, GASP,
GPSS, Simscript, MAY[BCMS87], CSIM[Sch86] and many others. In contrast, design of parallel
simulation languages (PSL) is a relatively new area of research. PSLs typically adopt one of
two approaches: {a) enhance sequential simulation languages with primitives or library functions
to specify parallel execution; examples include Yaddes[Pre89), Maisie[BL90], Modsim[WMS88] and
Sim++[BLU90] among others, and (b) add simulation constructs to existing parallel languages as
typified by Ada-based simulation environments like SCE[GMRR&89].

The goal of Maisie was to design a simulation language that could be used to develop efficient
sequential and parallel simulations. It is among the few languages that support both conserva-
tive and optimistic algorithms for its parallel implementations. The specific simulation constructs
provided by Maisie are similar to those provided by other process-oriented simulation languages.
For example, Sim++, a C++ based language that supports sequential simulations and Time-Warp
simulations, has comparable constructs. However, Maisie extends these constructs to allow the en-
abling condition for an event to be described succinctly. Furthermore, Maisie is the first language
that provides user-transparent and programmer-specified facilities to reduce the run-time overheads
for parallel implementations using either conservative or optimistic simulation techniques.

Other languages/systems that support multiple parallel simulation algorithms include OLPS
[Abr88], Yaddes[Pre89], SPECTRUM[Rey88|. and SPEEDES[Ste91]. Yaddes is a specification
language for event-driven simulation that resembles Yacc and Lex. A Yaddes program is translated
into a C program which is later compiled and linked with the runtime support library. Different
simulation environments are provided by specifying the appropriate runtime library at link time.
The system supports sequential, conservative, and optimistic simulations. Yaddes requires that
the configuration of logical processes in the model and its mapping on a parallel architecture be
specified completely at compile time.

OLPS provides a C++ object library to support sequential, conservative and optimistic sim-
ulation. It uses YACC grammar to specify the simulated physical system and, like Yaddes, also
requires that the configuration of logical processes be specified statically. OLPS is not algorithm-
independent because the set of objects specified by the program depends on the specific algorithm
used to execute the program. Also, OLPS uses heavyweight UNIX processes that are created at
runtime, which may potentially increase its runtime overhead.

SPEEDES is a C++ based simulation environment which supports sequential algorithm, time-
driven algorithm, Time-Warp algorithm, and the SPEEDES algorithm (a combination of the time-
bucket and the Time-Warp algorithm.) Using the unique SPEEDES algorithm, this system is capa-
ble of supporting interactive simulation in a parallel environment. Reynolds[Rey88] described nine
design variables (partitioning, adaptability, aggressiveness, accuracy, risk, knowledge embedding,
knowledge dissemination, knowledge acquisition, and synchrony) for designing a distributed simu-
lation algorithm. SPECTRUM is the testbed for exploiting all these possible parallel discrete event
simulation algorithms. A library of applications and supporting routines is provided for parallel
simulation protocol design experimentation. Supported algorithms include SRADS, null-message,
and SRADS with local rollback. Although the preceding systems are useful for comparative studies
of parallel simulations, they do not provide language support for model optimizations.

A number of hardware and architecture-specific techniques have also been suggested to improve
the performance of parallel simulations. For example, synchronization overheads in both conser-
vative and optimistic implementations may be reduced on architectures supporting the framework



described by Reynolds[Rey91]. For the implementation of Space-Time algorithm on shared-memory
multicomputers, the direct cancellation mechanism[Fuj89] may be used to minimize erroneous com-
putation, and on architectures supporting rollback chip[FGT88], the overheads for state saving and
rollback may be reduced transparently.

3 Simulation Language

Maisie is a C-based derivative of MAY[BCMS7] and has been influenced in varying degrees by
distributed programming languages like CSP and SR{And81] among others. The discussion in this
section emphasizes semantic issues. The syntax is presented via illustrations. Readers are referred
to Appendix A for a precise description of the syntax of Maisie statements. A comprehensive
description of Maisie may be found in [BL91].

Maisie adopts the process-interaction approach to discrete-event simulation[Nan81]. An object
(also referred to as a PP for physical process) or set of objects in the physical system is represented
by a logical process or LP[Mis&6. Bry77]. Interactions among PPs (events) are modeled by message
exchanges among the corresponding LPs. We first describe the process representation and commu-
nication primitives of Maisie and subsequently indicate how they are used to describe simulation
events. A resource manager is used as a running example to illustrate Maisie constructs. The
manager manages two types of resources: channels and printers. The initial version of the resource
manager only handles printer requests. It is subsequently extended to process channel requests.

3.1 Entities

A Maisie program is a collection of C functions and entity definitions. An entity definition (or an
entity type) describes a class of objects. The definition of an entity is similar to the definition of a
C function: the heading contains the entity name and a list of typed parameters and the body is a
compound statement. Figure 1 describes a manager entity type that models the resource manager.
The heading in lines 1 and 2 indicates that the entity type is called manager and has one integer
parameter, mazr_printers; the parameter refers to the number of printers initially available with the
manager.

An entity instance, henceforth referred to simply as an entity, represents a specific object in the
physical system. Maisie supports dynamic and recursive entity creation. An entity is created by
the execution of a new statement which returns a unique identifier of type ename. This is a new
type introduced by Maisie; variables of this type are used only to refer to entities. An entity can
refer to its own identifier using the keyword self. For instance, the following statement creates a
new instance of the manager entity type and saves the unique identifier assigned to the entity in
variable m1 {which must be defined to be of type ename.)

ml=new manager{10};

By default, a new entity executes on the same processor as its creator entity. The new statement
may optionally include an at clause to specify a different processor for execution of the new entity,
as illustrated by the following example:

ml=new manager{10} at pno;

where pno is an integer valued expression. Assuming that the Maisie program will be executed
on N (N is specified as a command line argument) processors of a parallel architecture, entity



1 entity manager{maz.printers}

2 int maz_printers;

3 A

4 int units = maz_printers;

5 message preq{ ename hisid; } ;
6 message releas;

7 for (3;)

8 wait until

9 { mtype(preq) st (units>0)
10 { units——;

11 invoke msg.preg.hisid with done; }
12 or mtype(releas)

13 units++; }

14 )

Figure 1: A Resource Manager: Single Resource

m1 will be executed on processor number pno modulo N. The at clause is ignored for sequential
implementation of the program.

A Maisie entity may terminate jtself in one of two ways: by executing a C return statement (if
the return statement includes an expression, it is ignored) or by ‘falling off the end’ of the entity
body.

3.2 Messages

Entities communicate with each other using buffered message passing. Every entity is associated
with a unique message buffer. Asynchronous send and recejve primitives are provided to respectively
deposit and remove messages from the buffer.

Maisie uses typed messages. Every entity must define the types of messages that may be received
by it. A message type consists of a name and a (possibly empty) parameter list. Message definition
is syntactically similar to the declaration of C structs. Message parameters may be viewed as fields
defined within a struct and are referenced using the *." operator used to reference fields within a
C struct. Two message types are defined for the manager entity type(lines 5-6): preq to request a
printer, and releas to return the printer to the manager. The preq message contains one field called
hisid of type ename, which is used to pass the id of the requesting entity.

Sending Messages An entity sends a message to another by executing an invoke statement.
The invoke statement performs an asynchronous send: the sending entity fetches dynamic memory
in which to copy the message parameters, delivers the message to the underlying communication
network and resumes execution. Each message is timestamped by the runtime system with the
current simulation time. A message is delivered to the destination buffer at the same simulation
time at which it is sent, although it may not be accepted by the receiver immediately (as described
below). The following example demonstrates two ways of sending a preq message to entity mi. The
first statement specifies the message parameters explicitly; the second specifies that the message
be copied from variable oldreq which must be declared to be of type preg.



invoke m1 with preg{ self };
invoke m1 with preq = oldreq;

Receiving Messages An entity accepts messages from its message buffer by executing a wait
statement. The wait statement has two components: an integer value called wait-time (¢.) and
a Maisie compound statement called a resume block. A resume block contains a set of resume
statements. The wait statement has the following form:

walit ¢, until
{ declarations;
T1;
or ry;

or r,; }

Each r; is a resume statement. A resume statement is similar to a guarded command as described
below. Unlike other languages, the enabling condition in a Maisie resume statement can be a
complex condition that involves multiple messages.

The most commonly used version of the resume statement references a single message type and
has the following form:

(mvar=] mtype(m,) {max v;] [st b;]
statement,

where m, is a message type, muvar is a variable of type my, b; is a boolean expression called a
guard, v; is a message parameter called a renker and statement is any Maisie statement. The
guard is a side-effect free expression that may reference entity variables and message parameters,
If omitted. it is assumed to be the boolean constant true. The guard is said to be local, if it can
be evaluated using only entity variables, The message type, guard and ranker are together referred
to as a resume condition. A resume condition with message type m, and guard b; is said to be
enabled if the message buffer containis a message of type m, and b; evaluates to true (b; is evaluated
only if the buffer contains a message of type my); the corresponding message is referred to as an
enabling message. For instance, the resume statement in line 9 of entity manager is enabled only
if the buffer contains a preq message and the local guard {units > 0) is true.

If the message buffer contains exactly one enabling message, the message is removed from the
buffer and delivered to the entity in variable muar, which then resumes its execution. The variable
muar is often omitted, in which case the enabling message is returned in a system defined variable
msg whose type is the union of all message types dectared in the entity. If the buffer contains more
than one enabling message of a given type, the ranker is used to select a unique enabling message:
if keyword max (min) is used, the enabling message with the largest (smallest) value for parameter
v; is delivered to the entity. If the ranker is omitted, the messages are ranked in increasing order
of their timestamps. If two or more resume conditions are enabled. the timestamps on the selected
enabling message of each type are compared and the message with the earliest timestamp is selected
for delivery. The selected message is removed from the buffer and delivered to the entity either in
the corresponding variable mvar or, if mvar is not specified, in variable msg. Note that a mrar
specified in a resume condition is modified only if a corresponding enabling message is selected for
delivery to the entity.



1 entity manager{maz_printers}

5 message preq{ ename hisid; int count; } ;
8 wait until
9 { mtype(preq) st (msg.preq.count<=units)

Figure 2: Modified Resource Manager: Single Resource

If no resume condition is enabled, the entity is suspended for a mazimum duration equal to its
wait-time ?; if omitted, . is set to an arbitrarily large value. A suspended entity resumes execution
prior to expiration of ¢., if it receives an enabling message. If no enabling message is received in the
interval {., the entity is sent a special message called a timeout message. Timeouts are discussed
further in the next subsection. Note that a non-blocking form of receive may be implemented by
specifving t.=0.

Once again, consider the manager entity type of Figure 1: the wait statement in lines 813
contains two resume statements. The first resume statement (line 9) specifies preg as the message
type and was discussed earlier. The resume condition in the second statement (line 12) does not
include a guard. This condition is enabled whenever a releas message is available in the buffer. As
neither resume condition specifies a message variable, the enabling message is returned in variable
msg. As seen in line 11, on receiving the preq message, the manager sends a done signal to the
requesting job to indicate that the resource has been granted.

An entity may inspect the contents of a message in its buffer without having to first remove the
message from the buffer. This facility allows an entity to discriminate among messages of a given
type using one or more of its parameters. For instance, consider a modification to the resource
manager, where an incoming request may ask for one or more printer units and the manager services
requests using the first-fit discipline. The modifications are shown in Figure 2. The message type
preq is modified to include an additional parameter count (line 5); the resume condition for the
message is also modified to ensure that a specific message is accepted only if the requested number of
units are avajlable with the manager. The resume condition uses msg.preg to refer to an arbitrary
message of type preq in the entity’s buffer.

In the preceding examples, an entity accesses its message buffer implicitly. For some applica-
tions, it may be useful to allow an entity to explicitly inspect the contents of its message buffer.
The message buffer is abstracted by a set of ordered queues, where each queue corresponds to a
specific message type defined for the entity. Maisie provides a set of functions to access each queue;
the supported functions include computing the number of messages in a queue and inspecting a
message at a specific position in the queue. The operations are implemented as pure functions and
do not have any side-effects on the message buffer.

Function qelem(pos,m;) may be used to reference a message by its position in the queue, where
pos must be a positive integer and m; a message type declared in the entity. The function returns
(a copy of) the message at position pos in the queue of messages of type m;. The program is
aborted if no such message exists in the buffer. A special form of this function called qghead(m,) is
defined to return the first message of type m, in the entity’s message buffer (where first is defined
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with respect to the ranker). The language also provides a function gsize(m,) which returns the
number of messages of type m; in the entity's message buffer. A special form of this function
qempty(m;) is defined, which returns true if the buffer does not contain m; messages, and returns
false otherwise. We use simple modifications of the resource manager to illustrate these constructs.

Assume that the resource manager services incoming requests in fifo rather than first-fit dis-
cipline. The modified service discipline ensures that a large request is not forever blocked from
service by frequently occurring requests for smaller number of units. In the modified manager,
we require that the resume condition be enabled only if the message at the head of the queue is
an enabling message, and be disabled otherwise. The following resume condition uses function
qhead() to specify fifo service of incoming requests. Note that the guard in the resume condition
is evaluated only if the buffer has a message of type preq.

mtype(preq) st ((qhead(preg)).count <=units)

Assume that the manager is modified such that a request message is accepted only if no releas
messages are available in the buffer. A simple way to do this is to strengthen the guard for the preg
message, such that a preq message is accepted only if qempty(releas) returns true. The modified
resume condition is as follows:

wait until
{ mtype(preq) st (qempty(releas) & & {(msg.preq.count<=units})

}
Appropriate use of guards can considerably simplifies the entity definition as the code to accept

and buffer messages that cannot be processed immediately need not be included in the entity
definition. The guard also facilitates rollback optimizations as discussed in section 5.

3.3 Events

A discrete-event simulation is a sequence of events, where an event is any activity that changes
the global state of the system. Each event in the model simulates some activity of interest in
the physical system and may involve one or more objects. In developing a model of the resource
manager, events include ‘a job requesting a printer’ or ‘a job using the printer for ¢ time units’.
Events in a Maisie model are simulated by messages. For instance, the first event is modeled by
a job entity sending a preg message to the manager entity; the second event is modeled by a job
entity executing a wait statement with wait-time ¢ such that a timeout message is received by the
entity after ¢ time units have elapsed.

Each event in a simulation is either definite or conditional. Assume that an entity schedules
a future (timeout) event for time ¢, at simulation time t,, where #,<¢.. The event is said to be
definite or unconditional if its occurrence is independent of any other event in the system in the
interval [t,,t.]; otherwise it is said to be conditional. Both definite and conditional future events
may be scheduled by executing an appropriate wait statement.

Consider an entity that models a priority preemptible server. The entity receives two types of
requests, low and high, where the arrival of a high message can interrupt the processing of a low
message. On receipt of a message, the server schedules a future event to simulate completion of
service for the request. If the incoming message is of type high, the completion event is scheduled



as a definite event; for a low message, only a conditional completion event may be scheduled.
Assume that each message needs 10 units of service. Service of a high message is simulated by the
following wait statement which schedules a definite timeout message and sends a done message to
the requesting entity to indicate completion of service.

wait 10 until mtype(timeout)
invoke jobid with done;

Service of a low message is simulated by the following wait statement which schedules a conditional
timeout message (rtime refers to the remaining service time of the low message that is currently
in service). The timeout message is rescheduled if a high message is received by the entity in the
interim.

rtime=10;
wait rtime until
{ mtype(high)
preempt and serve high priority message;
or mtype(timeout)
invoke jobid with done;

}
Maisie also provides a hold statement which may be used to unconditionally suspend an entity
for a specified interval. This statement has the following form:

hold(t.);

Execution of a hold statement suspends the entity and resuines its execution only after ¢. units of
simulation time have elapsed. Thus the wait statement used to simulate service of a high message
may alsc be written as follows:

hold(10);
invoke jobid with done;

3.4 Compound Resume Conditions

We now consider resume statements at their most general level, where the resume condition may
include multiple message types. The general form of a resume statement is as follows:

muvar, = mtype(m,) [max v,] st b,]
and mvar, = mtype(m;) [max v,] (st by

and muvar, = mtype(m,) [max v,] [st b,]
staterment;

The preceding statement is enabled if the message buffer contains a different enabling message
for each conjunct in the resume condition. If the statement is enabled, the corresponding set of
enabling messages is removed from the buffer and delivered to the entity in the specified message
variables. If the message variables are omitted, keyword msg will contain an arbitrary enabling



message. The and operator in the compound resume condition is a short circuit operator; the
various conjuncts are evaluated in a left-to-right order and a conjunct is evaluated only if the
message buffer contains an enabling message for each of the preceding conjuncts in the resume
condition. The sequence of enabling messages for a compound resume condition is referred to
as the enabling sequence. The largest timestamp of all messages in this sequence is referred to
as the timestamp of the enabling sequence. If a compound resume condition is enabled together
with other resume conditions in a wait statement, the timestamp of the erabling sequence is used
in selecting a unique message (sequence) for delivery to the entity. In a compound condition
of the form mvar,=r1 and mvar,=r2, the guard in resume condition r2 may reference message
variable mvaer,. However, the value of variable mvar, is modified only if the corresponding enabling
sequence is delivered to the entity; otherwise the value of a message variable is left unchanged.

We illustrate the use of compound resume statements by modifying the manager entity type
to include channel resources. Assume that requests for a channel are satisfied only in pairs that
match a sending process with a receiving process. The sender process requests a channel using a
chnls message and the receiver process uses a chnir message. A process requests access to a specific
channel that is identified by a unique id. A chnls request is said to match a chnir request only if
both messages contain the same channel id. Requests for a channel can be granted by the manager
only when it has received matching requests and the desired channel number is available with the
manager. Similarly a channel becomes available only when it has been released by both the sender
and receiver processes. The modified entity type is described in Figure 3. Message types to request
a channel are defined in lines 5-6 and those used to release the channel in lines 7-8. The wait
statement is augmented to include a resume statement (lines 20-21) to handle channel allocation:
the entity accepts a pair of matching requests only if the requested channel is available. Because the
and operator is a short-circuit operator, the specified condition gives priority to the chnls message;
that is. if the buffer contains many matched pairs, the pair with the earliest chnls message will be
removed first. In case no pair of enabling messages is identified, the value of variables esend and
crecv remains unchanged. Similarly messages to release a channel are also accepted only when a
matched pair is available.

3.5 Refinements

The primary cost of executing a wait statement is the cost of identifying enabling messages from
the message buffer of the entity. As discussed in section 7, this cost typically increases with the
complexity of the guards, with compound resume conditions being the most expensive and resume
conditions with local guards being the most efficient. However any complex resume condition can
be refined to a simpler form where it includes a single message type and a local guard; a message
that cannot be processed immediately by the entity is simply buffered explicitly in its local data-
space. In this section, we use the resource manager of Figure 3 to illustrate the refinement process.
We reiterate that the primary purpose of the refinements is to improve the execution efficiency of
the model.

The resource manager accepts request messages for the channel only if both messages have
arrived and the requested channel is available. This makes the initial program concise and allows
the enabling condition for each event to be expressed directly. If each message was instead buffered
internally in the entity, the analyst would have to design the data structures to store the requests:
if the requested channel numbers belonged to a small range and each channel number was requested
by at most one pair of processes, an array implementation would be the most efficient. In contrast. if
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1 entity manager{maz.printers}

2 int maz_printers;

3 A

4 int i, units = maz_printers, cfree[ MAXC);

5 message chnls{ename hisid; int cno;} csend:

6 message chnir{ename hisid; int cno;} crecv;

7 message free_s{int cno;} fsend;

8 message free_r{int cno;};

9 message preg{ename hisid; };

10 message releas;

11 for (i=0; i < MAXC; i++4)

12 cfree(i] = 1;

13 for (;:)

14 wait until {

15 { mtype(preg) st (units>0)

16 { units——;

17 invoke msg.preq.hisid with done;}

18 or mtype(releas)

19 units++;

20 or csend= mtype(chnls) st (cfree[msg.chnls.cno))
21 and crecv= mtype{chnir) st (msg.chnlr.cno==csend.cno)
22 { cfree[csend.cno)=0;

23 invoke csend.hisid with alloc{cno};

24 invoke crecv.hisid with alloc{cno}; }

25 or [send= mtype(frees) and mtype(free.r) st (msg.free_r.cno==fsend.cno)
26 cfree(fsend.cno)=1,;

27 }

28}

Figure 3: Resource Manager: Multiple Resources

the range was large {any positive integer) and multiple pairs could simultaneously request the same
channel number, a hash table may be more appropriate. The compound resume condition allows
these considerations to be postponed until the analyst has a chance to collect more information.
If channel requests are relatively conflict-free and both processes tend to request their access at
approximately the same time, then the overhead for the compound statement is small and it may
not be necessary to refine the code any further!.

For the first refinement, assume that both requests for the channel are generated at about the
same (simulation) time, but there is heavy conflicts for the channels. Thus the buffer may contain
many matched requests that are not accepted because the channel is unavailable. And the guard
may be evaluated many times for a given message, increasing the execution time for the model.
This inefficiency may be reduced by modifying the resume condition such that a pair of matched

'As discussed in section 7, a simple monitoring facility is transparently attached to each program to track the
‘cost’ of executing specific wait statements in an entity
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entity manager{maz_printers)

int maz_printers;
int i, unils = maz_printers, cfree[ MAXC];
message chnls{ename hisid; int cno; } csend;
message chnir{ename hisid; int cno; } crecv;

wait until

or csend= mtype(chnis)
and crecv= mtype(chnlr) st (crecv.cno==csend.cno)
{ if (cfree[csend.cnol)
inform requesting processes;
else buffer matched request for channel cno;

Figure 4: Resource Manager: Modified Channel Request

requests is accepted and buffered internally if the requested channel is unavailable. The refined
resume condition is shown in the code fragment in Figure 4, where the actions of the entity are
specified using pseudo-code. The internal queue may be structured to optimize the search by using
the channel number of availabte channels as the search key.

The next refinement is useful if the matched requests are not generated together. In this case
an earlier unmatched message may be used to (unsuccessfully) find a matched pair many times and
increase the overhead. The compound resume condition may be subdivided into two simple resume
conditions, one for each message type. If a matching request is available, both requests are satisfied,
otherwise request is buffered internally until a matching request has been received. Note that the
data structures and code for the manager process becomes increasingly more complex; however the
complexity in the model is introduced only on an as needed basis after the initial model has been
validated.

3.6 Program Initiation and Termination

Every Maisie program must include an entity called driver. The runtime system begins execution
by creating an instance of this entity and executing the first statement in its body.
A Maisie program terminates in one of two ways:

¢ The simulation clock exceeds the maximum simulation time specified by function maxclock(}).
¢ All entities are suspended and no messages (including timeouts) are in transit.

When a termination condition is detected, the runtime system sends an endsim message to every
entity in the system. An entity may either accept or ignore this message. In the former case. it
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may use the message to take appropriate actions before termination, including printing accumulated
statistical data.

3.7 Example

In this section we first develop a complete Maisie model for a simple queueing network on sequential
architectures. The model is then refined for efficient execution. Further refinement of the model
for parallel execution is presented in a subsequent section.

Consider a closed queueing network (henceforth referred to as CQNF) that consists of N fully
connected switches. Each switch contains Q FIFO servers connected in tandem. A job that arrives
at a queue is served sequentially by the Q servers and is thereafter routed to one of the N neighboring
switches (including itself) with equal probability. The service time of a job at a server is generated
from a negative exponential distribution, where all servers are assumed to have an identical mean
service time. Each switch is initially assigned J jobs.

The Maisie model of this network consists of two primary entity types: a server entity that
models each server in the tandem queue and a router entity that routes a job after it has completed
service at a queue. Each job in the network is modeled by a sequence of messages. The complete
Maisie program for this example is in Figure 5. The driver entity is responsible for creating the
router and Q server entities(lines 12-16). As the server and router entities communicate with each
other, each must have the entity identifier for the other. Rather than use global variables for this
purpose, the appropriate id is passed to the entity as either an entity parameter (as when creating
the router entities in line 16) or in a separate message (as for the server entities in line 19).

The driver entity also instantiates a statistics collection entity (basic_stats) from the Maisie
object library (line 11). This entity ts used to compute the average system time spent by a job in a
queue. When the simulation is completed, every entity including the statistics collection entity is
sent an endsim message. On receiving this message, this entity prints its report. The simulation
executes for 10000 units of simulation time, as specified in the call to the function maxclock() in
line 10.

We first consider the server entity (lines 37-49). The entity simulates fifo service of an incoming
job simply by executing an appropriate hold statement (line 46). The service time is generated from
an exponential distribution. After servicing a job, a server entity sends the job to the next server
in the queue or, if it is the last server, to its router entity (line 47). The jobs initially allocated to
each switch of the physical network are allocated to the corresponding router. On being created,
a router entity routes all these jobs to its queue (line 27-28). Subsequently, for each incoming job,
it forwards the job to one of the N switches with equal probability (line 33). Also, the total time
spent by the job in the queue is sent to the statistics collection entity (line 32).

Refinement of the CQNF model: The primary overhead in the sequential execution of a
discrete-event simulation model is the time used to manage the event-list. As this time is typically
proportional to the number of entities in the system. the efficiency of the sequential implementation
can be considerably improved by using a single entity, called queue to simulate the Q fifo servers
at a switch (see Figure 6). The refined gueue entity maintains an array lastj to track the time at
which the last job serviced at the queue departs from each server. The departure time of a job at
each server is computed in line 63-67 and the service of the job is simulated with the hold statement
in line 68. Note that the router entity remains unchanged in the refined model while the driver
entity requires minor modifications in creating new entities (see section 4.4). Also, due to different
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#include “"mayc.h"

#tdefine N 16
#define J 32
#define NSRVR 10

extern entity basic_stats{};

entity driver{}
{ ename g[NSRVR+1][N], stati;
int i,j;
maxclock{"10000");
statl = new basic_stats{"Average System Time"};
for(i=0;i<N;i++)
for(j=0; j<NSRVR; j++)
qlj][il=new server{10};
for(i=0;i<N;i++)
q[NSRVRI[i]= new router{i,J,statt,qf0l};
for(i=0;i<N;i++)
for(j=0; j<NSRVR;j++)
invoke q[j]1[i] with idmsg{qfj+11[i1};
¥

entity router{myid,njobs,statid,qids}
int myid, njobs;
e_name statid, qids[N];
{ int i;
message job{int dep;} ji1;
for(i=0;i<njobs;i++)
invoke qids[myid] with job{sclock()};
for(;;)
wait until mtype(job)
{ ji=msg. job;
invoke statid with value{sclock()-j1.dep};
invoke gids[urand(G,N)] with job{sclock(}};
}
}

entity server{mean}
int mean;
{ message job{int dep;} ji;
message idmsg{ename id;};
ename nextid;
wait until mtype(idmsg) nextid= msg.idmsg.id;
for (;;)
wait until mtype(job)
{ ji=msg.job;
hold{expon(mean));
invoke nextid with job=ji;

¥

Figure 5: Maisie model of CQNF
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60 entity quene{mean,nsrvr}

81 int mean,nsrvr;

62 { int i,t1,lastj[NSRVR];

63 ename nextid;

64 message job{int dep;} j1;

85 message idmsg{ename id;};

56

57 wait until mtype(idmsg) nextid=msg.idmsg.id;
58  for(i=0;i<nsrvr;i++)

59 lastj[i]=0;

60 for(;;)

61 wait until mtype(job)

62 { ji=msg.job;

63 ti=j1.dep;

64 for(i=0;i<nsrvr;i++)

65 { lastj[i]=MAX(t1,lastj[i]) + expon(mean):
66 ti=lastjlil;

67 }

68 hold(t1i~sclock());

69 invoke nextid with job{ji.dep};
70 }

71}

Figure 6: Refinement of CQNF

random number sequences, these two models may not behave identically. However, maintaining a
separate seed for each server solves the problem.

The effectiveness of the refinement in reducing the execution time is demonstrated in Figure 7
which plots the time used for sequential executions of the two models. As seen in the figure, for a
network of 16 switches and 32 jobs, the refined model performs considerably better as the number
of servers at each switch is increased, with the execution time being reduced by almost 60% for 20
servers.

4 Parallel Simulations

Sequential execution of a Maisie program is straightforward: messages generated in the simulation
may be stored, in an increasing order of their timestamps, in a global event-list. At every step
in the execution of the model, the entry with the earliest timestamp is removed from the list and
the corresponding message is delivered to the destination entity?. For parallel execution of the
model, the event-list is physically distributed across the parallel architecture. While each node of
the parallel architecture maintains its local simulation clock, messages must still be processed in
the global order of their timestamps. This is guaranteed by the underlying distributed simulation
algorithm.

Distributed discrete-event simulation algorithms are broadly classified into conservative and
optimistic based on their tolerance of causality errors (events being processed out of order). Con-

*For simplicity, we assume that all timestamps are unique; if not, alternative criteria must be used as suggested
in [Mis86] to uniquely select the next message.
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Figure 7: Sequential execution of CQNF

servative algorithms do not permit any causality error: before processing a message, an entity (or
LP) must guarantee that it will not subsequently receive a message with an earlier timestamp. Be-
cause of this causality restraint, deadlocks may occur in conservative executions, which are typically
handled by incorporating deadlock detection{Mis86) or deadlock avoidance[Mis86, Bry77, CS89a)
mechanism into the simulation algorithm. Optimistic algorithms[Jef85, CS89b] allow events to be
processed out of the global order to achieve high degree of parallelism, and causality errors are
corrected by rollbacks and recomputations. Implementations of optimistic algorithms are usually
more difficult because they require complex mechanisms for handling causality error detection, ter-
mination detection, exception handling, and memory management. A comprehensive discussion of
parallel discrete-event simulations may be found in [Mis86, Fuj90].

A sequential Maisie implementation may be refined to a parallel implementation simply by
allocating the entities among available processors, and executing the program in the parallel envi-
ronment. Remote entity creation was described in the preceding section and will not be discussed
further. The runtime system for the parallel environment has two major responsibilities: providing
interprocess communication (IPC) facilities and implementing the distributed simulation algorithm.
The Maisie [PC facilities have been designed to operate in conjunction with existing I[PC packages
like the UNIX TPC or the Cosmic Environment[Sei85]. They can be easily modified to work on top
of other distributed operating system kernels. The distributed simulation algorithm is implemented
via a set of routines that are essentially transparent to the Maisie programmer. Entities mapped
to a common processor are simulated sequentially and entities on different processors may be syn-
chronized using either a null message algorithm, a conditional event algorithm, or the space-time
simulation algorithm.

The rest of the section discusses how a Maisie program can be executed transparently using any
of the preceding algorithms. In the interest of brevity, we do not describe the respective algorithms,
but simply indicate how the information required by each algorithm may be extracted from the
Maisie program. Parallel implementations of Maisie using the optimistic space-time algorithms are
operational and have been described in [BCL91]. An imnplementation using conservative algorithms
is in progress[Jha92].
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4.1 Null-Message Algorithm

A Maisie program can be executed using either lazy or demand-driven variations for the null-
message algorithm[Mis86]. In order to implement any null-message scheme, each LP must be
aware of the set of its source and/or destination LPs, (In the absence of this information, null
messages may have to be broadcast, making the implementation inefficient for simulation of a
sparsely connected physical system). For each LP in the simulation, the runtime system implicitly
maintains two variables, the source-set and the dest-set which respectively refer to its set of source
and destination entities. We briefly indicate how the two sets are maintained for each entity (or
LP) by the runtime system.

In order for a Maisie entity LP, to send a message to LP4, LP, must have the identifier for LP,.
As an entity identifier may only be stored in a variable of type ename, the dest-set of an entity
is assumed to comprise of all ename variables and is maintained transparently by the runtime
system. To determine the source-set of an LP, it is sufficient to determine the set of entities that
have access to its name. An entity, say LP, can gain access to the identifier for another entity, say
LP4 in one of two ways: if LP, creates LPy, or if LP, receives the information in a message from
another LP (including LP4). In either case, the problem is to add LP, to the source-set of LP,4. In
the first case, this is done transparently by implicitly including LP, in the initialization information
used to create LP;. In the second case, an entity that sends an ename LPy to another LP, say
LP,, it must first execute a system call addsrc, which updates the source-set of LP,; to include LP,.
The runtime system can detect violations of the above rule and take appropriate action including
abnormal termination of the simulation. On termination of an entity, the system automatically
removes the name of the terminated entity from all source-sets and dest-sets.

The overhead associated with maintaining the source-set and dest-set information is negligible
if the communication topology in the application is essentially static, as is the case for many
stmulations. Other than the single system call required to maintain the source-set information for
an entity, the simulation algorithm is completely transparent to the Maisie programmer.

4.2 Conditional Event simulation

Chandy and Sherman[CS89a] have described a conservative simulation algorithm that does not
rely on null messages to guarantee progress. Instead the algorithm distinguishes between definite
and conditional events in a simulation. Generation of a message by an LP_ is a definite event, if
it depends only on its current state (and the sequence of messages that have been received by the
LP) and is not affected by any subsequent messages that may be received by it. An event that is
not definite is conditional. If at some point in the computation, the next event of every entity is a
conditional event, the simulation may deadlock. Rather than use null messages to avoid deadlocks,
the algorithm suggests that cond,, the timestamp on the earliest conditional event for LP, be
recorded consistently for all LPs. The minimum cond, represents the earliest conditional event in
the system, which may then be transformed into a definite event.

In order to execute a Maisie program using the conditional event algorithm, it must be possible
to distinguish between definite and conditional events, as also to determine the cond, for each entity.
The resume conditions specified in the wait statement may be used to transparently distinguish
definite events from conditional events. If the resume condition includes only the timeout message.
the event is definite, otherwise it is treated as being conditional. In the former case, the simulation
time of the entity is immediately incremented by the wait-time specified in the wait statement
and the action associated with the receipt of the timeout message are executed to generate the
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7 entity driver{}
8 { ename rtr_id, q[N], stati;

9 int i,3j;

10 maxclock("10000");

1 statl = new basic_stats{"Average System Time"};
i2 for(i=0;i<¥;i++)

13 qlil=new queue{10,NSRVR} at i;

14 for(i=0;i<N;i++)

15 rtr_id = new router{i,J,statl,q} at i;

16 for(i=0;i<N;i++)

17 invoke q[i] with idmsg{rtr_id};

18 }

Figure 8: Parallel CQNF: Driver Entity

appropriate messages as definite events. Conversely, if the resume condition indicates a conditional
event, cond, for the entity may be determined from the wait-time specified in the corresponding
wait statement and the earliest message in the input buffer. Once the definite events and the cond,
have been determined, the program may easily be executed using the conditional event algorithm.
In section 6, we indicate additional mechanisms that may be used to distinguish definite events
from conditional events,

4.3 Space-Time Simulation

In order to execute a Maisie program using the space-time algorithm, it must be possible to per-
form three primary tasks transparentlv: checkpointing, recomputation, and determining the du-
ration over which the simulation has converged. Functionally, checkpointing is transparent to the
programmer; an entity changes its state on receipt of a message, and the old state is saved in a
timestamped queue. Rollback is implemented automatically by tracking the timestamps on the
messages delivered to each entity and tle algorithm for detecting simulation convergence described
in [CS89b] can easily be made transparent to the Maisie programmer. A detailed description of the
transparent implementation has been provided in [BCL91]. .

4.4 Example

In this section we show how the refined Maisie models described in section 3.7 is further refined
for parallel execution, where each gueue and its corresponding router entity execute on a separate
processor. Except for the driver entity, the remainder of the program remains unchanged. The
driver entity must be changed to specify remote creation of entities. As seen from Figure 8, the
only change in the entity is to extend each new statement with the at clause (lines 13 and 15) to
indicate the processor number on which the corresponding entity is to be created and executed.
Figure 9 shows the speedup obtained with the parallel version using the Space-Time algorithm.
Unless indicated otherwise, the experiments reported in this paper were conducted on a Symult
2001 hypercube. Each node of the multicomputer uses a Motorola 68020 cpu and has 4MB memory.
For the experiments, the number of nodes used in the parallel execution is equal to N(=16). The
sequential version used for the comparison was executed on a single node of the same machine using
a sequential simulation algorithm.
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5 Optimizations for Optimistic Algorithms

We now describe the last stage of the model refinement process, where the programmer exploits
specific knowledge about the application and the underlying simulation algorithm to improve the
execution efficiency of the model. This section discusses optimizations to reduce state saving and
recomputation overheads for optimistic simulations; the next section addresses optimizations for
conservative simulations.

An optimistic simulation may need to be rolled back if the runtime system detects that a message
sequence delivered to an LP in the simulation is different from the message sequence delivered to
the corresponding PP in the physical system (or its model}. This may be either because the former
contains a message that is not present in the latter {or vice-versa), and/or because the message
sequence in the simulation is a permutation of the sequence in the physical system. In the first
case, recomputations are typically unavoidable. However, rollbacks may be reduced in the second
case as explained subsequently. In the remainder of the paper, we restrict attention only to the
second type of rollbacks.

The term rollback distance refers to the total number of events that must be recomputed when
a rollback is initiated. Reducing the roilback distance increases the efficiency of the simulation by
reducing the total amount of recomputations; more importantly it also reduces the state saving
overheads, which are a major source of overhead costs for optimistic simulations. We use the term
artificial rollback to refer to a rollback whose rollback distance may be reduced while maintaining
correctness of the simulation. The rest of this section describes how the Maisie runtime system
identifies a variety of artificial rollbacks.

Let 1, be a subsequence of the correct sequence of messages that must be delivered to some
entity LP,. Let Fy and s; respectively be the final state of the entity and the sequence of output
messages generated by the entity as a result of receiving the messages in ry. The state of an entity
includes its local variables and its message buffer. Let r, be a message sequence that contains the
salmne messages as 17, except that the messages in ry are not sorted by their timestamps; let Fy and
sy be the final state and the sequence of output niessages generated due to delivery of r; to LP,.
Any one of the following four relationships may hold among F;, F, 57 and s,.
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In a typical optimistic implementation like TWOS[JBWea87], delivery of sequence r, rather
than r; would cause recomputation of LP, and possibly other entities with which communication
has occurred, in each of the four cases. However, by identifying appropriate artificial rollbacks,
recomputation can be considerably reduced in the second and third case, and completely eliminated
in the last case. We note that the preceding optimizations differ from those implied by lazy message
cancellation[Gaf88] which prevents unnecessary cancellation of messages that are regenerated after
a rollback. Detection of artificial rollbacks directly reduces the rollback distance for the object
that receives an out of order message. As the recomputation after a rollback also incurs state
saving overheads, reductions in the rollback distance also help to reduce the overall state saving
overheads. Henceforth, we refer to an out of order message as a straggler message. Formally, a
message {My,ty) is a straggler if and only if it is delivered to its destination, say LP,, after a
message with a timestamp greater than ¢, has been delivered to LP,.

5.1 Transparent Optimizations

This section describes a variety of artificial rollbacks that may be detected transparently by the
runtime system. Assume that entity LP, executes a wait statement at simulation time ¢. The
following two variables are defined for every entity:

» msetg(t): set of enabling messages for LP, at time ¢.

o tres,{t): timestamp(s) on the enabling message(s) accepted by the entity when it resumes
execution after executing wait statement at .

Variables mset and fres are automatically maintained for every entity. Henceforth, we will drop
the subscript on mset, when the corresponding entity is uniquely indicated by the context.

Assume that a straggler message (m,,,t,,) is received by a simulation object when its simulation
time is t,.; by definition t,,<t,. Let ¢ be the latest time preceding ¢,, at which the object’s state
was saved. As traditional optimistic simulators set the simulation time of ar object equal to the
timestamp on the last message delivered to the object, receipt of m,, would immediately initiate a
rollback to #;. In contrast, the simulation time of a Maisie entity is advanced only when the entity
removes an enabling message from its buffer. Depositing a message in the message buffer of an
entity does not affect its simulation time. It follows that arrival of the straggler message in the
optimized Maisie implementation would cause a rollback to the earliest ¢,, £;<t, <t,, such that m,
belongs to mset(t,} and t,, is less than tres(t,). In many cases, t, may be greater than ¢, and in
some cases ¢, may be equal to t,, indicating that the rollback is unnecessary. We present a few
examples.

Consider the preemptible priority server of section 3.3 that receives messages of type high or
low to represent requests of different priority, where arrival of a high message may preempt service
of a low message. Consider the effect of delivering the message sequence (5,high), (9,low), (7,high).
(18,low), (14,high) to the server. Assume that message (5,high) is accepted by the server at time
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5. Then, mset(5) for the server includes only timeout messages; other messages including (9,low)
and (7,high) that are received by the server, will be stored in its message buffer until it receives a
timeout message. The delivery order for these two messages is immaterial to the correctness of
the simulation, as long as message (7,high) arrives at the server before simulation time 15 {note
that mset(15) includes messages of type high). Furthermore, if message (14.high) is delivered to
the entity after simulation time 15, even though the message belongs to mset(15), rollback may be
unnecessary as fres(15)=7, due to the server initiating the service of message (7,high).

Maintaining an entity’s mset when its wait statements refer only to message types has relatively
low overheads. As most entities contain a small number of message types (almost never exceeding
30), the mset can be typically saved in a single word by using a unique mask for each message
type defined by the entity. An additional word is required to store tres for every recorded state.
The processing overhead is also small: {or each recorded mset one logical and operation and a
comparison is required to determine if a straggler message {m,,t.) belongs to the corresponding
mset and one integer comparison is required to determine if ¢, is greater than the recorded tres.

We next consider the case where a resume condition also includes a guard. In general, an
entity may use any of its state variables and message parameters to add additional discriminatory
power to the resume condition. We consider two examples: a bounded buffer and a priority server.
Consider the wait statement executed by a bounded buffer to ensure that it accepts a request for
data from a consumer {modeled by a more message) only if it is not empty (nin>nout):

wait until
{ mtype(more) st (nin>nout)
send next data-item to the consumer:

The preceding resume condition includes entity variables but no message parameters; hence its
mset is completely determined when the wait statement is executed and this case is similar to
the preceding example. Consider the priority server where the resume condition includes message
parameters. Assume that the request message includes a parameter, called pric which refers to
the priority of the request message. Let cur_prio be a state variable of server, which indicates the
priority of the current message being serviced. The following wait statement may be used by an
entity that is serving a request to ensure that it is interrupted only by request messages that have
a priority higher than cur_prio:

wait #; until
{ mtype{request) st {msg.request.prio>cur.prio)
preempt and serve higher priority request;
or mtype(timeout)
simulate service completion;}

If & resume condition includes message parameters, computing the mset of the entity and
determining if a straggler message belongs to a recorded mset are both more expensive than in
the previous case. The guard is used to create a parameterized function, where the parameters
correspond to the entity variables and message parameters referenced in the guard. Assume ¢,
tn, ty and t, as defined previously. In order to determine if a straggler message belongs to the
entity’s mset, the function must be executed for each recorded mset in the interval [t;,t,]. Also.
if the resume condition inciudes function calls. implementation of this optimization becomes more
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expensive. Experimental studies are needed to evaluate the cost of this optimization to determine
its overall impact on the completion time of a simulation.

In a similar manner, a ranker may be used in a resume condition to specily the order in which
messages of a given type are to be serviced. This would permit the runtime system to initiate a
rollback only if the rank of the straggler message is higher (or lower) than that of the messages
processed earlier by the entity. The overlead, in terms of recording and scanning recorded msets
is of similar magnitude to the previous case, as the ranking parameter and rank of the enabling
message can be recorded as a boolean expression. Additional overhead is incurred in maintaining
the message buffer as an ordered queue. (Note that in the same entity, it is possible to have another
wait statement whose resume condition requires the messages to be ordered by their timestamps
or even by a different parameter.) To minimize unnecessary overheads, syntactic tags are used to
ensure that this condition is known at compile time. This allows the system to maintain an ordered
queue only when the queue would otherwise need to be maintained by the prograrnmer. Thus the
queue maintenance does not really contribute to additional overhead.

5.2 Example

We present experimental measurements of the refined CQNF model to illustrate the effectiveness
of the transparent optimizations described in this section. Figure 10 plots the average rollback
distance on each node and Figure 11 plots the speedup as a function of Q, the number of servers at
each switch in the physical system. The data is plotted for both the optimized and non-optimized
implementations. As seen from the figures, the optimizations have a significant impact in reducing
the rollback distance and in improving the speedup. A detailed discussion of the implementation
of the optimizations together with experimental measurements of their utility in reducing the
completion time of optimistic simulations of stochastic benchmarks may be found in [BL92].
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Figure 10: Average rollback distance per node

5.3 User-specified Optimizations

The optimizations described in the previous section are useful in identifying artificial rollbacks when
a message is deposited in the message buffer of an entity in an incorrect order. In this section. we
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Figure 11: Effectiveness of Optimization

extend the optimizations to include situations where an out of order message has been removed
from the buffer and processed by the entity. In other words, these optimizations refer to the cases
where the simulation time of a Maisie entity is greater than the timestamp on the straggler message,

Probe Messages We define a probe message to mean a message whose processing does not alter
the state of the recipient LP. The primary purpose of such messages is to obtain state information
about the destination LP, as for example, whether the LP is currently active or idle. Processing
a probe message in an incorrect order wonld typically result in situations where F;=F, but s;#s;.
Although a message may sometimes be detected transparently to be a probe message, the overhead
may be reduced considerably by using syntactic tags. A message type is declared as a probe by
preceding its declaration with the keyword probe. The following statement iliustrates the use of a
probe message called status:

probe message status{ename jobid;}:

wait until mtype(status)
invoke msg.status.jobid with reply{idle};

where idle denotes the current status of the LP. If a straggler message (m,,t,,) is determined to
be a probe, the message is processed in the state that is saved at or immediately prior to t,,. The
subsequent events that have already been processed by the entity do not need to be canceled. Once
again, if the state of the entity is saved after every event, implementing this optimization adds
negligible overhead but may reduce recomputation and consequently, state saving overheads.

Associative Messages The concept of probe messages can be extended to the notion of asso-
ciative messages: sequences r; and r defined in the previous section are said to be associative if
messages in either sequence may be processed without affecting correctness of the simulation. As
an example of an associative sequence, consider the following two sequences that are input to a
FIFO server: r;=(5,10,LP1),(18.7.LP;),(30,8,LPy) and r,=(5,10,LP,),(30,8,LP,),(18,7,LP;) where
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the message parameters respectively represent the message timestamp, desired service duration and
the requesting LP. The two sequences are associative, as the final state of the server and the cutput
message sequences to each customer are the same, regardless of which sequence of input messages is
actually processed by the server. Detection of associative sequences is important because it allows
messages to be processed out of order, thus reducing the rollback distance.

As another example of an associative message sequence, consider a bounded buffer that receives
data from a producer process via put messages and requests for the data from a consumer process
via gef messages. Let (p1,p2,c1,p3,c2) be the ‘correct’ message sequence received by the buffer,
where pl..p3 represent put messages and cl..c2 get messages. Sequences (pl.cl,p2,p3,c2) and
(p1,p2,p3,cl1,c2) are both associative with respect to the correct sequence.

A straggler message m,, is associative, if the subsequence of messages including m,, that is
delivered to the entity is associative. Our aim in this section is to suggest language primitives
that allow a programmer to identify a straggler message as being associative. For this purpose, we
define a separate, optional section of an entity called the warp section. This section consists of a
set of warp statements, each of which is syntactically similar to a resume statement. Each warp
statement defines a warp condition and warp actions, where the former is a temporal predicate and
the latter is a C or Maisie statement. A warp statement has the following form:

mtype(m;} st b; [in (¢;,t;)]
statement ;

A warp condition includes a message type, a guard and an optional temporal component that defines
a time interval. If omitted, the interval is assumed to be the single time instant corresponding to
the timestamp of the straggler message. Note that b;, ¢; or t; may include message parameters. A
message of type m, is associative, if the guard in its warp condition is continuously true at every
instant in the corresponding time interval. Assuming that ¢,, t;, ¢, and ¢, are defined as in the
previous section, an associative straggler message is processed in the state of the recipient entity
saved at time ¢,. In addition, to ensure that the effect of the straggler message is included in the
final state of the entity, the specified warp actions must be executed in the state of the entity at ¢,,.
If an entity includes a warp section, the runtime system is required to save the state of the entity
after every event so that the warp condition may be evaluated over the specified interval.

We illustrate these ideas in the context of a FIFQO server, Figure 12 presents the entity definition
for a FIFO server. On receiving a request message, the entity simulates its service by executing an
appropriate hold statement and sends a done message to the requesting process. The warp section
includes a warp condition for message type request which indicates that the entity may process an
out of order request message, if it was idle during the time the message would be serviced. The
warp actions ensure that the count of serviced messages is updated correctly.

Dead States The state of an entity is typically saved after each event to minimize rollback
distance[Fuj89]. However, some states in an entity may be dead states. A dead state is a state
that is never used to initiate a recomputation. Consider a timeout message that is scheduled as a
definite event. From the definition of a definite event in section 3.3, it follows that if the sequence
of messages received by the entity preceding some timeout message is correct, the timeout message
must also be correct; the timeout message can never be the first incorrect message. In other words.
the state immediately preceding the receipt of the timeout message is a dead state that will never
be used to initiate a recomputation, and hence need not be saved. For entities with large states.
this may be a significant improvement. For a specific application, it may be possible for an analyst
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#define R msg.request
entity server {}
{
int nojobs=0, idle=true;
ename jobid;
message request {int stim; ename jobid; } ;
for(;;) {
idle=true;
wait until mtype(request) {
idle=false; jobid=msg.request jobid;
hold(msg.request.stim);
invoke jobid with done:
nojobs=nojobs+1;}

}
warp{

mtype(request) st (idle) in (R.tstamp, R.tstamp+ R.stim)
nojobs=nojobs+1;

Figure 12: A FIFO Server with Warp Section

to identify other states as dead states. The programmer may explicitly flag some resume statement
ri, to indicate that if the entity resumes its execution by executing r;, the preceding state need not
be saved. Such a resume statement is indicated simply by replacing keyword mtype in the resume
condition by kevword ctype. Note that. in the worst case. incorrectly labeling a state as a dead
state may degrade the completion time by increasing the rollback distance, but will not affect its
correctness. Of course, if the entity also includes a warp section, the dead states must nevertheless
be saved to allow the warp condition to be tested exhaustively.

6 Optimizations for Conservative Algorithms

The performance of conservative algorithms can be improved by reducing synchronization over-
heads. Synchronization overheads, in turn, can be reduced if each process has good leokahead [Fuj88].
A lookahead process is defined to be a process whose behavior can be predicted for some future
time interval. A process is said to have lookahead ¢, if for any ¢, the state of the process can be
predicted in the interval [t,¢+ ¢)3. In order to have good lookahead, it is important that a process
have information about the state of each of its predecessor process. For instance, consider a fifo
server that has only one predecessor process. Such a server has excellent lookahead: whenever it
receives a job it can immediately predict the time at which it will depart. However, if the server
has two predecessors, say P and Q, the server can predict the departure time of an arriving job only
after it has received a message from both P and Q. If the predecessors feed the server at different

®Assume that t is quantified over the simulation interval

25



rates, the server must explicitly synchronize with its predecessors to determine the departure time
of an incoming job. This section describes optimizations which allow the lookahead for some type
of objects to be extracted transparently by the runtime system. In addition specific primitives are
provided to allow programmers to explicitly encode lookahead in an eutity.

Assume that the source-set and dest-set data structures are maintained for each process as
deseribed in section 4.1. A basic conservative algorithm may be implemented transparently as
follows: whenever an entity sends a (non-null) message, say (m;,t;) it also sends a null message
timestamped t; to every other entity in its dest-set. A message say (m,.t;) is delivered to an entity
only if the entity has received some message timestamped ¢; or greater from every entity in its
source-set. As long as every cycle of entities in the model has at least one lookahead process,
progress is guaranteed[Mis86]. The basic scheme outlined above may perform poorly for many
applications. However, as discussed in [Fuj88], the performance can be improved if lookahead for
the various entities is exploited aggressively, In a Maisie program, lookahead for an entity may
often be extracted transparently: if the mset of a suspended entity only contains timeout messages,
the wait-time specified in the most recent wait statement represents its lookahead and may be used
to advance its simulation clock even in the absence of a message from all members of its source-set.

For some entities, it may be possible to extract the lookahead only using application-specific
information. For instance, as described in [Nic88] and [LL90], presampling of random numbers may
be used to generate lookahead for a fifo server as also for a priority server. Every Maisie entity
includes a compiler-defined local variable called lookahead. When an entity schedules a definite
future event, the runtime system automatically updates this variable to reflect the lookahead time
for the entity. In addition, an entity may explicitly compute its lookahead and store it in this
variable before executing a wait statement. The control graph model described in [CS89c] uses
a similar feature to permit automatic extraction of lookahead. Figure 13 illustrates lookahead
computation for a priority server. When the server is idle, its lookahead is the minimum of the
presampled service time for the next request (represented by variable htime and [time for high
and low messages respectively). When serving a low message, its lookahead is the minimum of the
remaining service time for the request (rtime) and the presampled service time (htime) for any
high message that may interrupt it. By setting {time=MANINT when servicing a low message
and rtime=MAXINT when the server is idle. its lookahead in the preceding two cases is simply
the minimum of htime, Itime, and rtime as shown in the figure (line 12). The server uses a hold
statement to service a high message, where its lookahead can be computed automatically by the
runtime system (line 20).

7 Implementation Issues

Maisie has been implemented on both sequential and parallel architectures. The current imple-
mentation does not support rankers or compound resume statements. Implementation of these
constructs is in progress. The remainder of this section discusses the implementation of wait state-
ments whose efficiency has a significant impact on the execution efficiency of Maisie programs.
The Maisie wait statement allows an entity to accept a message from its buffer, only when it
satisfies the guard in some resume condition. This implies that a sequential Maisie model is executed
using an interrogative simulation algorithm where a message is delivered to an entity only when it
is ready to accept it. In contrast, an imperative algorithm will deliver a message at the simulation
time specified by the message timestamp; if the entity is not ready to process the message, it must
be buffered internally. As discussed in the previous sections, the Maisie wait statements allow
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entity server { hmean, Imean }
int hmean, lmean;

1
2
3
4 message high { ename hisid; } ;
5 message low { ename hisid; } ;
6 ename hjobid, ljobid:

7 int rtime, htime, ftime, otime, busy=0;
8 htime=expon{ hmean);

9 {time=ezpon(lmean);

10 rtime=MAXINT;

11 for(;;)

12 { lookahead=MIN{htime, ltime, rtime);
13 if( busy)

14 otime=rtime + sclock();

15 walit rtime until

16 { mtype(high)

17 { if( busy)

18 rtime=otime — sclock(});
19 hjobid=msg.high hisid;

20 hold( htime);

21 htime=ezpon( hmean);

22 invoke hjobid with done; }
23 or mtype(low) st(!busy)

24 { busy=1; ljobid=msg.low.hisid;
25 rtime={time;

26 ltime=MAXINT }

27 or mtype(timeout)

28 { busy=0; rtime=MAXINT;
29 invoke ljobid with done;
30 ltime=ezpon(lmean); }

31 }

32 }

33}

Figure 13: A Priority Server with Lookahead
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an analyst to express the enabling condition for an event directly, which facilitates the design of
concise programs and can significantly reduce model development time. Also, the wait statement
is useful in reducing simulation overheads in parallel execution of Maisie models: as discussed
previously, it may be used to separate some definite events from conditional events and may also
be used to identify a variety of artificial rollbacks. However, in general, event management with
an interrogative algorithm may not be as efficient as with an imperative algorithm. The primary
source of inefficiency in the former is the cost of selecting the next message for delivery to the entity
(which is not necessarily the message with the earliest timestamp). In this section, we examine
the factors that contribute to this cost and discuss techniques to reduce their effect on the overall
efficiency of the implementation.

For every wait statement executed in an entity, we define a metric called lbuffer, where lbuffer
is the number of messages that must be inspected from its message buffer before some enabling
message is selected for delivery to the entity. For an imperative algorithm, the lbuffer is at most 1,
because the selected message is simply the message at the head of its buffer. For the interrogative
algorithm, in general, the upper bound on lbuffer cannot be defined as tightly. However, if every
resume condition in a wait statement references a single message type and has a local guard, the
interrogative algorithm can be implemented almost as efficiently as the imperative algorithm. In
this case, the mset of a suspended entity is completely specified by a few message types: a message
of type m; belongs to the mset only if the most recent wait statement executed by the entity
included a message type m, with a frue guard. As most entities define a small number of message
types (almost never exceeding 30), the mset may be stored as a single word bit mask: each bit
represents a unique message tyvpe and is set to 1 if and only if the corresponding type belongs to the
current msef. The mset is stored outside the data-space of the entity. Furthermore, the message
buffer of an entity is implemented as a number of separate lists, where each list contains messages
of a unique type that are ordered by their timestamps (or alternately by the ranker). Messages
in different lists are also linked in the order of their timestamps. This implies that the time to
identify the earliest enabling message has a tight upper bound given by the number of message
types defined for the entity. In many cases. the lbuffer may be exactly 1 in particular, if the wait
statement executed by an entity does not restrict the messages that may be received by it, which
corresponds approximately to using the imperative algorithm, the [buffer for the entity would be
at most 1. With a naive implementation, this time may instead be proportional to the number of
messages in the entity’s buffer, which varies dramatically.

If a resume condition references message parameters, the mset of an entity can no longer be
specified by message type alone. If the guard for message type m, references a message parameter,
the guard must be evaluated for successive m; messages from the buffer until some enabling message
(not necessarily of type my) is identified or it is determined that no resume condition is enabled.
This implies that, in general, the time to identify an enabling message is now bound by the number
of messages of type m; in the buffer. A simple monitoring facility is attached to each wait statement
to track its lbuffer (average, maximum, median etc.). If the [buffer for such a wait statement is
found to be large, it may be more efficient to refine the corresponding resume condition such that
the messages are buffered internally and can be searched efficiently by the programmer. The built-
in monitoring facility can be used to determine if the elaboration is likely to yield any benefit, As
the code for internal buffering and its efficient searching can be reasonably complex, it is desirable
to postpone this refinement until appropriate information about its possible impact is available.

If an entity includes a wait statement with a compound resume condition, it is transformed to
an entity with simple resume conditions such that every incoming message is buffered internally in
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the entity. Compound resume conditions are effectively translated into equivalent “if” statements
with compound boolean expressions that check if the set of messages needed to enable a resume
condition have been received. This implementation has the benefit that buffer management routines
that were used for simple resume conditions can continue to be used. Its primary drawback is that
because a message is now accepted by the entity before it is actually processed, opportunities to
optimize artificial rollbacks may be missed. Note that the lbuffer of the entity is still computed on

the basis of the number of messages that are inspected before some resume condition is found to
be enabled.

Example We present the results of an experimental study to illustrate the relationship between
the time to execute a (sequential) simulation model and the average value of its lbuffer. Consider the
resource manager model of Section 3. where the manager is initialized with 10 units of the resource,
and each preg message requests n units, where n is uniformly distributed in the interval [1,10]. We
use three different models of the manager entity: Model 1 is as described in Figure 2, where
the resume condition references a message parameter and finding an enabling message requires
inspection of individual pre¢ messages in the buffer. In the second model, the resume condition
is simplified by removing the guard; if an incoming request cannot be satisfied by the manager
it is stored explicitly in an internal buffer that is implemented as a linked-list using the dynamic
memory allocation routines provided by C. The third model is similar to the second model except
that the internal queue is implemented using arrays (which requires a priori knowledge of the upper
bound on the number of buffered requests).

Number resume condition resuime condition
of with guard without guard
job Model 1 Execution || Model 2 | Model 3
entities || Average | Messages time
lbuffer | inspected (sec)
1 1 4,000 0.77 0.77 0.77
10 6.383 255,335 9.03 0.48 8.43
20 13.29 | 1,063,252 19.97 18.72 17.64
30 20.20 | 2,433.502 36.12 30.67 27.65

Figure 14: Effect of lbuffer on execution time

Figure 14 shows the execution time for each of the three models as the number of job entities
is increased from 1 to 30, where each job entity generates 2000 requests. For these experiments.
the completion time were measured on a SUN Sparc/IPC workstation. As expected, the execution
time for the first model increases with the lbuffer because of the additional time required to identify
an enabling message. Furthermore, the refined models (that do internal buffering), do not have a
significant performance gain for configurations with a small value of lbuffer, but can be upto 25%
faster as the average [buffer increases to 20. This supports our contention that resume conditions
with local guards do not incur a performance penalty and that refinements of resume conditions
with non-local guards are desirable only of the average lbuffer is expected to be large. Note that for
models with a small average value of lbuffer, the performance of the linked-list implementation is
worse than that of Model 1 due to the overheads of calls to the C malloc() and free() routines; how-
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ever as the average value of lbuffer increases, the search on the internal queue can be implemented
more efficiently resulting in overall performance improvements.

8 Conclusion

Simulations are typically large and complex programs and the design and validation of parallel
simulations is particularly hard. This paper described a language called Maisie to support the
design of parallel simulations by iterative refinements of a model, where the refinements are used
primarily to improve the execution efficiency of the model. Innovative features of Maisie include the
ability of an entity to inspect specific messages from its message buffer and the use of compound
resume conditions. These constructs allow an entity to remove a message from its buffer only
when the entity is ready to process the message. Appropriate use of the wait statement leads to
succinct programs and reduces program development time. Maisie also provides a library facility
that contains descriptions of standard server and statistics collection objects.

Monitoring facilities may be transparently attached to an entity to track the cost of evaluating
each resume condition in a wait statement. This is another innovative feature of the language
that allows a programmer to selectively refine certain parts of the model to improve its efficiency.
The initial program is executed using a sequential simulation algorithm and may be tested on a
workstation or PC. If the completion time of the sequential simulation is not acceptable, it may be
refined for parallel execution,

The initial transformation of a Maisie model to a parallel implementation simply allocates
Maisie processes among available processors. At this stage, the simulationist need not be con-
cerned with the specific simulation algorithm that is used to execute the program on the parallel
architecture, Maisie is among the few languages that allow a model to be executed using either
conservative or optimistic algorithms. After identifving the most suitable simulation algorithm,
the final refinements to the model are dictated by the specific nature of the simulation algorithm.
These refinements use application and algorithm specific information to reduce the completion time
for the simulation program. An optimistic implementation attempts to reduce rollbacks by using
state correction techniques or identifying probe messages, and reduce state saving overheads by
identifying dead states. A conservative implementation reduces synchronization overheads by dis-
tinguishing between definite and conditional events, and by aggressively exploiting the lookahead in
an application. To the best of our knowledge, Maisie is the only language that supports optimiza-
tions to reduce the overhead of both conservative and optimistic execution of parallel discrete-event
simulation models. The paper also presented a brief summary of the measurements on the effec-
tiveness of some of the optimizations in reducing the completion time for the simulation of a simple
queueing network.
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A Maisie Syntax

The Maisie syntax is an extension of the C programming language grammar described in [KR88]. In
the following description, undefined symbols have the same specification as in [KR88] and optional
symbols are subscripted with ,,; or enclosed in | ]Opt. For brevity, the description does not include
the syntax for the optimization constructs discussed in section 5.

maiste-program.

transiation-unit
translation-unit:

ezternal-declaration

translation-unit external-declaration
external-declaration:

declaration

function-definition

entily-definition
declaration:

declartion-specifiers inil-declarator-list,n, 3
declaration-specifiers:

type-specifier declaration-specifiers,y,

storage-class-specifier declaration-specifiers,y,

type-qualifier declaration-specifiersyp,
type-specifier:

Maisie-lype-specifier

C-type-specifier
maiste-lype-specifier;

ename

clocktype

message-specifier
message-specifier:

probe,,: message ident [{ struct-declaration-list }}
entity-definilion.

entity enitiy-declaralor compound-stalement

extern entity ident
entity-declarator:

ident { ident-list,,, } declaration-listyp,
new-statement:

[unary-ezpr =]
invoke-stalement:

invoke ezpr with ident = expr

invoke ezpr with ident { argument-expr-list,p, }
hold-statement:

hold ( ezpr)
wait-statement:

wait erprp {until resume-compound-statement]
resume-compound-statement:

resume-statement

{ declaration-list,,, resume-statement-list }
resume-statement-list:

[resume-statemeni-list ox],,, resume-statement
resume-siatement:

resume-condition statement

opt

. new ident { argument-expr-listyy: } [at ezpri

op opt

opt
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resume-condition:

[resume-condition and]
ranker:

max tdent

min ident
trace-statement:

trace erpr [when ezpr]

(ident =],,, mtype ( ident) [st ( expr)] rankergp;

opt opt

opt

35



