Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

OLD BACHELOR ACCEPTANCE: A NEW CLASS OF
NON-MONOTONE THRESHOLD ACCEPTING METHODS

A. B. Kahng September 1992
C.-W. A. Tsao CSD-920040

Old Bachelor Acceptance: A New Class of Non-Monotone
Threshold Accepting Methods*

Andrew B. Kahng and Chung-Wen Albert Tsao
UCLA Dept. of Computer Science, Los Angeles, CA 90024-1596

September 25, 1992

Abstract

Stochastic hill-climbing algorithms, particularly simulated annealing (SA) and threshold ac-
ceptance {TA}, have become very popular for global optimization applications. Typical imple-
mentations of SA or TA use monofone temperature or threshold schedules, and moreover are
not formulated to accommeodate practical time limits. We present a new threshold acceptance
strategy called Old Bachelor Acceptance (OBA) which has three distinguishing features: (i) it
is specifically motivated by the practical requirement of optimization within a prescribed time
bound, (ii) the threshold schedule is self-tuning, and (iii) the threshold schedule is non-monotone,
with threshold values allowed to become negative if necessary. The original TA method of Dueck
and Schener is a special case of OBA. Experiments using several classes of symmetric travel-
ing salesman problem instances show that OBA cutperforms previous hill-climbing methods for
time-critical optimizations. A number of directions for future work are suggested.

1 Preliminaries: Global Optimization Heuristics

Given a set S of feasible solutions and a real-valued cost function f : § — R, global optimization
may without loss of generality be formulated as the search for a global minimizer s € S such that
f(s) < f(s') Vs’ € 5. Typically, |S] is very large compared to the number of solutions that can be
examined in practice. For small instances of certain global optimizations, implicit enumeration (e.g.,
branch-and-bound) or polyhedral approaches can prune the solution space and afford solutions within
practical time limits; other problem formulations may be tractable to problem-specific methods.
However, many important global optimization formulations (both discrete and continuous) are NP-

complete, with heuristics therefore being of interest.

1.1 Tterative Methods

We are interested in heuristics which iteratively apply the following two rules (Figure 1):

Rule 1 is memoryless, with generation of s’ based only on the current solution s;.! Rule 1 also

induces the notion of a neighborhood structure over S, where the neighborhood N(s;) of the current

*This work was supported in part by NSF MIP-9110696, NSF Young Investigator Award MIP-9257982, ARQ
DAAK-70-92-K-0001 and ARO DAAL-03-92-G-0050.

' A history-dependent Rule 1" might be, for example: Given the history of solutions evaluated thus far, generate a
new trial solution s’. Rule 1’ accommodates such methods as iterated descent [3] and tabu search [8]. These latter

Iterative Global Optimization

Rule 1: Given the current solution s;, generate a new trial solution s’
Rule 2: Decide whether to set si41 = 8; or 841 = 8’

Figure 1: High-level template for iterative global optimization.

solution s; € S is the set of possible trial solutions s’ that can be generated from s;. The quality
of solutions defines a cost surface over the neighborhood structure, and optimization is search for a
global minimum in this cost surface. Typically, the set N(s) consists of slight perturbations of the
current solution s, for example, via the 2-interchange operator for the traveling salesman problem
[15] or the pair-swap operator for graph bisection [17]. When the size of N(s) is constant for all
s € 5, we denote the neighborhood size by |N|. In practice, Rule 1 simply picks a random s’ € N(s;)
from within “obvious” neighborhood structures such as those noted for the TSP and graph bisection
problems [15). Therefore, it is Rule 2 which determines the nature of an optimization heuristic as it

traverses the cost surface.

A simple instance of Rule 2 is, “Replace s; by s’ if f(s') < f(s;),” which corresponds to greedy
optimization. Greed has been widely employed because of its simplicity and its acceptable success
in a variety of implementations, .g., Johnson et al. [16] [17] have documented the utility of greed
for several hard combinatorial problems. However, the performance of greedy methods is erratic,
and achieving “stable” — i.e., predictable - performance requires multiple random initial starting
solutions. Johnson et al. [16] have determined that several thousand initial random starting con-
figurations are necessary for greed to afford stable solution quality for graph bisection instances of
size n = 500; this number grows rapidly with n and becomes hopeless fo instance sizes of, e.g.,
n = 100,000 which arise in arenas such as VLSI circuit partitioning. Moreover, central limit phe-
nomena in the cost surface [3] imply that as problems grow large, random local minima are almost
surely of “average” quality? so that simple “multi-start” heuristics [28] fail. In view of these factors,
global optimization heuristics must escape from local minima to adequately explore the solution

space of large problems.

1.2 Stochastic Hill-Climbing: SA and TA

Stochastic hill-elimbing methods probabilistically escape from local minima in the cost surface. The

first such method, simulated annealing (SA), was proposed independently by Kirkpatrick et al. [23]

methods systematically explore solution paths emanating from several best-known sclutions; see also the heuristic
search techniques used in artificial intelligence [286].

2See discussions by Baum [3] and Kirkpatrick and Toulouse [24] on traveling salesman structures; by Kauflman
and Levin [21] on evolutionary optimization for “adaptive landscapes”; and by Bui et al. [5] and Hagen and Kahng
[9]) for graph partitioning.

and Cerny [6]. Motivated by analogies between the solution space of an optimization instance and
microstates of a statistical thermodynamical ensemble, the idea of simulated annealing is summarized
in Figure 2. SA uses the following criteria for Rule 2. If f(s') < f(s;), then s;41 = &', i.e., the new
solution is adopted. If f(s') > f(s), the “hill-climbing” disimprovement to s;1; = s’ still has a
nonzero probability of being adopted, determined by both the magnitude of the disimprovement
and the current value of a femperature parameter 7;. This probability is given by the “Boltzmann

acceptance” criterion in Line 6 of Figure 2.

Algorithm SA(M)
M = limit on number of Rule 1 iterations

1. Choose (random) initial solution so;

2. Choose initial temperature To;
J.fori=01to M -1

Choose (random) neighbor sclution s’ € N(s;};
if f(s') < f(si) then s;41 = &

else 5,11 = ' with Pr = exp((f(s:) — £(3))/T);
Tiy1 = next(Ty);

. Return s;, 0 < ¢ €< M, such that f{s;) is minimum.

o =1 S

Figure 2: Bounded-time SA template.

Another stochastic hill-climbing heuristic called threshold accepiing (TA), which uses a different
Rule 2 criterion {Figure 3), has recently been proposed by Dueck and Scheuer [7]. TA relies on
a threshold, T;, which defines the maximum disimprovement f(s’'} — f(s;) that is acceptable at the
current iteration. All disimprovements greater than T; are rejected, while all that are less than T} are

accepted. Thus, in contrast to the Boltzmann acceptance rule of annealing, TA offers a deterministic
Rule 2.

Algorithm TA(M)
M = limit on number of Rule 1 iterations

1. Choose (random) initial solution sq;

2. Choose initial threshold To;

J.fori=0toM -1

4 Choose random neighbor solution s' € N{s,);

5 if f(s'y < f(s:) +T; then sip; = o'

6. else 3,41 = 8

7 Tig1 = next(T});

8. Return s, 0 <4 < M, such that f(s;) is minimum.

Figure 3: Bounded-time TA template.

At timestep i, the SA temperature T; allows hill-climbing by establishing a nonzero probability of ac-
cepting a disimprovement, while the TA threshold T; allows hill-climbing by specifying a permissible
amount of distmprovement. In practice, SA will use a large initial temperature and a final tempera-
ture of zero.® The monotone decrease in T} is accomplished by next(T;), which is a heuristic function
of the 7} value and the number of iterations since the last cost function improvement. {Typically,
next(T;) tries to maintain “thermodynamic equilibration” at each temperature value.) Similarly,
implementations of TA [7} begin with a large initial threshold 7y which decreases monotonically to
Tapr = 0. It should be noted that both SA and TA will in practice return the “best-so-far energy”
(BSFE), which is the minimum-cost solution among sg, 51, .. ., s5r; this is reflected in the templates

of Figures 2 and 3 and in the experimental comparisons of Section 3 below.

The SA and TA algorithms both enjoy certain theoretical attractions. By using Markov chain
arguments and basic aspects of Gibbs-Boltzmann statistics one can show that with an appropriate
next(T;) function, Pr(sy € R) — 1as M — oo, where 2 = {s € S|f(s) < f(s') Vs’ € S} (R denotes
the set of all global minimum solutions). In other words, SA is optimal in the limit of infinite time [1].
Althofer and Koschnick [2] argue that each execution of SA lies in some sense within the convex hull
of a set of TA executions, and that TA is therefore also provably good. However, this convergence

result is slightly weaker than those established for SA.

Finally, the practical utility of stochastic hill-climbing is well-documented, with the SA algorithm
now being one of the most widely used heuristics for global optimization [1]. Thus, it is noteworthy
that Dueck and Scheuer [7] claim that their TA method “yields better results than SA” with respect
to both CPU time and the number of “new state choice steps” (i.e., applications of Rule 1), a standard
measure of runtime complexity). Experimental results are presented in [7] which support this claim.
A further practical advantage of TA is its greater simplicity of Rule 2, with no exponentiation
or random number generation being required. With this in mind, our experimental results below

compare OBA variants against the TA algorithm.

2 Non-Monotone Threshold Schedules: The OBA Approach

2.1 Motivations

Recall from the above discussion that SA and TA are traditionally implemented with monotone
temperature or threshold schedules. For SA, the thermodynamic analogy, as well as the convergence
proof based on Gibbs-Boltzmann statistics, together motivate the following intuition [10]: monotone
temperature schedules allow annealing to explore “large features” of the cost surface at high T
and then perform finer optimization at lower I". For TA, the authors of [7] state that the “trivial”
threshold schedule (linear in i, with 7} = Ty * (1 — 47)) is “essentially best”, and suggest that the

3Note that T = co accepts all moves (i.e., a random walk in the cost surface); T' = 0 accepts only improving moves
(i.e., greed).

performance of TA is basically insensitive to the threshold schedule. Indeed, the successful results
reported in [7] were obtained using monotone threshold schedules. However, despite the tremendous
success of both SA and TA, certain observations motivate the study of alternative hill-climbing

strategies.

First, standard implementations of SA and TA are not amenable to a priori specification of CPU
limits. With respect to the templates of Figures 2 and 3, common practice will use M = oo and
test for a stopping criterion (e.g., “equilibration” in SA) to terminate the algorithm. A finite time
limit A4 will obviate the theoretical convergence results, but in practice a finite-time requirement
in optimization is very real. Experimental results {20] [18] for large discrete and continuous global
optimizations show that optimal annealing schedules vary strongly with the time limit M ,? but it is

not clear how next(7;) should be defined to accommodate finite M.

Second, current SA and TA implementations are “blind” to the specific features of the cost surface
in any given optimization instance. Previous work [20] [18] [19] [29] has shown that large, real-world
cost surfaces exhibit strong fits to models of self-similar random structure (e.g., VLSI placement
problems have hierarchical scaling properties which resemble high-dimensional fractional Brownian
motions [29}). The parameters of such fitted models vary with the individual problem instances, and

again, evidence suggests that optimal annealing schedules should be tuned to these parameters [19].

These two observations prompt a variety of questions and simple thought experiments. Consider
the BSFE performance of TA from random starting solutions in the one-dimensional cost surface
of Figure 4 (six solutions s;, each with |[N] = 2). For any value of M, note that the last value
Thr..1 in the threshold schedule does not affect the best-so-far solution value at time M. One
can readily see that if M = 2, the optimal schedule should have T; = 0, with all values of 7}
vielding optimal length-two schedules of form {0, X}. We have exhaustively enumerated threshold
schedules for M = 2,3, ..., 10 for the cost surface of Figure 4. Optimal schedules which maximize the
probability of finding the optimal solution I? within prescribed time bounds (starting from a random
solution) include: {0,3,0, X} for M = 4 (Pr = 0.6250); {0,3,0,0, X} for M = 5 (Pr = 0.6875);
{0,0,3,0,0,X} for M =6 (Pr = 0.7396); {0,3,0,0,3,0,0, X} for M = 8 (Pr = 0.8047); and so on.

In fact, all of the optimal schedules for M > 4 are clearly non-monotone.

A slightly different cost surface (Figure 5) points out that optimal threshold sequences can easily
have negative values, e.g., {—3, X} and {—2, X} are optimal (Pr = 0.4167) for M = 2; other optimal
schedules include {—3,1, X} (Pr=0.) for M =3 and {-3,3,1, X'} (Pr = 0.5625) for M = 4.

Recently, we have found that a number of authors have also touched on the issue of non-monotonicity

in annealing. In particular, Strenski and Kirkpatrick [30] have shown that “locally optimal” annealing

schedules can be non-monotone for a small instance of the graph bisection problem that is highly

*In [20] and [18], single-temperature annealing schedules were used in order to reduce the number of degrees
of freedom in the experiment. Recent work by Boese, Kahng and Tsao [4] has confirmed these results for general
annealing schedules; see also the work of Strenski and Kirkpatrick [30] and Althofer and Koschnick [2}, discussed later
in this section.

cost

1.0

Figure 4: A simple cost surface, along with transition probabilities for T = 1
and T = 3.

Figure 5: Cost surface for which optimal schedules (M small) contain neg-
ative T values.

structured to reduce the size of the solution space. Hajek and Sasaki [11] show that a class of cost
surfaces exists for which optimal schedules are non-monotone. Finally, Althofer and Koschnick [2]
enumerate optimal TA schedules for a small cost surface and find clear evidence (Table 4.1 in [2])
of non-monotonicity; however, the authors surprisingly make no comment on this data. Given these
motivations, we have investigated a class of threshold accepting methods which use non-monoteone

threshold sequences.

2.2 The OBA Algorithm

Old Bachelor Acceptance uses a threshold criterion in Rule 2, but the threshold changes dynamically
- up or down — based on the perceived likelihood of being near a local minimum. Observe that if the

current solution s; has lower cost than most of its neighbors, it will be hard to move to a neighboring

solution; in such a situation, standard TA will repeatedly generate a trial solution s’ and fail to
accept it. OBA uses a principle of “dwindling expectations”: after each failure, the criterion for
“acceptability” is relaxed by slightly increasing the threshold T; (this motivates the nrame “Old
Bachelor Acceptance”). After sufficiently many consecutive failures, the threshold will become large
enough for OBA to escape the current local minimum. The converse of “dwindling expectations” is
what we call ambition, whereby after each acceptance of &', the threshold is lowered so that OBA
becomes more aggressive in moving toward a local minimum. With this in mind, the basic OBA

template is as shown in Figure 6.

Algorithm OBA(M)
M = limit on number of Rule 1 iterations

Choose (random) initial solution so;
Choose initial thresheld 1o;
fori=0to M —1do
Choose (random) neighbor sclution s’ € N(s:};
if f(s") < f(si})+ Ti then

$ip1 = 85

Tiyr =1 — decr(10);
else

gl = 5

Tiy1 = Ti + iner(Ti);
endif.

Figure 6: High-level OBA description.

Notice that if we use constant update functions deer(T;) = —iner(T;) = 5%, OBA corresponds
to the TA method of Dueck and Scheuer. Thus, special cases of OBA enjoy the same convergence

properties shown for TA in [2].

2.3 OBA Variants

Via the threshold update functions incr(T;) and deer(T;), the template of Figure 6 captures many

possible strategies. We have typically based deer and incr on the following factors:

1. The neighborhood size, |N|, along with the age of the current iteration, which is the number
of Rule 1 applications since the last move acceptance. The value of |N| affects “reachability”
between solutions, i.e., the diameter of and multiplicity of paths within the neighborhood
structure. Intuitively, age reflects the OBA algorithm’s current perception of local structure in
the cost surface: increasing age implies greater likelihood that s, is a local minimum, and that

the threshold should increase faster.

2. The amount of time remaining, M — i. Since previous work [18] [19] has observed strong
dependence of optimal hill-climbing strategies on the time bound M, we may allow deer and

incr to depend on the proportion of time used, i/ M.

3. The current threshold value T;. We may allow different update rules depending on whether T;

is highly positive, highly negative, close to zero, etc.

Initially, we tried variants that were based on the “obvious” choice of decr(T;) = Ay and iner(T})

Ay both being constant functions. This was in part motivated by the above observation that A,

— Ay yields the TA algorithm. In Section 3 below, we give experimental results for five slightly more
sophisticated strategies, which we call OBA1 - OBAbG.

OBAIL1. The OBA1 variant {Figure 7) heuristically “accelerates” the incrementing of 7; as
age increases.® Second, OBAl “damps” the magnitude of 7; as ¢ — M; this does not have any
thermodynamic motivations as with annealing schedules that go to zero, but is rather to ensure
that at some point during the optimization, the appropriate “granularity” in the threshold update
is applied. Third, we note that following the intuition provided by the example of Figure 5, the
OBA] variant allows threshold values to become negative; the algorithm may thereby prefer a good
improving move over a random improving move. These considerations yield the following core
threshold update rule:

Tl = { (Ti — A)» (1~ i/M) if age = 0(decr(T}))
TV @+ A« (1-i/M) if age > O(iner(T}))

OBA2. The second variant, OBA2 (Figure 8), has parameters M, A, a, b, and ¢, along with
a core threshold update strategy of form

age

T = (20~ 1) (a)+ (1 - 2.

“a

The parameters a, b and ¢ afford the ability to fine-tune the growth rate incr(7;) as follows: a
tunes the threshold growth rate by a multiplicative factor; & allows a power-law growth rate; and
¢ allows tuning of a “damping” heuristic similar to that used in the OBA1 approach. Notice that
whenever age = 0 (Line 9 of the Figure 8 template), OBA2 immediately sets the threshold to the
most negative value allowable, thus giving the algorithm the “ambition” to improve rapidly. The
threshold then rises from this negative value until the next move acceptance occurs. Thus, there
is a clear contrast between OBA1 and OBA2, with the latter reflecting a “maximally ambitious”

approach.
OBA3. The OBA3 variant (Figure 9) is identical to OBA1, except that we do not explicitly

damp the threshold magnitude (i.e., the final threshold value T3¢ can be far from zero). The notion

5In some sense, this is a “milder descent, steeper ascent” strategy; cf. the “steepest descent, mildest ascent”
approach proposed by Hansen [12].

Algorithm variant OBA1(M,A)

M = limit on number of Rule 1 iterations
A = threshold update granularity

|N| = neighborhood size

1. Tu = 0;

2. age =0,

3. Choose (random) initial scluticn so;
4. fori=0to M —-1do

5. Choose random neighbor solution s’ € N(s;);
6. if f(s') < f(3i) +T; then

7. Sip1 = 8"

8. T;.'.l = T;’ - A;

9. age = 0;

10. else

11. 8ip1 = 8i;

12. ﬂ+1=ﬂ+&*-‘ﬁ%—?;

13. age = age + 1;

14. endif _

15. T"+1 = T|i+l * (1 - ﬁ)

16. endfor.

Figure 7: OBA1 variant: threshold magnitude is damped to zero, decr(T})
affords linear decrease in threshold value, and iner(T;) accelerates quadrat-
ically with increasing age.

of “appropriate granularity” in the threshold update is retained by the (1— -;7) multiplicative factors

in lines 8 and 12.

OBA4. The OBA4 variant (Figure 10) is designed to provide the converse of the OBA1
strategy. OBA4 uses a quadratically growing decrement function decr(T;) which affords greater
ambition, and it uses a linear incr(7;) function so that expectations do not “dwindle” as rapidly
as in OBA1. (Observe that this recalls the “steepest descent, mildest ascent” strategy proposed by
Hansen and described in [12].) In lines 9-10 of the algorithm template, we establish the criterion for
an “easy” move acceptance, namely, that fewer than ﬁm move generations have elapsed since
the last acceptance of s’ (the quantity /2 * [N| is actually another parameter of the OBA4 variant;
note that in the traveling salesman problem that we study below, \/2*—|N| is the number of cities

in the problem instance).

OBAS5. Finally, our OBAS5 variant (Figure 11) captures the traditional multistart approach [28]
f25] by using a “timeout” parameter. Intuitively, when sufficiently many move generations have been
made without finding a strictly improving move, we may assume that we are in a local minimum
and that hill-climbing should be initiated. OBAb5 uses the neighborhood size as the criterion for
“sufficiently many”, and uses a quadratically increasing iner(7;) function in performing the hill-

climbing. Note that after a new state 1s accepted, the threshold is reset to zero.

Algorithm variant OBA2{M ,A,a,b,c)

M = limit on number of Rule 1 iterations
A = threshold update granularity

a = multiplicative factor in growth rate

b = power-law in growth rate

¢ = damping coeflicient for threshold magnitude
|N¥| = neighborhood size

1. Tp =0

2. age=0;

3. Choose (random) initial solution sq;

4. fori=0to M —1do

5. Choose random neighbor solution s’ € N{s:);
6. if f(s") < f(s:) + T then

7. Sig1 = &'

8. age = 0;

9. else

10. 8ip1 = &3

11. age = age + 1

12. endifl

13. Tisa =((ﬁgﬁ)b“1)*(a)*(l—ﬁ)c;
15. endfor.

Figure 8: OBA2 variant, incorporating finer tuning of in¢r threshold update
function, along with a maximally ambitious decr threshold update strategy.

Finally, we also report results for additional variants OBA1.N, OBA2_N, ..., OBAS_N. Each
OBAX_N result is obtained by executing the OBAx algorithm, with the only difference being that
the Rule 2 acceptance criterion treats negative threshold values T; < 0 as if they are equal to zero.
This affords some indication as to whether “ambition” is practically useful, the example of Figure 5
notwithstanding. Since the OBAS algorithm can never have T; < 0, there is no difference between
OBAS and OBA5_N and we report results for OBA5 only.

We close this section with a depiction of the qualitative differences in threshold schedules for
the four variants of OBA1 and OBA2. The differing behaviors of these algorithms are shown in
Figures 12 and 13. Figure 12 shows the qualitative nature of 400,000-step sequences for each of the
four algorithms, executed on a single random 50-¢ity Euclidean planar TSP instance. The threshold
sequences are superposed against the linearly decreasing TA threshold sequence and sampled at every
400 time steps. Figure 13 shows a detailed plot of the 500-step threshold sequence from ¢ = 100, 000
to 7 = 100,500 for each of the same runs. The threshold sequences for OBA3, OBA4 and OBAS

similar reflect their respective motivations.

10

Pl T ol e

9

Algorithm variant OBA3(M,A)
M = limit on number of Rule 1 iterations
A = threshold update granularity

|N| = neighborhood size

10.
11.
12,
13.
14.
16.

To=0;
age = 0;
Choose (random) initial solution so;
fori=0to M —14do
Choose random neighbor solution s’ € N(s.);
if f(s') < f(s:) +T; then
!

8441 = 85
Ty =Ti~A«(1— %)
age = 0;
else
Sigl = 8§ _
Tita =T}+A*-T-ﬁ*(1—iﬁ);
age = age + 1;
endif
endfor.

Figure 9: OBA3 variant: As in OBA1l, decr(T;) is “linear” and iner(T;)
accelerates quadratically with increasing age. However, the threshold is not
damped to zero; rather, granularity of the updates is shifted by lines 8 and
12 of the algorithm.

3 Experimental Results

We tested OBA1 - OBAS5, their OBAx_N variants, and TA on instances of the traveling salesman
problem (TSP). The TSP is a well-studied NP-hard problem as well as a historically ubiquitous

testbed for both SA and TA. Qur experimental protocol was as follows:

1. Two classes of TSP instances were used: (i) Fuclidean planar instances corresponding to ran-

dom pointsets drawn from a uniform distribution in the Euclidean unit square; and (ii) random

instances with symmetric distance matrices, i.e., each intercity distance drawn from a uniform

distribution in [0, 1]. These are the two most commonly treated classes of TSP, and in some

sense represent limiting cases with respect to “metricity” of the TSP instance.

G

2. Instance sizes ranged from 50 to 200; for these sizes, we considered CPU hmits of between
0.4 x 10% and 1.0 x 10% applications of Rule 1, following the studies of Rossier et al. [27].

3. Our Rule 1 corresponds to the popular Lin 2-opt neighborhood structure [22], wherein a neigh-

bor solution s’ is generated by deleting a random pair of edges in s; and then reconnecting

SNote: we also studied a class of hierarchical TSP instances, which have a clustered, non-uniform distribution
of points in the Euclidean plane. The results for these instances were qualitatively similar to those for BEuclidean
instances which had n equal to the number of clusters in the hierarchical instances.

11

Algorithm variant OBA4(M,A)

M = limit on number of Rule 1 iterations
A = threshold update granularity

|¥| = neighborhood size

count = number of consecutive “easy” move acceptances
1. Th=0

2. count=1;

3. Choose (random) initial solution sa;

4. fori=0to M —1do

5. Choose random neighbor solution s' € N(s:);
6. if f(8') < f(3i) + T: then

7. Sip1 = 8

8. age == 0;

9. if prev_age < +/2 * |N{ then

10. count = count + 1;

11. else

12. count = 1;

14. endif

13. Tig1 =Ti —count* & * (1 —ﬁ);
15. else

16. S$i41 = 8i;

17. age = age + 1;

18. Ti+1=Ta+72;':I?!*(l—ﬁf—);
19. endif

20. prev_age = age.

21. endfor.

Figure 10: OBA4 variant, embodying steeper descent and milder ascent,
along with criterion for consecutive “easy” move acceptances. Note that
OBAA4 provides the converse of the OBA1 strategy.

the two paths to achieve the other possible tour. The size of the neighborhood structure is

IN| = w, where n 1s the number of cities in the TSP instance.

4. We report the best solution quality encountered during the execution of the algorithm, i.e., the
minimum value among f(sq), f(s1), ..., f(5ar), as indicated in line 8 of the template in Figure
3. The solution quality is normalized to the Held-Karp one-tree lower bound on optimal TSP
tour cost [13]. This lower bound is given by the total edge length of a minimum spanning tree

over the n cities plus the n'*-smallest edge length among the points of the instance.

Tables 1 - 6 compare all of the OBA variants against TA for Euclidean and random instances of
size 50 (M = 0.4 x 10%), 100 (M = 0.7 x 10°) and 200 (M = 1.0 x 10%). These are exactly the same
time bounds used by Rossier et al. ([27], p. 162, Table 4) in their studies of the SA algorithm. In the
tables, we measure the relative performance of the algorithms versus TA at intervals of M/5 move

generations; f(z) denotes the solution quality at step z, normalized to the TA solution quality. Thus

12

Algorithm variant OBAS5S(M,A)

M = limit on number of Rule 1 iterations
A = threshold update granularity
|¥] = neighborhood size

1 To = 0;

2 age = 0;

3. Choose (random) initial solution so;

4. fori=0to M —1do

5 Choose random neighbor solution s’ € N(ss);
6 if f(s') < f(s:) + T: then

7

. Si41 = s';
9. age = 0;
10. else
11. Sip1 = 8i;
13. age = age + 1;
14, endifl
15. if age > |N| then R
16. Tipn=Ti + Yoy ok
17. else
18 T.‘+1 = 0;
19. endif
20. endfor.

Figure 11: OBAS variant, which emulates traditional multistart heuristics.
The “timeout” parameter is equal to the neighborhood size, and a quadratic
tner(1;) function is used.

Ff(z) = 1.000 for the TA algorithm. Fach of our results represents a geometric average of single runs
for each of 100 randomly generated instances. In most cases, the OBA variants find significantly
better solutions within the early stages of the optimization. The OBA4 variant seems particularly
promising: it uniformly outperforms TA on the random instances and is very competitive, if not

better, on the Euclidean instances.

Finally, Figure 14 gives a more detailed portrayal of the OBA1 and OBA2 solution quality versus
the TA solution quality; again, we use the geometric average of performance ratio, averaged at each
time step (100 Euclidean instances and one run per instance, using n = 50). Figure 15 similarly

portrays the same OBA variants over random symmetric instances with n = 50.

4 Discussion and Conclusions

As a result of our detailed experiments, we believe that there is a strong case for non-monotone
threshold and temperature schedules in hill-climbing approaches to global optimization. We also

believe that the OBA paradigm provides a powerful and general template for exploration of such non-

13

A =0.094

A =0.093 -
T value O

A=0.093H

A =0.093
Oty

a |

OBAl vs. TA

LA T A S Ty eIy b
tHH H

i=10

Figure 12: Sampled threshold sequences for four OBA variants on random
FEuclidean planar TSP instance with n = 50. The sampling interval is every
400 steps, and the trivial TA sequence is shown by dashed lines. Specific
parameterizations: M = 0.4 x 10%, A = 0.093244,a=1,b=2and ¢ = 0.5.

Alg.) | f(2) | f(31) | f(d) | 1(5)
TA 1.000 | 1.000 | 1.000 | 1.000 | 1.000
OBA1l 0.974 | 1.010 | 1.025 | 1.028 | 1.027
OBAIN | 0.969 | 1.005 | 1.021 | 1.024 | 1.024
OBA2 1.002 | 1.016 | 1.017 | 1.007 | 1.004
OBA2.N | 0062 | 0.987 | 0.999 | 1.000 | 0.998
OBA3 0.071 | 0.996 | 1.008 | 1.009 | 1.007
OBA3.N | 0.950 | 0.088 | 1.001 | 1.003 | 1.002
OBA4 0.971 | 0.995 | 1.004 | 1.004 | 1.002
OBA4_N* | 0.058 | 0.086 | 0.999 | 1.001 | 1.000
OBA5 1.010 | 1.040 | 1.052 | 1.052 | 1.047

Table 1: Results for n50_400k (average taken over 100 TSP instances (n =

50) with Euclidean distance matrix, M = 0.4 x 108.

i=0.4x*10°

monotone heuristics. Since the OBA variants {particularly OBA4_N) perform well on both random

and Euclidean TSP instances, which are extremal with respect to “geometricness” or “metricity”

of symmetric TSP instances, we conclude that the variants reported here are fairly robust. The

poor performance of OBA5 may indicate a weakness in traditional multistart approaches, while

14

OBAl vs. TA
0.1 -
0 v
OBAIL_N vs. TA
0.1 .
0 AY AY -
T value /\ OBAZ vs. TA
0 11 a /\
0 L e 1 a AR yd A s 1 2\ N yd
D I W W S S P T
OBA2.N vs. TA
0.1 A /\ A A
0 ’/'l . s 1V /£ 1 /1 /1 yd rd A) AR
A | 1 1~ 1.~ e V1

Figure 13: Detailed 500-step intervals, ¢ = 100,000 to i = 100, 500, taken
from each of the above runs. The non-monotone nature of the OBA thresh-
old sequences is clearly shown (again, relevant portion of trivial TA se-

quence shown by dashed lines.

Alg.) | f(20) | 1(31) | (40 | 1(50)
OBA1 0.986 | 1.046 | 1.073 | 1.078 | 1.072
OBAIN | 0.960 | 1.030 | 1.058 | 1.068 | 1.070
OBA?2 1.001 | 1.025 | 1.033 | 1.029 | 1.023
OBAZ.N | 0.047 | 0.091 | 1.012 | 1.017 | 1.017
OBA3 0.060 | 1.005 | 1.026 | 1.033 | 1.033
OBA3.N | 0042 | 0.993 | 1.017 | 1.025 | 1.026
OBA4 0.968 | 1.003 | 1.016 | 1.018 | 1.016
OBA4_N* | 0.039 | 0.986 | 1.006 | 1.013 | 1.012
OBAS 0.982 | 1.043 | 1.070 | 1.079 | 1.08D

Table 2: Results for n100_700k (average taken over 100 TSP instances

(n = 100) with Enclidean distance matrix, M = 0.7 x 10%.

i = 100, 500

the excellent performance of OBA4 may suggest revisiting the “steepest descent, mildest ascent”

strategy proposed by Hansen [12] (see also the discussions in [3] [14]). Beyond these implications,

the most far-reaching consequence of this research seems to stem from the motivations of Section

2.1 — specifically, the “BSFE” studies described for the cost surfaces of Figures 4 and 5. Our related

work in this area is reported in [4].

15

Alg.) | (1) | 1(31) | 1(&) | (50

OBA1l 1.004 | 1.066 { 1.093 | 1.093 | 1.082
OBAI1.N | 0946 | 1.018 | 1.064 | 1.081 | 1.086
OBA2 1.010 | 1.044 | 1.060 | 1.065 | 1.048

OBA2_.N | 0.942 | 0.997 | 1.033 | 1.044 | 1.047
OBA3 0.971 | 1.007 | 1.041 | 1.053 | 1.055
OBA3J_N | 0936 [0.991 { 1.030 | 1.044 | 1.048

OBA4 1.103 | 1.017 | 1.032 | 1.036 | 1.030
OBA4_N* | 0.931 | 0.981 | 1.014 | 1.025 | 1.026
OBAbD 0.948 | 1.020 | 1.066 | 1.083 | 1.088

Table 3: Results for n200_1000k (average taken over 100 TSP instances
(n = 200) with Euclidean distance matrix, M = 1.0 x 10°.

Alg.) | 1(21) | 1(3)] 141 | 1(5)
TA 1.000 | 1.000 | 1.000 | 1.000 | 1.000
OBA1 0.883 | 0.881 | 0.881 | 0.881 | 0.881
OBAIN | 0.885 | 0.884 | 0.884 | 0.884 | 0.884
OBA2 0.066 | 0.928 | 0.908 | 0.893 | 0.889
OBA2.N | 0.941 | 0.915 | 0.899 | 0.893 | 0.887
OBA3 1.090 | 1.073 | 1.065 | 1.061 | 1.058
OBA3.N | 1.098 | 1.078 | 1.069 | 1.067 | 1.061
OBA4 0.925 | 0.895 | 0.884 | 0.876 | 0.869
OBA4_N* | 0.914 | 0.880 | 0.879 | 0.871 | 0.867
OBAS 1.119 | 1.110 | 1.100 | 1.090 | 1.081

Table 4: Results for 150400k (average taken over 100 TSP instances (n =
50} with random symmetric distance matrix, M = 0.4 x 10°.

We conclude by listing some additional, ongoing research directions.

Alg. TG) | 12 | 1) | f(41) | 150
OBA1 0.968 | 0.966 | 0.967 | 0.967 | 0.967
OBAILN | 0.968 | 0.969 | 0.970 | 0.970 | 0.970
OBA2 1.055 | 0.998 | 0.967 | 0.052 | 0.945
OBA2.N | 1.011 | 0.71 | 0.949 | 0.939 | 0.935

OBA3 1.249 | 1.230 | 1.223 | 1.218 | 1.214
OBA3.N | 1.251 | 1.228 | 1.223 | 1.214 | 1.209
OBA4 0.985 | 0.943 | 0.926 | 0.920 | 0.914
OBA4_N* | 0.978 | 0.937 | 0.922 | 0.916 | 0.911
OBAS 1.097 | 1.100] 1.098 | 1.097 | 1.095

Table 5: Results for r100_700k (average taken over 100 TSP instances (n =
100) with random symmetric distance matrix, M = 0.7 x 10°.

16

Alg. TG) | K@) | f(31) | f(41) | f(5)

OBA1l 1.039 | 1.060 | 1.064 | 1.065 | 1.063
OBAI1N | 1.024 | 1.054 | 1.058 | 1.059 { 1.0569
OBA2 1.066 | 1.075 | 1.055 | 1.041 | 1.030
OBA2.N | 1.026] 1.034| 1.023 | 1.014 § 1.009
OBA3 1.351 | 1.381 | 1.374 | 1.3656 | 1.359

OBA3N | 1.340 | 1.369 | 1.367 | 1.361 | 1.356
OBA4 1.131 | 1.031 | 1.005 | 0.983 | 0.972
OBA4_N* | 1.035 | 1.017 | 0.990 | 0.976 | 0.968
OBAS 1.027 | 1.057 | 1.062 | 1.063 | 1.062

Table 6: Results for r200_1000k (average taken over 100 TSP instances
(n = 200) with random symmetric distance matrix, M = 1.0 x 10°.

Average performance vs. TA
104 T T T T

1.02

0.98
normalized
tour 0.96
cost
0.94
0.92
0.9 H

088 | i { 1
0 20 40 60 80 100
/4000

Figure 14: Ratios of OBA solution quality to TA solution quality, geomet-
rically averaged at each time step over 100 instances.

. Extension of the non-monotone OBA approaches to simulated annealing {temperature T') in-

stead of threshold accepting (threshold T').
. Further tests of the robustness of OBA, e.g., on asymmetric TSP instances.

. Examination of the conjecture that OBAx.N will always outperform the OBAx variant for

“real” cost surfaces, the example of Figure 5 notwithstanding.

. Further investigation of the OBA4_N strategy, since it is clearly the best among the OBA

variants we report here.

17

Average performance vs. TA

1.1 f ' | I
..'..- OBAl —
1.05 fr - ot
| TA ——
OB AN -
normalized
tour
cost 0.95 ~
y i L]
0.85 ! I I 1
0 " " 60 80 100

/1000

Figure 15: Ratios of OBA solution quality to TA solution quality, geomet-
rically averaged at each time step over 100 instances.

5. Further investigation of the practical significance of “update granularity” and the damping of
threshold values to zero, e.g., as in the contrast between OBA1l and OBA3.

6. Extension of the hill-climbing optimization template to include non-degenerate history (i.e.,
memory) in the Rule 1 generation of 5'. We believe that this, in combination with our exist-
ing OBA template, would provide a very powerful characterization of available hill-climbing

approaches.

7. Finally, we are investigating the performance of the time-bounded OBA strategy on much
larger combinatorial instances, with the goal of deriving natural relationships between the
parameters of the OBA variants, the available CPU limit M, and the size n of the problem

instance,

References
[1] E. H. L. Aarts and J. Korst. “Simulaied Annealing and Boltzmann Machines: a Stochastic
Approach 1o Combinatorial Optimization and Neural Computing”. Wiley, 1989.

[2] 1. Althofer and K. U. Koschnick. “On the Convergence of Threshold Accepting”. Applied
Mathematics and Optimization, 24:183-195, 1991,

[3] E. B. Baum. “Iterated Descent: a Better Algorithm for Local Search in Combinatorial Optimiza-

tion Problems”. Technical Report 164-30, Crellin Laboratory, California Institute of Technology,
Pasadena, CA 91125.

18

(4] K. Boese, A. B. Kahng, and C. W. Tsac. manuscript, 1992.

(5] T.N. Bui, S. Chauduri, F. T. Leighton, and M. Sipser. “Graph Bisection Algorithms with Good
Average Case Behavior”. Combinatorica, 7(2):171-191, 1987.

[6] V. Cerny. “Thermodynamical Approach to the Traveling Salesman Problem: an Efficient Sim-
ulation Algorithm”. J. Optimization Theory and Applications, 45(1):41-51, January 1985.

[7] G. Dueck and T. Scheuer. “Threshold Accepting: a General Purpose Optimization Algorithm
Appearing Superior to Simulated Annealing”. Journal Of Computational Physics, 90:161-175,
1990.

[8] F. Glover. “Tabu Search - part I”. QRSA J. on Coemputing, 1:190-206, 1989.

[9] L. Hagen and A. B. Kahng. “New Spectral Methods for Ratio Cut Partitioning and Clustering”.
IEEE Trans. on CAD, pages 1074-1085, September 1992.

[10] B. Hajek. “Cooling Schedules for Optimal Annealing”. Mathematics of Operations Research,
13:311-329, 1988.

{t1] B. Hajek and G. Sasaki. “Simulated Annealing - to Cool or Not”. Systems and Conirol Leiters,
12:443-447, 1989.

[12] Pierre Hansen and Brigitte Jaumard. “Algorithms for the Maximum Satisfiability Problem”.
Computing, 44:279-303, 1990.

[13] M. Held and R. M. Karp. “The Traveling-Salesman Problem and Minimum Spanning Trees”.
Operations Research, 18:1138-1162, 1970.

[14] D. S. Johnson. “Local Qptimization and the Traveling Salesman Problem”. In Proceedings of
the 17th International Colloguium on Aulomata, Langueges and Programming, pages 446-460,
England, July 16-20 1990.

[15} D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. “Optimization by Simulated
Annealing: an Experimental Evaluation; Part I1I, The Traveling Salesman Problem”. Operations
Research.

[16] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. “Optimization by Simulated
Annealing: an Experimental Evaluation; Part I, Graph Partitioning”. Operations Research,
37(6):865-892, November-December 1989.

[17] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. “Optimization by Simulated
Annealing: an Experimental Evaluation; Part 1I, Graph Coloring and Number Partioning”.
Operations Research, 39(3):378-408, May-June 1991.

[18] A. B. Kahng. “Exploiting Fractalness in Error Surfaces: New Methods for Neural Network
Learning”. In Proc. IEEE Inil. Symp. on Circuils and Systems, pages 41-44, San Diego, May
1992.

[19] A. B. Kahng. “Random Structure of Error Surfaces: New Stochastic Learning Methods”. In
Proc. SPIE Conf. on Neural Networks and Oplimization , Orlando, April 1992. invited paper.

[20] A. B. Kahng and G. Robins. “On Structure and Randomness in Practical Optimization”. In
UCLA Computer Science Department 1990-1991 Annual, pages 23-38. UCLA Computer Science
Department, 1990.

[21] S. Kauffman and S. Levin. “Towards a General Theory of Adaptive Walks on Rugged Land-
scapes”. Journal of Theoretical Biology, 128:11-45, 1987.

[22] B. Kernighan and S. Lin. “An Efficient Heuristic Procedure for Partitioning Graphs”. The Bell
System Tech. Journal, 49(2):671-680, May 1983.

[23] S. Kirkpatrick, Jr. C. D. Gelatt, and M. Vecchi. “Optimization by Simulated Annealing”.
Science, 220(4598).671-680, May 1983.

19

[24] S. Kirkpatrick and G. Toulouse. “Configuration Space Analysis of Traveling Salesman Prob-
lems”. Journal de Physique, 46:1277-1292, 1985.

{25] J. B. Lasserre, P. P. Varaiya, and J. Walrand. “Simulated Annealing, Random Search, Multi-
Start or SAD?”. Systems and Control Letiers, 8:297-301, 1987.

[26] J. Pearl. “Heuristics: Intelligent Search Stralegies for Computer Problem Solving”. Addison-
Wesley, Reading, MA, 1984.

[27] Y. Rossier, M. Troyon, and T. M. Liebling. “Probabilistic Exchange Algorithms and Euclidean
Traveling Salesman Problems”. OR Spektrum, 8(3):151-164, 1986.

[28] F. Schoen. “Stochastic Techniques for Global Optimization: A Survey of Recent Advances”. J.
Global Optimization, pages 207-228, 1991,

[29] 4G1.8801rkin. “Efficient Simulated Annealing on Fractal Energy Landscapes”. Algorithmica, 6:367-
, 1991,

[30] P. Strenski and S. Kirkpatrick. “Analysis of Finite Length Annealing Schedules”. Algorithmica,
pages 346-366, 1991.

20

