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Abstract

We address routing tree constructions for VLSI global routing which exploit available
information about critical paths between primary inputs and primary outputs of the
design. In this snapshot of our ongoing work, we describe five heuristic variants of
our Critical-Sink Routing Tree (CSRT) approach and compare them with the 1-Steiner
(1Stein) algorithm of Kahng and Robins [11]. Each of the five heuristics is a modification
of 18tein designed to minimize the delay from the source to a single sink in a net. We
simulate the nets constructed by these methods on real-world IC and MCM parameters
using the 2-pole simulator of Zhou et al. {23]. This simulator has been shown to be very
accurate when tested against the circuit simnlator SPICE. We also present a Global Slack
Removal (GSR) method that reduces source-sink pathlengths in Steiner trees produced
by 1Stein without increasing total wirelength. The results of our simulations indicate
that the smallest delays are produced by our heuristic, called HBest, which connects
non-critical sinks via the 1-Steiner algorithm and uses the 2-pole simulator to determine
how to best conmect the critical sink. Another successful heuristic simply connects the
critical sink with an edge directly to the source. Future directions for our research include
the investigation of methods that allow multiple critical nodes with differing priorities.

1 Introduction

This report gives a snapshot of ongoing research in routing tree design for high-performance
integrated circuits and multi-chip modules. Our work is predicated on a simple observation:
while there are many timing-driven module placement algorithms, there are no complemen-
tary global routing methods which can explicitly honor the timing-driven placement, or
exploit the timing information that becomes available during the placement process. Thus,
there is a fundamental mismatch between placement and routing in current “performance-

driven” physical design methodologies.

When performance becomes a dominant system criterion, static timing analysis is itera-

tively used to determine necessary changes to the module placement and global routing: this

*Partial support for this work was provided by by NSF MIP-9110696, NSF Young Investigator Award MIP-
9257982, ARO DAAK-70-92-K-0001, and ARO DAAL-03-92-G-0050; and by a GTE Graduate Fellowship. We
are also grateful for the support of Cadence Design Systems under the California MICRO program.



is the basic “performance-driven” approach to layout. We observe that critical-path informa-
tion may become available in such an iterative process, and moreover that this information

may be directly used in the the design of routing trees.

Existing performance-driven placement methods are essentially of two basic flavors.

1. Net-dependent algorithms typically use centroid-connected star cost [20], probabilistic
estimates of Steiner tree cost [10], minimum spanning tree cost [5] or the bounding box
half-perimeter [14] to estimate wire capacitance and signal delay for a multi-terminal
net. Based on this timing analysis, module placements are updated to reduce these

“net-based” objective functions for those signal nets which lie along the critical path.

2. Path-dependent methods are distinguished by their consideration of delay between the
source and a particular critical sink of a multi-terminal net. The critical sink is de-
termined via timing analysis using known module delays and estimated path delays.
For example, Lin and Du [13] use a linear delay approximation so that their method
updates the module placement to reduce the rectilinear distance between sources and
critical sinks. Other path-dependent placement methodologies include those due to

Hauge et al. [8] and Teig et al. [21].

For any net on a timing-critical path, the path-dependent approach affords an explicit
routing constraint with respect to the delay to the net’s critical sink. Arguably, net-dependent
methods only provide implicit routing constraints, e.g., by limiting the bounding box half-
perimeter. However, even with a net-dependent placement methodology it is easy to identify
critical sinks after the timing analysis has been performed, or a priori by finding paths in the
design that contain more module delays. Given a placement of net N = {ng, n1, ..., ng} C %%,
with source ng and one or more identified critical sinks of possibly varying priorities, our goal
is to construct a critical-path dependent routing tree TN ) such that the weighted sum of the
delays at the critical sinks is minimized. In this report, we concentrate on the special case

when exactly one critical sink n. is specified in the net N.

The remainder of this report is organized as follows. In Section 2, we survey existing works
in the performance-driven global routing literature, and describe a few motivating observa-
tions concerning desired qualities of a “performance-driven” interconnection tree under the
distributed RC delay model (specifically, the first-order moment of the impulse response, also

known as Elmore delay). Section 3 then presents our critical-sink routing tree (CSRT) ap-
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proach, embodied by five simple variations of minimum Steiner tree constructions; note that
the traditional heuristic minimum Steiner tree approach for global routing remains central
in our work by virtue of the observations of Section 2 concerning RC delay. Experimental
results are presented in Section 4, comparing delays at critical sinks in our heuristic tree
topologies with analogous delays obtained using the best-performing efficient Steiner tree

heuristic [11]; these results show that the CSRT approach has considerable promise.

2 Performance-Driven Routing Tree Design

2.1 Previous Approaches

This subsection briefly reviews several existing works in the performance-driven global routing
literature. In 1984, Dunlop et al. [6] used the static timing analysis performed within the
iterative place/route paradigm to directly yield net priorities; the assumption behind their
work was that nets which are routed earlier will enjoy fewer detours and fewer feedthroughs,
thus enhancing performance. Subsequently, Kuh, Jackson and Marek-Sadowska [12] gave an
approach tuned to hierarchical building-block layouts; Prastjutrakul and Kubitz [16] used A*
heuristic search [15] for a similar problem domain. A more general approach was given by
Cong, Kahng, Robins, Sarrafzadeh and Wong {3] [4], wherein a parameter € was used to trade
off between the total wirelength of the routing tree (i.e., cost) and the longest source-sink
path in the tree (i.e., radius). In [4], “provably good” method was proposed; this method,
called the BRBC (bounded-radius, bounded-cost) algorithm, afforded both radius and cost
simultaneously within constant factors of optimal (cf. the “shallow-light” construction of
Awerbuch et al. {1]). The BRBC approach is interesting because its radius-cost tradeoff
may also be viewed as one between (i) the shortest-path tree (SPT) construction wherein
all source-sink paths are shortest-possible (i.e., monotone staircase routes in the Manhattan
plane, yielding the notion of minimum radius) and (ii) the minimum spanning (Steiner)
tree construction, which is the traditional routing tree construction (see [11] for a survey of
the Steiner tree literature in VLSI CAD). With this in mind, we reproduce two algorithm
templates: Figure 1 gives the BRBC algorithm [4] and Figure 2 gives the 1-Steiner algorithm
f11].



2.1.1 The BRBC Algorithm

The BRBC algorithm [4] is stated in Figure 1. In the template, we use G to denote the
complete graph of distances among the n;, i = 0,1,..., k that implicitly underlies the routing
tree problem. We also use M ST and §PTg to respectively denote the minimum spanning
tree over (& and the shortest-paths tree over . Terms such as cost, méinpath and dist are
defined in the obvious manner. Finally, ¢ is a user-specified parameter of the algorithm,
where € = oo will allow BRBC to return a minimum spanning tree, and ¢ = 0 in some sense

allows BRBC to return a shortest-paths tree.?

compute M 5Ts and SPT;
/* e.g., using Prim’s and Dijkstra’s algorithms, respectively */

Q=M5T¢
L = depth-first tour of M 5T¢
S=0

fori=1to|L|-1
§ =5+ cost(L;, Liy1)
if § > €-distg(s, Liy1) then
Q = Q Uminpathg(s, Liy1)
S=0
T = shortest-paths tree of @

Figure 1: Computing a bounded-radius spanning tree T' for G =
(N, E), with source ng € N and radius R = maz; dist(no,n;), using
parameter €. 7' will have radius at most (1 + ¢) - R, and cost at most
(1+2): cost( M STg).

2.1.2 The 1-Steiner Algorithm

The 1-Steiner algorithm of Kahng and Robins [11] is stated in Figure 2.

For a given point set P, a 1-Steiner point is any point « such that cost(MST(P U {z}))
is minimized, with cost(MST(P U {a})) < cost(M ST(P)). 1-Steiner is the best-performing
heuristic known for the NP-complete minimum rectilinear Steiner tree problem. The algo-
rithm iteratively adds interior nodes that make the largest reduction to the wirelength of a

Steiner tree spanning the net N. Because there are essentially only [N |2 candidate interior

11t should be noted that BRBC extends to perform Steiner routing, e.g., in the Hanan grid [11] which will
contain all distinct Steiner Touting trees, modulo only displacements of either internal nodes (Steiner points)
or wire edges which do not affect tree cost / delay performance. However, the extension to Steiner routing
in [4] fails to exploit the ability to “overlap” tree edges to save wire in the Manhattan geometry, and thus
post-processing methods such as that in [9] may be also needed to achieve a low-cost Steiner tree.



Iterated 1-Steiner: Steiner tree heuristic of [11]

Input: N, a placement of source np and k sinks

Qutput: Heuristic minimum rectilinear Steiner tree over N
5=490

While |S| < k + 1 and 3 1-Steiner point z Do § = §U {z}
Output MST(P U §)

Figure 2: The iterated 1-Steiner algorithm.

nodes, the 1-Steiner algorithm is relatively efficient, and can be implemented to have worst-
case time complexity O(|S}- |N|?) where § is the set of added Steiner points. Below, we
use the “batched” version of the 1-Steiner algorithm, in which several Steiner points may be
added during a single O(|N|%log|N|) phase, so long as these Steiner points are “noninterfer-
ing”. Because the 1-Steiner algorithm reduces wirelength without attention to source-sink
signal delays, it is, on the surface, not a specifically “performance-driven” algorithm. How-

ever, consideration of the Elmore model for distributed RC delay yields a slightly broader

view of the continuing utility of Steiner tree constructions.

2.2 Intuitions From the Elmore Model

If we consider the Elmore delay formula [7] (the first-order moment of the impulse response
when the routing tree is treated as a distributed RC tree), we may develop useful intuitions for
routing tree construction with respect to critical sinks. Let e, denote the edge from node v to
its parent when we root the tree at ng. The resistance and capacitance of e, are respectively
given by 7., and ¢.,. Let T, denote the subtree of T rooted at v, and let ¢, denote the node
capacitance of v. The tree capacitance C, of T}, is the sum of node and edge capacitances in T,

(7] [19]. The Elmore delay is then given by tgtmore(70, 1) = 2, cpath(no.ns) Tew(Ceo/2 + C)-

In Figure 3, we show a given net N with identified critical sink n., along with three
routing trees: (a) the 1-Steiner tree, (b) a minimum cost, shortest-paths tree (SPT), and (c)

an optimal-delay tree. We may make several observations.

1. The 1-Steiner solution has large delay to n. due to the long source-sink path. Indeed,
the Elmore formula suggests that optimal delays will be obtained when source-sink

paths are as short as possible (i.e., monotone staircase routes).



2. On the other hand, the monotone paths to every sink that are present in the SPT tree

(b) result in extra tree capacitance, again implying large delay at ..

3. The third construction (c¢) shows that identification of the critical node clearly affects

the optimal routing topology.

4. The Elmore delay formula clearly shows the effect of technologyin the choice of optimal
critical-sink routing topologies. For example, note that the formula as stated seems to
imply that the optimal-delay routing will be a ster, i.e., a separate wire from every
sink directly to the source. Consider the fact of non-zero driver resistance as being
embodied by a wire from a new “virtual source” nf to the original source ng, with the
original routing tree topology still incident to ng. In this scenario, delays from ng to
the sinks will become more dependent on tree cost (and less dependent on directness
of the source-sink connections) as we increase the length of this np-no wire, ie., as
we increase the driver resistance: this justifies the minimum Steiner routing used in
present global routers. On the other hand, as we decrease the driver resistance (as in
multi-chip module technologies; also consider the widely variable capacitance of IC and
MCM interconnect technologies), monotonicity of paths becomes more important than
overall tree cost. Indeed, the optimal topology of Figure 3(c) is evocative of both these
concerns.? (With this in mind, our experiments reported below have been performed

with respect to several distinct technology files.)

5. Along a similar vein, we may infer from the Elmore delay formula that the number
of Steiner points in the ng - n. path should in general be minimized, and the Steiner
points should always be “shifted” toward the source np. (In Figure 3(d), note that even
though the two trees shown are both shortest path trees and minimum Steiner trees,

the tree on the right has much less signal delay at n..)

Finally, note that the optimal tree in Figure 3(c) minimizes total tree cost (as in the
1-Steiner tree), subject to the path from ng to n. being monotone. This simultaneous opti-
mization of tree radius and tree cost recalls the motivations for the BRBC approaches, but
here we optimize with respect to the critical sink n.. With this in mind, our basic heuristic
for producing critical path-dependent interconnection topologies is our Critical-Sink Routing

Tree (CSRT) algorithm as shown in Figure 4.

?Recall the ability of the BRBC algorithm [4] to trade off between the conflicting goals of source-sink
directness and overall tree cost; see also the Steiner formulation of [17].



(6.8) _—‘"{ e e

1-Steiner SPT Opt
@ () © (@
Figure 3: Parts (a)-(c): optimal Steiner tree (cost 2.0cm, delay(n.) 5.90ns); minimum
cost shortest-paths tree (cost 2.5cm, delay(n,) 4.11ns); and optimal-delay tree (cost 2.2cm,
delay(n.) 3.07ns) for the same sink set. Coordinates are in mm’s, and IC simulation pa-
rameters were used. Part (d): two distinct minimum cost shortest-paths trees for a set of
three sinks.

Procedure Critical-Sink Routing Tree (CSRT) (template)

Input: Sink Locations N; identified critical sink n. € ¥

Output: Routing tree T over N

1. Construct heuristic (minimum-cost) tree Tp over N — n,.

2. Make a direct connection from n. to Tp using the least
added wire such that the ng-n. path is monotone.

Figure 4: Critical-Sink Routing Tree template.

In all of our simulations we use the 1-Steiner tree heuristic to construct tree Tp in Step
(1). In Section 4 we report results for our basic CSRT heuristic (which we call H1) and for

four simple variants:
1. HO: modify Step (2) in the CSRT template so that the critical node is connected by a
single edge to the source.
2. H1: CSRT algorithm as stated in the Figure 4 template.

3. H2: modify Step (1) in the CSRT template to construct a heuristic tree over the entire
net N. Then, delete the edge directly above node n, in the tree rooted at ng, and

reconnect n, using Step (2).

4. H3: perform Steps (1) and (2) simultaneously by executing the 1-Steiner algorithm

subject to a “maintain monotone feasibility” constraint.®

Tn other words, we iteratively choose a Steiner point which minimizes the sum of the tree cost and the cost
of any needed direct connection from n.. The ditect connection from n. requires that there exists a monotone
path through the “bounding boxes” of the edges in the path to no. Intuitively, this favors Steiner nodes along
a monotone path between np and n., since such nodes will most rapidly reduce the marginal cost of adding a
direct connection.



5. HBest: repeat Step (2) by making the closest connection of n. to each edge in the
heuristic tree Ty plus to ng. Run timing analysis separately on each of these possible

routing trees, and then return the routing tree which has the smallest delay to n..

The complexity of these heuristics is dominated by the complexity of the Step (1) tree

construction.?

2.3 Global Slack Removal

To complement the CSRT approach, we propose a linear-time postprocessing algorithm,
Global Slack Removal (GSR), which shifts edges in the 1-Steiner output to maximize the
monotonicity of source-sink paths without increasing total wirelength. For the sake of brevity,
we call any tree that can be produced by the 1-Steiner algorithm a I-Steiner tree. If we orient
the 1-Steiner tree T by rooting it at the source ng, a U is defined to consist of three consecutive
edges v1vy, vv3 and vavy on a root-leaf path such that the v;-v4 pathlength in T is greater
than the v1-v; Manhattan distance (Figure 5(a)). The GSR algorithm takes as input a rooted
(1-)Steiner tree T and removes U’s as shown in Figure 5(b}); the input tree is processed in
top-down order.® Further details of the method are contained in the pseudo-code of Figure
6. Note that the algorithm utilizes a queue which can be implemented arbitrarily as long as
each node in the tree is processed before its children. In practice, a depth-first ordering is
usually easiest to implement. Notice also that the current node in the traversal is checked to
see if it is the third node in a U/. This detail is important for ensuring that the output tree has
no remaining U’s. Finally, notice that all low-degree Steiner nodes (i.e., of degree < 2; these

are clearly superfluous) are removed at two separate points in the algorithm. This is because

In some cases, hewristics HO and HBest will produce solutions with crossing edges in T. If a non-
self intersecting routing solution is required, these heuristics can be modified so that HO makes the closest
connection to n. that does not cross edges; similarly, HBest may consider only connections to a subset of
edges that can be reached without intersecting other edges.

It should be clear to the reader that using a minimum spanning tree or heuristic minimum Steiner tree
in Step (1) is evocative of the BRBC method [4] in the sense of using ¢ = 0 for n and ¢ = oo for all other
sinks. Indeed, the authors of [4] describe an extension which permits differing ¢, values for each sink n:.
However, the (1 4 ¢;) - R radius bound is with respect to the net radius, R, which is a function of all sink
locations; the BRBC extension thus cannot enforce a monotone path to the critical sink. The Ph.D. thesis of
(. Robins [18] describes how to enforce distinct ¢; values with respect to a different R; value at each sink n;.
Our construction simplifies due to the restriction ¢; € {0, co}.

®The GSR algorithm can actually be run on any Steiner tree input to reduce source-sink pathlengths
without increasing wirelength. GSR is gnaranteed to return a tree with no remaining ’s only in the case
that no single Steiner node can be added to the input tree so as to reduce wirelength.



(a) more U’s can be found if all low-degree Steiner nodes are removed at the beginning of the
algorithm, and (b) each removal of a U can introduce additional low-degree Steiner nodes,

so low degree Steiner nodes must again be eliminated at the end of the algorithm.

Figure 5: Removing a single “U” in the GSR Algorithm.

GSR Algorithm
Procedure G5R
remove all Steiner nodes of degree < 2;
@) — Enqueue(np);
while ¢ not empty
v3 — Dequeue(Q);
vg + pred(va);
vy — pred(va);
for each node v4 € succ(vz) do
@ — Enqueue(vy);
if path vyvevsvy is a U
remove the I/ as in Figure 5;
insert Steiner nodes w; and ws into the tree;
end if;
end for;
end while;
remove all Steiner nodes of degree < 2;
end procedure

Figure 6: Pseudo-code description of the GSR Algorithm.

We now prove two results showing that the GSR algorithm efficiently returns a tree with no
U’s, and that this output tree improves three parameters: total tree cost, pathlength from

the source to each sink, and Elmore delay at each sink.

Theorem 1: GSR will return a tree 77 such that (i) T’ has the same or less total wirelength
as T; (ii) Vn;, i = 1,...,]k|, the ng-n; pathlength in 7" is less than or equal to the ng-n;
pathlength in T'; and (iii) the Elmore delay at each n; in T” is less than or equal to the Elmore
delay in T,



Proof: (i) In Figure 5, the only change between (a) and (b) in terms of wirelength is the
deletion of the edge v;v3 and the insertion of edge wyw,, both of which have the same length.
Consequently, removing the U does not immediately change the wirelength of the tree. If,
however, either ve or v3 becomes a Steiner node of degree 1 in Figure 5(b), then T ! will have
less total wirelength than T after all low-degree Steiner nodes are removed.

(i) In Figure 5, it is obvious that a single U removal can only affect the pathlengths from
the source to sinks in the tree rooted at vy. In fact, since the U removal does not affect the
source-sink pathlengths for v; and vz, and moreover reduces the pathlength for v4, the only
pathlengths changed are those for sinks in the tree rooted at v4 (and these are reduced).
(iii) Note first that Elmore delay along a path depends on the total capacitance (i.e. wire-
length) along the path as well as the wirelength of any subtree branching off from the path.
If a subtree is moved so that it has the same total wirelength and meets the path closer to
the source, then it will reduce the capacitance along a part of the path, and thereby reduce
the total delay between the end points of the path. With this in mind, we see in Figure 5
that the delay to node v, is reduced because the tree capacitance that met the ng-v2 path at
vy in (a) now meets the same path at wy in (b). For v3, the capacitance that met the no-v3
path at v3 now meets the path at wy and w;. The argument is essentially the same for node

v4, except that additionally the ng-v4 pathlength is reduced in (b}. 0]

We note that the order in which U’s are removed from the tree is important. If the U’s are
processed in a bottom-up order instead of a top-down order, then new U’s can be introduced
and the resulting tree may not have all of its U’s removed. An example of this Is seen in
Figure 7. Furthermore, two different top-down orderings can produce different output trees
(although both will have no remaining U/’s). Two different trees that could be produced by

the GSR algorithm from the same tree are illustrated in Figure 8.

The following three lemmas are useful in showing the correctness of GSR in the sense of
producing a tree with no remaining I/’s. Lemma 1 is a basic property of a 1-Steiner tree,

while Lemmas 2 and 3 follow easily from Lemma 1.
Lemma 1: Adding a single Steiner node to a 1-Steiner tree cannot reduce its wirelength.

Lemma 2: In any 1-Steiner tree, the middle edge of a I/ must be either horizontal or vertical

(i.e., not “L”-shaped).

Lemma 3: Each edge in a 1-Steiner tree is the middle edge in at most one U.
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(a)

Removal cf U's in
top-down order

(b}

Removal of U's in
bottom-up order
Figure 7: An example for which (a) processing U’s in a top-down order returns a tree with
no remaining U’s and (b) processing U’s in a bottom-up order returns a tree with one
remaining U.
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Figure 8: Example in which the GSR algorithm with input (a) can produce either tree (b)
or (c) depending on the order that the U’s are processed.

We now show:

Theorem 2: GSR runs in time linear in the size of T and returns a tree 7’ which contains

no s,
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Proof: The algorithm checks for the existence of a U at most once at each node in the input
tree, and testing for and removing each U requires constant time. Hence, GSR runs in linear

time.

We ask whether the removal of the U vyvqvav4 as in Figure 5 can create any new [’s which
are not be inspected by the algorithm later on. Consider which nodes could be the third
node in such a I/. Obviously, no node outside the subtree rooted at v; could be such a node,
because the paths to these nodes are not affected by the single U removal. Other cases of
nodes which could be such a third node include vy, w;, wg, vz, and nodes in the subtree
rooted at ve. Lemmas 1, 2 and 3 suffice to show that none of these nodes can be the third
node of a new U. All other nodes (i.e., those in the original subtree rooted at v3 and vy} are

yet to be processed. Hence, the Theorem follows by induction on the depth of vs. 0

3 Experimental Results and Discussion

We ran our five heuristics along with the 1-Steiner algorithm (1Stein) [11] on random 4-, 8-
and 16-sink inputs. We also applied GSR. (denoted as +VU) to 1Stein and each of our heuristics
except H3 (note that GSR has no effect on the monotone ng-n. path returned by the modified
1-Steiner heuristic used in H3). Our inputs correspond to two distinct technologies: (i) IC is
a representative 0.8 CMOS process, and (ii) MCM is typical of current MCM technologies,

with lower driver resistance and unit wire resistance.”

Table 1 gives delay and wirelength results and comparisons. The delays at all sink nodes
were measured using the two-pole circuit simulator proposed by Zhou et al. [23] and discussed
in [2]. This simulator is a computationally efficient method which has produced very accurate
results when tested against the commonly used circuit simulator SPICE. Each entry in Table
1 represents an average taken over every sink node in 50 random point sets. We emphasize
that the 1Stein algorithm (or the BRBC method, etc.), being net-oriented, will return the
same tree for a given sink set no matter which sink happens to be critical; the delays at the
critical sinks n; are in some sense “generic”. In contrast, each our five heuristics can return
a different tree for each choice of critical sink in the same net. Thus, for each of our CSRT
variants, we report the delay at n; in the specific tree corresponding to the identification of

n; as the critical sink.

"Specifics of the technology files (IC,MCM): driver resistance = (100,25) Q; wire resistance = (0.03,0.008)
01/ um; wire inductance = (492,380) fH/um; sink loading capacitance = (15.3,1000) fF; wire capacitance =
(0.352,0.08) fF/pm; layout area = (10%,100%) mm?.
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IC MCM

[N|=5| |N|=9]IN|=17 | |N|=5]|IN|=9|IN|=17
1Stein 2.44 3.48 5.26 10.52 15.18 25.77
Ave 1Stein+U 2.26 3.30 4.97 9.43 14.11 2497
Delay H0+U 2.37 2.92 3.57 7.26 7.38 7.40
(ns) H1+U 2.20 3.02 3.93 8.90 11.22 13.81
H2+4+U 2.24 3.13 4.14 9.24 12.11 15.72
H3 2.33 3.23 4.39 9.50 12.97 17.91
HBest+U 2.12 2.77 3.47 7.02 T7.31 7.35
1Stein+U 1.51 2.22 3.13 15.65 21.91 31.29
HO+U 1.95 2.74 3.70 20.35 27.32 36.78
Ave WL H14+U 1.58 2.39 3.41 16.20 23.33 33.65
(cm) H2+4U 1.53 2.32 3.37 15.78 22.81 33.34
H3 1.61 2.33 3.28 16.41 23.09 32.66
HBest+U 1.67 2.54 3.58 19.51 26.95 36.50
Wins HBest+U 51.0 79.5 90.6 815 95.5 88.3
(%) 1Stein 35.5 12.5 2.3 3.5 0.5 0.1
Nodewise min 0.85 0.68 0.53 0.46 0.29 0.16
(HBest)/(1St) ave 0.94 0.85 0.72 0.69 0.50 0.33
Delay Ratio max 1.01 1.00 0.95 0.96 0.87 0.76

Table 1: Routing tree results for modern IC and MCM technologies. Notes: (i) all source and
sink locations are chosen randomly in layout region with grid resolution 25um; (ii) HBest+U and
1Stein wins compare only these two heuristics and do not necessarily add up to 100% because of
ties; (iii) Min (Max) Nodewise Delay Ratio is geometric average of, for each sink set N, the min
{max) HBest+U, 1Stein delay ratio over all sinks in N; and (iv) Meta result for each n; in each sink
set is the tree (1Stein or HBest+U tree) which gives smaller delay to n;.

A number of interesting conclusions may be drawn from these results. The variants H0
and HBest are very successful in reducing delay to the critical node, particularly in nets
with a large number of sinks and in the MCM technology where driver and wire resistances
are low. In other words, a strategy of connecting the critical node along a path with a low
branching factor is very successful for these cases. Of course, this strategy often produces an

undesirable side effect of larger net wirelength.®

It is clear that the success of critical-path routing compared to generic 1-Steiner routing
depends on the choice of critical node n;. For example, in each IC sink set with |N| = 17,
one expects to find at least one n; for which the H14+U delay will be almost 50% less than
the 1-Steiner tree delay, while for another n;, one expects the difference to be only about 5%.
With this in mind, we also report the percentage of “wins” between these two algorithms on

a node-by-node basis.

3This “star” strategy may introduce other technical problems such as crossing wires and nodes of degree
> 4.
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IC MCM
IN|=5 | [N|=9 | IN|=17 | IN|=5 | [N|=9 | [N[=1T7

1 0.90 0.84 0.83 0.51 0.44 0.45

2 0.91 0.78 0.76 0.62 0.37 0.34

Rank | 3 0.96 0.80 0.68 0.75 0.44 0.27
of 4 0.99 0.80 0.68 0.95 0.44 0.28
Sink | 5 0.82 0.66 0.47 0.30
6 0.87 0.68 0.54 0.26

7 0.91 0.67 0.63 0.28

8 0.96 0.67 0.78 0.28

9 0.67 0.27

10 0.70 0.29

11 0.71 0.31

12 0.72 0.34

13 0.72 0.34

14 0.77 0.38

15 0.80 0.43

16 0.86 0.50

Table 2: Geometric mean ratio of HBest+U to 1Stein+U delay to sinks, sorted by their distance
to the source. (Sink 1 is closest to the source.)

The distinct “domains of expertise” for the 1-Steiner and CSRT approaches are correlated
with the distance of the critical sink from the source. (We have also observed this phenomenon
in all other comparisons of CSRT against other global routing variants, e.g., the BRBC
method.) Table 2 illustrates this correlation between the HBest+U and 1Stein+U methods.
In the table the ratio of delays between HBest+ U and 1Stein+U is compared on a sink-by-sink
bases, comparing sinks in sorted order of distance from the source. Generally, critical-path
routing is most successful for sinks closer to the source, except for the one very closest to the

source.

The comparison between Hi+U and a shortest-path tree of low wirelength shown in
Figure 3 is also revealing: in general, for critical sinks that are placed close to the source,
the H1+U tree can offer a significant delay improvement, but if the critical sink is far away,

the SPT is usually a better choice.”

9Recall the intuition above, namely that critical-path routing will be useful if the technology favors star-
like, “direct” connections to the n,. Note also that timing-driven placement algorithms may tend to place the
critical sink n. close to the source.
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L0 em N 1 Sink (H14U)/(SPT) Delay Ratio

1)

H A 3.39/4.49 = 0.679

b B 3.34/4.88 = 0.684

C 3.63/5.07 = 0.716

P D 2.31/2.87 = 0.805

E 3.70/4.57 = 0.810

C —q E L F 4.44/5.28 = 0.841

oo B G 4.51/5.31 = 0.849

G A H 2.54/2.88 = 0.882

. I 2.583/2.77 = 0.913

1y J 4.84/5.19 = 0.932

J K 5.27/5.46 = 0.965

L 3.08/3.11 = 0.990

M* K o M 5.84/5.50 = 1.062

Ll N 5.88/5.24 = 1.122

0.0 o 7.69/5.61 = 1.371

°-. 0.5 1.0 em P 5.40/3.10 = 1,742

Figure 9: Random 16-sink IC example (lcm by lem layout region), showing nodewise
ratios of H1+U delays to a heuristic minimum cost shortest-paths tree, which is shown In
the figure.

4

Future Work

We are considering extensions of critical path-dependent routing tree design to the general

case of multiple critical sinks with prescribed delay bounds.
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