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Abstract

The complexity of next-generation VLSI systems exceeds the algorithmic capabilities of top-down
layout synthesis tools, particularly in netlist partitioning and module placement. Thus, a bottom-up
clastering phase is needed to “condense” the netlist so that the problem size becomes tractable to
existing optimization methods, Previous ad hoc clustering methods fall into the classes of global and
local methods. The former are too expensive to allow application to large problems, while the latter are
too “blind” to yield effective results.

In this paper, we use the notion of intrinsic circuit structure [18] to establish the DS quality measure,
which provides the first general metric for objective evaluation of clustering algorithms. The DS metric
is motivated by a thearetical relationship between the difficully of cutting a natural cluster and the
number of distinci paths between two nodes in that cluster. This derivation in turn motivates our
RW-ST algorithm, which is a new self-tuning clustering method based o random wakks in the circuit
netlist. The RW-ST method is highly efficient, and can be shown to quickly capture an implicitly global
circuit clustering.

We evaluate the RW-ST algorithm in two ways: (i) by the quality of clusters as measured by the DS
metric, and (i) by its “real-world” effect in enhancing the solution quality of the Fiduccia-Mattheyses
top-down partitioning approach. Extensive experimental results were conducted using both MCNC
benchmark circuits and the class of random inputs defined by [13]. Using either criterion, our results
are markedly better than those of all previous methods, including those of Bui et al. [2] [3], Cong et al.
[6], and Garbers et al. {13]. Specifically, we have achieved the following results: (i) our methodology
finds natural circuit clusters {e.g., optimal solutions to the difficult examples of [13]) without requiring
a priori specification of larget cluster sizes, number of clusters, or any other parameters; (ii) the guality
of our results improves sinoothly with the resources available to the random walk, and moreover the
clustering operation is self-tuning with respect to the length of the walk; (i) average cluster quality
as measured by the DS metric is very high (neither the method of [6] nor the method of [2] [3] give
results comparable to the RW-ST results); and (iv) when incorporated within a two-phase iterative
Fiduccia-Mattheyses partitioning implementation as suggested by [3], the RW-ST clustering improves
bisection width by an average of 17% and is significantly better than the matching-based clusters of [2]

(3].
1 Introduction

Top-down approaches are widely used to cope with increasing problem complexity in layout synthesis.
Recursive calls to a partitioning algorithm generate a circuit hierarchy which subsequently guides the
placement/routing phases of layout. The partitioning process essentially tries to uncover natural circudl

structure, i.e., a hierarchy of subcircuits which minimizes the connectivity between subcircuits. As surveyed
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by Donath [10] and Lengauer (25], typical partitioning objectives such as minimum-width bisection [29] and
minimum ratio cut [35] are NP-complete and require such heuristics as simulated annealing [30], greedy
k-opt interchange [23], or quadratic optimization (via relaxation [5] [34] or spectral [16] methods). Our
work addresses the impending failure, when faced with million-gate designs, of the partitioning algorithms

used in top-down layout approaches. This failure will occur for several reasons:

1. Scaling and instability. The solution quality of iterative algorithms (particularly Kernighan-Lin
variants and simulated annealing) becomes less predictable and does not scale with problem size [25};
this reflects the so-called “error catastrophe™ of local search methods, i.e., that most local optima tend
to be of only average quality [22]. To compensate for this instability, practical implementations must
use multiple trials with random starting points, e.g., the recent work of Wei and Cheng [35] achieves
stability by returning the best of 10 or 20 vandom runs, and Johnson et al. [20] suggest that 500 is
an appropriate number of trials for Kernighan-Lin k-opt bisection of graphs with vertex cardinality

n = 10%.

2. Complexity. Actual infeasibility of current methedologies for large instances becomes a funda-
mental obstacle. Already, problem instances of several millions of modules (gates) are typical with
system-level partitioning onto multiple FPGAs or other ASICs. For this level of complexity, both
simulated annealing and relaxation methods for quadratic optimization have infeasible time/space
requirements.. We note that large-scale system partitioning applications occur in all phases of CAD
(partitioning for testahility, mapping to hardware emulation and simulation engines, etc.), so that
both the infeasibility of current methods and the utility of our proposed approach below will apply

in many areas other than physical layout.

3 Unnatural formulations. Standard approaches compute a heuristic S-way partitioning for a pre-
scribed value of S. As abserved by Wei and Cheng [36], use of an inappropriate value of 5 will prevent
identification of “natural” divisions which might be more readily discovered by bottom-up analysis.
However, the proper value of S cannot be known a priori, since this in effect requires prior knowledge

of the circuit structure.

Given these difficulties, a bottom-up clustering approach is used to enable successful top-down parti-
tioning by condensing the circuit netlist into clusters and reducing problem size, The clustering approach

is attractive bhecause it is “safe”, i.e.. it avoids making the far-reaching decisions that are inherent in a

18udies of typical simulated annealing implementations (e.g., recent Timberwolf releases) show that at least Hntl?)
moves must be generated at each temperature in order to achieve the equilibrium condition [30] {33]; this equilibration must
occur for hundreds of temperatures. With problem sizes now approaching n = 10° modules, this algorithmic complexity is
impractical. Similar analysis can be performed for the time/space requirements of, e.g., the spectral computations of [16] or
such relaxation-based quadratic optimization methaods as [5] [32]; these methods must store and manipulate the adjacency
matrix of the netlist and are clearly infeasible for very large n even when sparse-matrix techniques are used.



a cluster). While density-based clustering is cited in [13] as a folklore method, it entails checking all module
subsets of cardinality ¢, which is impractical. Hence, the closely related concept of (k,[)-connectivity was

recently proposed by Garbers et al. [13] for use in circuit clustering.

A Global Approach: (k,[)-Connectivity. If there are k edge-disjoint paths of length { between modules
u and v, then w and v are said to be (k, {)-connected; [13] showed that for certain highly structured classes
of random inputs, the transitive closure of the (k, {)-connectedness relation gives an equivalent clustering to
that induced by the edge density criterion. Indeed, on some instances of a class of random inputs and for
a highly structured standard-cell benchmark, the (k,{)-connectivity criterion yields reasonable solutions.
However, the method suffers from several main weaknesses, First, (k.l)-connectivity may yield nonintuitive
results: modules v; and v; can belong to a cluster even when no module on any path between v; and v;
belongs to the cluster {e.g., a cycle of length four through modules 4. B, C' and D will be broken into an
(A, C) cluster and a (B, D) cluster by the (2, 2)-connectivity criterion; this solution has twice the cutsize
of the more natural (A, B)(C, D) clustering). Second, the values of & and { which allow extraction of the
“correct” clustering must be determined experimentally for each circuit netlist, and this determination is
not easy, as shown by the results obtained in [13]. Third, although determining (k, /)-connectivity appears
to be a more global and algorithmically tractable criterion than edge density, it actually entails solving an
NP-complete problem for { > 5, with NP-completeness of the case [ = 4 still an open question [19]. For
small values of { < 3, the global nature of the (&, {)-connectivity algorithm becomes less clear. Again, this
is reflected by the results of [13], which we reproduce for comparison in Section 4: the (k,!)-connectivity
computation was feasible only for I = 2 and could not easily discern the strongly clustered structure of the

inputs.

Other Clustering Methods. Three other methods should be noted. The epitaxial growth or “direct”
method [10] iteratively adds the most closely connected unclustered module to the current cluster. This
method is highly local, and depends on heuristic choices of cluster seeds, the number of clusters, the tie-
breaking rules, etc.? The global “top-down clustering” method of [36] is essentially equivalent to top-down
recursive application of the ratio cut partitioning approach given in [35]. We do not consider it to be a
bona-fide clustering algorithm because it assumes heuristic partitioning can be performed on the flat netlist,
and our premise is that if such is possible, clustering is not needed. Finally. (6] gave a global method which,

like the present work, is based on a random walk in the netlist.

4 A3 a top-down partitioning method, seeded epitaxial growth has been discarded in favor of min-cut or other approaches
[25]; it is not clear that the methed will somehow perform better for large S than small 5,



top-down approach.? Moreover, while clustering will restrict the partitioning solution space, some work in-
dicates that this actually improves the results of iterative partitioning methods via a two-phase application
of Kernighan-Lin optimization [2] [3] [25] (we examine this issue more closely in Section 4). Nevertheless,
in practice clustering is avoided because of inherent weaknesses in current bottoni-up algorithms, namely,
that grouping decisions are based only on local criteria such as the number of connections to modules in
an existing cluster. While this locality is needed to maintain reasonable algorithm complexity, it may lead
to unfortunate grouping decisions. Thus. top-down partitioning, while il remains iractable, remains the
preferred method of decomposing a given layout problem. The goal of clustering is then to reduce problem

size while deferring far-reaching decisions until well-considered top-down optimizations become feasible.

1.1 Previous Work

Previous work in circuit clustering ranges from highly local to highly global approaches. Generally speaking,
local approaches are more efficient but can result in unnatural groupings of modules. On the other hand,
global approaches give potentially more useful and “natural” results, but may require prohibitive amounts
of computation. For our discussion, two particularly relevant approaches are respectively due to Bui et al.

[2] [3] and to Garbers et al. [13].

A Local Approach: Matching-Based Compaction. In [2] (3], Bui et al. proposed a two-phase
matching based compaction strategy. With this approach, the modules pairs of a maximal random matching
in the netlist graph are used to induce a compacted partitioning instance on n/2 vertices which correspond
to the matching edges. A heuristic Kernighan-Lin partitioning of this compacted netlist is found and then
re-expanded into an initial “flat” starting configuration for a second Kernighan-Lin phase. The approach
may be iterated, with matching performed recursively on the compacted netlist until the problem size
becomes manageable [3]. The heuristic justification for this approach [2] [3] is that the Kernighan-Lin
k-opt method yields significantly better results when the graph topology is sufficiently dense, i.e., has large

average degree.?

The approach of [2] [3] in effect performs clustering by finding cliques of size 2, i.e., the matching edges.
We may generalize compaction into a more global approach by finding e-cliques for ¢ > 2. Even muore
generally, we could find netlist subgraphs that have size ¢ and a prescribed density (e.g., if more than

¢-C(e¢, 2) edges are present among ¢ modules in the nethist, then the ¢ modules would be considered to form

2Top-down partitioning makes carly, permaneat decisions of form, “keep modules My, ..., My, forever on the opposite
half of the chip from modules M, o4y, Mn7. As problem sizes become large, such decisions must be made in increasingly
ad Liac ways, with higher likelihood of a harmful decision. While the bottom-up clustering approach also makes permanent
decisions, they are of form “always keep maodules My, ..., M, positioned close together”, and are less far-reaching than those
of top-down partitioning, since & << n.

3Buj et al. claim that compacting until average degree in the netlist is > 3 suffices for K-L to become essentially opti-
mal. Lengauer (25] and the authors of [2] conjecture that this is becanse there are fewer local minima in the k-interchange
neighborhood structure when the netlist graph has higher average degree.



1.2 Organization of Paper

The remainder of this paper is organized as follows. In Section 2, we describe the notion of a natural circuit
decomposition and its intuitive motivation of the DS quality measure, which we propose as a general tool
for objective evaluation of clustering heuristics, The analysis which leads to the DS quality measure also
leads directly to the new clustering approach given in Section 3: we infer graph structure from the sequence
of modules generated as we iteratively move to a random adjacent module in the netlist. Theoretical results
bound the required length of the random walk. Section 3 also develops a practical clustering algorithm for
netlist hypergraphs, and Section 4 gives experimental results for both the random input classes of Garbers
et al. [13] as well as a number of MCNC benchmark netlists. We measure the utility of our method by
DS quality of the clusters, as well as the improvement to partitioning algorithms that is afforded by the
“condensed”, clustered netlist. Our algorithm outperforms all the previous work of [2] [6] [13], and moreover
enjoys such attractive features as stability and perfect parallelizability. The paper concludes in Section 5

with several directions for future research.

2 A Proper Clustering Metric

Qur primary goal is to find an efficient clustering algorithm which is effective in the sense of losing as little
structural information as possible. To this end, we first develop a robust measure of netlist structure, which
we call the DS gqualily measure, and which gives an objective metric for distinguishing good clustering
decompositions and clustering algorithms. We begin the discussion by establishing a criterion for natural,
or inirinsic, hierarchical decompositions of a circuit netlist. We then list several theoretical implications of

this criterion which provided the heuristic motivation for cur development of the DS quality measure.

2.1 On Natural Structure and Separation in the Netlist

Bottom-up clustering, just as with top-down partitioning, entails decomposition of the netlist modules into
S disjoint subsets. The quality of a decomposition algorithm is traditionally measured by the number of
nets cut by a 2-way partition of some benchmark circuit [25]. However, such a measurement does not
capture the integral role played by the partitioning algorithn in the complete layout synthesis process via
its recursive (top-down) application. It is the overall hierarchical decomposition, rather than just a single
partition at any given level, which has direct hearing on final layout quality. Thus, we wish to find a

decomposition algorithm that generates the best fierarchy of subcircuits.®> To this end, we follow recent

3While a bottom-up picture of circuit hierarchy is not usual, it is appropriate because in practice we must apply clustering
hierarchically to achieve desired reductionsin problem size. For example, spectrai approachesin [17] break down at n = 25000,
and application of such algorithms would require average cluster size of 40 if we start with a millicn-node netlist. With, e.g.,
the iterative matching-based compaction of Bui et al. [3]. this would imply at least five or six levels in the clustering hierarchy.



work [18] and use the Rent parameter, a well-established quality measure for layout hierarchies, as a quality

measure for the top-down or bottom-up decomposition afgorithms that yield these hierarchies.

The so-called Rent’s rule is an empirical relation observed in “good” layouts: it reflects a power-law
scaling of the number of external terminals of a given subcircuit with the number of modules in the
subcircuit. Specifically, 7' = b-C?, where T is the average number of external terminals (pins) in a subcircuit
or partition (note that this is exactly what the net cut metric in S-way partitioning will measure!); b 15 a
scaling constant which empirically corresponds to the average number of terminals per module; C is the
number of modules in the subcircuit (or partition); and p, with 0 < p < 1, is the Rent parameter of the

decomposition.®

The Rent parameter has been studied extensively in the field of area estimation, where it affords accurate
predictions of the layout wiring requirements for a given partitioning hierarchy. Donath [9} and Feuer [11]
showed that a lower Rent parameter will result in lower average wire length. which in turn generally
implies smaller wiring area and less congestion in the layout. The authors of [18] proposed the notion of an
intrinsic Rent parameter, denoted by p™, which is the munamum Rent parameter attained over all hierarchical
decompositions of a given circuit. By the results of Donath, Feuer and others, this lower bound gives a
measure of the required layout area, independent of layout strategy; moreover, it affords a new methodology
for comparing the utility of decomposition algorithms, independent of possible differences between the
algorithms’ individual ohjective functions. Using this approach, [18] showed that spectral partitioning
algorithms which optimize the ratio cut metric [35] based on eigenvectors of the discrete Laplacian of the
netlist graph? yield circuit hierarchies with much lower Rent parameters than traditional iterative methods
such as the Fiduccia-Mattheyses k-opt approach [12]. Moreover, with each test case for which the intrinsic
Rent parameter is known (e.g., the 2-D mesh with p > 1/2), the spectra-based ratio cut decomposition
hierarchy had Rent parameter essentially identical to this theoretical lower bound. In other words, the
spectral ratio cut approach was found to be in some sense an intrinsically good partitioning strategy. This

correspondence may be formalized:

Fact 1: [17] The second smallest eigenvalue A of the discrete Laplacian gives a tight lower bound for

8 This relation was first observed by E. F. Rent of IBM in the late 1960s and independently by several others, e.g., Donath
[8] derived the same relation from a stochastic model of a hierarchical design pracess. Following Mandelbrot [26], one may
view Rent’s rule as a dimensionality relationship between pinout of a module and the number of gates in the module, This is
in some sense a surface area to volume relationship where, for example, “intrinsically 2-dimensional” circuits such as memory
arrays, PLAs, or meshes will have optimal layouts with p = 1/2.

TThe circuit netlist may be represented by the simple undirected graph G = (V. £) with V] = n vertices ¥y,...,uvn. Often,
we use the n x n adjacency matriz A = 4(F), where 4,; = 1 if {v,,v;} € Eand 4;; =0 otherwise. If & has weighted edges,
then A;j is equal to the weight of {v,.v,} € E, and by convention A;; = 0forall i = 1,...,n. If we let d(v;) denote the degree

of node ; (i.e., the sum of the weights of all edges incident to v;), we obtain the n X n diagonal degree matriz D defined
by Di; = d{v;). The eigenvalues and eigenvectors of such mat rices are the subject of the relatively recent subfield of graph
theory dealing with greph spectra; in particular, the discrete Laplacian of the graph, @ = D — A, has been well studied [27]
[31]. The spectral method in [16] computes the cigenvector corresponding to the secand-smallest eigenvalue of the Laplacian
Q@ = D — A (also known as the spectraf gap, since the smallest eigenvalue of @ is zero), and successfully uses it to induce a
heuristic partition.



minimurn ratio cut cost: % > 2 where n is the number of modules in the netlist and e(U, W) is the

n't

net cut of the (U, W) module partition,

from which the authors of [18] derive a strong relationship between A and the intrinsic Rent parameter P

B
Fact 2: 2 = k[z"(n—2")] 7 !
where £ and n — ¢ are the respective sizes of the optimal ratio partition. For our purposes, we need the

following corollary of these results:

Fact 3: A Jarger X value implies that the underlying graph is not easily separated, i.e., its optimal ratio

cut cost is high.

Fact 3 gives a criterion for natural decomposability of a given {(sub)circuit: any decomposition of a graph
that has large A value will cut a number of nets; similarly, when the graph has small A value the subcircuit

naturally admits further decomposition.

As noted in [18], these observations may be used to establish a relationship between the optimum
hierarchy of subcircuits and the A values of the discrete Laplacians of the subeircuits in this hierarchy.
Our work heuristically exploits this relationship to achieve a bottom-up (hierarchical) clustering. We note
that the theoretical correspondence between A and cluster quality does not afford an efficient clustering
algorithm: examining all subsets of ¢ nodes in a netlist, computing the second eigenvalue of the induced
subgraph for each node set, selecting the best cluster, ete. is impractical. Also, while Hagen et al. [18] used
the theory of intrinsic Rent parameters to show the utility of top-down spectral ratio cut partiticning, our
premise is that such an algorithm cannot be applied in a top-down fashion due to problem size. Thus, the
theory of intrinsically good decompositions {18] yields neither an efficient clustering algorithm nor even an

efficient means of assessing the quality of a cluster.

The key contribution of the present work lies in bringing together disparate results from graph theory
and the theory of Markov processes in arder to motivate a more useful measure of cluster quality, which
we call the DS gquality measure. The DS measure moreover directly suggests the possibility of an efficient

random-walk based algorithm that is capable of discerning natural circuit clusters.

2.2 The DS Quality Measure

The DS metric is motivated by the following question: given a graph G = (V, £), how easy is it to separate
two nodes s, ¢ € V7 Observe that (i) if s and ¢ are hard to separate, then there must be more s-¢ paths
and it is more likely that s and ¢ belong to the same natural cluster; (ii) conversely, if s and t are easy

to separate, then there must be fewer s-f paths and s and ¢ probably do not belong to the same natural



clusier.®

We have found that the weighted average of the cluster degree / separation (DS) is a robust quality
measure: (1) cluster degree is the average number of nets incident to each module of the cluster and having
at least two pins in the cluster; and (ii) cluster separation is the average length of a shortest path between
two nodes in the cluster, with separation o¢ if two nodes in the cluster are disconnected. Preliminary
experiments indicate that the DS quality measure is highly robust; moreover, it is asymptotically easier to

evaluate than, e.g., such metrics as -1 connectivity.

We calculate the DS quality of a clustering as the weighted average of the DS quality of each cluster,
with a cluster containing a single node having DS quality equal to zero. The DS qualities of several different
clusterings for the same eight-node graph are shown in Figure 1.* The intuition behind maximizing the DS
quality is that we wish to find a decomposition of the graph such that nodes will on averege have the highest

possible degree and the shortest possible separation from the other nodes in their respective clusters. !°

The DS quality suggests that the goal of a clustering algorithm should entail finding the neighborhood
structure of a node v and comparing it with the neighborhood structure of other nodes to determine which
nodes should be clustered with ¢. ‘This notion of recognizing a node’s neighborhood structure motivates

our random walk based clustering algorithm.

3 Random Walks Yield Circuit Clusters

We now present our new RW-ST methodology, which computes a circuit clustering based on a random walk
in the netlist graph. A random walk is a discrete-time stochastic process which iteratively moves from the

current module (vertex) to a random adjacent module, with all adjacencies equiprobable.!*

It is instructive to consider the progress of a random walk on the “barbell” example of Figure 2, which
consists of two cliques joined by a chain. With some thought, a number of standard probabilistic results

(cf. [4] [21]) are clear: (i) if we start at 2, then all nodes in cluster A will be visited, i.e., “covered”, within

8 Relationships between the multiplicity of paths hetween nodes of a graph ("combinatorial entropy”) and the second
eigenvalue ) of the discrete Laplacian @ have been established by, e.g.. Sinclair and Jerrum {31] in the study of Markov
processes that arise in simulated annealing. Also, recall that the spectral gap, i.e., the size of A, is inversely related to the
decomposability of the cluster. Leighton and Rao [24] give an analysis of “flux cuts” (which are the same as ratio cuts})
and multicommodity flows, showing that the connectedness of a cluster is, not surprisingly, ciosely related to the average
multiplicity of paths between nodes of the cluster.

9For example, each cluster in the 2-clustering has average node degree = 10/4, and average separation = 14/12.

10We give clusters containing a single node a DS measure of zero to ensure that a clustering where each cluster contains
only one node does not have DS measure higher than the DS measure of the original circuit. Defining the DS measure of
a single-node cluster to be zero may actually be somewhat harsh ta a “conservative” method such as our RW-ST algorithm
below, which hesitates to commit modules to clusters. However, our results indicate that even with this handicap the random
walk clusterings have considerably better DS measures than the DS measures of the complete netlists.

11 Previous work in [6] uses a complicated weighting scheme for transition probabilities in the random walk. Our investigations
have led to the somewhat surprising conclusion that an unweighted walk actually leads to better results; a side benefit is that
the unweighted walk is also more tractable to existing analytic techniques.
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Figure 1: DS quality of various clusterings of the same graph.

O{n log n) steps; (i} the walk is not expected to escape to the middle chain until Q(n?) steps have been
taken. If we remove the left clique A from the picture, then (i) starting from y it will require Q(n?) steps
before z is visited, but (iv) if we start at z, then Q(n3) steps will elapse before y is visited (since every time

we return to z, the walk will wander around cluster B before again escaping to the chain).

Figure 2: “Barbell” of two n/3-cliques joined by a chain of size n/3.

Define the cover time of (& as the maximum. over all possible starting vertices, of the expected length of

a random walk that visits all vertices in G. The following result shows that a random walk will with high

probability manage to explore the netlist structure in a small number of steps.t®

12By the discussion of the previous section, we know that the second eigenvalue of the discrete Laplacian, A, captures the
intrinsic graph structure. It turns cut that \ alse captures the cover time of random walks in the graph; cf. Gobel and Jagers
[15] and the elegant resistive network analysis of Chandra et al. [4]. Thus, the intuitive motivation behind our methodology is



Fact 4:  There is an O(n?) upper bound on the cover time of a random walk in a d-regular or nearly
d-regular graph of n nodes; there is also an Q(n log n) lower bound on the cover time of this class of graphs;

and there exist examples which show that both bounds are tight. [21] 0l

Other authors [7] have shown that the O(n?) upper bound also holds for cover times of d-bounded
graphs. We note that these results apply immediately to netlists of cell-based designs, which are essentially
d-regular and certainly d-bounded. Therefore, we may compute a single random walk of length ©(n?) in

the netlist graph, and expect to sample the entire netlist graph.'®

We propose a method for extracting clusters from the random walk via the following concept of a cycle.
Consider the sequence of nodes encountered during the random walk, A cycle is a contiguous subsequence
{vp,Ups1,.. -, g} in the walk with v, = vy and all v; distinet, i =p,p+1,...,¢— 1. The set of modules in
each cycle should correspond to (part of) a natural cluster because if there is a more tightly coupled node
subset of the cycle, then the random walk will recur (i.e., complete a smaller cycle) within that subset and
we would not have found the original cycle. This is shown intuitively in Figure 3, where the y-y portion
of the walk does not delimit a natural cluster since it contains a denser z-2 cycle; the z-2 cycle does not

contain any denser portion, so we say that it is a bona fide cluster,

//‘—\\

cerZeiee Ve X X eaa Y 2,

Figure 3: Progress of a random walk through areas with different edge
density.

We have designed a linear-fume algorithm for identifying all of the cycles in a random walk. This

algorithm is given in Figure 4.

that the covering and “recurrence” properties of random walks might correspondingly capture the intrinsic netlist structure.

1314 is interesting to consider related theoretical results of Gerl [14], of Mohar [28], and of Broder and Karlin [1], who show
O(n log n) upper bounds on the cover time of the isoperimetric and d-regular expander graph classes. Such graph classes have
some similarities to real, hierarchical circuit netlists. and we do not know whether our ©®(n?) walk length can be shortened to
&(n log n).

10



Find-Cycles( RW)
Input: A sequence of nodes IW
for each node ¢
visited[i] -= FALSE
first :=1
last := |
visited{last] .= TRUE
while last < |RW|
increment last
if visited[RW {last]] = TRUE
while RW|first] # RW {last]
visited] RW{first]] := FALSE
increment first
increment first
visited| RW [last]] :== TRUE

Figure 4: Finding cycles in linear time.

In [6], a random walk was computed in the netlist, mazimal cycles C(v;) were determined for all modules
vj, and then the transitive closure of the relation ma, defined by v, 0a v if vz € Clwy) and vy € C(v,), was
used to induce a heuristic clustering. However, the experimental results of [6] fail to reflect the intuitively
“correct” circuit organization. Qur present work offers a different approach, the RW-ST algorithm, which
extracts a good heuristic clustering from the cycle information. It should be emphasized that the RW-ST

is a heuristic and that we do not vet have strong theoretical justification for its ohserved success.

The RW-ST algorithm clusters node pairs based on their sameness. The sameness of nodes u and v
reflects the commonality of the sets of nodes that are visited in cycles originating at v and at v. To calculate
the sameness, for each node v we must keep track of how often a node u occurs in some cycle originating

at v. This number is saved in the array CC (CycleCount).

Sameness(u, v)
Input: A pair of nodes u and v
Output: The sameness value Sof u, v
if (CClu)lv] = 0) or (CCv]{u] = 0)
5:=0
else
S =2 (CCu][v] + CCv][u])
for each node w in the circuit
if (w # u) and (w # v)
if CCu]{w] > CClv][w)
5= 5+ 4. CC)[w] - CCu][w]
else
S =5+ 4-CClul[w] - CCv][w]

Figure 5: Compuling sameness of two nodes.

11



Using the CC array, the sameness value for nodes u and v is calcuiated as shown in Figure 5. If both
CClu][v] and CC[v]{u] are greater than zero, i.e., eachh node oecurs at least once in the other’s cycles,
sameness is initialized to 2 - (C'C[u][v] + CC[v][u]). For each node w, the u-v sameness is increased if the
values CC[u][w] and C'C[u][v] are approximately equal; the sameness is decreased if these quantities vary
by a significant amount. To be specific, for each node w in the circuit other than nodes v and v, we add
4 . min — maxr to the sameness value, where min and mar are respectively the smaller and larger of the

two values C'C[u][w] and CC{v][w].

Note that the term 4 - min — maz measures the commonality of nodes u and v with respect to w. If
min and maz are equal, sameness is increased by 3 - min; if min is zero or if maz 15 considerably greater
than min, sameness is decreased by maz. Intuitively, this bias toward increasing the sameness affords some
leeway in how close min and maz must be i order to still have a positive impact on the sameness value;
this is because the random walk cannot guarantee to visit w and v equally often even if they look identical

to the rest of the circuit.

RW-ST(()
Input: A graph G
Output: A set of clusters €
Construct a random walk RI¥ on &
Find-Clycles( W)
for each node w in (¢
Cilu) = u
for each pair of nodes v and v in &4
S = Sameness(u, v)
ifs>0
Clu) = Clu)u Cle)

Figure G6: High-levet description of RW-ST.

As shown in Figure 6, algorithm RW-ST first finds and processes all cycles in the random walk, then
computes sameness for all node pairs, and finally clusters those node pairs with sameness greater than zero.
In some sense, the sameness computation within the random walk implicitly compares the neighborhood
structures of a given node pair. The time complexity of RW-ST is a function of the time required to process
the random walk and the time required to calculate sameness for all node pairs. As mentioned above, we
use a random walk of length O(n®) and find all cycles in the random walk in O(n?) time. Processing a cycle
of length I, requires O(l.) operations, yieiding worst-case time complexity of O(n®) to process the random
walk. However, in practice the average /. value seems to grow sublinearly in n. Calculating the sameness
of a node pair requires O(n) operations, resulting in O(n®) time to calculate sameness values for all 0O(n?)
node pairs. Since processing the random walk and calculating sameness values both have complexity O(n?),

the overall worst-case complexity of RW-ST is O(n®). RW-ST Is observed to be much faster since most
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node pairs have no cycles in common, thus eliminating the need to calculate their sameness. The space
requirements of our heuristic are O(n?} because the CC array records the cycle count for each node pair,

Sparse matrix technigues can be used to reduce the required space at the expense of added time complexity.

4 Experimental Results

We tested the RW-ST method on two very distinct classes of inputs: (i) the random clustered inputs
G Gar(M, N, Pint, Pext) studied by Garbers et al. [13], and (ii) the Primary and Test circuit netlists from
the MONC benchmark suite. Three different experiments were performed: (1) discovery of known clusters
in Ggar graphs; (2) DS measures of MCNC benchmark clusterings generated by RW-ST and the match-
ing based compaction (MBC) scheme of Bui et al. [3]; (3) wwo-phase Fiduccia-Mattheyses (FM) style

partitioning using RW-ST and MBC clusterings,

proper Garbers RW-ST (nm)? | RW-ST 10(nm)?
m | n | pnt| pext | (by DS) | (k,{) Big/Small Big/Small Big/Small
100 | 10 | 0.1 | 0.0001 10 (2.2) 9/3 10/57 10/20
100 | 10 | 0.1 | 0.0002 | 10 (2,2) 3/3 10/62 10/20
100 | 10| 0.1 {0.0003] 10 (2,2) 3/0 10/90 10/24
100 | 10 | 0.1 | 0.0004 10 (2,2) 1/0 10/88 10/27
100 | 10 0.1 0.001 10 (3.2) 9/49 10/264 10/61
100 | 10 | 0.1 | 0002 10 (3,2) 1/45 6,/881 10/242
100 ; 10 | 0.1 | 0.003 10 (3.2) 2/40 0/1000 10/427
100 10| 0.1 | vood | 1071 (3.2) 1/40 0/1000 10/527

Table 1: Comparison of random walk based clustering with (&, {)-connectivity based clustering. Randoms
walks of lengths (nm)* and 10(nm)* were examined. The results give the numbers “Big” and “Small” for
each clustering: following the presentation of Garbers et al., “Big” is defined as the number of clusters
containing more than {;n nodes, white “Small” is the number of nodes that do not belong to any “Big”
cluster.

Garbers et al. in [13] presented a class of random graphs defined as Grar (M, M, Pint, Pext), where m is
the number of clusters, n is the size of a cluster, and an edge (u, v) is independently present with probability
Pint il w and v are in the same cluster and probability p.. otherwise. We used this class of random examples
in our first set of experiiments, to determine whether RW-ST could find the “correct” graph clustering. Our
results are compared against the published statistics in [13]. The RW-ST algorithm was run on walks of
length (nm)? and 10(nm)? in order to see how walk length affected solution quality. The results of Table 1
show that RW-ST gives much wmore consistent results than (k,{)-connectivity. For walks of length 10(nm)?,
RW-ST found 10 distinct clusters for each benchmark tested. In contrast, (k,{)-connectivity found “correct”
clusterings for only two of the benchmarks, even when we allow the best results over a range of k values.

This gives experimental confirmation of the self-tuning property inherent in RW-ST.
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The “proper” field in the table indicates which of the 10-clustering or the 1-clustering {i.e., the complete
circuit) has higher DS quality. Note that for G ar(10,100,0.1,0.004) these two values are nearly identical,

i.e. this circuit no longer has an obvious clustering structure by our criterion.

Matching-Based-Compaction({/, k)
Input: A hypergraph H
Desired number of clusters &
Qutput: A set C of clusters
convert M into a simple graph G using clique model
for each node u in &
Clu) = u
while || > &
mark each cluster free
construct (7 the subgraph of G induced by C
while (|| > 0) and (|C| > &)
(w,v) := random edge in &’
G= G- (uL )
if C'(u) and C(v) are free
Cla) = Clu) U C(v)
mark C{u) not free

Figure 7: Algorithm to generate a k-way partitioning using random maxi-
mal matchings, as suggested by Bui et al.

The second set of experiments compared the RW-ST method with the matching hased compaction
(MBC) method of Bui et al. [3] by examining the D3 quality of their respective clusterings on MCNC
benchmarks. To ensure a “fair” comparison, we required the MBC clustering to have the same number of
clusters as the RW-ST clustering. The original MBC results in [3] were based on constructing a clustering by
finding a random maximal matching of the nodes. However, the number of clusters in an RW-5T clustering
will normally be much less than half the original size of the circuit. We therefore modified the original MBC
code to iteratively compute maximal random matchings, with each new matching performed on the graph
induced from the previous clustering, until the desired reduction in problem size was obtained. Figure 7

gives the pseudo-code for our implementation of MBC.t

Table 2 shows the DS quality of the RW-ST and MBC clusterings. The RW-ST clusterings uniformly
dominate the MBC clusterings in terms of DS quality. In addition, the improvement in D55 quality is greater
for larger circuits, possibly indicating that the random matching method breaks down as the problem size
increases. For the two large examples ‘Test04 and Test05, we observe improvements in DS quality of over
30%. Finally, note that the work of [6] only analyzed the Primaryl and bml henchmarks, obtaining DS

qualities of 0.922 and 0.852, respectively.

14 A pote regarding the MBC cade concerns the matter of hyperedges. In the original work of Bui et al. [2] only simple
graphs were analyzed. We transformed netlist liyperedges to cliques, thus preserving the connectivity of the original circuit
and allowing a random maximal matching to be constructed in a straight{orward fashion,
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MBC RW-ST

Benchmark | Size DS Areas Net cut DS Areas Net cut
19ks 2844 1.166 5619:5383 456 1.578 5501:5501 153
bml 842 1.189 1812:1668 94 1.221 2197:1283 39
PrimGAl 833 1.258 1719:1712 82 1.32¢ 2180:1251 37
PrimSC1 833 1.258 1377:1376 91 1.325 1701:1G52 40
PrimGA?2 3014 1.238 4187:4186 303 1.566 4464:3909 154
PrimSC2 3014 | 1.238 3877:3829 266 1.566 4079:3627 145
Test02 1663 1.231 38141:18909 75 1.593 | 37132:19918 42
Test03 1607 | 1.185 14748:7481 132 1.566 12629:9600 T4
Test04 1515 1.297 | 21105:20935 Gl 1.879 | 21055:20985 45
Test05 2595 1.275 | 62437:10161 51 1.689 | 39067:33531 10
Test06 1752 1.331 8485:8483 381 1.367 9444:7524 89

Table 2: DS qualities and Fiduccia-Mattheyses partitioning results of RW-
ST and MBC clusterings.

To further confirm the greater utility of the RW-ST clusterings over MBC clusterings, we ran Fiduccia-
Mattheyses (FM) partitioning on the resulting clustered graphs. These results are also summarized in Table
2, and we readily observe that the MBC clusterings produce very poor partitionings. This is somewhat
surprising, since random matching based clustering was reported to he an efficient way of obtaining good

initial starting points for the Kernighan-Lin approach [2] [3].

Cluster-FM{{, )

Input: A graph G and a clustering C of G

construct G* the subgraph of G induced by C

P = T'M-partition of (¥

expand P Lo be a partition of &

run FM-partition ou G with P as the initial partition

Figure 8: Two-phase FM partitioning algorithm.

Our final experiments tested the original conjecture in {2], namely, that a good clustering will improve
the solution quality of FM partitioning. For each heuristic clustering, we applied a two-phase FM algorithm
outlined in Figure 8 which in the first phase partitioned the graph indueed by the clustering, and then in
the second phase used the expanded partition from the first phase as the starting point for FM partitioning

on the “flat” circuit.

The results of this experiment are sununarized in Table 3. Note that the results presented in Tables
9 and 3 are the best of 20 trials. We compared the results from running the two-phase FM partitioning
algorithm on RW-ST and MBC clusterings against the results from running I'M partitioning on the original
circuit. Also in conformance with [3] we verified that the average degrees of the MBC clustering graphs were
all greater than three (in fact, they ranged from 8 to 15, which more than meets the criterion given by Bui

et al. [3] for the two-phase strategy to return “near-optimal” Kernighan-Lin results). In both cases there
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Standard FM MBC RW-ST

Benchmark i Size Areas Net cut Arcas Net cut Areas Net cut
19ks 2844 5501:5501 151 (1.000) 5501:5501 156 (1.033) 5501:5501 146 (0.967}
bm1 882 | 1740:1740 5 (1.000) | 1740:1740 4 (0.831) | 1740:1740 | 58 (0.892)
PrimGAl 833 1716:1715 66 (1.000) 1718:1713 48 (0.727) 1716:1715 47 (0.712}
PrimSC1 833 1377:1376 59 (1.000} 1377:1376 61 (1.034) 1377:1376 58 (0.983)
PrimGA?2 3014 4187:4186 242 (1.000} 4187:4186 187 {0.773) 4187:4186 165 (0.682)
Prim3SC?2 3014 3853:3853 “35 (1.000) 3858:3848 175 (0.745) 3853:3853 159 (0.677)
Test02 1663 | 37132:19918 2 (1.600) 3713219918 42 (1.0600) 37132:19918 42 (1.000)
Test03 1607 | 11115:11114 4 (1.000) 13729:8500 9 {0.702) 13188:9041 71 (0.845)
Test04 1515 40732:1308 1’ {1.000) 4(938:1102 20 (1.667) 40932:1108 14 (1.167)
Test05 2595 | 38753:33845 "4 (l 000) 62586:10012 4 (0L167) 39089:33509 5 (0.208)
Test06 1752 8484:844%4 {1.000) 8484:8484 83 {0.954) 8484:8484 82 (0.943)

Table 3: Comparison of two-phase Fiduccia-Mattheyses partitioning of ran-
dom walk clusterings and random matching based clusterings. Standard
Fiduccia-Mattheyses partitioning results are included as a control. RW-ST
clusterings lead to a 17% improvement in net cut over standard FM.

was a significant improvement over the standard FM solution quality, with a 12% improvement obtained
using MBC clusterings and a 17% improvement obtained using RW-ST clusterings. These results in some

sense confirm the conclusions of [3].

An interesting observation is that the huge discrepancy in FM partition quality between the RW-§T
and MBC clusterings, as shown in Table 2. are not reflected in the two-phase M partitioning results, i.e.,
a large improvement in the quality of the starting partition does not translate into a correspondingly large

increase in the quality of the final partition.

5 Extensions

There are many promising directions for future work. First, we are currently pursuing a parallel imple-
mentation of the random walk methodology. In other words, we partition the random walk computation
evenly among p available processors; the cycle-finding within the random walks is also performed on each
separate processor. This is appropriate for two reasons: (i) the hierarchical organization and sparsity of real
netlist graphs permits only very short self-avoiding walks, and thus little information is lost by breaking the
random walk up among processors (this is indeed confirmed by our results), and (i1} results of Coppersmith
et al. [7] show that the separate walks together will reproduce a single long walk.!® This parallel approach

achieves perfect speedup over our current uniprocessor implementation.

Second, we hope to use the DS quality measure as the basis of other “implicitly global” clustering

methods. Certainly, standard combinatorial methods and direct epitaxial-growth approaches can both be

15Tq be specific, [7] shows that twe random walks will “collide” within a very short time when the graph is of low maximun
degree and small diameter, as is the case with real netlist graphs having fancut limitations and large (e.g., clock) signal nets.
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modified to incorporate the DS criterion within the clustering objective. We suspect that these sorts of
algorithm variants can be shown to achieve globally good clustering decompositions in a probabilistic sense.
(Also note that the DS clustering is enabling for Kernighan-Lin on small problems, in addition to the

motivating million-node instances!)

Finally, the concept of a “natural clustering”, independent of both the predefined cluster cardinality
S and size limitations on the natural clusters, gives rise to a host of very interesting layout problems. In
particular, the placement phase of layout becomes one of placing malleable, variable-size clusters, and is
certainly of independent research interest. Following the basic premise of our work, the natural clustering
will also enable use of more sophisticated optimizations such as the spectral and relaxation methods in the

context of “fast placement” for the next generation standard cell and sea of gates designs.
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