Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

EXECUTABLE SPECIFICATIONS OF MULTI-USER
INTERFACES

Y. Eterovic July 1992
CSD-920038

UNIVERSITY OF CALIFORNIA
Los Angeles

Executable Specifications of
Multi-Application Multi-User Interfaces

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Computer Science

by

Yadran Eterovic

1992

The dissertation of Yadran Eterovic is approved.

) _, .
D A"“ ~-¢ (‘ -
; N -
] |
Rajive Bagrodia
T Allo "Bt
V' Phillip Bonacich

-

/T s

George Stiny

Gerald Estrin, Committee Chair

University of California, Los Angeles

1992

ii

To Carmen Gloria, Sebastidan and Magdalena
for all their love, support, understanding and patience, which made this effort
worthwhile.

iii

Contents

1 Introduction

1.1
1.2
1.3

Definitions and Motivation« . o ..
Contributions v e e e e e e e e e e e e e e
The Dissertation v i v v i v i e e e e e e

2 Related Work

2.1

2.2

2.3

24

2.5

User Interface Models o .
2.11 TheSeeheimModel
2.1.2 The Direct Manipulation Model
2.1.3 The ReferenceModel
User-Application Dialog Specifications
2.2.1 Interaction Objects
2.22 The Event Model
2.2.3 Sassafras’s Event-Response Language
2.24 Garnet’s Interactors Lo o
User Interface Toolkits
2.31 InterViews.
232 CLUE e
User Interface Development Systems
2.4.1 The User-Interface Design Environment
242 Garneto
243 TheUofA* UIMS
244 Chimera 0 i e
24.5 IntegralHelp
coSARA’s Formal Graphical Modeling Languages
251 OREL
252 SMand GMB oo

An Operational Model of Multi-Application Multi-User Inter-

faces

3.1
3.2
3.3
3.4
3.5
3.6

3.7

The Particular Case of a Single Application and a Single User

The General Case of Multiple Applications and Multiple Users . .
Specifying a Simple User Interface: High-Level Structural Model .
Specifying a Simple User Interface: Behavioral Models
The GMB Model of a Contact
A Classification of Dialogs 00
3.6.1 Elementary Dialogs
3.6.2 Drawing Dialogs
3.6.3 Editing Dialogs
364 Comments L0 e
The GMB Model of a Generalized Dialog

iv

3.8 A Test Environment for Multi-User Interfaces 40

3.9 Comparison with Related Works 43
4 An Object-Oriented Approach to Prototyping Multi-User Inter-

faces for Collaborative Applications 45
4.1 The Class Diagram of the Multi-User Interface 47
4.2 Modeling the Behavior of the Multi-User Interface 49

4.2.1 The Interface’s Structural Model 50

4.2.2 The Interface’s Application Model 51

4.2.3 The Behavior of the Interactors: Contacts and Dialogs . . 54
4.3 The Instantiation and Behavior-Linking Process 54
4.4 The Execution Process 57
4.5 Comparison with Related Work 59

5 Concurrent Application Sharing and Interface Reconfigurability 61
5.1 Specification of User Coordination for Concurrent Application Shar-

INZ . o e e e e e e e e e 61
5.1.1 Application-Independent Coordination 62
5.1.2 Sequential Execution Among Equivalent Dialogs 64
5.1.3 Mutual Exclusion Among Equivalent Dialogs 65
5.1.4 Mutual Exclusion Among Dialogs’ Exit Subgraphs 68
5.2 Dynamic Reconfiguration of Multi-Application Multi-User Interfaces 70
5.2.1 Dynamic Reconfiguration of Dialogs 71

5.2.2 Dynamic Reconfiguration of a Collection of Interacting Di-
alogs L 73
5.3 Extended Dialog and Multi-User Interface Models 75
6 The Zoom Tool: An Extended Example of a Multi-User Interface 79
6.1 The Zoom Tool Concept 79
6.2 Formal Specification of the Zoom Tool’s Multi-User Interface . . . 80
6.3 Operation of the Zoom Tool Prototype 83
6.3.1 DefiningaFocus 86
6.3.2 Setting the Display Viewport 86
6.4 Reconfiguring the Multi-User Interface Model 87
7 Conclusions and Future Work 93
A CLOS code for user interface OREL model 96
B CLOS code for process Interactor Translator 105

List of Figures

1

e

10
11
12
13

14
15
16

17
18
19
20
21
22
23
24

25

The concept of a multi-application multi-user interface.
User interface models: (a) Seeheim; (b) Direct Manipulation; (c)
Reference.o
The primitives of OREL and an example of their use.
The primitives of GMB and an example of their use.
High-level structural model of a single-application single-user inter-
face. . . . L
High-level structural model of a multi-application multi-user inter-
face. . . . L
Structural model of the counter’s user interface: (a) one user; (b)
EWO BSEIS. . . . v v v v e e e e e e e e e e e e e e e e e
Behavioral model of the counter’s user interface for one user. . . .
GMB model of a generic contact. The interpretation depends on
the specific contact and is only sketched. The semantics is explained
mthetext.o
Behavioral models of: (a) Highlighter; (b) Button; (c) Switch.

Behavioral model of the Box dialog.
Behavioral model of the Point-Collector dialog.
GMB model of a generalized dialog. The interpretation depends
completely on the actual dialog instance. The semantics 1s ex-
plained in the text.
Structural model of the test environment..
Behavioral model of the test environment.
High-level structural model of a multi-user interface between K
users and one application. L.
The drawing tool during operation.
The OREL class diagram of the drawing tool’s user interface.. . .
The structural model of the drawing tool’s user interface.
Object-oriented behavioral model of the drawing tool’s application
model. L
Producing executable instances of an application and its user in-
terface, from object-oriented specifications.
The models of the drawing tool: (a) Sketch of SM model; (b) GMB
model of Make; (c) Interpretation for processor MakeFig; (d) GMB
model of 1/0; () GMB model of DoRect.
Multi-user interface for K users with no explicit coordination.

Multi-user interface for K users with (some type of) coordination
among equivalent dialogs.o oL 0oL
Sequential dialogs (for simplicity, modules enclosing contact-dialog
pairs, representing interactors, are not shown).

vi

18
19

23

24

26

27

29
32
34
36

39
41
42

46
47
48
50
33
56
58

62

64

26
27

28

29

30

31
32
33
34
35

36
37
38
39

40
41

Mutually exclusive dialogs (interactors are not shown).
Mutual exclusion among dialogs’ exit subgraphs (interactors are
not shown).
Comparing the control graphs of two dialogs, with two and three
subgraphs in the central step: internal effect.
Comparing the control graphs of two dialogs, with two and three
nodes in the central step: external effect.
GMB model of a generalized dialog, extended for mutually exclusive
operation and dynamic reconfigurability.
Multi-user interface model extended for dynamic reconfigurability.
Concept and user interface of the zoom tool.
Zoom tool’s user interface specification.
Interpretation for zoom tool application model.
An actual window displaying the specification of the zoom tool’s
user interface. L Lo oo
Executing the zoom tool prototype: defining a focus.
Executing the zoom tool prototype: a focus has been defined.
Executing the zoom tool prototype: setting the display viewport.
Executing the zoom tool prototype: the display viewport has been

Reconfiguring the model to let a second user join the session. . . .
Two users concurrently sharing the zoom tool.

vii

69

72

73

76
77
79
81
82

84
85
87
88

89
90

ACKNOWLEDGMENTS

I want to express my deepest gratitude to mi advisor, professor Gerald Estrin,
for all his guidance during the past five years, without which this work could
have not been done at all. Professor Estrin always had time for my questions and
always had good answers for them. His continuous, dedicated and sincere concern
for my work, but also for me and my family taught me a completely new lesson
on being a professor.

I also want to thank the other members of my dissertation committee, pro-
fessors Rajive Bagrodia, Phillip Bonacich, Michel Melkanoff and George Stiny.
They provided interesting comments and suggestions which helped me improve
the quality of my work.

Working in the coSARA group has been a pleasure thanks to Mannesh (Manu)
Dhagat, Sergio Mujica, Richard Poman Leung, Elsie Wu, Katie Chong, Steven
Berson and Ivan Tou. My friendship with Manu was born and grew during this
time. My friendship with Sergio became only stronger.

My studies at UCLA were financed in part by Universidad Catdlica de Chile,
by the Government of Chile through its Oficina de Planificacién Nacional, and by
the Organization of American States.

The work on coSARA was done with partial support provided by AT&T,
Hughes, IBM, IDE, NCR, Perceptronics, Sun Microsystems, TRW, UNISYS, and
the University of Caliornia through its Microelectronics Innovation and Computer
Research Opportunities (MICRO) Program.

Finally, I want to thank my mother for always being there, geographically
distant during these years, but otherwise very close.

viii

January 26, 1958

1932

1984

1985

1985-1987

1985-1987

1988-1992

VITA

Born, Santiago, Chile

Electrical Engineer
Catholic University of Chile

Teaching Assistant
Computer Science Department
University of California, Los Angeles

M.S., Computer Science
University of California, Los Angeles

Assistant Professor
Department of Computer Science
Catholic University of Chile

Assistant Director, Student Affairs
School of Engineering
Catholic University of Chile

Research Assistant
Computer Science Department
University of California, Los Angeles

ix

ABSTRACT OF THE DISSERTATION

Executable Specifications of
Multi-Application Multi-User Interfaces

by

Yadran Eterovic
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1992
Professor Gerald Estrin, Chair

This work deals with the problems of modeling, specification, and construction of
executable prototypes of multi-application multi-user interfaces, which are graph-
ical, interactive, collaborative, based on the direct-manipulation style of interac-
tion, and dynamically reconfigurable. The contributions of this work with respect
to these interfaces are a model and an object-oriented development methodology to
build executable prototypes of the interfaces from the specification of their single-
user versions. The model and the development methodology support application-
independent control mechanisms used for the specification of coordination among
multiple users concurrently sharing an application. They also support configu-
ration mechanisms, based on extensions to formal graphical modeling languages,
used for the specification of interfaces whose structure and behavior can change
dynamically during their operation.

We describe the model in terms of the structure, behavior and communication
of screen objects and abstract representations of the applications. By refining
the model we develop a small collection of user-application dialogs which cover
interactions used in graphical, interactive and direct-manipulation interfaces. The
UCLA Structural Model and Graph Model of Behavior modeling languages are
used to represent the model and they provide a basis for simulating and testing
interface designs during early prototyping phases..

Those languages plus the Object RELation language are used to specify the
organization and behavior of the classes composing an interface. Applications
take here the form of classes and methods that can be applied to instances of the
classes through the interface. Common Lisp User Interface Environment contacts
and software modules from an extensible library are used to create instances, and
a linking procedure is provided which automatically assigns the appropriate class
behavior to the instances. As a result, end users and designers can execute the

models by operating real input devices on real screen objects.

Explicit mutual exclusion mechanisms included in models of screen objects,
and therefore independent of applications, are used to coordinate activities of
multiple users trying to concurrently access the functionality and data of the same
application. The regularity of the control structures defining the behavior of the
screen objects or coordinating activities among screen objects is used to provide
the ability of an executable interface specification to reconfigure itself during a
collaborative session, as new applications become active and new users join the
session.

xi

1 Introduction

In this work, we deal with the problems of modeling, specification, and develop-
ment of executable prototypes of multi-application multi-user interfaces, which
are graphical, interactive, collaborative, based on the direct-manipulation style of
interaction, and dynamically reconfigurable.

The central contributions of this work with respect to multi-application multi-
user interfaces are an operational model and an object-oriented development
methodology to build executable prototypes of these interfaces from graphical
and formal specifications of their single-user versions. The model and the devel-
opment methodology support application-independent control mechanisms which
can be used for the executable specification of coordination among multiple users
sharing an application concurrently. They also support configuration mechanisms,
based on extensions to formal graphic modeling langnages, which can be used for
the executable specification of interfaces whose structure and behavior can change
dynamically during their operation.

1.1 Definitions and Motivation

The multi-application multi-user interface of a collaborative computer system is
the component of the system which allows and controls the interaction between
multiple users and the multiple applications of the system. Fig. 1 shows the
concept of such an interface in the case of three collaborating users concurrently
sharing one application, a graphical block diagram editor. Each user’s workstation
screen displays two windows with functionally identical contents and sensitive to
the same set of user’s input actions. These interfaces can be characterized as:

e Graphical, that is, the visible objects on the workstations’ screens represent
buttons, menus, dialog boxes, scroll bars, drawing windows, etc., or are
elaborate graphical representations of data objects;

e Highly interactive, that is, users expect rapid and almost continuous syn-
tactic and semantic feedback in response to their actions;

¢ Based on the direct-manipulation style of interaction, that is, users input
their actions by pointing at (the graphical representations of) objects with
a mouse’s cursor and then clicking or dragging the mouse;

e Collaborative, that is, multiple users can concurrently share one or more
applications and their data; and

o Dynamically reconfigurable, that is, users can join or leave a collaborative
session at any time, and applications can become active or inactive, un-
der user control, at any time during a collaborative session, changing the
configuration of the interface in both cases.

User 1

block-diagram @ phantom § \
Lib i
""""" screen
Edit Link | |
""""" drawing
. window
Simul -
X el @ phaniom 35
Analyze _ s
L @D Cacd| || dialog
box
—1] —11 —]
—\ 0O —\0Od — 0O
Collaborating Collaborating Collaborating
User 2 User 3

Figure 1: The concept of a multi-application multi-user interface.

In general, the process of building these user interfaces is fairly complex and
expensive, and numerous authors agree that the only reliable way to produce them
is by an iterative design process, that is, to test prototypes with users and modify
the design based on their comments [Harbert et al., 1990; Mulligan et. al, 1991,
Myers, 1989b]. If this technique is to be effective, designs must be reasonably easy
to construct and execute for evaluation. Both user interface designers and users
should be able to: simulate the operation of a proposed user interface, change its
definition if the original design is unacceptable, and resume execution using the
modified definition.

A user interface development system should be easy to use and fully expressive.
Easy-to-use systems usually provide easily manipulated entity libraries but their
flexibility is restricted. Some systems provide a low level specification language,
which is more difficult to use but has greater flexibility and power ([Myers et al.,
1990] cites the Macintosh Toolbox and the X Toolkit as examples of this case).
A system that combines both approaches gives designers access to libraries of
reusable entities, and at the same time lets them modify and extend those libraries
with a lower level specification language. Libraries are used for most work, turning
to lower level techniques only to specialize entities or create completely new ones.

1.2 Contributions

The central contributions of this work with respect to multi-application multi-user
interfaces are:

e A formal operational model of the interfaces. The model explicitly includes
the screen objects with which the users interact directly, the application
models that support the sharing of information between the interface and
the applications, and the communication schemes among these components.
Screen objects are represented in more detail than in any other existing
model in terms of internal behavior and communication of control and data.
Still, they are completely independent of any particular implementation.
The application models are defined as abstract, object-oriented representa-
tions of the functionality of applications as seen from the interface’s point
of view, and truly support the shared data model that has been proposed
for interfaces based on the direct-manipulation style of interaction [Hudson,
1987).

e An object-oriented specification and development methodology to build exe-
cutable prototypes of the interfaces. For specification purposes, the method-
ology uses the Object RELation (OREL) modeling language [Mujica, 1991]
to describe class diagrams, and the Structural Model (SM) and Graph Model
of Behavior (GMB) modeling languages [Estrin et al., 1986] to describe the

behavior of classes. For development purposes the methodology uses an ex-
tensible library of software modules to assign interpretation to behavioral
models, to link class instances to these models, and to map real screen ob-
jects to their class instance representations. The same formalisms are used
to model a test environment which is used to generate inputs and test the
behavior of models.

Besides the characteristics mentioned above, the model and the development
methodology support:

¢ Application-independent control mechanisms which can be used for the ex-
ecutable specification of coordination among multiple users sharing concur-
rently an application. The mechanisms are based on mutually exclusive
and/or strictly sequential operation among functionally equivalent screen
objects, and can be easily encapsulated in models of the screen objects.

¢ Configuration mechanisms, based on structural and behavioral extensions
to the SM and GMB modeling languages, which can be used for the exe-
cutable specification of interfaces whose structure and behavior can change
dynamically during their operation.

1.3 The Dissertation

Chapter 2 reviews the work done by other researchers in the areas of modeling,
specification and construction of user interfaces, presenting the models, notations
and environments that are most relevant to our own work. Chapter 3 introduces,
by means of a simple example, our operational model of multi-application multi-
user interfaces, described in terms of the languages SM and GMB. The model
is at the same time a combination, an extension and a refinement of well-known
models of mainly single-user interfaces. The model deals simply and explicitly
with the aspects of concurrency, collaboration, and reconfigurability found in the
multi-user case.

Chapter 4 describes our object-oriented methodology to build executable pro-
totypes of multi-user interfaces from the graphical, formal specifications of their
single-user versions. The methodology is based on the operational model intro-
duced in Chapter 3 and on our view of these interfaces and their components as
objects belonging to specific classes, participating in several relations, and com-
municating through different types of messages. The language OREL is used to
define the class diagram of a multi-user interface.

Chapter 5 presents the approaches taken in our model to deal with the issues of
concurrency and dynamic reconfiguration of multi-user interfaces. First, we intro-
duce a flexible, application-independent mechanism to coordinate the interactions
of multiple users concurrently sharing the same application. The mechanism is

based on mutually exclusive or strictly sequential operation of equivalent screen
objects. Then, based on the internal control structure of the screen objects and
on the interaction coordination mechanism, we introduce two dynamic reconfig-
uration mechanisms that allow an interface to change during its operation as a
consequence of variable numbers of users and applications.

Chapter 6 presents a complete, realistic example of the specification and exe-
cution of the prototype of a multi-user interface for a graphical application. The
same example is used to extend the reconfiguration mechanisms introduced in
Chapter 5 by describing the application-independent reconfiguration of the inter-
face between the screen objects and the application. We conclude this work by
summarizing our contributions to the field of executable specifications of multi-
application multi-user interfaces, pointing out the strengths and weaknesses of our
approach, and mentioning some new problems in the field open for research.

2 Related Work

In this chapter we summarize the work done by other researchers in the areas of
modeling, specification, and construction of user interfaces. Because the amount
of such work is vast, we present only those models, notations, and environments
that are most relevant to our own work.

2.1 User Interface Models
2.1.1 The Seeheim Model

A general model of single-user interfaces is the Seeheim model [Green, 1985], which
divides a user interface into three components, as shown in Fig. 2(a): presentation,
dialog control, and application model. These three components communicate by
passing tokens, which consist of a name and a collection of data values.

The presentation deals with: the physical representation of the user interface
(including input and output devices such as mouse, keyboard and screen), layout
of screen objects, interaction techniques and display techniques. It detects user-
generated input events, produced by the operation of the mouse and the keyboard,
and displays the screen objects and their contents on the screen. It constitutes
the lexical level of the interface.

The dialog control deals with the structure of individual commands and the
overall dialog between a user and an application. It converts input tokens received
from the presentation into calls to application procedures, and generates requests
to the presentation to display objects on the screen according to data received
from the application. It constitutes the syntactic level of the interface.

Finally, the application model is an abstract, implementation-independent de-
scription of an application, representing the interface between a user interface and
an actual application. It handles invocation of application procedures and commu-
nication of requests and data from the application to the user interface. It removes
a burden from application designers because frequently required capabilities do
not have to be designed for each application.

2.1.2 The Direct Manipulation Model

The direct manipulation model of user interfaces [Hudson, 1987) is a modification
of the Seeheim model in order to better capture the characteristics of single-user
interfaces based on the direct manipulation style of interaction. It consists of only
two components, as shown in Fig. 2(b), and does not include an explicit dialog
control.

The presentation manages the graphical images and input techniques described
by a collection of presentation plans, which are abstract representations of inputs
and outputs including their lexical and syntactic aspects. The shared data model

. Dialog Application o
User Presentation Application
Tokens Tokens

(a)

. Shared Data

®

Application

workstation management

media-independent /O ¢:-"""

-
b

Workstation
Agent
(11)
Hardware Devices

{c)

Figure 2: User interface models: (a) Seeheim; (b) Direct Manipulation; (c) Ref-
erelnce.

1s a set of structured active shared objects, which do not simply passively store
data, but also react to changes in ways that reflect the semantics of the application,
allowing a convenient vehicle both for implementing semantic feedback and for
automatically notifying the application when objects change.

2.1.3 The Reference Model

The reference model [Lantz et al., 1987; Lantz, 1987] is a model for the imple-
mentation of interactive software, providing a framework within which alternative
implementations can be compared, rather than proposing a specific implementa-
tion. It considers more explicitly than the previous models situations in which: the
application and the user interface run on different machines; users interact with
several applications at the same time; users use the computer to support collab-
orative work; and the interface can be statically and/or dynamically reconfigured
to support different users or application environments.

The reference model consists of three major components, as shown in Fig. 2(c).
The workstation agent manages the hardware devices, which provide the “raw”
interface to the user, presenting a device-independent interface to clients in terms
of relatively low-level I/O primitives. It also provides the basic support for multi-
tasking, multiplexing the various devices between multiple clients according to
a policy determined by the workstation manager. The dialog manager provides
“true” dialogs between users and applications. It composes the I/O primitives
provided by the workstation agent into interaction techniques and selects partic-
ular interaction techniques to satisfy application-specific tasks. Thus, it provides
the application with a media-independent interface that supports the invocation
of application methods and handles their responses. Finally, the workstation
manager: handles the meta-dialog that allows users engaged in multiple simulta-
neous dialogs to switch from one dialog to another, provides (through the dialog
manager) the user interface to this meta-dialog, and sets the policy for sharing
devices.

2.2 User-Application Dialog Specifications
2.2.1 1Interaction Objects

Interaction Objects [Jacob, 1986] is an object-oriented language for specifying the
syntax of the dialog between users and applications in a user interface based on the
direct manipulation style of interaction. Such an interface comprises a collection
of many relatively simple individual dialogs, each of which is described by an
interaction object. The language supports multiple inheritance (an object can
inherit properties from several other objects), composition (an object can contain
one or more smaller objects), and a restricted form of communication between a
composite object and its components.

The main elements of an interaction object are input tokens, output tokens
and dialog diagrams. A token is an abstraction and a definition of a low-level
input or output signal, and it may carry data. Examples of input tokens are
typing a character on the keyboard and moving or clicking the mouse. Examples
of output tokens are highlighting a region of the screen and drawing or erasing a
figure. A dialog diagram is an extended state transition diagram. The label of a
transition in this diagram can be an input or output token or a condition to be
tested. In both cases, it can be followed by the name of another diagram to be
called as a subroutine, or by a sequence of actions, such as assignments to local
variables and calls to application procedures.

The collection of interaction objects of an interface is organized like a system
of coroutines. At any point during the operation of the interface only one dialog
diagram, and hence only one interaction object, is active. When an input token
is produced by the user, the diagram checks to see if its current state has an
outgoing transition labeled with that token. In that case, that transition is taken.
Otherwise, the diagram is suspended and a different dialog diagram, usually in
a different interaction object and currently suspended in the appropriate state,
is activated and its transition taken. When a dialog diagram is suspended, it
remembers the values of its local variables and its current state.

2.2.2 The Event Model

The event mode!l [Green, 1986] is an extension of the concept of input events found
in graphic packages, in which the input devices are viewed as sources of events
of some predefined types. In the event model there is an arbitrary number of
event types, which can be extended by the programiner, and the events can be
generated not only by the input devices but also by the dialog itself. When an
event occurs, it is sent to one or more event handlers, which are processes capable
of handling certain types of events. When an event handler receives an event, it
executes a procedure called an event procedure. This procedure can assign the
value of an expression to a local variable, execute one of two sets of statements
based on the value of a condition, create an event and send it to an event handler,
create or destroy an event handler, or call an application procedure.

A user interface is described by a set of event handler templates. Each template
defines the behavior of a subset of the event handlers the interface can use. It
basically contains a list of the events that can be handled by the event handlers
created from the template, and one event procedure for each event. Conceptually,
all the event handlers of an interface execute concurrently, processing events as
they arrive, and the same event can be processed by more than one event handler
at the same time. The events sent to the same event handler are processed in the
order in which they are sent, but there are no constraints on the time ordering
of events sent to different event handlers. Because processing an event, that
is, executing the corresponding event procedure, is an atomic operation, an event

handler can only process one event at a time, and so it can be viewed as a monitor.

2.2.3 Sassafras’s Event-Response Language

The goal of the Sassafras UIMS [Hill, 1986] is to provide tools that aid in the devel-
opment of better user interfaces by allowing rapid iteration of the implementation,
testing, and redesign steps involved in the development process. Sassafras makes
no effort to make the interface specification process easier than it is with other
UIMSs, but concentrates on extending the range of interfaces that can be sup-
ported, specially by incorporating concurrency at three levels: input, output, and
dialog. The two key components of Sassafras are the Event-Response Language
and the Local Event Broadcast Method.

The Event-Response Language (ERL) is a language for specifying the syntax
of the dialog between users and applications. Its main elements are incoming
events, outgoing events and flags. All input to an ERL processor comes through a
queue of incoming events. An event is a signal that something has occurred, and
it may carry data. Flags are local variables used to encode the state of the system
and to control its execution. An ERL specification consists of a list of rules. Each
rule specifies a response to some event or an action to be taken when some state
is entered.

A rule consists of a condition followed by an action. The condition is either
the name of an event and a list of flags (a regular rule) or simply a list of flags (an
e rule). The action is a list of flags, events, and assignments. The rule 1s firable
when all flags in the condition are raised, and the event (if any) is at the head
of the event queue. When the rule fires, the flags in the condition are lowered,;
then, in the order in which they appear in the action, all flags are raised, any
events are sent (outgoing events), and the assignments are processed. Execution
of an ERL specification proceeds by repeating the following two steps: (1) fire all
firable € rules, and (2) fire all firable regular rules and remove the corresponding
event from the queue.

The Local Event Broadcast Method (LEBM) is a run-time structure that sup-
ports communication and synchronization among the components of an interactive
system, and that schedules their execution. Its primary elements are modules and
clusters. Modules represent units of code (for example, an ERL specification) that
exchange information and synchronize other modules via the LEBM. Clusters are
groups of modules linked by a single instance of the LEBM. Normally, there is one
cluster for each interface. LEBM allows modules in a cluster to communicate with
each other by sending events to a controller, where they are queued and processed
by a two-step loop: (1) wait until all modules are idle, thus supporting synchro-
nization of modules, and (2) send the first event in the queue to all modules that
will accept it.

10

2.2.4 Garnet’s Interactors

Garnet’s Interactors [Myers et al., 1990; Myers, 1989a], are encapsulations of input
device behaviors that allow a high degree of customizing by applications. Inter-
actors are look independent, let designers separate the details of object behavior
from the application and from the output graphics, support multiple input devices
operating in parallel, let users operate on any number of different applications,
and together with Garnet’s graphical object system hide the complexities of X
Windows graphics and event handling.

There are only six types of interactors, which cover all the kinds of interactions
used in graphical user interfaces based on keyboard and mouse: choosing items
from a set; moving or changing the size of an object; entering an arbitrary number
of new points; calculating the angle at which the mouse moves around some point;
capturing all the points the mouse goes through between start and end events;
and inputting a small string of text.

All interactors run the same simple state machine that handles the starting,
stopping, aborting, and suspending (while outside the active region) activities.
The parameters to the interactor determine what events cause the transitions
and what actions are taken when they happen, but the designer does not have
to program the control flow. Each interactor has default actions when starting,
running and stopping, which can be overridden or suplemented by arbitrary Lisp
procedures provided by the designer or the application.

2.3 User Interface Toolkits

A user interface toolkit is a library of interaction techniques. An interaction
technique is a way of using a physical input device (such as mouse and keyboard)
to input a value (such as command, position, name), along with the feedback that
appears on the screen [Linton et al., 1989; Myers, 1989a]. Examples of interaction
techniques are menus, scroll bars, and dialog boxes.

2.3.1 InterViews

InterViews [Linton et al., 1989] is a library of C++ classes that defines three cat-
egories of commonly used user interface objects and the appropriate composition
strategies: interactive objects, structured graphics, and structured text. Each
category is implemented as a hierarchy of object classes derived from a common
base class, which defines the communication protocol for all objects in the hier-
archy. Subclasses within each category allow hierarchical composition of object
instances, and define the additional protocol needed by the elements in a compo-
sition, such as operations for inserting and removing elements and for propagating
information through the composition.

11

Interactive objects such as buttons and menus manage some area of potential
input and output on a workstation display. They are derived from the interac-
tor class, and are composed by scenes, which define specific composition seman-
tics such as tiling or overlapping. Interactors provide operations to handle input
events, support nonlinear deformations, and are customizable. Structured graph-
ics objects such as circles and polygons are derived from the graphic class, and are
composed by pictures, which provide a common coordinate system and graphical
context for their components. Structured text objects such as words and whites-
pace are derived from the text class, and are composed by clauses, which define
common strategies for arranging components to fill available space.

Interviews distinguishes between the objects that implement the interface,
called views, and the objects that encapsulate the underlying data, called sub-
jects, thus allowing programimners to present different, independently customizable
interfaces to the same data. Views are implemented with interactors, graphics and
texts, and define an update operation that reconciles a view’s appearance with
the current state of the subject. Subjects are derived from a subject class and
maintain a list of their views. Calling notify on a subject in turn calls update
on its views, which then update their appearance in response to a change in the
subject.

2.3.2 CLUE

CLUE, the Common Lisp User Interface Environment [Kimbrough, 1989; Kim-
brough and Oren, 1990] is a high-level object-oriented programming interface to
the X Window System, extending the basic Common Lisp interface to X (CLX)
[CLX, 1989]) and based on the Common Lisp Object System (CLOS) [Keene,
1989]. It is a toolkit for constructing X user interfaces, modeled closely on the
standard C toolkit (Xt, or the X Toolkit).

A CLUE program contains an event loop, a set of interface objects called
contacts, and a set of application functions called callbacks. Each contact 1s an
interface “agent” that is prepared to present application data, to accept user events
which manipulate these data, and then to report the results back to the application
using the callbacks. A callback consists of a name and a function. Contacts can
be arranged in composites to implement objects such as control panels and dialog
boxes. A composite implements a style of layout for its components, so that
requests to change the geometry of a component are forwarded to the composite,
which actually performs the resulting changes. In this way, the composite can
arbitrate the competing requests of several components, implementing constraints
among them, and a given layout style can be applied to any collection of contacts
and can be changed without the knowledge of individual contacts.

CLUE’s main job is handling user input events, such as pressing a key on the
keyboard and clicking or moving the mouse. A call to process-next-event, at
the beginning of the event loop, causes CLUE to read the next event from a given

12

connection to a specific X server, and send it to the contact that is supposed to
handle it. The receiving contact then translates the event, first by comparing 1t
with each of the event specifications known to the contact, and then, when a spec-
ification is found that matches the event, by invoking the methods associated with
this specification and representing well-defined contact behavior. Event specifica-
tions and the associated methods can be defined for both classes of contacts and
individual contact instances. When a method computes a result that 1s important
to an application, it invokes a callback name, which the application should have
associated with a callback function. At this point, process-next-event returns.

2.4 User Interface Development Systems

A user interface development system is an integrated set of tools that help pro-
grammers design, implement and manage many aspects of interfaces [Linton et al.,
1989; Myers, 1989a). They may contain a toolkit, a dialog-control component to
handle event sequencing and interaction techniques, a programming framework to
guide and structure the interface code and application semantics, a mouse-based
layout editor to specify the location of graphical elements, and an analysis com-
ponent that evaluates the interface automatically or saves run-time information
for later evaluation by the designer.

2.4.1 The User-Interface Design Environment

The User-Interface Design Environment (UIDE) [Foley et al., 1989] uses a knowl-
edge-based representation of the user interface’s conceptual design. This represen-
tation consists of the class hierarchy of objects in the system, their properties and
the actions that can be performed on them, and the parameters, preconditions and
postconditions for the actions. It can be used for several purposes: to produce a
description of the design in the Interface Definition Language; to transform itself
and the user interface into another, functionally equivalent interface; to provide
input to the Simple User-Interface Management System (SUIMS) to implement
the interface; to check the design for consistency and completeness (verify that the
knowledge base has enough information for the transformations and the SUIMS
to operate); to evaluate the design’s speed of use; and to generate runtime help.

Particularly interesting are the transformation system and the SUIMS. UIDE
can generate alternative interface designs that are slight variations on one an-
other, by applying transformations to the knowledge-based representation [Foley,
1987]. The implemented transformations include: factoring (e.g., creating a se-
lected object, command, or attribute); establishing a selected set (a generalization
of the selected object concept) such that any command applies to all elements of
the set; establishing initial values for factored parameters and default values for
unfactored parameters; specializing and generalizing commands based on object
and command hierarchies; and modifying the scope of some commands.

13

The SUIMS lets you define aspects of the interface such as presentation style,
dialog syntax, and interaction techniques. It uses the knowledge-based represen-
tation and a knowledge base containing the interaction techniques necessary for
the different interaction tasks. These include selection of commands, classes, in-
stances, attributes and positions, and text and number input. For example, for
the instance selection task the system offers the pointing, type-in, and menu inter-
action techniques. The SUIMS instantiates the objects defined in the knowledge-
based representation, maintains their attribute values, and makes them available
to the application’s procedures through mechanisms provided by the software
supporting the representation (the Inference Corp.’s Automated Reasoning Tool).
The SUIMS cycles through a set of steps: update the screen, check preconditions
and recognize enabled actions, accept the action selected by the user, process each
parameter accepting their values in arbitrary order, confirm or cancel the action,
execute the action, and evaluate postconditions.

2.4.2 (Garnet

Garnet [Myers et al., 1990 helps designers (1) rapidly prototype different in-
teractive, graphical, direct manipulation user interfaces, and (2) explore various
interface metaphors during design. It reflects an emphasis on two aspescts of
interface design: handling objects’ runtime behavior, that is, how they change
when the user operates on them; and handling all visual aspects of an interface,
including its graphics and the contents of all application-specifc windows. Gar-
net contains low level tools (an object-oriented programming system, a constraint
system, a graphical object system, a system for handling input, and a collection of
gadgets) and high level tools (an interface builder (Lapidary), a menu and dialog
box creation system, and a spreadsheet for specifying complex constraints).

The programming system supports a prototype-instance (rather than a class-
instance) model for objects, which does not distinguish between instances and
classes: any instance can be a prototype for other instances. Constraints are
arbitrary Lisp expressions, stored in object slots, which represent relationships
among objects that are maintained when the objects change. The graphical object
system provides default values for all object properties, which can also be specified
using the constraint system. It handles object drawing and erasing, minimizing
the number of objects that are erased or redrawn, and can group objects into
aggregates. If an aggregate is used as a prototype, changes to the aggregate are
immediately reflected in all instances, including adding or deleting components, in
which case the corresponding components are added or deleted from all instances.

Input handling is supported through the use of interactors [Myers, 1989a],
which are encapsulations of input device behaviors that allow a high degree of
customizing by applications. Interactors are briefly described in section 2.2.4.
Garnet provides gadgets for menus, scroll bars, buttons and gauges, which have
a number of parameters to let designers vary many aspects of their appearance

14

and behavior. Lapidary provides a graphical front end to the low level tools.
The designer, who does not have to be a programmer, can draw prototypes of
application-specific graphical objects: entities the end user will manipulate, feed-
back showing selected objects, and dynamic feedback of objects. The designer can
then specify the runtime behavior of these objects, using constraints and abstract
descriptions of their response to the input devices. Lapidary generalizes from
specific example pictures, letting the designer specify the graphics and behaviors
using dialog boxes and by demostration. The dialog box creation system creates
a dialog box or menu from a textual specification of its contents. This specifica-
tion is look and feel independent and includes only the string labels to appear in
the object and the type of input required. The spreadsheet lets designers enter
arbitrary Lisp contraint expressions, and then monitor and debug their interface
designs by watching spreadsheet values while the interface is running.

2.4.3 The UofA* UIMS
The goals of the UofA* UIMS [Singh and Green, 1991] are to help in the initial

design of user interfaces, and to increase the ease of exploring different alterna-
tives in interface designs. The approach taken is to enable designers to quickly
produce and then refine working prototypes of the interfaces, and to quickly pro-
duce different interfaces for the same application. The UofA* UIMS consists of
three subsystems: Diction accepts a high-level description of the semantic com-
mands supported by the application and produces the interface’s dialog control
component and a second output; Chisel uses the second output from Diction, plus
a display device description and user’s preferences, to produce the interface’s pre-
sentation component; vu is an interactive graphical facility that allows designers
to refine the presentations produced by Chisel.

The command description accepted by Diction contains declarations of all the
commands supported by the application. For each command, its name, parsing
sequence (prefix, postfix, or nofix), selection type (arbitrary or fixed number of
arguments), and arguments are specified. An argument specification lists the
argument’s name, type, and initial {(for global arguments) or default (for local
arguments) value. The dialog control components produced by Diction consist of
program modules, one per command, called event handlers, which are used in the
event model to describe these components. The event model and event handlers
[Green, 1986} are briefly described in section 2.2.2.

Chisel’s input consists of a dialog requirements file prepared by Diction, a
device description selected from a library, and an optional user’s preferences spec-
ification, the only input which has to defined by the designer. Once given all
the inputs, which have the form of Lisp functions, Chisel selects interaction tech-
niques, determines their attributes, and places the corresponding interaction ob-
jects (physical realizations of the interaction techniques) on the screen.

15

2.4.4 Chimera

Chimera [Wood and Gray, 1992] is a UIMS written in C and PostScript, built
to facilitate rapid prototyping and dynamic reconfiguration of user interfaces. It
consists of Chisl, a specification language, and Chip, an interpreter for Chisl. An
interface specification is built up from several dialog units. Each unit consists of
declarations of global and local variables, definitions of presentations and interac-
tive objects, and options. Interactive objects are the means by which users interact
with the dialog. They can be editable text-fields, buttons or any graphics image
definable in PostScript. And they have three attributes, which can be changed
at run-time, specifying if the object is visible, if it can be moved by a user, and
if the user may interact with it. Options define the flow of control of the dialog.
An option consists of a condition, involving the unit’s variables and interactive
objects, and a list of actions, specifying changes in the variables, presentation,
and interactive objects’ attributes.

2.4.5 Integral Help

Integral Help [Fenchel, 1982] is a technique by which interactive applications can
be designed to automatically provide detailed syntactic assistance to their users.
It has been applied to the SARA system and is based on the idea that the same
program that recognizes valid inputs (the parser) is used to generate the assistance
information. The SLR(1) grammar specification of the user input language is
processed by an extended parser, called the parser/help generator program, to
produce: (1) parse tables used to recognize the input to the application program
and invoke appropriate semantic processing routines; (2) a help data base that
contains information associating syntactic and semantic help information with the
states of the parser and nonterminals of the grammar; and (3) a hard copy user
reference manual clearly describing each language construct and command, and
providing many examples.

If while using an application the user requests help information or makes a
syntactic error, the help system is invoked. This system interacts with the parser
to determine the state of the parse. If the current state has an associated nonter-
minal abstraction, that abstraction is used to produce an error or help message;
otherwise, the procedure for the state most recently placed on the parser’s stack
is repeated. In the case of an error, the system presents the erroneous input line
with a pointer to the invalid input symbol and prints a message containing the
nonterminal abstraction. The parser discards the appropriate portion of the input
line and then recovers to a state indicated by information associated with such
nonterminal abstraction, or with the state most recently placed on the stack. If
the user requests help anywhere on an input line, the system behaves as it does
for errors to determine the nonterminal abstraction to be used. The user may
select the type and amount of help information, making incremental requests at

16

various levels of detail. The user can request help information for any symbol
of the grammar at any time: for nonterminals, the current context is indicated
by presenting the associated group of productions; for terminals, the production
in which the terminal appears is presented. The help and error routines can be
extended to provide varying degrees and types of assistance depending upon the
experience levels and desires of each user or group of users.

2.5 coSARA’s Formal Graphical Modeling Languages
2.5.1 OREL

Object RELation (OREL) [Mujica, 1991], is a formal, graphical language, which
provides six primitives to model object-oriented data: (1) simple classes, (2) com-
posite classes, (3) recursive composite classes, (4) class attributes, (5) class inheri-
tance, and (6) relations among classes. Fig. 3 shows the graphical representations
of these primitives and exemplifies their use. A composite class is a class whose
objects (class instances) contain a dynamically variable number of objects of an-
other class, called the component class. A composite class can actually have
several different componeni classes. A recursive composite class is a composite
class in which one of the component classes i1s the composite class itself. A relation
between two or more classes is a special class whose objects are collections of lists
of objects of the classes participating in the relation. Each list is called a tuple
and usually contalns one object of each participant class.

A tool called the OREL compiler translates an OREL class model into the
corresponding CLOS (Common Lisp Object System) code [Keene, 1989], including
the class definitions, the functions to instantiate the classes (create objects), the
methods to assign values to the objects’ attribute slots and to read these values,
the methods to add and remove the component objects of a composite object, the
methods to create tuples and to add them to the relations, and the methods to
find specific tuples in a relation and to remove them from the relation.

2.5.2 SM and GMB

Structural Model (SM) [Estrin et al., 1986] is a formal, graphical language, which
provides three primitives to model the structure of a concurrent system: modules,
which represent the system’s components and subcomponents; sockets, which rep-
resent the modules’ communication ports; and interconnections, which represent
the communication paths between sockets in different modules.

Graph Model of Behavior (GMB) is a formal, graphical language to model
the behavior of a concurrent system. GMB, supported by the GMB graphical
editor, models three related domains of the behavior of a system: control, data,
and interpretation, as shown in Fig. 4. The control domain is represented by a
control graph, which models the flow of control among the events that occur in

17

C1(CO)

_J

1 and C2 are composite classes (rounded-comer rectangles). C1, a subclass of class C0
(not shown), consists of classes C2 and RC1, and relation R1. C2 consists of classes S1,
$2 and §3, and relation R2,

RCl1 is a recursive composite class (rounded-corner rectangle with shadow). It is a sub-
class of class RCO (not shown) and consists of classes RC1 (itself) and S4.

S1, 52 and 83 are simple classes (rectangles) without auributes, that is, representing
classes already defined.

S4 is a simple class with 2 attributes: Attrl and Attr2 (shaded rectangles).

R1 and R2 are relations {shaded diamonds}. R1 relates 2 classes: C2 and RC1 R2 relates
3 classes: S1, S2 and S3.

Inheritance is represented by enclosing the name of the superclass or superclasses in
parentheses.

Figure 3: The primitives of OREL and an example of their use.

the system, similar to a Petri net. The events are represented by the nodes of the
graph (N1, ..., N4), while the partial ordering of their activity is determined by
directed control arcs connecting them (Dn, Mv, Up, Sq, Nxt). Control arcs can have
multiple sources and multiple destinations; for example, arc Sq has two sources
(nodes N2 and N3) and two destinations (nodes N3 and N4).

The data domain is represented by a data graph, which models the flow of
data between computation units and data storages. The computation units are
represented by processors (P1, ..., P4), the data storages by datasets (Q1, Q2),
and the direction of How of data i1s determined by directed data arcs connecting
the processors to the datasets (unnamed in the figure). Finally, the interpretation
domain associates with the data graph the values stored in the datasets and their
types, and the computations implementing the activity of the processors, including
control flow decisions, processing delays, and data transformations.

The token machine is an interpreter of GMB models. Its formal definition can

18

Control Graph

Node
Processor
Dataset
|—> Data Arc
_f» Control Arc

""""" Mapping
= Socket
* AND Logic
+ OR Logic
® Token

Interpretation
DATASETS
Q1: point
Q2: (point . point)

PROCESSORS

P1;

(let ((event (ReceiveThru **S37')))
(WriteTo Q1" (data event))
(typecase event

(initiation (PlaceToken Dn))
{continuation (PlaceToken Mv))
(termination (PlaceToken Up))))

P2:

(let ((p (ReadFrom *‘Q1°")))
(WriteTo ‘Q2”’ (list p nil)))

P3;
(let ((fig (ReadFrom **Q2""))

(p (first fig))

(q (second fig)))
(ErascQOld p q)
(setq q (ReadFrom “‘Q1°"))
(DrawNew p q)
(WriteTo *“Q2"" (list p @)))

P4:

(SendThru S4 (ReadFrom *Q2'"))

Figure 4: The primitives of GMB and an example of their use.

19

be found in [Vernon, 1983]. For the purpose of this presentation, however, the
meaning of a GMB model can be briefly and more informally defined as follows.
Each control graph node has associated an input logic expression, in terms of the
node’s input control arcs, and an output logic expression, in terms of the node’s
output control arcs. These expressions can involve the operators AND and OR,
represented in the figure by the symbols * and +, respectively. For example, the
input logic expression for node N4 is Up * Sq, and the output logic expression for
node N1 is Dn + Mv + Up. Furthermore, each control graph node is mapped to
one data graph processor. In the figure, nodes N1, N2, N3 and N4 are mapped to
processors P1, P2, P3 and P4, respectively.

A node’s input logic expression defines the required distribution of tokens, or
units of control, in the node’s input control arcs for it to be enabled. For example,
node N4 will be enabled when both arcs Up and Sq have one token each at the same
time. Enabled nodes are scheduled for activation. When a node becomes active,
or fires, the enabling tokens are removed from the corresponding arcs and the
interpretation of the processor mapped to the node is executed. Thus, given the
situation shown in the figure, if a token is placed on arc Dn, then node N2 becomes
enabled; its input logic expression is Dn * Nxt and there is a token initially placed
on arc Nxt. When N2 fires, the interpretation of processor P2 is executed: P2 reads
the value currently stored in dataset Q1, makes a list containing this value and
nil, and writes the value of this list into dataset Q2.

Finally, for an active node, its output logic expression defines which combina-
tions of the node’s output control arcs can receive tokens when the execution of
the interpretation of the processor mapped to the node is finished. If there 1s more
than one possible combination, because the expression involves the operator OR,
then the combination that will actually receive the tokens—one token on each
arc in the combination—is specified as part of the processor’s interpretation. For
example, the interpretation of processor P1 specifies which one of node N1’s three
output control arcs should receive a token, based on the type of some event,.

20

3 An Operational Model of Multi-Application
Multi-User Interfaces

Numerous authors agree on the importance of the design of the underlying user
interface model as the first step in the design and implementation of a user inter-
face development system [Green, 1985; Green 1986; Hartson, 1989; Hudson, 1987;
Lantz et al., 1987]. The structure of a development system and the services it
provides often follow the structure of a model. If such a model is divided into a
number of components, the development system can supply design and 1nplemen-
tation tools for each of these components. If the model seems logical, designers
will have less trouble learning how to use these tools.

The Secheim model [Green, 1985; Green, 1986] shows how the software im-
plementing the interface is organized at run time and how a design system must
be structured to provide this organization. It is based on the concept of dialog
independence in which dialog and application are loosely coupled by a control
component that defines relationships between them, and transmits tokens back
and forth at run-time. Both the Seeheim model and the concept of dialog inde-
pendence have been useful as frameworks. However, problems have been revealed,
as more complex interfaces supporting multiple windows, a direct manipulation
style of interaction, and semantic feedback have been investigated and developed.
Functional distinctions between user interface and application have been unclear,
and it has been found that shared data models are essential.

The Direct-Manipulation model [Hudson, 1987] eliminates the centralized, ex-
plicit dialog control component of the Seeheim model by incorporating the multi-
ple, simpler syntactic components into the presentation component (for example,
the interaction objects [Jacob, 1986]). It also replaces a simple application model
component by a semantically richer shared data model which supports seman-
tic feedback to the user and application notification of data modifications. The
Reference model [Lantz et al., 1987; Lantz, 1987] allows the model components
to directly communicate between them, considers more explicitly the cases of dis-
tributed and collaborative applications and the binding of media-independent I/O
to device-dependent I/O, and proposes a hierarchy of dialog managers rooted at
a workstation manager component.

We attempt to combine, extend and refine the advantages of the Direct-
Manipulation and Reference models in order to provide an operational model
of multi-application multi-user interfaces which are useful from the design and
implementation points of view. We take special consideration to include, in a
way that is at the same time simple and explicit, the aspects of concurrency,
collaboration, and reconfigurabhility.

In the following sections we present a high-level structural view of our opera-
tional model. We use the special case of a single-application single-user interface
to define the fundamental structural concepts of the model, and then we use the

21

general case of a multi-application multi-user interface to introduce the model’s
communication concepts. We then use a simple example to illustrate how the
model guides the specification of an interface. We present the specification of
both the structural and the behavioral aspects of a counter’s interface. Next, we
provide detailed behavioral models of both the lexical and the syntactic compo-
nents of our interface model. We describe one generalized lexical component, in
charge of handling user inputs and producing system outputs, and nine funda-
mental syntactic components, in charge of defining legal sequences of user inputs
and communicating the successful reception of these sequences to the applica-
tion. Finally, we present the components and structure of a test environment for
multi-user interface specifications.

3.1 The Particular Case of a Single Application and a
Single User

In order to present our operational model of a multi-application multi-user in-
terface, we describe first the model as it applies to the special case of one user
interacting with one application. Then the case involving multiple applications
and multiple users is presented as a generalization of this special case.

We view a single-application single-user interface (U1,) as consisting of a col-
lection of user interface objects that interact with a user and an application, thus
allowing and controlling the interaction between the user and the application.
These objects, that we call screen objects, essentially represent the various win-
dows on the user’s workstation screen, including the various types of interactions
that they support. To invoke the functionality of an application a user has to
activate these screen objects, by operating input devices, such as mouse and key-
board, usually while pointing at the objects. The application shows the results
of executing its functionality by changing the graphical appearance of the screen
objects.

Our operational model of a U, whose high-level view is shown in Fig. 5, 1s
based on four types of abstractions: interactors, contacts, dialogs, and an appli-
cation model (the model is represented in the SM language, described in section
2.5.2). Interactors are structured, abstract representions of the screen objects.
The application model is a structured, object-oriented representation of services
or functionality that an application provides to the user through the Ul;. As we
will see later, we allow the application model to change according to the number of
users sharing the application, while the application itself does not have to change.

Each interactor is an abstraction of things like screen buttons, menus, dialog
boxes, scroll bars, or drawing windows and is modeled as consisting of one contact
connected to several dialogs. The contact models input and output aspects of
the interactor. Thus, the full collection of contacts of a UI, models the input
and output aspects of the whole UI;. Each one of the dialogs connected to the

22

Interactor

Application

User | § Model #-#—8 Application

Interactor

Figure 5: High-level structural model of a single-application single-user interface.

User Interface

contact models the syntax of a particular type of interaction supported by the
interactor. Again, the full collection of dialogs of a Ul models the syntax of the
whole interaction between a user and an application, represented in our model
as the syntax of the interaction between the contacts and the application model.
For example, if the interactor represents a drawing window, then the contact may
communicate with one dialog that handles rectangles and another that handles
polylines.

3.2 The General Case of Multiple Applications and Mul-
tiple Users

The high-level view of the operational model of a multi-application multi-user
interface for the general case in which K users concurrently share N applications is
shown in Fig. 6. In this case, each application is represented within the interface by
one application model. However, each application-specific collection of interactors
is replicated in agreement with the number of users concurrently sharing the
application. Thus, each application model communicates, in general, with K
equivalent collections of interactors simultaneously.

Although it is possible to partition the collection of interactors associated with
each user according to the applications that the user is executing, we have decided
not to do so explicitly because there are situations in which the same interactor
can be used by two applications simultaneously. Therefore, the interactors in front
of each user simply represent the union of all the interactors needed to execute
the NV applications. Thus, each user-specific collection of interactors, as a whole,
communicates with all the application models, although each individual interactor

23

Interactor

TUser-1 !

Interactor

Application
Model

Application-1

Interactor

Application
Model

Application-N

User-K !

Interactor

Multi-
Application
Multi-User
Interface

Figure 6: High-level structural model of a multi-application multi-user interface.

24

within the collection actually communicates with only one application model.

Users produce actions on the interactors by operating input devices. Examples
of actions are pressing a key on the keyboard and moving or clicking the mouse.
Within the interactors, these actions are assumed to be identified by contacts
and sent to appropriate dialogs. Each dialog then determines whether a sequence
of actions received from a contact is valid. Dialogs translate valid sequences of
actions into commands which they send to the application models. Examples of
commands include creating, modifying, and deleting application data objects.

The application models process the commands received from the interactors
and then send calls back to the interactors, providing them with information
about how to respond to the users. The dialogs in the interactors convert these
calls into responses which are sent to the contacts, which finally display them
to the users. Examples of responses are opening a dialog box, highlighting a
screen region, and drawing or erasing a figure. As we will see later on, it i1s also
possible and convenient that a dialog could send responses to a contact while it
is still processing the actions that the contact is sending to it, that is, before
transmitting the corresponding command to an application model and receiving
a call.

3.3 Specifying a Simple User Interface: High-Level Struc-
tural Model

Designers graphically specify a multi-application multi-user interface for a collabo-
rative application by connecting contacts to dialogs, thus constructing interactors,
and then connecting the interactors to the application model. At the present level
of detail, contacts, dialogs and application models are represented in the SM mod-
eling language by modules. The points in each module through which information
is sent or received are represented by sockets. A connection is represented as an
undirected arc between a socket in a contact and a socket in a dialog, or between a
socket in a dialog and a socket in the application model. Contacts, dialogs and ap-
plication models usually have several sockets, used to send or receive information
of different types.

For example, consider a very simple application which counts the number of
times that users click the mouse while pointing the mouse’s cursor at a particular
screen button. The application displays the current value of the count on the
screen button. In this case, as shown in Fig. 7, each user communicates with one
interactor, representing the screen button. Within each interactor, the contact
communicates with two dialogs: an input dialog which recognizes each click as
a valid sequence of actions, and an output dialog through which the application
model writes and erases numbers on the screen button. Finally, all the dialogs
communicate with the same application model, representing the functionality of
the counter.

25

counter

user counter

counter

output
- i dialog &
o qem,% 2o

S

®)

Figure 7: Structural model of the counter’s user interface: (a) one user; (b) two
users.

The contact in front of each user handles the input and output aspects of the
screen button. It is sensitive only to the click action, and is able to display and
erase numbers on the screen region corresponding to the screen button. When the
contact detects a click produced by a user, it sends a signal to the input dialog
connected to it. The syntax of this interaction is very simple, because each click
by itself consitutes a valid sequence of actions; therefore, the input dialog simply
sends a signal to the counter model every time it receives a signal from the contact.

When the counter model receives a signal from the input dialog, it increments
the value of an internal variable by one, and sends to the output dialog the new
value of the variable and another signal indicating that the value was sent. Finally,
the output dialog sends to the contact: first, one signal requesting the contact to
clear the display area of the screen button; then the new value; and then a second
signal requesting the contact to display this value.

26

R
1 contact
‘ *

| Nxt ;1% Click

ReadAction

counter model
Counter EEE

n7, Incld

Clear

1 Display
=

O

Figure 8: Behavioral model of the counter’s user interface for one user.

3.4 Specifying a Simple User Interface: Behavioral Mod-
els

The behavior of each contact, dialog, and application model of a multi-application
multi-user interface is specified in the GMB modeling language. In general, a
behavioral model contains one (node, processor) pair for each basic activity rep-
resented in the model, as shown in Fig. 8 for the counter example. For example, a
basic activity of the contact in this case is detecting user-generated mouse clicks,
and a basic activity of the counter model is incrementing by 1 the value of the
counter. We have chosen to abstract the explicit input from a user to module
contact in Fig. 7(a) by implicitly incorporating the user behavior in the pair
(n1, ReadAction) in module contact in Fig. 8; thus, pair (n1, ReadAction) cap-
tures the detection of the clicks. Adding 1 to the counter is captured by the pair
(n7, Incr) in module counter model.

At this point it is important to notice that the exact nature of the function-
ality represented by processor ReadAction depends on the stage of the interface
development process. In an abstract sense, as we explain in Section 3.5, it simply
encapsulates the mechanism by which, somehow, the corresponding screen ob-
ject receives input from a user. Thus, during the stages of simulation and tests,
ReadAction simulates a user clicking the mouse button by executing an interpre-
tation that produces tokens and places them on the contact’s output control arc
Click. We will describe this capability in more detail and for a more general case

27

in Section 3.8.

On the other hand, during the execution of a prototype of the interface,
in which users click real mouse buttons on real screen buttons, the nature of
ReadAction depends on the type of the window manager system or toolkit used
to implement the real screen buttons. The interpretation of ReadAction could be
the actual mechanism, on a per screen object basis, that first detects a click and
then produces the corresponding token. Or ReadAction could remain essentially
idle, because a different, centralized mechanism used by the window manager to
detect the clicks is also used, through a software extension, to produce the tokens.
We will describe this approach in Section 4.3b.

Nodes in the same module or across modules are linked together by directed
control arcs according to the partial ordering among the activities. For example,
the node associated with the activity of incrementing the counter (n7 in counter
model) is preceded by the node associated with the activity of recognizing a com-
plete, valid sequence of actions (n4 in module input dialog); and in module
output dialog, the node associated with the activity of requesting the contact
to display the new value of the counter (n6) is preceded by the node associated
with the activity of requesting the contact to clear the display area (n5).

Processors can be linked to datasets in the same module or across modules
by directed data arcs according to the type of access, write or read or both, that
a processor has over the data stored in a dataset. For example, in contact,
processor Display representing the activity of displaying the value of the counter
on the screen has read access over the dataset holding such value (Value); and
in counter model, processor Incr representing the activity of incrementing the
counter has both read and write accesses over the dataset representing the counter
(Counter).

3.5 The GMB Model of a Contact

In an operational model of a multi-application multi-user interface, contacts de-
scribe the behavior of the input and output aspects of the interface’s screen objects
(buttons, menus, dialog boxes, scroll bars, and drawing windows), which are rep-
resented in the model by interactors. Therefore, the collection of contacts of an
interface model describes the behavior of the input and output aspects of the
interface itself. The GMB model of a contact, shown in Fig. 9, consists of an
input model and an output model. The input model represents the ability of the
modeled screen object to:

1. Detect user-generated input actions; and

2. Communicate the occurrence of these actions to the rest of the interface,
in particular to the screen object’s components that handle the syntax of

28

contact PROCESSORS

GetAction:
GetAction (let ((action (ReceiveAction)))
1 (SendThru “*ActData’’ (DataOf action))
Acin-1 (typecase action

(Actn-1 (PlaceToken “*Actn-1"" “*Nxt’’})
(Actn-2 (PlaceToken “ Actn-2"" ““Nxt™"))

;{'Acm-j (PlaceToken “*Actn-j"" “"Nxt’")))

(defun ReceiveAction ()

(loop (if (> (random 10) 6) (return})}

(let {(action nil)
(type nil)
(data (cons (random 100) (random 100)))}

Q1 g 1 Rspns-1 (case (random j)
- (0 (setq type Acm-1))

(1 (setq type Acmm-2))

(-1 (setq type Acm-})))
(setq action (make-action type data)

™
Qk @3 B gk Rspns-k action))

Q1l:
(let ({data (ReadFrom **R’"})}
o)

6k:
(et ()(data (ReadFrom *‘R"")))

Figure 9: GMB model of a generic contact. The interpretation depends on the
specific contact and is only sketched. The semantics is explained in the text.

the user-application interaction. These components are represented in the
interface operational model by the dialogs connected to the contact.

The output model represents the ability of the modeled screen object to pro-
duce responses to the users, from requests generated by the application and by
the screen object’s syntax components. The responses are produced by invoking
procedures which usually change the appearance, or graphical state, of the screen
object.

In the input model of Fig. 9, node N is initially enabled by the token on its
only input control arc Nxt. Therefore, N will eventually fire, removing the token
on Nxt and activating processor GetAction, mapped to N. Once GetAction 1s
active, it essentially waits until the next action is received. As we explain below,
we simulate the generation of actions by executing the function ReceiveAction.
When invoked, this function loops for a while as determined by some selected
distribution, then creates an object by invoking make-action and assigns to it

29

random data and type, and finally returns the object.

When an action is received, GetAction sends the action’s screen position,
the value of (DataOf action), through its output data arc ActData, then places
a token on one of the output control arcs, and finally places a token back on
Nxt, enabling N again. By sending the action’s screen position through ActData,
the contact is effectively storing this information in the Pos dataset of one of the
dialogs connected to the contact. The specific output control arc on which a token
is placed is chosen by GetAction acccording to the type of the action assigned
in the make-action object creation noted above. The new token on the output
control arc signals that the specific action represented by the arc has occurred,
and eventually will be processed by the connected dialog as we will explain in
Section 3.6.

At this point we should notice that because a contact is only a model of
the input and output aspects of a screen object in general, it does not prescribe
any specific way in which actual user input actions are detected, or even any
specific way in which these actions are represented to include type and data. We
have provided a method for generating events to drive input dialog modules and
thereby enable simulation test of interface behavior. The interface designer is free
to specify distributions and types of input events useful in such tests. Section 3.8
discusses more generaly how to create and use such test environments during the
simulation phase of interface design.

In Section 4.3 we will see that for the purpose of building an executable pro-
totype of such an interface, driven by users operating mouse and keyboard, we
provide means to map real screen objects provided by a particular window toolkit
to the interactors representing them in the specification. The mapping does then
depend on the toolkit and knows about the details of representation and detection
of actions, and therefore can effectively produce the data and the tokens specified
in the interpretation of GetAction.

The output model of Fig. 9 is essentially always ready to receive data through
its input data arc RspData, which is written into the dataset R, and then to receive
a token on one of its input control arcs Rspns-1 ...Rspns-k. Both the token and
the data are usually generated by one of the dialogs connected to the contact.
The token enables the corresponding node N1 ...Nk, which will eventually fire,
removing the token and activating the corresponding processor Q1 ...Qk. The
processor will then execute its interpretation, which usually takes the form of
modifying the graphical appearance of the screen object, and includes reading the
data stored in dataset R.

3.6 A Classification of Dialogs

The graphic primitives provided by the GMB modeling language represent low
level basic behavior. Based on our experience developing and using the multi-user

30

interfaces of several applications available in our collaborative design environment
at UCLA [Mujica, 1991], we have extended the basic GMB notation with a col-
lection of reusable modules that encapsulate the behavior of contacts and dialogs
commonly found in these interfaces. The applications include a general purpose
drawing editor, specialized drawing editors to produce object-oriented data mod-
els and SM and GMB models, and a selection tool and a zoom tool for graphical
representations. The number of different dialogs needed to implement the multi-
user interfaces of these applications is relatively small, and the syntax of the valid
sequences of actions is relatively similar for the different dialogs.

3.6.1 Elementary Dialogs

These dialogs are characterized by the fact that their communication with the
contacts and the application models is very simple. Incoming actions and out-
going commands and responses consist exclusively of control signals without any
accompanying data, implemented in the control flow models shown in Fig. 10 by
the placement of tokens on control arcs. In the following descriptions, we refer to
the actions, responses and commands precisely by the name of the corresponding
control arc on which the token is placed.

Besides receiving actions and producing and sending responses and commands,
the dialogs have a local state that really defines what are the next valid incoming
actions. Each dialog’s local state is defined by the presence or absence of a single
token on either control arc Nxt or Sq. If the token is on Nxt then the only valid
incoming action is the first one in the sequence of actions described by the dialog,
that is, the action that starts the dialog. If the token is on Sq then any of the
other actions in the sequence is valid.

e Highlighter: Shown in Fig. 10(a), represents a very simple dialog associated
with most screen objects. A screen object is highlighted while the mouse
points at it; otherwise, it is unhighlighted. The dialog defines a sequence of
two actions, In and Out, which are received from a contact in the form of
control signals. The actions always have to occur in alternating order (to
be processed successfully), as evidenced by the fact that the dialog switches
between its two possible local states after processing each of them. The
dialog responds to each action by sending a different control signal, On or
0Off, back to the contact.

e Button: Shown in Fig. 10(b), represents a very simple dialog associated with
screen buttons. While pointing at a button with a mouse, a user can click
the mouse an arbitrary number of times, always sending the same command
to the application. The dialog defines a sequence of three actions, In, Clk
and Out, which are received from a contact in the form of control signals.
In and Out actually correspond to the actions of a highlighter. Because

31

Highlighter

(a) Highlighter.

Defines a sequence of 2 actions received from a contact as tokens placed
on arcs In (first action) or Qut {second action). Responds to the In action
by placing a token on arc On, and to the Out action by placing a token on
arc Off, both arcs connected to the contact. The 2 actions always have to
occur in alternating order.

(b) Button

Defines a sequence of 3 actions received from a contact as tokens placed
on arcs In (first action), Clk (second action) or Out (third action).
Responds to the In action by placing a token on arc On, and to the Out
action by placing a token on arc Off, both arcs connected to the contact.
Responds to the Clk action by placing a token on arc Cmd,

connected to the application model. The In and Qut actions can occur
only once each; the Clk action can occur an arbitrary number of times.

(c) Switch.

Defines an elementary sequence of 1 action received from a contact as a
token placed on arc Clk. Responds to this action alternatively, placing
a token on arc Cmdl1 or arc Cmd2.

Figure 10: Behavioral models of: (a) Highlighter; (b) Button; (c) Switch.

32

highlighters are always useful with buttons, we included them directly in
this dialog. They represent the mouse beginning and finishing to point at
a button and therefore can occur only once each during the same execution
of the dialog. The dialog responds to each of them by sending a different
control signal, On or 0ff, back to the contact. Clk represents clicking the
mouse while pointing at the button and therefore can occur an arbitrary
number of times. Everytime, the dialog responds by sending the control
signal Cmd to the application model. The number of valid occurrences of
the different actions is controlled by the way in which the dialog changes
its local state, placing tokens on either arc Sq or Nxt, after processing each
action.

o Switch: Shown in Fig. 10(c), represents a very simple dialog associated with
a screen button that sends to the application model one of two different
commands alternatingly, every time a mouse is clicked while pointing at
the button. The dialog defines an elementary sequence of one action, Clk,
received from a contact in the form of a control signal. The dialog responds
to this action by sending to the application model one of two control signals,
Cmd1 or Cmd2, depending on its current local state. The fact that these two
signals are always produced in alternating order is guaranteed by the way
in which the dialog switches back and forth between its two possible local
states after processing each Clk.

3.6.2 Drawing Dialogs

These dialogs are characterized by the fact that they define new structured data
for the application models, based on information received from the contacts. Their
communication with the contacts and the application models, therefore, involves
not only control signals implemented as tokens placed on control arcs, but also
data sent or received through input and output data arcs and stored in datasets.
Furthermore, the dialogs are able to collect individual pieces of data received from
the contacts, and structure them in an appropriate way, usually in the form of a
list, before sending a command to the application model. During the collection
of the data, the dialogs send several useful responses to the contacts with the
purpose of providing feedback to the users.

e Box: Represents a very common dialog needed to input rectangles and to
create rectangle-based figures. The user marks the position of the rectan-
gle’s top lefthand corner by pressing down the mouse’s button, then drags
the mouse towards the position of the rectangle’s bottom righthand corner
producing a rubber band effect, and finally releases the mouse’s button. The
dialog, shown in Fig. 11, defines a sequence of three input actions, Dn, Mv
and Up. These actions are received from a contact in the form of a screen

33

Box DATASETS

Pos: (x.v)
Fig: ((x.y).(u.v))

PROCESSORS

Start:
(let ((P (ReadFrom “‘Pos’")))
(WriteTo *‘Fig" (cons P nil)})
Erase:
(let ((R (ReadFrom “‘Fig’")))
(SendThru ‘‘RspData’™ R))
Draw:
(let ((Q (ReadFrom **Pos’"))
(R (ReadFrom ‘‘Fig’ "))}
(setf (cdr R) Q)
(WriteTo “*Fig”’ R)
(SendThru ‘“‘RspData’’ R))
End:

0

SEMANTICS

In the initial state, all processors are idle, control arc Nxt has exactly one token on it, all
other control arcs have no tokens, and datasets Pos and Fig are empty.

The dialog begins when a screen position is written into dataset Pos, through arc ActData,
and a token is placed on arc Dn. Nodenl is enabled and eventually fires, removing the
tokens on Nxt and Dn and activating processor Start. Start reads the value in Pos and
writes it into dataset Fig. When Start becomes idle again, a token is placed on arc Sq.

The dialog now is ready o continue, if a token is received on arc Mv, or to finish, if a token
is received on arc Up.

The dialog continues if a screen position is written into Pos and a token is placed on Mv.
Node n2 is enabled and eventually fires, removing the tokens on Sq and Mv and activaiing
processor Erase. Erase reads the coordinates of the current rectangle in Fig and sends
them through arc RspData. Then it becomes idle again, a token is placed on arc Ers, and
node n2’ is enabled.

Node n2’ eventually fires, activating processor Draw. Draw reads the new value in Pos,
reads the coordinates of the current rectangle in Fig, updates these coordinates with the
value from Pos, writes the new coordinates back into Fig, and sends them through RspData.
When Draw becomes idle again, tokens are placed on arcs Drw and Sq, allowing the dialog
to repeat this sequence of activities, if a token is received again on Mv, or to finish, if a token
is received on Up.

The dialog finishes if a token is placed on Up. Node n3 is enabled and eventually fires,
removing the tokens on Up and Sq, and placing tokens on arcs Cmd and Nxt and thus
returning to its initial state.

Figure 11: Behavioral model of the Box dialog.

34

position written into dataset Pos plus a token placed on the appropriate in-
put control arc. While Dn and Up can occur only once each during the same
execution of the dialog (at the beginning and at the end, respectively), Mv
can occur an arbitrary number of times, after Dn and before Up.

o Point-collector: Represents a very common dialog needed to input sequences
of screen positions and to create polylines and other types of figures based
on such sequences. The user marks each position by clicking the mouse’s
button. While the mouse is being moved from one position to the next,
the dialog produces a rubber band effect for a line segment. By typing
“d” on the keyboard at any time, the current last point of the sequence is
deleted. The dialog, shown in Fig. 12, defines a sequence of four actions,
Clk, Mv, Del and DblClk. These actions are received from a contact in the
form of a screen position written into dataset Pos plus a token placed on the
appropriate input control arc. Del does not include a screen position. While
Db1C1lk can occur only once during the same execution of the dialog (at the
end), all the other actions can occur an arbitrary number of times. The
first occurrence of Clk, which starts the dialog marking the first position, 1s
interpreted by processor Start; subsequent occurrences of Clk, which mark
all the other positions, are interpreted by processor NewPt.

We said that the dialogs receive the individual pieces of data associated with
each input action as a value written into the Pos datasets. They construct the
structured data that is being defined by the user through these input actions,
according to the interpretation associated with each processor, shown in complete
detail in the figures. During the comstruction process the data is stored and
updated in the Fig datasets, which by the time the dialogs are finished contain
the complete structures. At this time the dialogs send the corresponding command
to the application model by placing a token on the Cmd output control arcs. The
application model can read the value of the structured data associated with the
command through the CmdData data arcs.

The concept of a local state described for the elementary dialogs also applies
to these dialogs: if there is a token on arc Nxt the dialog is ready to begin; if
there is a token on arc Sq the dialog is ready to continue or to finish. When the
dialog begins, it removes the token from Nxt and eventually places a token on Sq.
If the dialog continues, it removes the token from Sq and eventually replaces it.
If the dialog finishes, it removes the token from Sq and replaces the token on Nxt,
returning to its initial state.

3.6.3 Editing Dialogs

These dialogs are characterized by the facts that: (1) they can modify data that
already exist in the application models, according to information received from

35

Point-Collector DATASETS

ActData Pos: (x.y)
Fig: List of (x.y)

PROCESSORS

Start:
(let (P (ReadFrom “‘Pos’")))
(WriteTo ““Fig”’ (list nil P)))
NewPt:
(let ((L. (ReadFrom *‘Fig' "))
(setf (cadr L) (car L)
(car L) nil)
{(WriteTo “Fig’* L))
Erase:
(let ((L. (ReadFrom ““Fig' "))
(SendThru “*RspData’’
(cons (cadr L) (car L))))
Draw:
(et (L (ReadFrom ‘““Fig’"))
(Q (ReadFrom *‘Pos’"))}
(setf {carL) Q)
(WriteTo ““Fig’™ L)
(SendThru ‘‘RspData’’
(cons (cadr L) Q))
Delete:
(let* ((L (ReadFrom **Fig'’))
(S (cons (2nd (cdr L)) (1st (cdr L)))))
(setf L (cons nil (cddr L)})
(WriteTo “*Fig"” L)
(SendThru *‘RspData’ S))
Eng:
(let ((L (ReadFom “*Fig™’)})
(setf L. {cdr L))
(WriteTo ““Fig’’ L))

SEMANTICS

Similar to that of the box dialog for several input actions. Reception of the first token on ar¢
Clk is analogous to reception of a token on arc Dn; reception of a token on arc DbICIk is
analogous to reception of a token on arc Up; and reception of a token on arc My is analogous
to reception of a token on arc My in the box dialog.

This diatog, however, can continue not only by receiving a token on My, but also by
receiving a new token on arc Clk or by receiving a token on arc Del. If it receives a new
token on Clk while there is a token on arc 8q, node n2 becomes enabled and is eventually
fired, removing the enabling tokens and activating processor NewPt. NewPt updaies the
sequence of coordinates in dataset Fig, including now the last screen position written into
dataset Pos.

If the dialog receives a token on Del, node n4 is enabled and eventually fires, activating
processor Delete. Deletes updates the sequence of coordinates in Fig by removing the last

one entered, then sends this value and the new last coordinate in Fig through dataset
RspData.

Figure 12: Behavioral model of the Point-Collector dialog.

36

the contacts, (2) the modification dialog reads data from the selection dialog, and
(2) the results of the modifications are reflected on the screen objects, according
to information received back from the application models.

e Point-Selector: Selection of graphical objects based on a single screen posi-
tion, usually defined by clicking or double clicking the mouse while pointing
at the object of interest, very similar to the Button dialog. Once the screen
position is defined, the dialog: communicates with the application model
to read the coordinates of all the figures already stored in the application
model’s dataset; then decides which figure has been selected, stores it in the
dialog’s own dataset, and highlights its representation on the screen object.

e Box-Selector: Selection of graphical objects by drawing a rectangle that
encloses them; the rectangle is drawn using the same press-drag-release se-
quence described in the case of the Box dialog. Once the rectangle is defined,
the dialog: communicates with the application model to read the coordi-
nates of all the figures already stored in the application model’s dataset;
then decides which figures have been selected, stores them in the dialog’s
own dataset, and highlights their representations on the screen object. Thus,
what the Point-Selector dialog does for one figure, the Box-Selector dialog
does for a collection of figures.

e Move-Shape: This dialog changes the position, size or shape of a selected
figure or collection of figures. In practice, there are three different dialogs,
one for each type of change. Their control and data graphs are the same,
and in fact are equivalent to those of the Box dialog, but they differ in the in-
terpretations associated with the data graphs. The user presses the mouse’s
button while pointing at some “handle” in the figure. A figure’s handles
are shown when the figure is highlighted, as a consequence of selecting it.
Then the user drags the mouse until the new desired position, size or shape
is achieved, at which point he or she releases the button. Finally, the dia-
log communicates the new coordinates of the figure back to the application
model.

o Text-collector: To enter a small, possible multiline, string of text by typing
it on the keyboard.

3.6.4 Comments

Interaction Objects [Jacob, 1986], which are described briefly in section 2.2.1, was
one of the first dialog specification languages to recognize the fact that a user
interface based on the direct-manipulation style of interaction is composed, from
a syntactic point of view, of a collection of many, relatively simple individual
dialogs. However, Jacob’s language does not provide a basic collection of dialogs

37

as primitive constructions. Garnet’s Interactors [Myers et al., 1990; Myers, 1989a],
which are described briefly in section 2.2.4, on the other hand, reflect the fact that
not only these interfaces consist of a collection of individual dialogs, but also that
there are few really distinct dialogs. Therefore, Garnet provides only six types of
interactors, representing encapsulated dialog behavior, as primitive constructions
to specify user-application dialogs.

Our own encapsulated dialogs are very similar to Garnet’s interactors in terms
of the high-level functionality supported. The main differences are that while
the interactors include menus and angle detectors explicitly, our dialogs include
switches and selectors. A more important difference, though, is the fact that our
dialogs support in a natural way communication of control and data, not only
with screen objects and applications, but also between dialogs. This property
allows designers to:

1. Specify feedback to the users without involving the applications beyond
what is strictly necessary, as we do for the case of the Move-Shape dialog
that communicates with a selector dialog.

2. Explicitly specify sequencing and mutual exclusion among dialogs, required
to provide application-independent coordination in collaborative environ-
ments, as we show in Chapter 5.

3.7 The GMB Model of a Generalized Dialog

A dialog models the syntax of a specific type of interaction between a user and
an application, carried out through a screen object. It defines the structure of a
valid sequence of actions produced by the user, and received by the dialog from a
contact connected to it, including the points in the sequence at which: commands
are sent to the application, calls are received from the application, and responses
are sent to the user through the contact. From the dialog point of view, the
application is represented by an application model. In general, upon the succesful
completion of such a sequence of actions, commands, calls and responses, the
dialog:

1. Informs the application model that an instance of the interaction represented
by the dialog has occurred; and

2. Makes available to the application model all the corresponding relevant data.

The detailed behavior of a number of dialogs commonly found in graphical
user interfaces based on the direct-manipulation style of interaction has been
presented in Section 3.6. The similarities among the control graphs and among
the data graphs of these dialogs, have led us to define a generalized dialog. The
GMB model of the generalized dialog is shown in Fig. 13. It describes a sequence

38

of incoming actions and outgoing responses and commands, organized in 3 major
parts: initiation, continuation, and termination. Respectively, they specify what
happens—in terms of invoking an application model’s functionality, accessing an
application model’s data, and producing responses to a user—when the dialog
begins (involving nodes n1 and n1’ and the corresponding processors, control
arcs and data arcs), while it is in progress (involving nodes n2 and n2’), and
when it finishes (involving node n3).

l ActData o
&
Initiation {
T
L e
P2
Continuation P2
*
®
.
Termination {
_gspDaLa
l Cmd CmdData 2 |

Figure 13: GMB model of a generalized dialog. The interpretation depends com-
pletely on the actual dialog instance. The semantics is explained in the text.

The activities of entering and leaving a dialog, that is, initiation and termina-
tion, respectively, take place once each during the same execution of the dialog.
Each activity is started by placing a token on a specific input control arc (i.e.,
arc Actni for initiation, arc Actn3 for termination) when a specific user-generated
action occurs. The tokens are produced by the contact connected to the dialog.
For example, if the dialog to produce a polyline on a drawing window begins with
a single click of the mouse and finishes with a double click, the contact would
place a token on Actnl when the first click occurs and would place a token on
Actn3 when the double click occurs.

39

While the dialog is in progress, that is, during the continuation activity, tokens
can be placed on any one of several input control arcs in the central step of the
dialog (arc Actn2 is one of them, the others are captured in the ellipses). This
represents the fact that several different actions can occur in any order and be
repeated an arbitrary number of times, after beginning and before finishing the
dialog. For example, while drawing a polyline, after the first click and before
the final double click, a user has three options: (1) move the mouse to produce
a rubber band line segment between the current last point of the polyline and
the current position of the mouse’s cursor; (2) press the key “d” on the keyboard
to delete the current last segment and last point of the polyline; or (3) click the
mouse again to define a new point and a new line segment of the polyline. These
three actions can be repeated an arbitrary number of times and in any order while
the polyline is being drawn.

3.8 A Test Environment for Multi-User Interfaces

An important advantage of using the SM and GMB languages to model a multi-
user interface is that it is possible to construct a test environment for the model
using the SM and GMB languages themselves [Razouk et al., 1979], and thus
to test the model by executing the same language interpreter (see section 2.5.2)
on both the test environment and the model simultaneously. That is, before
building an actual interface, or even an executable prototype of it, in which users
interact with real screen objects through real input devices, it is possible to build
SM modules whose behavior, specified in terms of the GMB, can be used to
simulate the generation of input actions (which in reality are a consequence of
the interaction between users and screen objects) and output responses (which
in reality are generated by the screen objects when they receive requests from
the applications). The objective of these modules is to allow the designers of a
multi-user interface to test their specifications in a systematic and controlled way.

In particular, we propose the construction of a simple, modular and hierar-
chical test environment for multi-user interface specifications based on the opera-
tional model, as follows. First, within each interactor, the corresponding collection
of dialogs is tested by the interactor’s contact. Then, each collection of interac-
tors representing the screen objects of the user interface of an individual user is
tested by a module representing the user and controlling the activation of the
contacts. Finally, a complete multi-user interface, in which equivalent interactors
belonging to different users communicate among themselves, is tested by a special
module representing the collection of users and controlling the activation of the
user modules. The structure of our test environment, for the specific case of two
users concurrently sharing an application through an interface consisting of two
interactors, each containing two dialogs, 1s shown 1n Fig. 14.

Besides defining the input and output behavior of screen objects, contacts have

40

Interactor 1A

Interactor 1B

Application
Model

Users

Interactor 2A

Interactor 2B

Figure 14: Structural model of the test environment.

a very simple control logic in which all control arcs: (1) are simple, that is, they
have only one source and only one destination, and (2) connect a socket to a node
or a node to a socket, so that no node has to wait for a token produced by another
node in the same contact to become enabled. Thus, contacts represent the most
appropriate components of our multi-user interface operational model which can
also be used as building blocks of a test environment for an interface specification.

When a contact like the one shown in Fig. 9 participates in a test environ-
ment, the occurrence of input actions is simulated by processor GetAction, the
occurrence of output responses is simulated by processors Q1 ...Qk, and a new
dataset T is used to check whether the data associated with the output responses
corresponds to the data associated with the input actions. The new contacts
Contact-14 and Contact-1B, user module User-1, and module Users, represent-
ing the interaction among the multiple users, are shown in Fig. 15.

The interpretation of GetAction writes data through the contact’s output
data arc (ActData) and into the new dataset T, and places tokens on the different
output control arcs of the contact (Actn-1...Actn-j). The tokens are placed on
the arcs in the order in which they would be produced if users were interacting
with screen objects. Therefore, tokens are sent to each dialog connected to the
contact in the correct sequence required by that dialog, although the different

41

PROCESSORS

P {in both Users and User-1}:
(case (random 3)
(0 (PlaceToken **c1” **Nxt’"})
{1 (PlaceToken “‘cd™ **Nxt""))
(2 (PlaceToken “*c2™ **c3’ “*Nxt"")))

*,
—-—/ Contact-1B A1

7
A 477)
S

T to User-2 module

Figure 15: Behavioral model of the test environment.

42

dialogs can be activated in random order.

The interpretation of processors Q1 ...Qk can have access to real screen ob-
jects with graphical capabilities, or to a simple message window. In the first case,
a processor can send to a window a response of the form (draw-line (10 20)
(80 95)), which will be interpreted by the window so that users will be able to
“see” the response. In the second case, a processor can simply print out informa-
tion regarding its activation, for example, can print the message Drawing line
from (10 20) to (80 95). In either case, before producing a response, proces-
sors compare the data stored by the dialogs in dataset R with the data stored
by GetAction in the new dataset T. If these two pieces of information coincide,
the processors proceed as described. Otherwise, they can take different actions
depending on how users want to handle errors in the interface specification.

To test the operation of multiple interactors representing the screen objects
in the interface of an individual user, we introduce modules User-1 and User-2,
which controls the activation of the contacts in the interactors. The behavioral
model of User-t is shown in Fig. 15. Essentially, the input logic expression of
node N in each contact depends now not only on control arc Nxt, but also on
a control arc K; coming from User-1. Because the interpretation of processor
P in User-1 decides which of the multiple K; arcs will receive a token during a
particular activation of P, User-1 also decides which of the interactors become
active at that time, and thus simulates a user that operates simultaneously on
a number of screen objects. Specifically, if a token is placed on control arc c1,
then only Contact-1A becomes active; if a token is placed on arc ¢4, then only
Contact-1B becomes active; and if tokens are placed on both arcs c2 and ¢3, then
both Contact~1A and Contact-1B hecome active.

Finally, to test the operation of a complete multi-user interface, we introduce
module Users, which controls the activation of modules User-1 and User-2,
essentially in the same way in which these modules control the activation of the
contacts connected to them. The behavioral model of Users is shown in Fig. 15.

3.9 Comparison with Related Works

Our model is the first model to deal explicitly, at the level of control and data flows,
with some of the complexities involved when a user interface controls and allows
interaction hetween a group of collaborating users and a collection of applications
and the applications’ data, which are being concurrently shared by the users. Our
model is a combination, an extension and a refinement of the advantages of the
Direct-Manipulation model [Hudson, 1987] and the Reference model [Lantz et al.,
1987; Lantz, 1987] of user interfaces. It follows the trend of these other models
with respect to the decentralization of dialog syntax management, providing a
precise framework for this management to be handled by the individual screen
objects composing the user-visible end of the interface. Our model refines the

43

direct-manipulation model because it represents explicitly the way in which a
screen object actually deals with both the input/output and the dialog syntax
management aspects of an interface. Our model extends the Direct-Manipulation
model in the direction of the Reference model, because it deals explicitly with
multiple users and multiple applications, through the idea of replication of the
input/output and dialog syntax management aspects according to the number of
users, and through the concept of a single application model for each application.

44

4 An Object-Oriented Approach to Prototyp-
ing Multi-User Interfaces for Collaborative
Applications

In general, building multi-user interfaces is a fairly complex and expensive process.
As we said in Chapter 1, we require that these interfaces be graphical, interactive,
collaborative, based on the direct-manipulation style of interaction, and dynami-
cally reconfigurable. Formal graphical descriptions, appropriate abstractions, and
the ability to build executable prototypes, as has been suggested by numerous
authors [Goguen and Moriconi, 1987; Harel et al., 1990; Foley et al., 1989; Linton
et al., 1989: Lewis et al., 1989; Singh and Green, 1991; Wellner, 1989], are three
approaches whose advantages can be combined to help in this process.

In this chapter we describe an object-oriented methodology to build executable
prototypes of multi-user interfaces from the graphical, formal specifications of their
single-user versions. Numerous authors agree on the advantages of using an object-
oriented approach for the design and implementation of user interfaces [Barth,
1986 Fisher, 1987; Hartson, 1989; Jacob, 1986; Linton et al., 1989; Kimbrough,
1989]. Our design and development method is based on two basic ideas about
multi-user interfaces:

¢ Our operational model of a multi-user interface consisting of two major types
of components is shown in Fig. 16: (1) a collection of interactors, represent-
ing screen objects such as buttons, menus, dialog boxes, scroll bars, and
drawing windows; and (2) an application model, representing the services
provided by the application to the users through the interface. Each inter-
actor in turn consists of one contact, modeling its input and output aspects,
connected to a collection of dialogs, defining the syntax of the various types
of user/application interactions supported by the interactor.

e An object-oriented approach to the specification and construction of multi-
user interfaces, evolved from the coSARA tool model [Mujica, 1991], in
which an interface and its components are seen as objects belonging to spe-
cific classes, participating in several relations, and communicating through
different types of messages. Graphical formal langunages are used for speci-
fying the structure, relationships, behavior and communication schemes of
the classes. An appropriate tool is used to link the actual objects (class
instances) to their beliavioral models for execution.

The design and development method works in four major steps. First, de-
signers build a class-oriented model of the multi-user interface, which we call the
class diagram. Then, they build behavioral models for their application model,
for the contact and for the dialogs contained in cach interactor. Next, designers

45

l'

dialog

contact

mteractor

oy 1|
. ial
interactor

application

Aoplicati
model s—a—u Application

interactor

ll

dialog

T
Multi-User
interactor & Interface

Figure 16: High-level structural model of a multi-user interface between K users
and one application.

create instances of the application model and of the interactors. Next, they link
actual screen objects to instances of the interactors, thus building an executable
prototype of the interface. Finally, they test the behavior of the prototype and
make modifications, repeating the process until the prototype interface satisfies
their itent.

We illustrate the method by applying it to the design of the multi-user interface
of a simple drawing tool, which allows multiple users to concurrently draw and
move rectangular blocks on a window. Fig. 17 shows a sample window during use
of the tool. Operationally, a block is drawn by pressing down the mouse’s left
button at the position of the rectangle’s top lefthand corner, and then releasing
the button after dragging the mouse to the desired position of the rectangle’s
bottom righthand corner; a block is moved by pressing down the mouse’s right
button while pointing the mouse’s cursor to a block’s edge, then releasing the
button after dragging the block with the mouse to a new location.

In the following sections we present the class diagram of the drawing tool’s
multi-user interface, built in terms of the OREL modeling language; and the be-
havioral models for each of the classes represented in the class diagram, described

46

blocks @ phantom

k w.indoU

Figure 17: The drawing tool during operation.

in terms of the SM and GMB modeling languages. Then, we describe the pro-
cesses by which these models are converted into executable prototypes, through
class instantiation and association of class behavior with the corresponding in-
stances; and we illustrate the execution of the final prototype through an example
consisting on drawing a block on the drawing window.

4.1 The Class Diagram of the Multi-User Interface

The first step of our design method is to construct the class diagram of the multi-
user interface. The class diagram of an interface is a description of the collection of
classes (their structure and relationships) needed to support the operation of the
interface. OREL, a language for object-oriented modeling [Mujica, 1991}, which
incorporates relations and is supported by the OREL graphical editor, provides
six primitives to describe class diagrams: (1) simple classes; (2} composite classes;
(3) recursive composite classes; (1) class attributes; (5) relations among classes;
and (6) class inheritance. The meaning and graphical representation of these
primitives are given in section 2.5.1.

Fig. 18 shows the OREL class diagram for the drawing tool’s multi-user inter-
face. The user interface is represented as a top-level composite class, UI, contain-
ing four component classes and two component relations. Two of the component
classes are Tool, which represents the application model component of our op-
erational model, and Interactor, which represents all the interactors, or screen
objects, through which each user executes the application and observes the effects
of this execution.

According to the operational model, the application model (Tool in this case)
and the interactors communicate via commands and calls, which explains the

47

" ur W
ﬁ Interactor N

Contact Response

r Tool W

Block

Responses /

+/ Actions

Call

Action Dialog J

k&

Figure 18: The OREL class diagram of the drawing tool’s user interface.

other components of the class UI. Classes Command and Call represent all the
different types of messages that can be exchanged between the interactors and
the application model. Relations Commands and Calls define precisely which
commands and which calls are sent or received by each interactor. For example,
each tuple of Commands contains three objects, of classes Command, Interactor
and Tool, respectively.

Tool is a composite class whose only component class, Block, represents the
class of abjects handled by the drawing tool. The objects’ properties, that is,
the positions of the top lefthand and bottom righthand corners of the blocks, are
the attribute slots of this simple component class: TopLeft and BtmRight. An
instance of Tool contains a variable number of instances of Block, which changes
as users draw more blocks. Each instance of Block, that is, each block drawn by
the users, contains its own values for the attributes TopLeft and BtmRight.

Interactor is also a composite class. It contains four component classes and
two component relations. Together, these components represent the following
facts:

1. Each interactor contains one contact, represented by the simple class
Contact, and several dialogs, all of them represented by the simple class
Dialog; and

2. Within an interactor, the contact communicates with the dialogs via actions
and IespoIlses.

Simple classes Action and Response represent the messages that the contact
can exchange with the dialogs, while relations Actions and Responses define
which actions and responses correspond to each dialog. Thus, for example, in a
particular interactor each tuple in the relation Responses consists of three objects:
the only contact of the interactor, one of the several dialogs of the interactor, and

43

one of the responses that the dialog can send to the contact. Responses contains
as many tuples as the total number of different types of responses that can be
generated by all the dialogs in the interactor.

A tool called the OREL compiler translates an OREL class diagram, such as
the one shown in Fig. 18, into (the actual CLOS code is presented in Appendix
A):

e the appropriate class definitions, e.g., for classes Block, Tool and UI, and
for the relation Calls;

o the functions to instantiate the classes, e.g., functions make-Block,
make-Tool, make-UI and make-Calls;

o the methods to assign values to, and read the values of, the objects’ attribute
slots, e.g., for slots TopLeft and BtmRight in objects of the class Block;

¢ the methods to add or remove the component objects of a composite object,
e.g., to add Block objects to a Tool object;

¢ the methods to create tuples and add them to the relations, e.g., the tuples
consisting of an interactor, a command and the application model, which
can be added to the relation Commands; and

e the methods to find specific tuples in a relation and remove them from the
relation.

4.2 Modeling the Behavior of the Multi-User Interface

Once we have constructed the multi-user interface class diagram, we have to spec-
ify the behavior of the different classes represented in the diagram, that is, the
hehavior of the instances of these classes. Class behavior and the behavior of
user interface objects have been defined before using formal, graphical notations,
in particular extended state transition diagrams and Statecharts (also a form of
extended state transition diagrams incorporating coucurrency) [Harel et al., 1990;
Harel, 1987]. For example, the work by Booch [1991], Interaction Objects [Jacobs,
1986], Objectcharts [Coleman et al., 1992], and Statemaster [Wellner, 1989].

We have chosen to use the SM and GMB modeling languages [Estrin et al.,
1986], following the work done in the coSARA system [Mujica, 1991], and because:

o It is possible to construct a test environment for our mode] using the SM and
GMB languages themselves [Razouk et al., 1979}, and therefore it is possible
to test the model by executing the token machine on the test environment
and the model at the same time, as we showed in Section 3.8;

49

o It is possible to automatically synthesize SM and GMB models from semi-
formal statements of requirements [Lor and Berry, 1991]. This can be useful
when trying to model new types of interactors and specially new applica-
tions.

4.2.1 The Interface’s Structural Model

The structural model of a multi-user interface is a high-level representation of
the classes composing the interface, including their hierarchical organization and
communication patterns. The three graphical primitives of the SM modeling
language [Estrin et al., 1986] are used to describe such a model: (1) modules
represent application and user interface components; (2) sockets represent the
modules’ communication ports; and (3) interconnections represent communica-
tion paths between sockets in different modules. The model is derived from the
interface’s class diagram, so that the nesting of modules reflects the composition
of classes.

The structural model of the drawing tool’s interface is shown in Fig. 19. At
the top-level we find a module with no sockets, UI, which represents the interface
class. It contains two modules, Interactor and Tool, representing the classes
of the only interactor required by the application and of the application model,
respectively. The structure of each of these classes is then modeled by hierarchi-
cally decomposing modules into submodules, representing component classes or
encapsulated functionality, until the behavior of each module is precise enough
to be defined by a single behavioral model. In the case of the interactors, this
occurs at the level of individual contact and dialog modules whose behavior is
then represented in the terms described in Chapter 3. In the case of application
models, the decomposition process finishes at the level in which each module en-
capsulates the behavior of the application in response to a specific command from
some interactor, as we will see in the next section.

Ul

Tool

Interactor Block

DoRect

/o

Figure 19: The structural model of the drawing tool’s user interface.

50

Module Interactor contains submodules I/0, which represents the interac-
tor’s contact, and DoRect and MvRect, which represent the two interactor’s di-
alogs to produce and move blocks, respectively. Module Tool contains submodule
Block, which represents thie class of objects handled by the application and which,
in turn, has been partitioned into submodules MakeFig and MoveFig. These sub-
modules represent the functionality of the application divided according to the
commands it can receive from the interactors.

It is important to notice that although the structural model is derived from
the corresponding class diagramn, it is not an equivalent representation:

1. There are no modules representing classes Command, Call, Action and
Response. The reason is that these classes do not really present a behavior
of their own. Their instances are rather passive entities that are sent and
received by other, active entities, in particular the application model and the
interactors. Each of these active entities has a particular way of representing
the passive entities that they send and receive.

o

There are no modules representing the relations. Because all the relations in
the class diagram define which object communicate with which other object
and by sending what types of messages, we have chosen to use the explicit
communication primitives of SM, that is, sockets and interconnections, to
represent the relations. This needs not be the case for other types of rela-
tions.

3. The class Dialog is represented by two different modules. This is a conse-
quence of the fact that what could otherwise be a complex dialog between
user and application, allowing the user to create and move objects and al-
lowing the application to graphically represent to the user the results of
these actions, can be conveniently divided into two much simpler dialogs for
which we already have defined the appropriate behavioral encapsulations.

4. The class Block is represented by a module containing two different com-
municating submodules, which are explained in the next section.

Finally, it is also important to notice that in the structural model, whenever
two unrefined modules communicate with each other, the communication is rep-
resented by a single interconnection from a socket in one of the modules to a
socket in the other. It is possible that in the process of refining those modules
into submodules or behavioral models, this single interconnection be replaced by
two or more interconnections, as we will see below.

4.2.2 The Interface’s Application Model

The exact nature of the application model component in the Seeheim model of user
interfaces [Green, 1985; Green, 1986] has received much attention recently [Hud-

51

son, 1987; Hartson, 1989; Hurley and Sibert, 1989; Wood and Gray, 1992]. This is
a consequence of the fact that the concept of separation of concerns between the
user interface software and the application software, which is strongly supported
by the application model component of the Seeheim model, often conflicts with
the requirements of modern, high-quality user interfaces that provide semantic
feedback to the users. The Tailor tool, using a methodology called CREASE
[Hurley and Sibert, 1989], and the fully-explicit dynamic and reconfigurable link-
age component of the Chimera UIMS [Wood and Gray, 1992] are two approaches
to dealing with this problem.

In our operational model of multi-application multi-user interfaces, the appli-
cation model component is specified using an object-oriented approach from the
point of view of the functionality that the application provides to a user through
the interface. The full behavioral model of the application model in the case of
the drawing tool is shown in Fig. 20. From a high-level perspective, the specifi-
cation of the module representing this component in the behavioral model of the
interface s derived from the composite class specification for the same component
in the class diagram of the interface:

1. The application model module contains one submodule for each component
class in the application model composite class; these are called class modules.
Thus, for example, in the case of the drawing tool, module Tool contains
one class module, Block, representing the class of all blocks handled by the
application.

2. Each class module, in turn, contains one submodule for each operation that
users can perform through the interface on the instances of the corresponding
class, plus one submodule representing the instantiation operation for the
class, which in general is also available to the users. These submodules are
called operation modules. In the case of the drawing tool, users can create
and move blocks. Therefore, class module Block contains operation modules
Make and Move.

From a low-level perspective, the final aspect that remains to be specified is
the actual behavior of each operation module, in terms of a control graph, a data
graph, and an interpretation associated with the data graph.

1. Each class module contains a dataset to store all the objects belonging to
the corresponding class. The module representing the nstantiation opera-
tion for the class is the appropriate module to store such dataset. Thus,
dataset Figlst is defined in module Make. As we can see from the inter-
pretation associated with FigLst, it consists of a list of Lisp dotted pairs
whose components represent the TopLeft and BtmRight attribute slots of
the class Block. Thus, each pair in the list represents a different block.

Tool le—application model module

class module
operation modules

s
=3
e
~
4

Make 7

DATASET
Figlst: List of (TopLeft . BimRight)

PROCESSORS
MakeFig:
(let ((B (make-block))
{P (ReadFrom **FigPos™"})))
(setf (TopLeft B) (car P)
(BottomRight B} (cdr P))
(WriteTo “*Figlst™
{cons B {(ReadFrom “‘FigLst’")))

SendFigs:
(SendThru **FigPos'’ (ReceiveThru “‘Figs®"))
MoveFig:
(let* {(fig (ReceiveThru ‘*FigPos™"})
(figs (ReceiveThru “*Figs™))
(newfigs nil)
{old (car fig))
(new (cdr fig)))
(setq newfigs (remove old figs)
newfigs (cons new newfigs))
(SendThru ‘‘Figs'’ newfigs))

Figure 20: Object-oriented behavioral model of the drawing tool’s application
model.

2. The instantiation operation module also contains a (node, processor) pair
which becomes active every time the data necessary to create a new object is
ready in one of the interactors connected to the application model module.
The availability of the data is signaled by a token placed on a control arc
connected to the node; the data is then read by the processor through a
data arc. Thus, module Make contains node N1, processor MakeFig, control
arc Data0K, and data arc FigData.

3. For the remaining operation modules we can only say that each of them
should be able to read and write the dataset in the instantiation operation
module, and should contain one (node, processor) pair for each command
that can be received from the interactors and is part of the operation rep-
resented by the module. Each pair is activated and receives data directly
from the interactors, and can send control and data back to the interactors.
The commands represented in module Move are the collection of data for
the selection of the block that is about to be moved, represented by pair
(N1, SendFigs), and the communication of the new position for the selected

53

block, represented by pair (N2, MoveFig).

4.2.3 The Behavior of the Interactors: Contacts and Dialogs

The behavior of contacts and dialogs has been presented in detail in Chapter 3.
Therefore, the description given here is very brief. A contact models the actions,
produced by the users, to which a screen object responds (e.g., pressing a key
on the kevboard, clicking or moving the mouse, etc.), and the responses that the
screen object produces due to requests received from the dialogs (e.g., highlighting
a screen region, drawing or erasing a figure, etc.). Dialogs model the syntax of the
communication between the users and the application, specifying which sequences
of actions received through the contacts are valid, and the points in these sequences
at which information 1s sent back to the contacts and commands are sent to the
application model. Each dialog describes one valid sequence of actions.

Contacts and dialogs arc represented by SM modules, which communicate via
sockets and interconmections. Their behavior is described using GMB models.
The multi-user interface of the drawing tool contains one interactor per user, each
interactor containing one contact and two dialogs. Module I/0 in Fig. 22(d)
represents the window where users perform the actions and observe the responses
to these actions. The actions are handled by processor GetAction and result in
information being sent to the dialogs through GetAction’s output data arc, Pos,
and node N1’s output control arcs, LDn, LUp, RDn and RUp. Both the data arc
and the control ares are directly connected to the dialogs. The responses that the
contact produces are the result of the activation of the processors DrawFig and
EraseFig, due to requests received from the dialogs through the contact’s input
data arc Pts and input control arcs Draw and Erase.

Modules DoRect and MvRect in Fig. 22(a) define the action sequences required
to produce and move rectangles. The behavior of DoRect is shown in Fig. 22(e) and
explained in more detail later in the chapter. Essentially, it expects two actions in
sequence, and when it gets the second it informs both the application model and
the contact that a new rectangle has been defined. Modules representing contacts
and dialogs that behave in this way can be obtained from the system’s Library,
or they can be defined by the interface designers.

4.3 The Instantiation and Behavior-Linking Process

The third step in our design and development method is to create the actual
objects (class instances) that participate in the multi-user interface, that is, the
interactors and the application model, and to link them to the behavioral models
of the corresponding classes.

Before we actually describe this process in more detail, it must be pointed
out that designers have first to complete the behavioral models of the previous

54

step by associating them with the appropriate interpretation code. This inter-
pretation code, that is, the executable code defining the functions carried out by
the processors and the data types of the datasets, resides in the system’s Library
in the form of software modules, and is associated with the models using the
GMB graphical editor, the same editor used to produce the models. Through a
special purpose dialog box, this editor requests the names of the software mod-
ules’ from the designers, then finds them in the Library, and finally links them
to the corresponding processors and datasets. The system’s Library contains a
collection of general purpose software modules, as well as modules generated by
the OREL compiler from class models. Any module specific to an application or
user interface which is not vet part of the Library and is not generated by the
OREL compiler from the class diagram, has to be programmed by the designers
and stored in the Library before it can be associated with the models.

At this point, the GMB models represent a complete specification of the behav-
ior of the application and its multi-user interface. A multi-user interface object
can be created now by instantiating the top-level UI class. As we said before,
the interface class definition and the function to instantiate it are produced by
the OREL compiler from the interface’s class diagram (for example, the diagram
shown in Fig. 18). The behavior of this interface object is then defined in terms of
the behavior of its components, an application object and a collection of interactor
objects. These objects have to be instantiated, though, before they can have any
behavior. Fig. 21 shows a dataflow diagram of this instantiation process and the
following linking processes by which behavior is associated with the instances.

An application object is instantiated using the appropriate class definition and
instantiation function produced by the OREL compiler from the class diagram
(subprocess A in the figure). Its behavior is defined simply by linking it to the
GMB model of the application model, that is, by storing in one of the object’s
slots a pointer to the model.

A slightly different process has to be carried out for the interactor components
of the multi-user interface. The idea is again that interactor objects are instanti-
ated from the Interactor class definition produced by the OREL compiler (sub-
process B in the figure), and then each of them is linked to the corresponding
GMB model. We notice, however, that the interactors in the operational model
and class diagram of the interface are really abstract representations of the ac-
tual screen objects that will eventually be used for user-application interaction.
In order to keep the specifications independent of a particular window manager
software, the interactors themselves do not become screen objects through the
design method. Instead, they are mapped to screen objects created from a col-
lection of software modules which reside in the Library and can be used by the
designers (subprocess C in the figure). These software modules include class def-
initions and the corresponding instantiation and manipulation methods written
in CLUE (the Comunon Lisp User interface Environment), implementing screen

55

(.) ()

Behavioral Models .
Interactor (including interpretation) Application
Class Model Class

Interactors || Application

ray Y 1
Instantiation Instantiation

1

Interactor : : Application
Objects 'LLmk Link Object
\ J \ J
B L Interactor A

Interactors Translator
N

[) |
Screen ﬁap _ Mapping
Objects Method
R
D
l Instantiation '
) 1
Screen Object Screen Application
Classes Objects Modet!
{from Library)
- y Executable Prototype
C

Figure 21: Producing executable instances of an application and its user interface,
from object-oriented specifications.

objects such as: buttons, text collectors, drawing windows, menus (a composition
of buttons), dialog boxes and fill-in forms (two types of compositions of buttons
and text-collectors), and canvases (a composition of buttons, text-collectors and
drawing windows).

Mapping a real screen object, once it has been instantiated, to the corre-
sponding interactor means effectively making the screen object sensitive to the
user-generated actions specified in the interactor’s contact by its output control
arcs. More specifically. the idea is that when the screen object detects the occur-
rence of one of those actions, a token should be placed on the appropriate control
arc of the corresponding interactor’s contact. This is accomplished through a
two-stage subprocess (subprocess D in the figure). First, a tool called the Inter-
actor Translator is executed using the GMB models of the contacts as input (the
actual CLOS code is presented in Appendix B). Essentially, this tool produces

o6

the interactors’ mapping method, which has to be executed next, once the screen
objects have been instantiated. When executed, this mapping method requests
an actual screen object for each interactor i the multi-user interface’s behavioral
model, and then adds a mapping to each of these screen objects. These mappings
constitute concrete implementations of the GetAction processes in the contacts
(described in the previous section and also in section 3.5), translating the actions
produced by the users into data and tokens placed on the contacts’ output data
arcs and output control arcs.

The exact nature of the mappings, and therefore the code implementing the
Interactor Translator and mapping method, depends on the particular software
system actually being used to manage the windows. On the other hand, the
application, the application model and the interactors, and hence the multi-user
interface, are completely independent of such details. In our case, we run CLUE
on top of both CLOS (the Common Lisp Object System) and CLX (the Common
Lisp interface to the X window system). CLUE provides a callback mechanism
through which the occurrence of X events, that is, the user generated actions,
are automatically translated into the invocation of dynamically defined functions.
After this mapping process is done, the application object and the corresponding
multi-user interface can be executed by the system’s token machine, as we explain
below. Tt is important to notice, though, that this execution is actually driven by
users operating real input devices ou real screen objects.

4.4 The Execution Process

The token machine is an interpreter of GMB models. lts formal definition is
found in [Vernon, 1983], but for the purpose of this exposition the brief definition
provided in section 2.5.2 is enough. We describe now the activities that take place
in the user interface models of the drawing tool, shown in Fig. 22, when a user
draws a rectangle on the drawing window, defining a block.

We explained in the beginning of this chapter that to draw a rectangle on the
window, the user has to press down the mouse’s left button at the position of the
rectangle’s top lefthand corner, then release the button after dragging the mouse
to the position of the rectangle’s bottom righthand corner. The contact I/0 in
Fig. 22(d) defines the input/output behavior of the drawing window. When the
user presses down the button, processor GetAction sends the window position of
this action through arc Pos, and then places a token on arc LDn. When the button
is released, GetAction sends again the action’s window position through arc Pos,
but now the token 1s placed on arc LUp.

GetActionis originally activated by the initial token on arc Nxt, which enables
and eventually fires node N1. Wlhen GetAction becomes active, it waits until an
action occurs, at which time it operates as indicated. Besides placing a token
on either arc LDn or LUp, GetAction always places a token on Nxt to be able to

Make

(b)

(©) | (let (B (make-block))
(P (ReadFrom *“‘FigPos™)))
(setf (TopLeft B) (car P)
(BottomRight B) {cdr P))
(WriteTo “‘FigLst™”
{cons B (ReadFrom **FigLst'")))

@ 4

GetAction

Finish

i
iDataOK FigData F |
—
to module Make

Figure 22: The models of the drawing tool: (a) Sketch of SM model; (b) GMB
model of Make; (¢) Interpretation for processor MakeFig; (d) GMB model of 1/0;
(e) GMB model of DoRect.

58

process the next action.

The tokens and data produced by the contact travel to the dialog DoRect. It
is DoRect, as shown in Fig. 22(e), that really requires a sequence of two actions to
produce a rectangle, Each action comes in the form of a window position initially
stored in dataset [x,y] and a token placed on either arc LDn, for the first action,
or LUp, for the second. When the first action is received, processor Start becomes
active; its interpretation simply transfers the position stored in [x,y] to dataset
Rect.

When the second action is received, processor Finish becomes active. It also
transfers the new position stored in [x,y] to Rect, which now stores the two
positions that together define the rectangle. But Finish does something else: it
informs both module Make and the contact I/0 that a new rectangle has been
defined. To inform Make, so that Make can create the corresponding semantic
block. Firish simply places a token on arc DataOK. To inform the contact, so
that 1t can draw the rectangle on the screen, Finish sends both pieces of data
in Rect through arc Pts and then places a token on arc Draw. This token will
eventually cause processor DrawFig in the contact to become active and do the
drawing.

In module Make, as shown in Fig. 22(b}, the token on DataOK enables and
eventually fires node Ni, thereby activating processor MakeFig. MakeFig's in-
terpretation, shown in Fig. 22(c), consists of a sequence of calls to the methods
produced by the OREL compiler, which are stored in the system’s Library. First,
MakeFig crcates a new block, 1.e., a new instance of the class Block. Then, it
reads the positions of the block’s top-left and bottom-right corners from DoRect
through arc FigData, and stores them into the corresponding slots of the block
(see Fig. 17(b)). Finally. MakeFig stores the new Dblock by adding it to dataset
Figlst.

Data arc Figs is connected to module Move, as shown in Fig. 20. Its purpose
is to give Move access to all the existing blocks, so that when a user moves one
of them on the window, Move can update the values of the corresponding slots
TopLeft and BtmRight.

4.5 Comparison with Related Work

Our multi-user interface design method has evolved from the coSARA tool model
and associated process to build and extend tools for the coSARA environment
[Mujica, 1991]. While in coSARA the model and the process are centered around
the tool, or application, our method is centered around the application’s interface.
The tool model describes the class diagram for a generic application as consisting
of the simple classes Application, Screen Object and Message, all participat-
ing in the relation Callbacks. Class Application contains an attribute slot DCM.
The intended meaning of this diagram is that an application object communicates

59

directly with a collection of actual screen objects implemented as CLUE contacts
in order to interact with the users. The communication between the application
object and the screen objects is via messages in the form of CLUE callbacks,
although there is no distinction between messages going in one direction, for ex-
ample, from the application to the screen objects, from those going in the opposite
direction (while CLUE callbacks provide a convenient mechanism to inform appli-
cations about the results of user actions on the screen objects, they do not provide
a natural way for applications to send data back to the screen objects). A relevant
characteristic of the tool model is that the application itself is in charge of defining
the syntax of the interaction with the user. This definition is stored in the slot
DCM and, in principle, is produced automatically from a GMB-based specification
of the interaction. Thus, in the tool model, applications are completely aware of
the details of the ways in which users access their functionality, while the model
itself and its associated building process are strongly based on CLUE.

Qur design method, on the other hand, provides for applications and screen ob-
jects whichi are much more independent of each other. To begin with, our method
is not concerned with applications themselves but only with their abstract repre-
sentations for the purposes of their interaction with users. These representations,
that we call application models, are only aware of their own functionality and of
a few, well defined ports (the sockets in the SM-GMB models) through which this
functionality can be accessed from the outside, and through which they can send
information back to the outside. At the other end of the picture, users can interact
directly with any type of user interface toolkit. This interaction i1s abstracted by
our representations of screen objects, which we call interactors. Interactors pro-
vide a standard way of representing user actions and application responses, and
handle all the syntax involved in the interactions, including syntactic feedback to
the users. Actnally, even the syntactic components of the interactors, the dialogs,
are not aware of the specific actions that users produce on the screen objects by
manipulating input devices, or of the specific graphics that the screen objects can
handle. Both of these aspects, which are defined by the particular toolkit handling
the windows and input devices, are abstracted by the input/output component of
each interactor, the contact.

60

5 Concurrent Application Sharing and Inter-
face Reconfigurability

Two important characteristics of multi-application multi-user interfaces are those
of supporting:

1. Multiple users concurrently sharing multiple applications and their data.
During a session on a collaborative computer system, when two or more
users concurrently share an application, it is likely that at some point during
the interaction some of them may attempt to access the same application’s
data at the same time in conflicting ways. For example, two users may want
to move the same figure to two different positions.

[N

Dynamic reconfigurability of the interface’s structure and behavior. As new
users join an ongoing collaborative session, participating users leave the
session, new applications are activated, and/or active applications are quit,
the configurations of the user interfaces of the individual applications and
the configuration of the systemn’s user interface must change accordingly.

Therefore, there are two important problems to be addressed when modeling
and specifying multi-application multi-user interfaces:

1. Include the necessary control mechanisms to avoid potential conflicts due to
concurrent access to application data or functionality; and

2. Include the necessary configuration mechanismsto allow changes in the num-
ber of users and active applications during the operation of an interface.

These mechanisms should be reflected explicitly in the model and, later on,
enforced antomatically during the simulation of the model or the execution of
the prototype derived from the model. The models of contacts, dialogs, and
application models presented so far have the potential to be used in the specifi-
cation of a multi-application multi-user interface with the characteristics just de-
scribed, because the underlying formal notations—in particular, the graph model
of hehavior—-are able to model concurrency, communication and synchronization.

5.1 Specification of User Coordination for Concurrent
Application Sharing

We have seen that when the single-user version of a user interface consists of

a collection of contacts connected to a collection of dialogs which in turn are

connected to one application model, then in the corresponding multi-user version
both the contacts and the dialogs are replicated for each user and the application

61

model is extended to be able to communicate with all the new dialogs, such that:
(1) there is one instance of each original contact for each user; (2) there is one
instance of each original dialog for each user; and (3) there is still only one instance
of the application model.

Fig. 23 shows the structural model of the drawing tool’s multi-user interface
introduced in chapter 4, for the case in which K users are sharing the tool con-
currently and there is no coordination among their activities at the level of the
interface. Each user can attempt to access the tool’s functionality and/or data
at any time. If the users do not want their accesses to conflict, they have to
coordinate their activities by essentially social interaction.

.) DoRect
Drawing Window Interactor || contact

corresponding to User-1

MvRect Tool Model

. . DoRect
Drawing Window Interactor Contact

[]
:
corresponding to User-2 :f
P & MvRect

]) DoRect
Drawing Window Interactor Contact
corresponding to User-K

MvRececet

Figure 23: Multi-user interface for I users with no explicit coordination.

5.1.1 Application-Independent Coordination

Concurrent access by multiple users to the data and functionality of an applica-
tion is controlled primarily by the application itself, as it has all the necessary
knowledge to decide what can be accessed safelv and when. However, the multi-
user interface specification can help in this task by preventing some potentially
conflicting accesses from actually occurring. This is possible because the entities
that actually perform the read and write operations on application data directly

available to the interface are the processors in the application model. These pro-
cessors have read and/or write accesses to the datasets which store the data in
the application model. Thus, to prevent two or more processors with write access
to the same dataset from attempting to write to that dataset at the same time,
we essentially have to prevent the processors from being active simultaneously or
during overlapping periods of time. We can achieve this by making the activation
of these processors be mutually exclusive, that is, by making the firing of the
corresponding nodes be mutually exclusive.

In principle, it is possible to add to the control graphs of the application models
the extra logic necessary to enforce mutually exclusive operation among those
processors with write access to the same dataset. However, it is more convenient
to include this extra logic at the level of the dialog modules that generate the
input control signals to the application models, for two reasons:

o Flexibility. There is only one type of mutually exclusive operation that
can be imposed on the processors of an application model, namely, make
all processors with write access to the same dataset operate in a mutually
exclusive way among them. On the other hand, we can impose mutually ex-
clusive operation among equivalent dialog modules associated with different
users at different levels within tlie modules. For example, we can subject
to mutually exclusive operation across equivalent dialogs: the execution of
the complete dialogs, or the execution of the final step of the dialogs, or the
execution of each step of the dialogs.

o Application independence and encapsulation. The structure and behavior
of an application model depends to some extent on the actual application
it represents. Therefore, any type of mutually exclusive operation that can
be imposed on the processors of an application model has to be specified
explicitly for each different application model at the time the model is built.
On the other hand, the structure and behavior of the dialogs is known well
in advance if we consider both the generalized dialog model and the special-
ized dialog models. Therefore, the logic of the different types of mutually
exclusive operation can be incorporated into these models as standard com-
ponents of the models.

Fig. 24 shows again the high-level structural model of the drawing tool’s inter-
face. This time, however, we include a number of extra interconnections between
equivalent dialog modules in different interactor modules, corresponding to differ-
ent users. These new interconnections represent the paths for the communication
of control between the dialogs involved, for the purpose of coordinating the interac-
tion of the different users. The details of how this control information is handled
inside the dialogs for three different types of interconnection configurations are
described bhelow:

63

1. The control mechanism affects the complete dialogs, enforcing sequential
execution;

N

The control mechanism affects the complete dialogs, enforcing mutually ex-
chusive execution; and

3. The control mechanism affects only the exit subgraphs of the dialogs, en-
forcing mutually exclusive execution.

Drawing Window Interactor Contact
corresponding to User-1 -
MvRect

Drawing Window Interactor

corresponding to User-2 Contact
wm
.

]
Drawing Window Interactor
corresponding to User-K Contact
M‘

Figure 24: Multi-user interface for A users with (some type of) coordination

Tool Model

PoRect

among equivalent dialogs.

5.1.2 Sequential Execution Among Equivalent Dialogs

In order to make the presentation that follows simple, let us consider a collabo-
rative application whose interface to each user consists of one window supporting
only one type of interaction, that is, one interactor which contains one contact and

only one dialog connected to that contact. Fig. 25 shows the behavioral models
of contacts and dialogs for this case, when K users are concurrently sharing one
application.

The K dialogs have their control graphs interconnected in a loop and initialized
in such a way that they can only be activated sequentially, one after the other in
a predefined order. The dialog currently enabled, that is, the dialog with a single
token on its control arc Prev (for example, the dialog corresponding to user-1 in
the figure), will be active continuously from the time it is entered, when it receives
a token on arc Dn, until the time it is exited, when it receives a token on arc Up.
At this time the dialog will, among other activities, deposit a token on its control
arc Nxt, equivalent to control arc Prev in the next dialog in the loop, which thus
bhecomes enabled and can be activated {the dialog corresponding to user-2 in the
figure).

5.1.3 Mutual Exclusion Among Equivalent Dialogs

Strict sequential execution among a group of collaborating users is not always
necessary or desirable. A different approach is to let any user, but only one at
a time, have access to a specific dialog. Fig. 26 shows the behavioral models
of contacts and dialogs for this case, when N users are sharing one application
concurrently.

The K dialogs have their control graphs interconnected and initialized in such
a way that only one dialog can be active at any given time. The dialog is active
continuously from the time it is entered until the time it is exited. Only then can
another interconnected dialog become active. This type of behavior is achieved by
interconnecting together all the Nxt control arcs, thus making each of them part of
a single, more complex control arc, and then initializing this new control arc with
only one token on it. It is important to notice that, as long as this single token
is available on the arc Nxt, it can be “grabbed” by any of the K interconnected
dialogs; in principle, it will be grabbed by the first dialog to receive a token
on its control arc Dn. Therefore, this control structure does not prescribe any
particular order for the activation of the dialogs, as did the structure described in
the previous section.

The first step in implementing this control structure, is to augment each local
arc Nxt as follows: we add an extra destination head going outside of the dialog
module through a new socket, NxtOut, and we add an extra source tail coming
from outside of the dialog module through a new socket, NxtIn.

The second step consists of interconnecting the K Nxt control arcs by con-
necting the new destination of one arc to the new source of another, as follows:
socket NxtOut in the dialog associated with user K is directly connected to socket
NxtIn in the dialog associated with user i — 1; socket NxtOut of this dialog is
directly connected to socket NxtIn in the dialog associated with user K —2; ...;
finally, socket NxtOut in the dialog associated with user 1 is directly connected to

65

contacts

user-1

w
application
model

user-2

Lo

] .
application
L model

user-K

to
application
maxdel

Figure 25: Sequential dialogs (for simplicity, modules enclosing contact-dialog
pairs, representing interactors, are not shown).

66

contacts letOut dialogs
lPos $ _—xy]
Start
user-l | @i P20 Yy
Finish
Nxiln _Pis to application
model
NxtQut
%yl
S
user-2 | s it P TN
Figure
Finish
Nxtln Pis to application
model
user-K
1o application
model

Figure 26: Mutually exclusive dialogs (interactors are not shown).

67

socket NxtIn in the dialog associated with user I{.

5.1.4 Mutual Exclusion Among Dialogs’ Exit Subgraphs

In many dialogs, the communication between the dialog and the application model
occurs only at one point in the sequence of actions defining the dialog. A typical
case is that in which the communication takes place right after the execution
of the dialog is finished, that is, after the execution of the interpretation of the
processor representing the last step in tle sequence of actions described by the
dialog. At this point, a token is placed on the only control arc coming out of the
node mapped to that processor and going into the application model through an
interconnection.

Therefore, in these cases two or more users can concurrently execute different
copies of the same dialog, interacting with the same application, until but not
including the dialog’s last step. In order to guarantee conflict-free accesses to the
application model after the execution of the last steps in these several copies of the
same dialog, these steps have to be made operationally mutually exclusive. Fig. 27
shows again the behavioral models of contacts and dialogs for the case in which
K users are concurrently sharing the same collaborative application, through an
interface which consists of one contact and one dialog for each user.

In this case, the control graphs of the ' dialogs are interconnected in such
a way that several or all the dialogs can be active simultaneously, but only one
dialog at a time can access the application’s functionality or data as a consequence
of executing that dialog’s final step. As soon as that dialog has sent its request and
the appropriate data to the application model, any one of the other interconnected
dialogs can execute its final step and then access the application. To achieve this
type of behavior we use an interconnection scheme similar to that used in the
previous case, except that now we only involve the last node of each of the dialogs’
control graphs being interconnected together, instead of the whole control graphs.

Essentially, we create a new complex control arc, Mx, which extends across
the modules representing the dialogs through sockets and interconnections, and
which is initialized with only one token on it. Within each dialog module, this
new arc has two sources and two destinations. Node N2 itself, associated with
the last step in the dialog sequence, represents one of the sources and one of the
destinations. This augments N2's input and output logic expressions with arc Mx
logically AN D-ed to both of them. Two new sockets, MxIn and Mx0Out, represent
the other source and the other destination, respectively. Finally, socket Mx0Out in
the dialog associated with user ¢ is interconnected to socket MxIn in the dialog
associated with user ¢ — 1, for ¢ = K, N’ — 1,...,2; and socket Mx0Out in the dialog
associated with user 1 is interconnected to socket MxIn in the dialog associated
with user i,

Here again we should notice that as long as there is a single token on arc Mx,
it can be grabbed by any of the I iuterconnected dialogs. In principle, the token

63

contacts dialogs

user-1
Finish
to application
model
user-2
to application
model
[]
.
.
user-K

to application
model

Figure 27: Mutual exclusion among dialogs’ exit subgraphs (interactors are not
shown).

69

will be grabbed by the first dialog to place tokens on both of its arcs Up and Sq.
Thus, this control configuration does not prescribe any particular order for the
termination of the dialogs.

5.2 Dynamic Reconfiguration of Multi-Application Multi-
User Interfaces

An important problem to address when modeling multi-application multi-user
interfaces is that of modeling changes in the structure and the behavior of the
interface, that occur during its operation. In a multi-application system, the
activation of a new application is likely to change the configuration of the system’s
interface to reflect the fact that the application is now available. For example, if
the application provides its own collection of windows for user interaction, a new
copy of these windows has to be created for each user currently in the session; or if
the system’s interface provides a meun of active applications, the menu has to be
updated to include one more option. Similarly, in a multi-user system, in which
several users are sharing the same application concurrently, the participation of
a new user will change the application’s interface. For example, if the interface
provides a different, although equivalent, collection of screen objects to each user,
it needs to be updated to handle one more collection of screen objects for the new
user.

Throughout their development, SM and GMB models have assumed a fixed
structure and behavior, which cannot change during the simulation of the models
or during the operation of the prototypes built from the models. With that
restriction we could model the multi-application multi-user interface of a system
for a given number of applications and a given number of users, but we could not
model situations in which a new application becomes available during a session, a
currently available application is deactivated, a new user joins a session in progress,
or a user currently participating in a session leaves it. It is very important that
we be able to produce models that, first, reflect the types of changes allowed
and, second, can still be subject to control flow analysis and animated simulation.
Within the framework defined by the original SM and GMB modeling languages
plus the extensions presented in Sectious 3.3, 3.6 and 3.7 in terms of specialized
modules representing contacts, dialogs and application models, we have found
two modeling levels at which dynamic reconfiguration can be modeled properly
without destroying the analysis or simulation capabilities:

¢ Behavioral changes occurring locally at the level of a dialog module, which
can be modeled by adding or removing subgraphs (that is, coherent collec-
tions of nodes, processors, datasets and control and data arcs) to or from
the control and data graphs of the dialog module.

e Structural and behavioral changes occurring at the level of a collection of

communicating dialogs, which can be modeled by adding or removing the
complete model of a dialog module, including its connections to other mod-
ules.

5.2.1 Dynamic Reconfiguration of Dialogs

An individual dialog can be altered dynamically during the operation of the user
interface to which the dialog belongs, as a consequence of:

¢ A refinement procedure being applied to the interface; or

e A change in the functionality of the applications being executed through the
interface.

Adding a rubber band effect to a dialog that produces rectangles, and adding
a capability to delete the last segment to a dialog that produces polylines are
examples of dialog refinement. Adding one more option to a menu dialog is an
example of change due to increasing the applications’ functionality. Looking at the
generalized dialog model of Fig. 13, we sec that these types of changes affect only
the central step, or continuation, of the dialog, and are reflected in the number
of one-node or two-node subgraphs, which can remove tokens from the arc Sq
to activate some processor, and then can place tokens back on arc Sq when the
processor becomes idle again. Consequently, we want to be able to model a dialog
module in such a way that:

1. It is possible to add or remove one-node and two-node subgraphs in the
dialog’s central step;

2. The subgraphs added or removed are in what we call an idle state, that is,
none of the nodes are enabled and all the processors are idle;

3. The subgraphs are added or removed together with the corresponding sock-
ets, processors, datasets, control arcs and data arcs;

4. The changes occur during the execution of the user interface to which the
dialog belongs, or during the simulation of this user interface’s model; and

5. The changes reflect the fact that more or less capabilities are available, in the
dialog itself or in the application, as the execution or simulation progresses.

We have to ensure that the specification of such a dynamically reconfigurable
model does not affect the control flow of the complete specification in such a
way that it is no longer possible to perform control flow analysis or animated
simulation, or in such a way that it invalidates the results of analysis of the
original graph. We approach this problem by considering the two types of effects
that a change in the number of one-node or two-node subgraphs can produce in
the flow of control with respect to the abilities to analyze and simulate the models:

1. The effect on the control flow internal to the graph that is being reconfigured,
specifically with respect to the control arc Sq; and

2. The effect on the control flow of the rest of the specification, transmitted
through the control arcs Cmd and Nxt.

First, let us study the effect on the control flow internal to the graph that
is being reconfigured. Fig. 28 shows the control graphs for two instances of the
generalized dialog, with 2 and 3 one-node subgraphs in its central step, each with
a single token on its arc Sq.

central

ste
central P

step

Figure 28: Comparing the control graphs of two dialogs, with two and three
subgraphs in the central step: internal effect.

In this case, one more or less subgraph represents essentially one more or less
way in which: (1) a token currently placed on arc Sq can be removed, eventually
activating some processor; and {2) a token can be placed back on Sq, when the
execution of the processor’s interpretation is finished. But there is no way mn
which, by adding a subgraph that is in an idle state, Sq can suddenly contain
two or more tokens simultaneously. This is because at most one of the subgraphs,
among the original ones plus the new one, can become busy at any given time by
removing the token on Sq; and this subgraph is then the only one that can place
a token back on Sq when it becomes idle again.

Similarly, the only prohlem with removing a subgraph could occur if the sub-
graph removed were busy and “holding”™ the token from Sq, in which case the final
step of the dialog would never be executed because node n2 would never become
enabled. But we assume that the removed subgraph is idle. We guarantee this

-1
o

assumption by forcing the token machine interpreter to wait until it is true before
proceeding with the modification. Therefore, after the number of subgraphs in
the central step of the dialog has been changed by 1, there is always at most one
token on Sq and, if there was a token on Sq when the change oceurred, that token
will eventually be back on Sq.

Second, let us study the effect on the control flow of the rest of the specification.
Fig. 29 shows the control graphs for two instances of the generalized dialog, with
2 and 3 nodes in its central step, each with a single token on its arc Nxt. We have
seen in the previous case that the reconfiguration has no effect in the internal
control flow of the dialog. This essentially means that from the point of view of
node n2, the presence or absence of a token on arc Sq behaves in the same way
before and after the change. So, after the change, n2 and its mapped processor
can still place only one token on arc Nxt and one on arc Cmd per each execution of
the dialog, as was also the case before the cliange. But again the dialog can only
be executed if the original token on Nxt is removed from there first by node n1
and its mapped processor. Therefore, there is always at most one token on Nxt,
both before and after the change, and thus the change has no effect on the control
flow external to the dialog.

Figure 29: Comparing the control graphs of two dialogs, with two and three nodes
in the central step: external effect.

5.2.2 Dynamic Reconfiguration of a Collection of Interacting Dialogs

The model of a multi-application multi-user interface operating in a collaborative
system can change dynamically during its operation as a consequence of:

e The activation of a new application which provides its own application model
and collection of interactors; or

e The participation of a new user who requests access to some or all the
applications currently running in the system.

Reconfiguring an interface when a new application becomes active is certainly
possible if the application’s model and interactors do not communicate with any
of the already active applications or their interactors. The only action that needs
to be taken is to inform the token machine about the new control graphs that
have to be interpreted. Furthermore, the result of the previous section shows that
it is also possible to reconfigure the interface when some of the existing modules
are affected by the new application, provided that those modules and the type
of modification affecting them have the control structures described there. For
example, if the interface includes a menu of active applications, then the activation
of a new application means that the menu has to be updated to include one more
entry. This reconfiguration can proceed along the lines presented in the previous
section. Therefore, we will study now the reconfiguration of an interface when a
new user joins an ongoing collaborative session.

In this case, the computer systen has to provide the new participant with a
user interface to each application currently running in the system. From the point
of view of our operational model of multi-application multi-user interfaces, this
new interface will consist of a new collection of interactors, each interactor being
connected to one of the already existing application models. The first issue to
notice here is that we are not replicating application models, only the collections
of interactors connected to them. This is advantageous from the point of view of
the design of the applications themselves, because each application designer then
knows in advance that at any time the application will be communicating with
just one application model (representing the application within the interface).
This means, however, that the application models have to change in order to
accommodate the new interactors on one side, and still provide the same interface
to the corresponding applications, on the other.

Let us consider now the mechanisms described earlier in this section to pro-
vide some type of control over potentially conflicting accesses by multiple users to
the same application. We presented a scheme in which all interactors that repre-
sent equivalent functionality (one interactor from each collection of user-specific
interactors) are connected among them through cach of their dialog modules, as
shown in Fig. 24. The connections, whicl are actually among the control graphs
of the dialogs, impose strictly sequential or mutually exclusive operation among
either the complete dialogs or just the exit subgraphs of the dialogs, as shown in
Figs. 25, 26 and 27, respectively. Consequently, we want to be able to model a
multi-application multi-user interface in such a way that:

1. The model reflects explicitly that it is possible to connect new interactors
to the appropriate collection of equivalent interactors already operating in
a mutually exclusive fashion;

2. The new interactors are in an idle state at the time of the connection and
there presence reflects the fact that a new user has joined the collaborative
session in which the mteractors are running.

We have to ensure, though, that such a model can still be subject to ani-
mated simulation and analyzed for control flow properties, as is the case of a
non-reconfigurable model. The general approach we take here is similar to the
approach taken for the case of reconfiguring individual dialogs: we show that
from the point of view of control flow it does not make a difference having K
or K + 1 equivalent interactors connected together in a mutual exclusion loop.
We observe that the only control flow interaction among all the interactors in the
loop is through the single token on either arc Nxt or Mx, depending on the type
of mutual exclusion operation being considered. Therefore, the meaning of a new
interactor in the loop is simply that now there is one more element in the loop
that can grabb this token (either a complete dialog or just its exit subgraph),
become active, and then have the token placed back on Nxt or Mx.

5.3 Extended Dialog and Multi-User Interface Models

Based on the analyses presented in the previous two sections, we can extend now
the models of both the generalized dialog in particular and the multi-user inter-
face itself to include the control graph, data graph, and interpretation necessary
to allow the models to change as described in Section 5.2, when the commu-
nication between dialogs, for the purpose of controlling multiple user access to
the same application, has the structure described in Section 5.1. Essentially, the
new models include in both cases a (node, processor) pair associated with those
reconfigurations which add elements to the original models, a (node, processor)
pair associated with those reconfigurations that remove elements from the origi-
nal models, and a dataset which stores the information necessary to perform the
reconfigurations, that is, the original models.

The new generalized dialog model is shown in Fig. 30. It includes the source
and destination extensions to control arc Nxt necessary for mutually exclusive
operation. Similar generalized modcls can be provided for the cases in which
the dialogs operate in strictly sequential order, as shown in Fig. 25, or when the
mutually exclusive operation affects only the dialogs’ exit subgraphs, as shown in
Fig. 27.

When a token 1s received on control arc Add, a new one-node or two-node
subgraph, depending either on the default case for the specific dialog or on data
explicitly provided in the new dataset Config, is connected to Sq, as shown in

aia ¥
CmJ - Nxtln CmdData —

Figure 30: GMB model of a generalized dialog, extended for mutually exclusive
operation and dynamic reconfigurahility.

Figs. 28 and 29. At the same time, one or two new processors are connected to
datasets § and T. The new processors are mapped to the new nodes and their
interpretation is found as the current value of S, or can be defined interactively by
the users. The outside interconnections, through which the new subgraph receives
and sends control signals, have to be defined graphically by the users. If a token is
received on control arc Rmv, then again the users, or the current value of dataset
S, specify which one-node or two-node subgraph, processors and corresponding
connections have to be deleted from the model.

The new muléi-user interface model is shown in Fig. 31. We notice that it
is no longer necessary to explicitly represent multiple users, because all users
participating in a collaborative session, besides the first one, can be incorporated
to the session through a reconfiguration process to add users. The reconfiguration
process can be initiated by any one of the users currently in the session.

nl AddUser
._L_,Add‘ UlConfig

RemoveUser Reconfigurate

e

User application

licati
medel m-9—u8 Application

interactor

Multi-User
Interface

Figure 31: Multi-user interface model extended for dynamic reconfigurability.

Essentially, when a token is received on control arc Add of module
Reconfigurate, a new copy of the original collection of interactors is first created,
then connected to the application model, and finally connected to the loop of
existing copies of the interactors, as shown in Fig. 24. The details of this final
connection, that is, if it will have the form presented in Fig. 25, 26 or 27, is
defined as part of the interpretation of processor AddUser. For each new interactor
created, an actual screen object is requested from the users. The screen object
is then associated with the interactor by adding to it the mapping defining 1ts
behavior, as explained in Section 4.3. If a token is received on control arc Rmv,
the multi-user interface removes one copy of the collection of interactors from the

loop and the associated screen objects.

6 The Zoom Tool: An Extended Example of a
Multi-User Interface

6.1 The Zoom Tool Concept

In this section, we describe the concept and the multi-user interface of an appli-
cation to display large graphical designs within the limited space of a workstation
screen. The zoom tool is an application that gives users control over the specific
regions of a graphic world which are displayed on a display window, as shown in

Fig. 32.

display

! viewport
Jemecsssnsnasassanel

world

lens viewport i

fnmmaman fesmmsmssssssrsrwnmrrerarmamamamnana F
LY 3

zoom @ phantom

lens
Reset

=
] ~

zZoom

display
Figure 32: Concept and user interface of the zoom tool.

The graphic world is the collection of the graphical representations of all the
design objects of interest to the users. The zoom window is the representation
of the zoom tool application on the screen. It consists of a small window, called
the lens, which displays the contents of a region of the graphic world, called the
lens viewport, and a menu with four options: Display, Lens, Pop and Reset. The
display window is a window where the users or designers can produce, display,
delete and modify the design objects. It shows the contents of a second region of

the graphic world, called the display viewport.

On the lens, designers can draw rectangles. A rectangle on the lens defines yet
another region of the graphic world called the focus. The display viewport will
point to and coincide with the focus if the option Display in the zoom window’s
menu is selected. Similarly, the zoom viewport will point to and coincide with
the focus if the option Lens is sclected in the menu. In this case, the previous
zoom viewport is saved in a stack; it can be retrieved by selecting the option Pop.
Finally, users can retrieve the default zoom viewport, and empty the stack, by
selecting the option Reset.

During a collaborative session, two or more users may have to share the same
instance of the zoom tool, while each of them uses a different display window.
They share the tool so that they all look at the same display and lens viewports.
They use different display windows hecause tlese are individually customized
(in terms of size, colors and fonts). These users may join and leave the session
at different times, and therefore the application has to be able to deal with a
variable number of display and zoom windows; in particular, the application has
to be able to accomodate a new display window and a new zoom window, or
to remove existing display and zoom windows, at any time during the session.
It is important to notice that the only type of interaction between a zoom tool
application and each of the several display windows consists in the zoom tool
changing the display viewport of the windows. Input to tle zoom tool produced
by the users is done exclusively through the zoom window, i.e., the lens and the
mem, as described above.

6.2 Formal Specification of the Zoom Tool’s Multi-User
Interface

The structural and behavioral specification of the zoom tool’s user interface is
shown in Fig. 33. It is based on the standard generalized contact presented in
Section 3.5 and the standard Button and Box dialogs presented in Section 3.6.
The contacts are nsed to represent the input foutput behavior of each screen object
involved in the interface: the display window (contact DisplayCnt), the lens
window (contact LensCnt), and each of the four buttons of the menu (contacts
‘‘Lens’’ Cnt, ‘‘Pop’’ Cnt, ‘‘Reset’’ Cnt and ‘‘Dsply’’ Cnt). Because we
are interested only in the output behavior of the display window, we are not
defining any specific input behavior for it, and therefore we do not include in
the specification any dialogs connected to contact DisplayCnt. The Box dialog
(BxDlg) is used to represent the syntax of the interaction supported by the lens.
The Button dialog {BtnDlg) is used to represent the syntax of the interaction
supported by each of the menu buttons. Because the behavioral models of these
contacts and dialogs have already been described in detail in Sections 3.5 and 3.6
they are not reproduced in the figure. However, all interconnections with an end
point in a dialog module have been labeled with the name of the corresponding

80

Lens

Zoom tool
application
model

Menu
buttons

““Reset’’
Cnt

Display
Cnt

Figure 33: Zoom tool’s user interface specification.

control or data arc inside the module.

The zoom tool application model is represented by three modules: Make,
LensVP and DispVP. Their interpretation is shown in Fig. 34. Make creates a
new focus based on data stored in dataset box by BxDlg through interconnection
CmdDt. The focus is stored in dataset focus, and is available to both modules
LensVP and DispVP. LensVP uses the focus to update the lens viewport; DispVP
uses the focus to update the display viewport. Both updates are performed under
user control.

At this point we notice that the specification contains several interconnections
linking the application model modules directly to some of the contact modules.
We had not seen this situation in previous examples, but there is a good reason

81

DATASETS
box: ({(x1.y1).(x2.¥2))
focus: ((x1.y1).(x2.y2))
S: Last-in-first-out list of ((x1.y1}).{x2,y2))

PROCESSORS
makeFocus:
(let {(oid (ReadFrom ‘‘focus’’))
(new nil)}

VPo: ((x1.yD.(x2.y2))
VP ((x1.y1).(x2.y2))

(SendThru “*D1"" old)
(setf new {make-focus (ReadFrom *‘box’"}))
(WriteTo **focus’ new)
(SendThru D1’ new))
setVP: {in LensVP}
{SendThru ‘D2 (ReadFrom **5°"))
push;
(WriteTo ““S"" (ReadFrom **focus’"))

pop:
{RemoveTop **S”")
reset;
(RemoveAll ““S™)
(WriteTo *‘S*” (ReadFrom “*VPo’ "))
setVP: {in DispVP}
(let ((focus (ReadFrom “*focus’™))})
(WriteTo “* VP focus)
(SendThru ““D3°" focus))

Figure 34: Interpretation for zoom tool application model.

for it in this case. The zoom tool application allows users to define viewports
over collections of graphical design objects—the graphic world—, but it does not
communicate at all with such collections. The graphic world communicates di-
rectly with the lens and display windows for the purpose of displaying its contents
to the users. Therefore, the zoom tool simply informs the windows, through the
interconnections, about the viewports or regions of the graphic world they are
supposed to display, and leaves to the windows themselves the responsibility of
handling such information. The interconnections work in pairs, transmitting data
(interconnections labeled D, in the figure) and control signals (interconnections
labeled K; in the figure) from the application model to the contacts. The data are
first collected and structured by the application model according to information
received from the dialogs (therefore from the users) and then sent to the con-
tacts. The control signals are generated by the application model and sent to the
contacts right after the data, to activate the contacts’ processors which use the
data.

Before creating a new focus, module Make sends to contact LensCnt the coor-
dinates of the current focus, through interconnection D1, and the corresponding
control signal, through interconnection K1, indicating that such focus, now out
of date, should be erased from the lens window. The representation of the focus
on the lens window is thus replaced by the new rectangle drawn on that window
by the user while defining the new focus. Producing the graphical representation
of the rectangle is the reponsibility of the Box dialog connected to the window,

82

BxD1g, and does not involve any of the modules of the application model.

Module DispVP works in a very simple way. When a user selects the Dis-
play option of the menu, a token travels from the ‘ ‘Dsply’’ Cnt contact to the
corresponding BtnDlg dialog, finally enabling node né and activating processor
setVP. While active, setVP first reads the focus coordinates from dataset focus
and stores them in dataset VP; then, it sends the focus coordinates through in-
terconnection D2 and the corresponding control signal through interconnection
K2 to the display window contact Display Cnt, which is actually responsible for
updating the display viewport.

Module LensVP becomes active when a user selects any one of the Lens, Pop
or Reset options of the menu. A token then travels from the appropriate contact
to the corresponding dialog, finally enabling one of the nodes n3, n4 or n5, and
activating the corresponding processor push, pop or reset, respectively. Proces-
sor push reads the focus coordinates from dataset focus and pushes them into
the stack represented by dataset S; processor pop simply eliminates the set of
coordinates currently at the top of $; and processor reset reads the focus co-
ordinates from dataset VPo, which define the default focus and zoom viewport,
and writes them into S replacing all sets of coordinates currently stored in S. In
all of these three cases, a token is then placed on the multi-source control arc a,
enabling node n2 and activating processor setVP. This processor finally sends the
focus coordinates at the top of the stack in S and the corresponding control signal
to the lens window contact LensCnt. It uses interconnections D3 and K3 for this
purpose.

6.3 Operation of the Zoom Tool Prototype

Once the specification described in the previous section has been used to produce
a prototype of the zoom tool’s user interface and application model, according to
the development methodology introduced in Chapter 4, users and designers can
execute the prototype by operating mouse-like input devices on CLUE windows.
Fig. 35 shows a hardcopy, taken directly from a workstation screen during earlier
work on this research, of a window displaying part of the specification of an
interface (module BDE-AS) and an application model {module BDE-UI). We felt
that the quality of the graphics in the figure was not good enough to be useful in
explaining to the reader the process of the execution of the prototype. Therefore,
instead of spending a lot of time in improving the graphics, we chose to use a
sophisticated drawing application and to reproduce by hand the contents of this
window and of the other windows involved in such executioun, for inclusion in this
document.

Figs. 36, 37, 38 and 39 show diffcrent stages during the execution of a zoom
tool prototype. The prototype is running on a machine called phantom and its
operation involves three windows:

83

Figure 35: An actual window displaying the specification of the zoom tool’s user
interface.

e zoomimplements the zoom window. Each of its four buttons has been linked
to the corresponding contact model of the menu buttons in the behavioral
specification presented in Fig. 33 of the previous section. Its other subwin-
dow has been linked to the LensCnt contact model of the specification. A
lens viewport has been previously defined for this window so that it shows
a collection of figures stored in the system’s graphic world.

display implements the display window. It has been linked to the
DisplayCnt contact model of the behavioral specification. Initially, no dis-
play viewport has been defined for this window and therefore it is not show-
ing any figures.

model shows the state of the behavioral specification, that is, the distribution
of tokens on the control arcs, following each user input action. Modules
BxDlg and Make in this figure correspond to modules BDE-AS and BDE-UI,
respectively, in Fig. 35.

84

- zoom @ phanr.orn

G

000~

model @ phantom

display @ phantom !l

ActData Nxt

Dn
Ers

Drw

Up

RspData

BxDIg

(a)

. zoom @ phanlom

Lens

O
B

model @ phantom

display @ phantom

%

ActData Nt

Up

RspData

Pos

BxDlg

(b

Figure 36: Executing the zoom tool prototype: defining a focus.

6.3.1 Defining a Focus

Figs. 36 and 37 show three major stages involved in the process of defining a
focus by drawing a rectangle on the lens of window zoom. The black arrow on
this window represents the mouse cursor. Window model is showing only that
portion of the behavioral specification which is involved in the definition of a
focus: modules BxDlg and Make. In Fig. 36(a) the user has just pressed down the
mouse button at the position of the rectangle’s top-left corner, thus beginning the
drawing of the rectangle. The window detected this action and the corresponding
contact model (LensCnt, not shown in the figures) placed a token on control arc
Dn in BxDlg. This token will combine with the token initially placed on control
arc Nxt to enable node n1 and activate processor Start. When Start finishes, a
token will be placed on control arc Sq.

In Fig. 36(b) the user is dragging the mouse towards the position of the rect-
angle’s bottom-right corner. Wlenever a motion of the cursor is detected by the
window, LensCnt places a token on control arc Mv in BxD1lg, as shown in the fig-
ure. This token will combine with the token placed on Sq to enable in sequence
nodes n2 and n2’, activating processors Erase and Draw, respectively. During this
sequence, tokens are sent back to LensCnt through control arcs Ers and Drw, thus
producing the feedback rubber band effect on the window while the rectangle is
being drawn. At the end of the sequence, a token is placed back on Sq, allowing
for the repetition of the sequence or the completion of the drawing.

In Fig. 37 the user has released the mouse button at the position of the rectan-
gle’s bottom-right corner, thus finishing the drawing of the rectangle. The window
detected the action, LensCnt and BxD1lg processed it (when node n3 activated pro-
cessor End), and finally a token was placed on control arc Cmd in module Make of
the zoom tool’s application model. BxD1lg is again in its initial state. The token
on Cmd will enable node n1 in Make and activate processor makeFocus, which will
create the semantic focus and store it in dataset focus.

6.3.2 Setting the Display Viewport

Figs. 38 and 39 show three major stages involved in the process of setting the
display viewport to the current focus on window zoom, by choosing the option
Display on zoom’s menu. Again, window model is showing only that portion
of the behavioral specification which is involved in setting the display viewport:
modules BtnDlg, DispVP and DisplayCnt. In Fig. 38(a) the user has just moved
the mouse cursor inside the menu button labeled Display. The button detected
this action and the corresponding contact model (¢ ‘Dsply’’ Cnt, not shown in
the figures) placed a token on control arc In in BtnD1lg. This token will combine
with the token initially placed on control arc Nxt to enable node n1 and place
tokens on control arcs Sq and On. The token ou On will go back to ‘‘Dsply’’
Cnt causing the menu button to highlight. The token on Sq will allow the menu

86

zoom @ phamom : g rmodel @ phantom ﬂ

=y
Cra)

. | ‘ e .
.,-.....
i ly e ‘:E;ﬁ:::

Dirw

Sq

UP =i‘~:;:;:-.
‘ RspData X

Figure 37: Executing the zoom tool prototype: a focus has been defined.

selection procedure to proceed.

In Fig. 38(b) the user has made the selection by clicking the mouse button
while pointing at the menu button, which now is highlighted. The menu button
detected the action, ¢ ‘Dsply’’ Cnt and BtnDlg processed it, and finally a token
was placed on control arc Cmd in module DispVP of the zoom tool’s application
model. The token on Cmd will enable node n6 and activate processor setVP. While
active, setVP will read the coordinates of the current focus from dataset focus
in module Make (through data arc rf, as shown in Fig. 33), store them in dataset
VP, and then send them to module DisplayCnt through interconnection D3. In
DisplayCnt these values will be stored in dataset viewport. Finally, a token
will be sent to DisplayCnt through interconnection K3, enabling node n4 and
activating processor set. This processor will actually set the display viewport of
window display, producing the image shown in the lower left corner of Fig. 39.

6.4 Reconfiguring the Multi-User Interface Model

Section 5.2 presented the fundamental aspects related to the dynamic reconfigura-
tion of a multi-user interface. In particular, section 5.2.2 deals with the reconfigu-
ration of a collection of interacting dialogs as a consequence of the participation of
a new user in an ongoing collaborative session. We said then that in order to keep
an application independent of the details of its multi-user interface, the corre-
sponding application model modules are not replicated as are the dialog modules.
In this way, an application always comununicates with only one instance of each
application model module. However, each application model module that com-
municates with a dialog or a contact, has to change its control and data graphs
as the dialog or contact is replicated, to be able to communicate with each copy

87

model @ phantom

zoom (@ phantom

Ojsplay)|]
9 Q)
= OO0

display @ phantom

DispVP

DisplayCnt

(a)
zoom (@ phantom

—]
VA‘
@L—_]%OO |

display @ phantom

DispVP

DisplayCnt

viewport

(b)

Figure 38: Executing the zoom tool prototype: setting the display viewport.

88

model @ phantom

DispVP

display @ phaniom

DisplayCnt

viewport

Figure 39: Executing the zoom tool prototype: the display viewport has been set.

of the dialog or contact. In the case of the zoom tool application model, each
of the three modules Make, LensVP and DispVP communicates directly with both
a contact and a dialog, as shown in Fig. 33. When a new user joins an ongoing
session the following steps take place:

1. A new copy of each original interactor (that is, each original contact and
the dialogs connected to it) is produced. Fach new copy is connected to
the already existing copies of the same interactor according to one of the
possible connection patterns described in Section 5.1, with the purpose of
guaranteeing the mutually exclusive or strictly sequential operation of the
dialogs. The resulting configuration has a general structure similar to that
shown in Fig. 24. In particular, the multiple copies of each original dialog
are interconnected in patterns similar to those shown in Figs. 25, 26 or 27.

2. For each new copy of an interactor an actual screen object is requested.
When the screen object is provided, it is mapped to the interactor, follow-
ing the process described in Section 4.3, to make it sensitive to the user-
generated input actions and the application-generated responses specified in
the interactor’s contact.

3. Finally, for each new copy of an interactor, the application model modules
connected to the original interactor are updated to be able to communicate
with the new interactor’s contact and/or dialogs. This step is explained in
more detail below.

Fig. 40 shows the configuration of part of the zoom tool’s multi-user interface
after a second user has joined a session originally involving only one user. The

89

Bx

Dig :__

Figure 40: Reconfiguring the model to let a second user join the session.

figure shows the updated module Make in the application model, and the two
copies of the interactor representing the zoom window lens, each containing a
contact (LensCnt) and a Box dialog (BxDlg). The two dialogs are interconnected
through extensions of their Nxt control arcs, for mutually exclusive operation.

The updated module Make has to be able to receive input control signals and
data defining new focuses from both interactors. It also has to be able to send
output control signals and data indicating rectangles to be drawn or erased to both
interactors. To achieve this behavior, Make augments or replicates its input and
output control and data arcs. In this particular case, input to Make comes from
the interactors’ dialogs, and output from Make goes to the interactors’ contacts.

The output behavior can only be achieved by replicating the output control
arc Kt and the output data arc D1. In the figure, the new arcs are named K17 and
D1’, respectively. Data arcs D1 and D1’ have a common tail connecting them to
processor makeFocus, representing the fact that when the processor writes data
through one of them it is also writing the same data through the other. Similarly,
control arcs K1 and K1’ are connected by an AND (™) output logic expression,
meaning that when makeFocus finishes its execution, node ni places one output
token on each arc. Upon reception of both the data and the control signals, each
LensCnt contact proceeds to update the image on the corresponding screen object,
erasing the current rectangle, which represents the old focus, and drawing a new
rectangle that represents the new focus.

90

The input behavior, on the other hand, is achieved by augmenting the input
control arc Cmd and the input data arc CmdDt, each with one more source attached
to a new socket, which in turn is connected to the new dialog. Data, control signal
pairs arrive from the dialogs. The data is stored in dataset box, which may already
contain unprocessed data from other dialogs. It is important to remember that
only one dialog may attempt to write into box at any given time, because of their
mutual exclusion operation. The control signal is placed on arc Cmd in the form
of a token; Cmd may also contain other tokens corresponding to the unprocessed
data in box. When the token machine examines node n1, it will remove one of the
tokens and activate processor makeFocus. This processor will read one set of data
from box and create the corresponding semantic focus. Defining box to operate
as a first-in-first-out queue, one of the possible dataset behaviors, guarantees that
the focuses will be created in the order in which the corresponding data were
received by box.

A similar updating process will take place in each of the other application
model modules, LensVP and DispVP, when a new user joins an ongoing collab-
orative session. In general, each original, single-user version output control arc
and output data arc, carrying information from the application model to the in-
teractors, will be replicated; and during the execution of the corresponding nodes
and processors, identical control signals and sets of data will be sent through each
replica. On the other hand, each input control arc and input data arc, carry-
ing information from the interactors to the application model, will be augmented
with one more source connected to a new socket. Data received through different
sources of the same data arc will be stored in the corresponding dataset queue to
be processed later.

Fig. 41 shows the workstation screens of machines phantom and ghost after the
user at ghost has been incorporated into the session that initially included only the
user at phantom. We present the drawing application-generated reproductions of
the contents of the screens, instead of actual screen hardcopies, for reasons similar
to those mentioned at the beginning of Section 6.3. It is important to notice that
while the contents of the different windows is the same in both machines, the
distribution of the windows on the screen and the geometry of the windows can be
completely different. Furthermore, as the figure shows by the position of the arrow
representing the mouse cursor, the two users can be working on different windows
at any given time: while the user of phantom is working on window zoom, the user
of ghost is working on window model. To deal with such possible ambiguities,
the UCLA Collaborative Design Environment, coSARA [Mujica, 1991}, requires
that every user be able to see what other users are working on.

91

model @ phantom

zoom (@ phantom

Gl ()

[}
Poy O
=000

display @ phantom !I

DispVP

DisplayCnt

viewporl

model @ ghost

BinDlg

P DispVP

DisplayCnt

sel nd

zoom (@ ghost |
1

2
== OO

(<]

Display

viewport

Figure 41: Two users concurrently sharing the zoom tool.

92

7 Conclusions and Future Work

In this work, we have presented solutions to three important problems in the
field of multi-application multi-user interfaces: modeling, specification, and de-
velopment of executable prototypes. We have characterized these interfaces as
graphical, interactive, collaborative, based on the direct-manipulation style of in-
teraction, and dynamically reconfigurable. Our solutions to the problems consist

of:

1. An operational model of the interfaces;

2. An object-oriented specification and development methodology to build ex-
ecutable prototypes;

3. Application-independent mechanisms for the specification of coordination
among collaborating users concurrently sharing an application; and

4. Application-independent mechanisms for the specification of interfaces whose
structure and behavior can change in a structured, controlled way during
their operation.

We presented a formal operational model of multi-application multi-user in-
terfaces, which combines, extends and refines the Direct-Manipulation model and
the Reference model. Our model includes detailed structural and behavioral spec-
ification of:

1. The screen objects with which the users interact directly. These objects are
represented in more detail than in any other existing model. 5till, the rep-
resentations are completely independent of any particular implementation.
A screen object model, called an interactor, includes separate, communicat-
ing models for the input and output aspects of the interface, and for the
expression of the syntax of user-application dialogs.

2. The application model supporting the shared data model of interfaces based
on the direct-manipulation style of interaction. This component facilitates
the sharing of data between the interface and the application. It is defined
as an abstract, object-oriented representation of the functionality of the
application as seen from the interface’s point of view.

3. The communication of control and data between a user-specific collection
of screen objects and an application model, and the communication of con-
trol and data among equivalent screen objects supporting the interaction of
different users with the same application.

93

4. A structured, hierarchical test environment for interface specifications. The
environment allows designers to systematically test the specification of indi-
vidual syntactic components (dialogs) in a screen object, of the collection of
dialogs of a screen object, of the collection of screen objects in a user-specific
interface, and of the complete multi-user interface.

We presented an object-oriented specification and development methodology
to build executable prototypes of multi-user interfaces. The prototypes can be
executed by designers and end users by operating real input devices on real screen
objects. The specification method uses the OREL modeling language to describe
the organization of the object classes composing an interface (class diagram).
Then, the SM and GMB modeling languages are used to describe the behavior of
these classes; in particular, the structure and behavior of the screen objects are
represented in the same terms as in the operational model. The structure and
behavior of the application model component of the interface is also described in
terms of SM and GMB, following an object-oriented approach in which modules
represent classes and submodules represent operations on classes.

The development method uses an extensible library which contains: (1) soft-
ware modules to assign interpretation to the behavioral models; (2) class and
method definitions produced by the OREL compiler from user interface class dia-
grams, to create and manipulate class instances of the interface and its components
(the application model and the interactors); and (3) CLUE contacts to create real
screen objects. Instances of the application model and of the interactors can be
linked to the corresponding behavioral models. Then, the screen objects can be
linked to the corresponding interactor instances, thus defining the behavior of
the screen objects and allowing designers and users to execute the specifications
through the screen objects.

We presented a set of application-independent mechanisms to specify coordi-
nation among the activities of multiple users concurrently sharing an application.
The mechanisms are based on mutually exclusive or strictly sequential operation
of equivalent screen objects associated with different users. They have been easily
encapsulated in the models of the screen objects, freeing designers from having to
explicitly specify them. And they support several different types of coordination,
giving designers some freedom in chosing the most appropriate strategy for each
particular interface.

Finally, we extended the SM and GMB modeling languages to support the
specification of interfaces which can reconfigure themselves during the operation
of a collaborative session, as a consequence of new users joining the session and
new applications becoming available. The extensions are based on the existence
of regular patterns of control behavior, both inside individual screen objects and
across equivalent screen objects communicating different users with the same ap-
plication.

94

Two important topics for future research in the field of multi-application multi-
user interfaces have appeared as a consequence of this work. First, the specifica-
tion methodology described in this document involves several different specifica-
tion and modeling languages which in some cases have not been designed to work
with one another. Although it has been possible to combine them fruitfully, our
methodology would benefit enormously from a more unified approach. We pro-
pose to accomplish this by extending the OREL language in order to support true
modularization through information hiding, specially with respect to composite
classes, and by extending the SM and GMB languages in order to support features
of object-oriented specifications. The extensions should move the languages closer
to each other. Second, the environment in which the multi-user interface proto-
types produced with our development methodology have been tested consists of
four Sun workstations connected by a local area network. In this environment,
prototypes are executed by a centralized token machine interpreter which dis-
tributes the results of the interpretations to all the workstations. Supporting
remote collaboration, however, through a distributed token machine interpreter,
would greatly improve the usefulness of our system.

95

A CLOS code for user interface OREL model
;i3 —%*- Mode: Lisp; Package: OREL —*-
(in-package ’OREL :use ’(pcl orel object-world lisp))

;; Uncomment if OREL-BASIC is not already loaded
;3 (load "/x/CDE/orel/orel-basic")

(pcl:defclass BLOCK (SIMPLE-OBJECT)
((BtmRight :initform nil :accessor BLOCK-BtmRight)
(TopLeft :initform nil :accessor BLOCK-TopLeft)))

(defun MAKE-BLOCK (Zoptional (name ""))
{make-instance ’BLOCK :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass CALL (SIMPLE-DBIJECT)
((CALLS :initform nil :accessor CALL-CALLS)))

(defun MAKE-CALL (%optional (name '""))
{make-instance ’*CALL :storable-name name
:storable-id (object-world::unique-sym)))

(pCl:defclass COMMAND {SIMPLE-DBJECT)
((COMMANDS :initform nil :accessor COMMAND-COMMANDS)))

(defun MAKE-COMMAND (&optional (name "))
(make-instance 'COMMAND :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass DIALOG (SIMPLE-OBJECT)
((ACTIONS :initform nil :accessor DIALOG-ACTIONS)
(RESPONSES :initform nil :accessor DIALOG-RESPONSES}))

(defun MAKE-DIALGOG (%optional (name ""))
(make-instance ’DIALOG :storable-name name

:storable-id (object-world::unique~-sym)))

(pcl:defclass ACTION (SIMPLE-0BJECT)
((ACTIONS :initform nil :accessor ACTION-ACTIONS)))

96

{defun MAKE-ACTION (&optional (name "'})
(make-instance ACTION :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass RESPONSE (SIMPLE-OBJECT)
{(RESPONSES :initform nil :accessor RESPONSE-RESPONSES)))

(defun MAKE-RESPONSE (&optional (name ""))}
(make-instance *RESPONSE :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass CONTACT (SIMPLE-OBJECT)
((ACTIONS :initform nil :accessor CONTACT-ACTIONS)
(RESPONSES :initform nil :accessor CONTACT-RESPONSES)))

(defun MAKE-CONTACT (&optional (name ""))
(make-instance ’CONTACT :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass TOOL (COMPOSITE-O0BJECT)
((CALLS :initform nil :accessor TOOL-CALLS)
(COMMANDS :initform nil :accessor TOOL-COMMANDS)
(BLOCK :initform nil :accessor comp-BLOCK)))

(defun MAKE-TOOL (&optional (name ""))
(make-instance *TOOL :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass INTERACTOR (COMPOSITE-OBJECT)

((CALLS :initform nil :accessor INTERACTOR-CALLS)
(COMMANDS :initform nil :accessor INTERACTOR-COMMANDS)
(RESPONSES :initform nil :accessor comp-RESPONSES)
(ACTIONS :initform nil :accessor comp-ACTIONS)

(DIALOG :initform nil :accessor comp-DIALOG)
(ACTION :initform nil :accessor comp-ACTION)
(RESPONSE :initform nil :accessor comp-RESPONSE)
(CONTACT :initform nil :accessor comp-CONTACT)))

(defun MAKE-INTERACTOR (%optional (name ""))

(make-instance ’INTERACTOR :storable-name name
:storable-id (object-world::unique-sym)))

97

(pcl:defclass Ul (COMPOSITE-OBJECT)
((TOOL :initform nil :accessor comp-TOOL)
(CALLS :initform nil :accessor comp~CALLS)
(COMMANDS :initform nil :accessor comp-COMMANDS)
(CALL :initform nil :accessor comp-CALL)
(COMMAND :initform nil :accessor comp-COMMAND)
(INTERACTOR :initform nil :accessor comp-INTERACTOR)))

(defun MAKE-UI (&optional (name ""))
{make-instance Ul :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass CALLS (RELATION-GBJECT)
((TOOL-many-p :reader TOOL-many-p :initform T)
(TOOL-ordered-p :reader TOOL~ordered-p :initform NIL)
(TOOL~directed-p :reader TOOL-directed-p :initform NIL)
(TOOL-map-type :reader TOOL-map-type :initform :PARTIAL)
(CALL-many-p :reader CALL-many-p :initform T)
(CALL-ordered-p :reader CALL-ordered-p :initform NIL)
(CALLudirected-p :reader CALL-directed-p :initform NIL)
(CALL-map-type :reader CALL-map-type :initform :PARTIAL)
(INTERACTOR~many-p :reader INTERACTOR-many-p :initform T)
(INTERACTOR-ordered-p :reader INTERACTOR-ordered-p :initform NIL)
(INTERACTOR-directed-p :reader INTERACTOR-directed-p
:initform NIL)
(INTERACTOR-map-type :reader INTERACTOR-map-type
rinitform :PARTIAL)
(orel::tuple-list :initform nil :accessor orel::tuple-list)}))

(defun MAKE-CALLS (&optional (name ""))
(make-instance *CALLS :storable-name name
:storable-id (object-world::unique-sym)}))

(pcl:defclass CALLS-TUPLE (TUPLE-OBJECT)
((TOOL :accessor TOOL :initarg :TOOL)
(CALL :accessor CALL :initarg :CALL)
(INTERACTOR :accessor INTERACTOR :initarg :INTERACTOR)))

(defun MAKE-CALLS-TUPLE (&optional (name "")
&key INTERACTOR CALL TOOL)

98

{make-instance ’CALLS-TUPLE :storable-name name
;storable-id (object-world::unique-sym)
: INTERACTOR INTERACTOR :CALL CALL :TOOL TOOL))

(pcl:defclass COMMANDS (RELATION-OBJECT)
((TOOL-many-p :reader TOOL-many-p :initform T)
(TOOL-ordered-p :reader TOOL-ordered-p :initform NIL)
(TOOL-directed-p :reader TOOL-directed-p :initform NIL)
(TOOL-map-type :reader TOOL-map-type :initform :PARTIAL)
(COMMAND-many-p :reader COMMAND-many-p :initform T)
(COMMAND-ordered-p :reader COMMAND-ordered-p :initform NIL)
(COMMAND-directed-p :reader COMMAND-directed-p :initform NIL)
(COMMAND-map-type :reader COMMAND-map-type :initform :PARTIAL)
(INTERACTOR-many-p :reader INTERACTOR-many-p :initform T)
(INTERACTOR-ordered-p :reader INTERACTOR-ordered-p :initform NIL)
(INTERACTOR-directed-p :reader INTERACTOR-directed-p

tinitform NIL)
(INTERACTOR-map-type :reader INTERACTOR-map-type

:initform :PARTIAL)
(orel::tuple-list :initform nil :accessor orel::tuple-list)))

(defun MAKE-COMMANDS (&optional (name ""))
(make-instance ’COMMANDS :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass COMMANDS-TUPLE (TUPLE-OBJECT)
((TOOL :accessor TOOL :initarg :TOOL)
(COMMAND :accessor COMMAND :initarg :COMMAND)
(INTERACTOR :accessor INTERACTOR :initarg :INTERACTOR)))

(defun MAKE-COMMANDS-TUPLE
(#optional (name "") &key INTERACTOR COMMAND TOOL)
{make-instance *COMMANDS-TUPLE :storable-name name
:storable-id (object~world::unique-sym)
: INTERACTOR INTERACTOR :COMMAND COMMAND :TOOL TOOL))

(pcl:defclass RESPONSES (RELATION-OBJECT)
((CONTACT-many-p :reader CONTACT-many-p :initform T)
(CONTACT-crdered-p :reader CONTACT-ordered-p :initform NIL)
(CONTACT-directed-p :reader CONTACT-directed-p :initform NIL)

99

(CONTACT-map-type :reader CONTACT-map-type :initform :PARTIAL)
(DIALOG-many-p :reader DIALOG-many-p :initform T)
(DIALOG-ordered-p :reader DIALOG-ordered-p :initform NIL)
(DIALDG-directed-p :reader DIALOG-directed-p :initform NIL)
(DIALOG-map-type :reader DIALOG-map-type :initform :PARTIAL)
(RESPONSE-many-p :reader RESPONSE-many-p :initform T)
(RESPONSE-ordered-p :reader RESPONSE-ordered-p :initform NIL)
(RESPONSE-directed-p :reader RESPONSE-directed-p :initform NIL)
(RESPONSE-map-type :reader RESPONSE-map-type :initform :PARTIAL)
(orel::tuple-list :initform nil :accessor orel::tuple-list)))

(defun MAKE-RESPONSES (&optional (name ""))
(make-instance ’'RESPONSES :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass RESPONSES-TUPLE (TUPLE-OBJECT)
((CONTACT :accessor CONTACT :initarg :CONTACT)
(DIALOG :accessor DIALOG :initarg :DIALOG)
(RESPONSE :accessor RESPONSE :initarg :RESPONSE)))

(defun MAKE-RESPONSES-TUPLE (&optional (name "")
&key RESPONSE DIALOG CONTACT)
(make-instance ’RESPONSES-TUPLE :storable-name name
:storable-id (object-world::unique-sym)
:RESPONSE RESPONSE :DIALOG DIALOG :CONTACT CONTACT))

(pcl:defclass ACTIONS (RELATION-OBJECT)

((DIALOG-many-p :reader DIALOG-many-p :initform T)
(DIALDG-ordered-p :reader DIALOG-ordered-p :initform NIL)
(DIALOG-directed-p :reader DIALOG-directed-p :initform NIL)
(DIALOG-map-type :reader DIALOG-map-type :initform :PARTIAL)
(ACTION-many-p :reader ACTION-many-p :initform T)
(ACTION-ordered-p :reader ACTION-ordered-p :initform NIL)
(ACTION-directed-p :reader ACTION-directed-p :initform NIL)
(ACTION-map-type :Teader ACTION-map-type :initform :PARTIAL)
(CONTACT-many-p :reader CONTACT-many-p :initform T)
(CONTACT-ordered-p :reader CONTACT-ordered-p :initform NIL)
(CONTACT-directed-p :reader CONTACT-directed-p :initform NIL)
(CONTACT-map-type :reader CONTACT-map-type :initform :PARTIAL)
(orel::tuple-list :initform nil :accessor orel::tuple-list)))

100

{defun MAKE-ACTIONS (&optional (name "))
(make-instance ’ACTIONS :storable-name name
:storable-id (object-world::unique-sym)))

(pcl:defclass ACTIONS-TUPLE (TUPLE-OBJECT)
((DIALOG :accessor DIALOG :initarg :DIALOG)
(ACTION :accessor ACTION :initarg :ACTION)
(CONTACT :accessor CONTACT :initarg :CONTACT)))

(defun MAKE-ACTIONS-TUPLE (&optional (name "")
&key CONTACT ACTION DIALOG)
(make-instance *ACTIONS-TUPLE :storable-name name
:storable-id (object-world::unique-sym)
:CONTACT CONTACT :ACTION ACTION :DIALOG DIALDG))

(defmethod ADD-COMPONENT ((¢ TOOL) (o BLOCK) &optional role-name)
(push o (comp-BLOCK c))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c TOOL) (o BLOCK))
(setf (comp-BLOCK c) (delete o (comp-BLOCK c) :test #’equal)))

(defmethod COMPONENTS-OF ((o TOOL))
(list (comp-BLOCK 0)))

(defmethod ADD-COMPONENT ((c INTERACTOR) (o RESPONSES)
&optional role-name)

(push o (comp-RESPONSES c¢))

(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c INTERACTOR) (o RESPONSES))
(setf (comp-RESPONSES c) (delete o (comp-RESPONSES c)
itest #’equal)))

(defmethod ADD-COMPONENT ((c INTERACTCR) (o ACTIONS)
&optional role-name)

(push o (comp-ACTIONS c))

(setf (comp-parent o) c¢))

(defmethod DELETE-COMPONENT ((c INTERACTOR) (o ACTIONS))
(setf (comp-ACTIONS c) (delete o (comp-ACTIONS c) :test #’equal)))

101

(defmethod ADD-COMPONENT ({(c INTERACTOR) (o DIALOG)
&optional role-name)

(push o (comp-DIALDG c))

(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c INTERACTOR) (o DIALODG))
(setf (comp-DIALOG c) (delete o (comp-DIALOG c) :test #'equal)))

(defmethod ADD-COMPONENT ({c INTERACTOR) (o ACTION)
&optional role-name)

(push o (comp-ACTION c))

(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ({c INTERACTOR) (o ACTION))
(setf (comp-ACTION c) (delete o (comp-ACTION c) :test #’equal)))

(defmethod ADD-COMPONENT ({(c INTERACTOR) (o RESPONSE)
%Zoptional role-name)

(push o (comp-RESPONSE c))

(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c INTERACTOR) (o RESPONSE))
(setf (comp-RESPONSE c¢) (delete o (comp~RESPONSE c)
:test #’equal)))

(defmethod ADD-COMPONENT ((c INTERACTOR) (o CONTACT)
Zoptional role-name)

(push o (comp-CONTACT c))

(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ({c INTERACTOR) (o CONTACT))
(setf (comp-CONTACT c) (delete o (comp-CONTACT c) :test #’equal)))

(defmethod COMPONENTS-UF ((o INTERACTOR))
(1ist (comp-RESPONSES o)
(comp-ACTIONS o)
(comp-DIALOG o)
(comp-ACTION o)
(comp-RESPONSE o)
(comp=-CONTACT o0)))

(defmethod ADD-COMPONENT ((c UI) (o TOOL) Zoptional role-name)

102

(push o (comp-TOOL c))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c UI) (o TOOL))
(setf (comp-TOOL ¢) (delete o (comp-TOOL c) :test #’equal)))

(defmethod ADD-COMPONENT ((c UI) (o CALLS) koptional role-name)
(push o {(comp-CALLS c))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c UI) (o CALLS))
(setf (comp-CALLS c) (delete o {(comp-CALLS c) :test #’equal)))

(defmethod ADD-COMPONENT ((c UI) (o COMMANDS) &optional role-name)
{push o (comp-COMMANDS c))
(setf (comp-parent o) c))

(defmethod DELETE~COMPONENT ((c UI) (o COMMANDS))
(setf (comp-COMMANDS c) (delete o (comp-COMMANDS c)
itest #’equal)))

(defmethod ADD-COMPONENT ((c UI) (o CALL) &optional role-name)
(push o (comp-CALL ¢))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c UI) (o CALL))
(setf (comp-CALL c) (delete o (comp-CALL ¢) :test #’equal)))

(defmethod ADD-COMPONENT ((c UI) (o COMMAND) Zoptional role-name)
(push o (comp-COMMAND c))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ({c UI) (o COMMAND))
(setf (comp-COMMAND c) (delete o (comp-COMMAND c) :test #’equal)))

(defmethod ADD-COMPONENT ((c UI) (o INTERACTOR) &optional rocle-name)
(push o (comp-INTERACTOR ¢))
(setf (comp-parent o) c))

(defmethod DELETE-COMPONENT ((c UI) (o INTERACTOR))
(setf (comp-INTERACTOR c) (delete o (comp-INTERACTOR c)
:test #’equal)))

103

(defmethod COMPONENTS-OF ((o UI))
(list (comp-TOOL o)
(comp-CALLS o)
(comp-COMMANDS o)
(comp-CALL o)
(comp-COMMAND o)
(comp-INTERACTOR 0)))

104

B CLOS code for process Interactor Translator

(in-package ’SARA :use ’(lisp pcl orel))
(defun produce-installation (gmb-model)

(let* ((contact-names nil)
(tool-names nil)
(model (storable-name gmb-model))
(file (open (format nil "/x/CDE/SARA/”A-install.lisp" model)
:direction :output
:element-type :default
:if-exists :supersede)))

(format file
"~%(defmethod install ((tool "A) &key form simulator)”%" model)
(format file
"% (setf (tool-callbacks tool) (make-callbacks))~%")
(setq contact-names (get-contacts gmb-model)
tool-names (get-tools gmb-model))

{dolist {(name contact-names)
(format file
"~% (setf {(cn::button-label-text (car (cn::form-buttons

form))}")
(format file "~Y% \"CONTACT ~A ID:\")"%" name)
(format file “~% (if (cn::collect-info form)")
(format file "Y% (let ((id (read-from-string")
(format file
Lt 4 (cn::intext-value (first
~% (cn::form-intexts
form)))))'")
(format file "~Y (contact nil))}")
(format file "~ (setq contact (ow::read-object
:id id))')

(produce-callbacks name file)

(format file "~} (setf (orel::tuple-list
{(tool-callbacks tool))")

(format file "~Y (cons (make-callbacks-tuple")

(format file "% :contact contact

105

:tool tool :message-object nil)")
(format file "~% (orel::tuple-list
(tool~callbacks tool)))))~%"))

(format file "~Y% (setf (tool-uses tool) (make-uses))~ %")
(format file ')~%")
(close file)))

(defun produce-callbacks (module file)

{let ({(data-link nil)
(proc nil)
{control-arc nil))

(dolist (socket (comp-socket module))
(setq data-link (get-data-arc socket))
(if data-link
(if (or (eq (data-arc-type data-link) ’w)
(eq (data-arc-type data-link) ’rw))
(progn
(setq proc (data-processor
(first
(find-objects
(first (comp-data-rel (comp-parent data-link)))
#’(lambda (x) (eq (data-arc x) data-link))))))
(return)))))

(dolist (socket (comp-socket module))
(setq control-arc (get-control-arc socket))
(if control-arc
(if (eq socket (second (first (control-arc-head-set control-arc))))

(progn
{format file
"% (add-callback (cn::canvas-view contact)")
(format file
% ~4" (callback control-arc))
(format file
% 'tm-run')
(format file
"% simulator")
(format file
"% ~A" control-arc)

106

(format file

-y ~A'" data-link)
(format file
-~y A pIOC)))))))

(defun callback (control-arc)
(let ((name (storable-name control-arc))

(call nil))

(if (or (string-equal name "C1") (string-equal name
(setq call ":press-left"))

(if (or (string-equal name "C2") (string-equal name
(setq call':release-left"))

(if (or (string-equal name "C3") (string-equal name
(setq call “":single-click-left"))

(if (or (string-equal name "C4") (string-equal name
(setq call ":double-click-left"))

(if (or (string-equal name "C5") (string-equal name
(setq call ":move-left"))

call))

“LDN"))
"LUP"))
"LCK'))
"L2CK"))

HLMVII))

(defun tm-run (x y u v simulator control-arc data-arc processor)
($write-data processor (storable-name data-arc) {cons x y))

(update-~tokens control-arc 1)
(with-slots (*enabled*) simulator
(dolist (node (dynamic-headset control-arc))
(if (typep node ’control-node)
(if (evaluate (control-node-in-logic node) node)
(setq *enabled* (add-element *enabled* node))))))
(tm-start simulator))

(defun get-tools (module)
(let ((type (module-type module))
{(tools nil))
(if (eql type ’tool)
(setq tools (list module))
(if (not (eql type ’contact))
(dolist (submodule {comp-module module})

(setq tools (append tools (get-tocls submodule))))))

tools))

{defun get-contacts (module)
g
(let ((type (module-type module))

107

(contacts nil))
(if (and (eql type ’‘contact) (comp-gmb module))
(setq contacts (list module))
(if (not (eql type ’tool))
(dolist (submodule (comp-module module))
(setq contacts (append contacts (get-contacts submodule})))))
contacts))

108

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

(10]

[11]

[12]

[13]

Barth [1986]. An Object-Oriented Approach to Graphical Interfaces. ACM
Trans. on Graphics 5 2, April 1986, 142-172.

G. Booch [1991]. Object-Oriented Design with Applications. Benjamin Cum-
mings, 1991.

CLX [1989]. CLX Common LISP X Interface, Texas Instrument Incorpo-
rated, 1989.

D. Coleman, F. Hayes and S. Bear [1992]. Introducing Objectcharts or How
to Use Statecharts in Object-Oriented Design. IEEE Trans. on Software En-
gineering SE-18 1, Jan. 1992, 9-18.

J. DeSoi, W. Lively and S. Sheppard [1989]. Graphical Specification of User
Interfaces with Behavior Abstraction. Proc. ACM SIGCHIS3, May 1989, 135-
144.

P. Dewan and R. Choudhary [1991]. Flexible User Interface Coupling in a
Collaborative System. ACM CHI’91 Conference Proc., April 1991, 41-48.

P. Dewan and R. Choudhary [1991]. Primitives for Programming Multi-User
Interfaces. ACM UIST Symposium Proc., Nov. 1991, 69-78.

G. Estrin, R. Fenchel, R. Razouk and M. Vernon [1986]. SARA (System
ARchitects Apprentice): Modeling, Analysis, and Simulation Support for
Design of Concurrent Systems. IEEE Trans. on Software Engineering SE-12
2, Feb. 1986, 293-311.

R. Fenchel and G. Estrin {1982]. Self-Describing Systems Using Integral Help.
IEEE Trans. on Systems, Man, and Cybernetics SMC-12 2, March/April
1982, 162-167.

G. Fisher [1987]. An Object-oriented Construction and Tool Kit for Human-
Computer Communication. Computer Graphics 21 2, April 1987, 105-109.

J. Foley [1987]. Transformations on a Formal Specification of User-Computer
Interfaces. Computer Graphics 21 2, April 1987, 109-113.

J. Foley, W. Kim, S. Kovacevic and K. Murray [1989]. Defining Interfaces at
a High Level of Abstraction. IEEFE Software, Jan. 1989, 25-32.

J. Goguen and M. Moriconi [1987]. Formalization in Programming Environ-
ments. Computer, Nov. 1987, 55-64.

109

[14]

[15]

[16]

(17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Green [1985]. The University of Alberta User Interface Management Sys-
tem. ACM SIGGRAPH’85 Conference Proc., July 1985, 205-213.

M. Green [1986]. A Survey of Three Dialogue Models. ACM Trans. on Graph-
1cs 5 3, July 1986, 244--275.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A.
Shtull-Trauring and M. Trakhtenbrot [1990]. STATEMATE: A Working En-
vironment for the Development of Complex Reactive Systems. IEEE Trans.
on Software Engineering SE-16 4, April 1990, 403-414.

D. Harel [1987]. Statecharts: A Visual Formalism for Complex Systems. Sci-
ence of Computer Programming 8, 1987, 231-274.

A. Harbert, W. Lively and S. Sheppard [1990]. A Graphical Specification
System for User-Interface Design. IEEE Software, July 1990, 12-20.

R. Hartson [1989]. User-Interface Management Control and Communication.
IEEFE Software, Jan. 1989, 62-70.

R. Hill [1986]. Supporting Concurrency, Communication, and Synchroniza-
tion in Human-Computer Interaction—The Sassafras UIMS. ACM Trans. on
Graphics 5 3, July 1986, 179-210.

D. Hix and R. Schulman [1991]. Human-Computer Interface Development
Tools: A Methodology for Their Evaluation. Comm. of the ACM, 34 3, March
1991, 74-87.

S. Hudson [1987]. UIMS Support for Direct Manipulation Interfaces. Com-
puter Graphics 21 2, April 1987, 120-124.

W. Hurley and J. Sibert [{1989]. Modeling User Interface-Application Inter-
actions. IEEE Software, Jan. 1989, 71-77.

R. Jacob [1986]. A Specification Language for Direct-Manipulation User In-
terfaces. ACM Trans. on Graphics 5 4, Oct. 1986, 283-317.

E. Kantorowitz and Q. Sudarsky [1989]. The Adaptable User Interface.
Comm. of the ACM, 32 11, Nov. 1989, 1352-1358.

S. Keene [1989]. Object-Oriented Programming in Common Lisp—A Pro-
grammer’s Guide to CLOS Addison-Wesley, 1989.

K. Kimbrough [1989]. A Quick and Dirty Guide to CLUE. Texas Instruments
Inc., Version 6.0, July 1989.

110

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

K. Kimbrough and L. Oren [1990]). Common Lisp User Interface Environ-
ment. Texas [nstruments Inc., Version 7.20, July 1990.

J. Konstan and L. Rowe [1991]. Developing a GUIDE Using Object-Oriented
Programming. ACM OOPSLA’91 Conference Proc., Oct. 1991, 75-88.

J. Kramer and J. Magee [1990]. The Evolving Philosophers Problem: Dy-
namic Change Management. I[EEE Trans. on Software Engineering SE-16
11, Nov. 1990, 1293-1306.

K. Lantz [1987]. Multi-process Structuring of User Interface Software. Com-
puter Graphics 21 2, April 1987, 124-130.

K. Lantz, P. Tanner, C. binding, K. Huang and A. Dwelly [1987]. Reference
Models, Window Systems, and Concurrency. Computer Graphics 21 2, Aprl
1987, 87-97.

T. Lewis, F. Handloser, S. Bose and S. Yang {1989]. Prototypes from Standard
User Interface Management Systems. Computer, May 1989, 51-60.

M. Linton, J. Vlissides and P. Calder [1989]. Composing User Interfaces with
Interviews. Computer, Feb. 1989, 8-22.

K. Lor and D. Berry [1991]. Automatic Synthesis of SARA Design Models
from System Requirements. IEEE Trans. on Software Engineering SE-17 12,
Dec. 1991, 1229-1240.

S. Mujica [1991]. A Computer-based Environment for Collaborative Design.
Ph.D. diss., Computer Science Dept., U. of California, Los Angeles, 1991.

R. Mulligan, M. Altom and D. Simkin {1991}. User Interface Design in the
Trenches: Some Tips on Shooting from the Hip. ACM CHI’91 Conference
Proc., April 1991, 232-236.

B. Myers [198%9a). Encapsulating Interactive Behaviors. Prec. ACM
SIGCHIS9, May 1989, 319-324.

B. Myers [1989b]. User-Interface Tools: Introduction and Survey. IEEE Soft-
ware, Jan. 1989, 15-23.

B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden, D. Kosbie, E. Per-
vin, A. Mickish and P. Marchal [1990]. Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces. Computer, Nov. 1990, 71-85.

R. Razouk, M. Vernon and G. Estrin [1979]. Evaluation Methods in SARA—
The Graph Model Simulator. Conference on Simulation, Measurement and
Modeling of Computer Systemns, 1979, 189-206.

111

[42]

[43]

[44]

[45]

[46]

[47]

L. Rowe, J. Konstan, B. Smith, S. Seitz and C. Liu [1991]. The PICASSO
Application Framework. ACM UIST Symposium Proc., Nov. 1991, 95-105.

G. Singh and M. Green [1991]. Automating the Lexical and Syntactic Design
of Graphical User Interfaces: The UofA* UIMS. ACM Trans. on Graphics 10
3, July 1991, 213-254.

K. Tatsukawa [1991]. Graphical Toolkit Approach to User Interaction De-
scription. Proc. CHI’91, April 1991, 323-328.

M. Vernon [1983]. Performance-Oriented Design of Distributed Systems.
Ph.D. diss., Computer Science Dept., U. of California, Los Angeles, 1983.

P. Wellner [1989]. Statemaster: A UIMS Based on Statecharts for Prototyping
and Target Implementation. Proc. SIGCHI89, May 1989, 177-182.

C. Wiecha, W. Bennett, S. Boies and J. Gould [1989]. Generating Highly
Interactive User Interfaces. Proc. SIGCHI89, May 1989, 277-282.

112

