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ABSTRACT OF THE DISSERTATION

Query Processing and Optimization in

Temporal Database Systems
by

Ting Yu Leung
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1992
Professor Richard Muntz, Chair

There is a tremendous need for keeping evolving history of the “enterprise” of
interest online, resulting in a femporal database. In this dissertation, we consider
query processing and optimization aspects for temporal databases. Since storing
temporal information in databases is a new application area, it is not surprising
that the characteristics of temporal queries are much different from those of
conventional queries. Conventional relational systems are often inefficient for
temporal query processing because the new characteristics are not taken into
consideration. As an example, a temporal join often contains a conjunction of
several inequalities involving only time attributes. In conventional relational
systems, this type of queries is processed using the nested-loop join algorithm,
which may not be the most efficient method. However, it can be processed much

more efficiently when new processing strategies are used.

We present a stream processing approach for temporal query processing.
Given properly sorted data, implementation of temporal joins and semijoins as
stream processors can be very efficient. We discuss the tradeoffs between sort
orderings, the amount of local workspace, and multiple scans over input streams.
Stream processing algorithms for various temporal joins and semijoins, and their

workspace requirements for various data sort orderings are presented.

We propose a novel indexing technique for temporal data streams that is based
on the stream processing techniques. The index can be exploited in processing
complex multi-way joins that are qualified with snapshot operators (e.g., the “as

of” operator), The advantages and limitations of the scheme and a quantitative

xiii



analysis of the storage requirements are presented. We propose optimization

alternatives that can reduce the storage requirements.

Multiprocessor database machines are probably more cost-effective at storing
a huge volume of temporal data than centralized DBMSs. In this dissertation, we
discuss issues involving temporal data fragmentation, temporal query processing,
and query optimization in such an environment. We propose parallel strategies
for multi-way joins which are based on partitioning relations on time attribute
values, and optimizations for processing join queries qualified with comparison
predicates involving time attributes. We analyze the schemes quantitatively, and

show their advantages in computing complex temporal joins.
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CHAPTER 1

Introduction

Many real-world database applications intrinsically involve time-varying infor-
mation. Examples include inventory control in traditional business environments
and many scientific applications which store measurement or trace data. With
the availability of cheap processing and storage units, storing the evolving history
of the “enterprise” of interest in a database system becomes a more attractive

alternative than purging history data from the database.

These advanced applications, which often involve temporal date analysis, can
be found in many areas such as in direct marketing. The analysis can provide
valuable information which is crucial for decision making process. Conventional
relational database systems, however, do not adequately support the storage and

manipulation of a large volume of temporal data efficiently.

In the following sections, we first illustrate the importance of temporal DBMS
support using several examples, which can be formulated as temporal pattern
analysis problems. These examples suggest how a wide variety of similar applica-
tions can be supported by the temporal DBMS. We then contrast the conventional

approach to supporting temporal functionality and our proposed approach.

1.1 Example Applications

1.1.1 Sales Revenues

In a traditional business environment, setting the future price of a product can
very difficult. On the oie hand, if the price is set too high, fewer items may be
sold. On the other hand, if the price is too low, the profit may not be optimal.
One strategy is to analyze the past sales performance in terms of sales volume
and revenues over time, and using this information, attempt to do a better job
in pricing the products. The following example taken from {Seg87] typifies the



application domain. Suppose we have the relations:

Sales_volume(Item,Quantity,Date)

— sales volume of an item at a particular date
Price(Item,Amouﬁt,Start_date,End_Date)

— price of an item during the interval specified by the start and

end dates.

Given the past sales records, one can easily obtain the revenues over time using

a Quel-like query:

range of s is Sales_volume

range of p is Price

retrieve into Rev(Item=s.Item, Total=s.Quantity X p. Amount,Date=s.Date)
where s.Item=p.Item and p.Start_date<s.Date and s.Date<p.End_Date

The point here is that storing history records can be very important in decision
support systems, and the database systems should provide efficient accesses to

history records and intelligent processing mechanism.

1.1.2 Convoy Detection

Monitoring the performance of computer systems or networks is often essential.
It is desirable to support manual or automated intervention, if necessary, when
certain phenomena are observed. Even if immediate intervention is not available,
determining whether certain undesirable patterns occurred may still be valuable

information.

Let us consider the convoy example from [Naq89]. Suppose a computer sys-
tem is modeled as a network of queues. A node in the network represents some
resources in the computer system. Entities of interest (such as requests of re-
sources) arrive at nodes for services, and then they are routed to successor nodes
for other services. Events of interests are collected in a database so that users
can analyze the data by querying the database.

Suppose that we are interested in detecting if “convoys” exist in the system.
Roughly speaking, a convoy can be viewed as a large number of entities (such
as jobs) demanding resources at a node which “migrates” to other nodes over

time. Because of a large number of requests moving from resource to resource,



Queue L Ly

Length ——— —

Figure 1.1: Observed lumps at node i

a convoy impacts the system performance considerably — existence of a convoy
is an evidence of a type of correlation of job activities in the system which is an
evidence of a “roving” imbalanced loading of resources. (Note that the long term
averages may indicate a well balanced system with respect to the utilization of

each resource and queue length.)

For simplicity, we describe convoys as the migration of lumpiness of entities
from a node i to its successor node j. Lumpiness exists at node i during a period
of time when the number of entities (i.e., its queue length) exceeds a threshold
©; during that period >f time. That is, lumps are bounded by start and end
times. Thus, in Figure 1.1 the pairs of times [¢,t2) and [{a,f4) are the time
bounds for lumps L; and L, respectively. We also require that the interval
length must exceed a threshold A; before we call it a lump. The migration of
a lump from a node i to node j is characterized by the overlap of their time
bounds. Therefore, a convoy migration from a node i to node j is formulated as a
pattern of two overlapping intervals. The convoy pattern is shown in Figure 1.2,
where [TS;, TE;) and [TS;, TE;) are the time bounds for lumps in node i and j

respectively.

When we detect a convoy, a number of actions can be taken. For example, we
may further query the database about the types of entities in the convoy (e.g.,
what kinds of resources were requested most by the convoy of entities). This kind
of information can be useful in improving the system performance in the future,
e.g., we may want to re-route requests of a certain type to other nodes available

for the same service, or even drop the requests from the systern.



node i:

node j:

TS; TS; TE, TE;  Time

Figure 1.2: Characterization of a convoy migration from node i to its successor
node )

1.2 This Research

A common approach to implementing a temporal DBMS is as follows:

First, each tuple is augmented with a pair of time attributes which
indicate its lifespan, and the temporal tuples are stored in a conven-
tional relational DBMS. Second, a number of temporal operators are
incorporated into the query language allowing users to query the time
attributes (and thus the corresponding temporal data model is de-
fined). A preprocessor which translates a temporal query (with tem-
poral operators) into an equivalent relational query is implemented.
The translated query is then processed by the relational DBMS which
stores the temporal data.

That is, one can implement a temporal DBMS on the top of a relational database
system. Most temporal operators are syntactic sugar -— they can be directly
specified in terms of comparison predicates and join predicates involving only time
attributes; the use of these operators merely allows users to express a temporal

query more intuitively. This leads to the following observation:

In general, query optimizers do not search over all possible equivalent
query plans for the minimal cost plan [Sel79]. Moreover, the query
processing strategies that are implemented are based on what are ex-
pected to be the common types of queries and data characteristics.
It is our belief that a major difference between temporal and conven-

tional queries is in the types of queries that are common. Although we



can translate temporal queries into their equivalent relational coun-
terparts, executing the translated queries on relational DBMS may
be very inefficient because the translated queries contains constructs
which are often ignored by conventional relational query processors
and optimizers. Attention to the characteristics of temporal queries
(as well as the temporal data) is therefore key to an efficient query

processing algorithm and optimization.

In the following, we highlight the main points of our research direction. We
first concentrate on the characterization of temporal queries and data. As we will
demonstrate in this dissertation, there is no fundamental theoretical difference
between a time attribute which stores relevant time information and an ordinary
integer-based attribute such as employee numbers or social security numbers.
However, temporal data and queries provide several unique characteristics for
query processing. We will argue that ignoring these characteristics can result in

orders of magnitude poorer performance.

We observe several characteristics of temporal queries and data. For exam-
ple, a temporal query often involves patterns of events, and a temporal query
often contains a conjunction of several inequalities over the time domain and
no equality conditions. Such forms of queries are not common in non-temporal
DBMS, i.e., given one of these queries, one can replace time attributes by some
integer-based attributes and the “new” query will not contain a typical form of
query qualification which has been ignored for optimization purpose in the past.
For example, processing these queries in relational systems usually relies on the
nested-loop join which is not always the best choice. These same query charac-
teristics, however, enable us to devise efficient temporal join algorithms. In this
dissertation, we propose new query processing methods for temporal databases
and new optimization techniques. The new approaches take advantage of data
sort orderings so that often relations are scanned only once for completing a

temporal join operation.

Another common type of temporal query is the snapshot or interval query.
These are temporal join queries that refer only to tuples in a small “time window”
as opposed to the entire relation lifespan. To efficiently process this type of query,
we propose an indexing technique such that tuples close to the “time window”

are retrieved, i.e., we cin avoid retrieving tuples that are “far away” from the



query-specific interval.

Recently multiprocessor database machines are receiving more attention and
we believe that taking advantage of parallel processing capability is also a key to
effective use of temporal database systems. A strategy in multiprocessor database
machines for processing an inequality temporal join of two relations is to dynam-
ically and fully replicate the smaller operand relation, and again, this may prob-
ably be very expensive. We study various methods in partitioning and storing
temporal data in such machines, and propose alternative processing algorithms
and optimization strategies for temporal joins. We provide an analytical model
for estimating the overhead of replicating tuples and show under which conditions

our proposed strategies are preferable.

1.3 Organization of this Dissertation

This dissertation is organized as follows. In Chapter 2, we give an overview of
related work in the area of temporal databases. In each individual chapter, we
will present a more detailed comparison between our approach and the previous

work, wherever it is appropriate.

Chapter 3 is devoted to a discussion of fundamental concepts and background
information regarding temporal databases. We adopt a simple temporal data
model whose characteri-lics and features can be found in many proposed temporal
data models, and show that most temporal operators are equivalent to relational

expressions.

In Chapter 4, we propose a stream processing approach to implementing tem-
poral join and semijoin operators. The idea of stream processing techniques is to
take advantage of data sort orderings such that (1) input relations are scanned
only once and (2) the amount of local workspace (i.e., main memory) can be kept

small.

In Chapter 5, we propose a generalized data stream indexing technique that
can facilitate the processing of snapshot or interval queries. The idea is to provide
an indexing mechanism such that tuples in proximity of the query-specific time
interval or time point can be retrieved efficiently. A quantitative analysis of the
storage requirement of the index and an optimization technique for reducing the
storage size required are presented.



In Chapter 6, we focus on the processing and optimization of temporal join
queries in multiprocessor database machines. Fragmentation schemes for tempo-
ral data are discussed and new parallel processing strategies are proposed. Op-
timization alternatives in reducing the tuples to be replicated across processors

and implementation issues are presented.

Finally, we present our conclusions and directions of future research work in
Chapter 7.



CHAPTER 2

Related Work

In this chapter, we present an overview of related work in the area of temporal
databases. We then discuss related work in the area of temporal query processing

and optimization.

2.1 Overview

Most research on temporal databases can be loosely categorized into four areas:
semantics of time, logical data modeling, physical implementation, and deductive

temporal databases. A rather complete bibliography can be found in [Soo91].

Semantics of Time The first area is the formulation of the semantics of
time [All83, Cli83] and is closely related to research issues in knowledge rep-
resentation!. [All83] describes, from the perspective of artificial intelligence, an
interval based temporal logic and a reasoning algorithm based on constraint prop-
agation. [Cli83] introduces a formal semantics for time in historical databases and

a calculus based query language.

Logical Data Modeling The second area, which is the focus of many re-
search activities, is the logical modeling of temporal data [Ben82, Cli85, Sno85,
Sho86, Cli87, Seg87, Sno87, Gad88, Dut89, Tan89, Kaf90, Tuz90]. Many of these
studies emphasize extending the relational data mode! to capture time seman-
tics and to support relational temporal query languages; a notable exception is
[Sho86, Seg87] which will be discussed in more details below. These extended

models generally augment relations of the snapshot data model with several time

! There have been some debates on whether time interval or time point is more “natural”
representation for temporal data, which is the basis for temporal data models [Lum84, Cli83,
Sno85, Ahn8&6, CligT].



attributes (such as ValidFrom and ValidTo attributes [Sno85]) which store the
relevant time information?. New temporal operators are also defined in these
extended data models {usually based upon traditional relational algebraic op-
erators [U1l82]) to allow users to query time attributes but not update them
directly. A detailed comparison of various relational algebras incorporating the

time dimension can be found in [McK91].

[Sno85, Sno87] distinguish four categories of DBMS that support time at-
tributes explicitly; the classification is based on the use of transection time at-
tributes and wvalid time attributes. The four categories are: snapshot, rollback,
historical, and temporal DBMS. To illustrate the taxonomy, let us consider a
simple example taken from [Sno85]. A snapshot relation is simply a table in a

relational database system. For example:
Faculty(Name,Rank)

which stores tuples indicating the rank of a faculty member. This snapshot
relation can be augmented with a pair of valid time attributes (ValidFrom and
ValidTo) to represent the valid period during which a faculty member held a

particular rank. The table now becomes:
Faculty(Name,Rank,ValidFrom,Valid To)

which stores tuples indicating the rank of a faculty member during the period
[ValidFrom,ValidTo) being modeled. The valid time attributes represent the time
interval when the relationship or attribute being modeled was valid, and thus a
database system that supports valid time is called a historical DBMS. Instead of
augmenting the snapshot relation with valid time attributes, a pair of transaction
time attribute (TransStart and TransEnd) can be added to represent the period
during which a tuple was stored in the database. For example the table now
becomes:

Faculty(Name,Rank, TransStart, TranskEnd)

which stores tuples indicating that the rank of a faculty member was stored at

time TransStart and was logically removed (but not physically removed) at time

2 There have been different opinions on which “level” (such as attribute or tuple level) is
more appropriate for augmenting the time attributes.



TransEnd. A database system that supports transaction time is called a rollback
DBMS. A temporal DBMS [Sno85] supports both transaction time as well as valid
time, i.e., it is both a rollback and historical DBMS. For example, the following

is a temporal relation:
Faculty(Name,Rank,ValidFrom,ValidTo, TransStart, TransEnd).

In [Sno87), a language (TQuel) has been defined for data manipulation. Queries
expressed in TQuel can be translated into Quel for processing.

The taxonomy in [Sno85] assumes that valid time attributes and transaction
time attributes are completely unrelated. However, in some applications these
time attributes do exhibit some interrelationships which can be used to further
refine the taxonomy. In [Jen91] this assumption has been relaxed resulting in a
framework for generalization and specialization of temporal relations. The au-
thors list a number of possible relationships between the valid and transaction
time attributes. For example, a temporal relation is called refroactive if the values
of an item are valid before they are stored in the relation. There are several impli-
cations of this work. First, the framework allows a more precise characterization
of temporal data, and thus allows us to enforce data integrity with respect to
the interrelationships. Moreover, the more precise characterization may suggest
alternative query processing approaches. For example, processing techniques for
valid time attributes (such as the stream processing techniques that we propose
in a later chapter) can be adapted to process queries involving both valid and

transaction time attributes for certain specialized classes of relations.

In [Sho86, Seg87], a time sequence is proposed as the basic construct for
logical modeling of temporal data. A time sequence is denoted as <S,(T,A}+>
where S is the object surrogate, T is the time point, A i1s the attribute value,
and (T,A)* is a sequence of time-value pairs. A time sequence is a time-ordered
set of temporal values (i.e., time-value pair) for a single surrogate instance. In
the model, the authors distinguish between the time points and the data points
of a time sequence. The time points are all the potential points in time that
can assume data values, while the data points are only the points that actually
have data values. Several properties of time sequences, such as time granularity,
lifespan, regularity, and type (e.g., stepwise constant, continuous and discrete}

are identified. Below we give a brief summary of these properties.
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Time granularity specifies the granularity of the time points of a time se-
quence. For example, two common representations are ordinal and calendar. In
the ordinal representation, time points are simply considered as natural numbers
(1, 2, 3, ---). In the calendar representation, the usual calendar time (such as

year, month, day, etc.) is assumed.

Each time sequence is associated with a lifespan which specifies the range of
valid time points of the time sequence. There are several approaches in specifying

lifespans. For example:

e the range is specified by a start time and an end time, both of which are
fixed.

o the range is specified by an end time (e.g., the current time) and a fixed
distance to the past. In this case, one can imagine that the lifespan is a
moving (fixed width) “window” along the time dimension as the current

time is continuously advancing.

s the range is specified by only a fixed start time, i.e., the end time is con-

tinuously advancing.

The granularity of a time sequence is distinguished as follows: a regular time
sequence contains a value for each time point during the entire lifespan, while an

irregular time sequence contains data values for only a subset of time points.

We consider two common types of time sequences: discrete and stepwise-
constant. For a discrete time sequence, as shown in Figure 2.1(a), each attribute
value of an object is not related to other values and consequently missing data
values cannot be interpolated. For instance, the number of copies of a book sold
per day can be considered as a discrete time sequence. For stepwise-constant time
sequences, as shown in Figure 2.1(b), the attribute value of an object at a time
point ¢ is the data value at the latest data point prior to ¢. That is, the data value
between two consecutive data points can be computed using a stepwise-constant
interpolation function. For example, the price of a book is a stepwise-constant
time sequence. Note that the stepwise-constant function is often used implicitly
as an extrapolation function for the current data value. For example, the price
of a book remains the same since its last price change (i.e., the last data point is
sometime in the past).

11



Data value Data value

(a) Time (b) Time

Figure 2.1: Time-varying attributes: (a) discrete time sequence and (b) step-

wise-constant time sequence

In [Gad88] the author argues that time interval and time point based tuples
are not appropriate for modeling time-varying attributes because both represen-
tations are not closed under union, intersection, and complementation operations.
For example, the “complement” of a given time interval of a tuple with respect
to the relation lifespan may produce two time intervals, and thus the time repre-
sentation becomes a set of intervals instead of a single interval. It is proposed in
[Gad88] that a set of time points (or equivalently a set of time intervals and/or
time points for compact representation) for a data value is used. The rationale is
that the time representation remains the same (i.e., a set of time points) upon the
application of any relational algebra operator — the closure property. However,
we note that this time representation does not increase the language expressive-
ness. Note that this time representation (set of time points) can be viewed as
a specific time sequence in [Sho86, Seg87] where the data points with the same
data value are “grouped” together as a tuple. The property of homogeneity is also
discussed — if a relation contains several time-varying attributes, this property
holds if the periods of validity of all the attributes in a given tuple are identical.
A consequence 1s that one can represent such tuple more concisely using only a
pair of time attributes which represents the period of validity.

Other proposed temporal data models include [Dut89] where the notion of
probability of event occurrence (i.e., change of data values) is incorporated.
Nested relations and complex objects are proposed for temporal data in [Tan89)
and [Kaf90] respectively.

12



Physical Implementation The third area concerns physical implementation
issues [Ben82, Lum84, Ahn§6, Rot87, Gun89, Elm90, Kol91]; the focus is mainly
on new access methods and data organization strategies in a centralized database
environment. In the following, we briefly present several indexing techniques that

are most recently proposed [Gun89, Elm90, Kol91].

To illustrate the concepts in Segment Index (SR-tree) [Kol91], we first consider
the Segment Tree (ST-tree) in [Ben80] and the R-tree in [Gut84].

ST-tree is a main-memory based binary search tree whose major purpose is to
provide means on efficiently finding all intervals (i.e., horizontal segments) that
contain a given time point. An example ST-tree is shown in Figure 2.2. Given
N horizontal line segments, the endpoint values are stored in sorted order in the
leaf nodes. A non-leaf node represents an interval which contains the intervals
represented by its left and right child nodes. A line segment is represented by
“spanning” several nodes of the ST-tree. For example, the tuple e; whose interval
is [2,5) spans the nodes with a dot (e) where e; is stored. Searching for all
segments that contains a given point starts from the root of the ST-tree. The
segments in the answer set are stored in the nodes along the path from the root
to a leaf node that contains the given point. For example, as shown in Figure 2.2,
segments ez, e; and e; which contains the point 4 are stored along the path to

the leaf node storing e,.

The R-tree can be considered as an extension of B-trees for k-dimensional
objects (e.g., 2-dimensional regions and horizontal line segments) [Gut84]. It is a
balanced tree-structured index for representing objects using minimal bounding
rectangles in k dimensions. Let us consider two-dimensional R-trees. Leaf nodes

contain entries of the form:
(I, 0bject-id)

where object-id is a pointer to a data object and [ is a two-dimensional minimal
rectangle which bounds the object. For rectangular objects, I will be the object
itself. As shown in Figure 2.3, there are two leaf nodes: the left leaf node stores
objects Rz, Ry, Rs, and Rg, while the right leaf node stores Rz, Rg, and Ra.

Non-leaf nodes contain entries of the form:

(I, child-poinier)

13
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where child-pointer is a pointer to a child node in the next level and [ isa minimal
rectangle which bounds all the entries in the successor node. For example, the
rectangle R; contains objects Rs, R4, Rs, and Re, while Ry contains objects Rs,
Rs, and Re. Note that the pointer to a particular object is stored only once in
the tree.

To find all objects that overlap with a given rectangle R, the search process
starts from the root. If an entry in the node that is currently being searched
overlaps with the rectangle R, the corresponding child node will also be searched.
One of the important aspects of R-tree is the node-splitting algorithms. For
example, if we insert an object which is bounded by Ry in Figure 2.3, the left
leaf node overflows and thus it will be split into two nodes. The goal of the node-
splitting algorithm is to minimize the area covered by each individual new node
as well as the overlapping area of the two new nodes. However, these two goals
sometimes can be contradictory, meaning that if one minimize the area covered
by each individual new node, the overlapping area may increase substantially, or
vice versa. Some heuristic algorithms have been proposed for this node-splitting

process [Gut84] which will not be covered here.

The SR-tree is a combination of the ST-tree and R-tree. The SR-tree extends
the ST-tree strategy from binary trees in main memory to a multi-way disk-
based file structure. The major features in the SR-tree is that segments which
span lower level nodes may be stored in non-leaf nodes, and that node size may
vary. The search algorithm follows a similar strategy to that for R-trees. For

brevity, we omit the insertion (such as node splitting strategies} and deletion
algorithms (see [Kol90, Kol91) for details).

In [Gun89] the Append-Only tree (AP-tree) is proposed. The tree structure
which is a multiway search tree is a hybrid of an ISAM index and a B*-tree.
Figure 2.4, from [Gun89], is an example of an AP-tree of order 4. The leaf node
contains the ValidFrom values in the relation and the associated pointers to data
tuples. That is, the tree stores the left endpoints of all intervals in the relation.
Searching the tree can be achieved via the root pointer or the rightmost leaf
pointer®. The AP-tree differs from a B*-tree on the ValidFrom attribute in the
following way: all nodes in an AP-tree are packed with data values except in the

rightmost subtree where data will be appended. That is, when a node overflows,

3 It is implicitly assumed one can also access the leaf nodes via a leftmost leaf pointer.
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Figure 2.4: Append-Only tree of order 4

it will not be split into two nodes of half full (see the right most leaf node N;
containing the ValidFrom value 40 in Figure 2.4); a new node is appended to
its right instead, and an index record is inserted into its parent node. In order
words, the AP-tree is not a balanced tree. With the assumption that the database
is “append-only” (i.e., data is static) and temporal tuples are inserted into the
database in increasing order of the ValidFrom value, higher disk space utilization
can be achieved by storing as many records as possible in a node until the node

overflows.

The Time Index approach in [Elm90] stores all the ValidFrom and ValidTo
attribute values (i.e., endpoint values of time intervals) in the relation in a B*-
tree. That is, the Time Index structure is a conventional balanced tree. The
major characteristics is that at each endpoint value ¢, the tuple identifiers of all
tuples that are active as of ¢ are stored at the leaf nodes. An example of interval
records and a time index is shown in Figure 2.5. For example, the lifespan of
the tuple es is [tz,t5). At the endpoint ts, tuples e;, e; and e¢ are active and
thus their tuple identifiers are stored in the leaf node accordingly. Note that
the time index effectively stores the tuple identifiers of the entire snapshot of
the relation as of an endpoint value, and therefore it requires significant storage
space. A number of approaches have been proposed to reduce the storage space
[Elm90, EIm91]. For example, the complete list of active tuples is kept for the first

entry of each leaf node and only the incremental changes are kept for subsequent
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Figure 2.5: Sample interval records and a time index

entries in the same leaf node [EIm90] — the idea is to reduce duplication of tuple
identifiers. Nonetheless, keeping a list of tuple identifiers of all active tuples
at every endpoint value (i.e., every distinct ValidFrom and ValidTo values) is

probably very expensive.

In [Kol90], a mixed-media indexing structure, which is designed in such a
way that it spans mixed-media devices such as both magnetic and optical disks,
has been proposed. The idea is that older history tuples can be migrated onto
optical disks which are cheaper compared with magnetic disks while the pointers
to those migrated tuples are kept on the magnetic disks. The file structure is,

again, a variation of an R-tree [Gut84].

17



Deductive Temporal Databases The fourth area is the support of deductive
capability in temporal databases [Cha88, S51i88, Cho90, Kab90]. [Cho90, Kab90]
focus on the temporal aspects of deductive databases, and are more concerned
with representing and querying periodic temporal data, i.e., possibly infinite
data. [Cha88, Sri88] propose different approaches to represent and query tem-
poral relationships (such as “before”) among all objects or events. A graph
model is proposed in [Cha88] to represent temporal relationships and to define
temporal queries. The graph model enables the analysis of query processing
complexity using the graph structure, and the generalized transitive closure is
their main computation consideration. In [Cha88], only binary temporal rela-
tionships in the form of Temp(Event,Relationship,Event,) are considered, e.g.,
<world.war_lI,before,1950> is a tuple of this form. Based on event tuples of
this form, a graph can be constructed; nodes in the graph are event identifiers
(e.g., world_war_II) or absolute temporal values (e.g., 1950), and directed edges
represent temporal relationships (e.g., “before™). Responses to queries such as
finding all events that took place during the interval [t;,t;) can be found using
the constructed graph. Similarly, one can also find the temporal relationship

between two events.

A different approach can be found in [Sri88] where the authors discuss the use
of Event Calculus (i.e., first-order classical logic augmented with negation as fail-
ure) in formalizing the semantics of time in deductive databases, and in providing
the capability of deducing temporal relationships as well as proactive/retroactive
updates. Events may be either time interval based or time point based. For
example, “possesses{mary,book)” represents the fact that mary possesses a book.
For example, we denote e; and e; as an event in which “john gave a book to
mary” and an event in which “mary gave the book to bob” respectively [Sri88].

These facts are represented by:

before(e,, processes(john,book))
after(e;, processes(mary,book))
before(e,, processes(mary,book))

after(ey, processes(bob,book))

Axioms (i.e., rules) can be stored and used for deduction capability. For example,
one can deduce the existence of a time period during which “mary holds the

book”. Note that the axioms often depend on the domain of application.
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Others Other research work related to temporal databases includes schema
evolution [Ban87, Kim88, Nav88] and modeling dynamic aspects of information
systems [Bar85, Lin87, Obe87, Ngu89]. Temporal logics such as [Lam83, Kow86]
traditionally focus on complex temporal reasoning, but in [Lip87] a temporal
logic is defined for specifying admissible dynamic behavior of database systems,

i.e., how database state can evolve over time.

2.2 Processing Temporal Joins

In [Seg89], the event-join(X,Y) is defined as:
TE-join(X,Y) U TE-outerjoin{X,Y) U TE-outerjoin(Y,X)
where the TE-outerjoin(X,Y) is defined as:

For a given tuple € X, outerjoin tuples (with null values) are gen-
erated for all time points t € [z.ValidFrom,z.ValidTo) where there
does not exist ¥ € Y such that both (i) t € [y.ValidFrom,y.ValidTo)
and (ii) the join predicate “z.S=y.S” (i.e., involving only non-time

attributes) are satisfied.
And the TE-join, known as the time-equijoin, is defined as:

Two tuples from t2e joining relations qualify for concatenation if their

time intervals intersect and the equality join predicate “z.S=y.S”

hold.

The TE-join becomes a T-join (known as the time-join {Gun91]), when the equal-

ity join predicate is actually “true”.

An event-join(X,Y) groups several temporal relations, each of which stores
tuples of a time-varying attribute, into a single relation. A tuple in the resulting
relation is created whenever at least one of those attributes are updated (a par-
ticular attribute may assume a null value). The uniqueness of this join is that it

combines the time-equijoin and the outerjoin components into a single operation.

Consider an example borrowed from [Seg89] whose temporal relations are
shown in Table 2.1. Assuming that the lifespan is [1,20), event-join(Manager,

Commission) would produce a relation shown in Table 2.2.
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Manager | E# | Mgr | TS | TE Commission | E# | C_rate | TS | TE

El |Tom |1 |6 El | 10% 2 |8
El [Mark |9 |13 E1 | 12% 8 |20
Fl | Jay |13 |20 E2 (8% |2 |8
E2 |Ron |1 |19 E2 {10% 8 |20

E3 | Ron |1 20

TS = ValidFrom
TE = ValidTo

Table 2.1: Employees’ managers and their commission rates

Mgr.Com | E# | Mgr | Crate | ValidFrom | ValidTo
El1 | Tom | null 1
El | Tom | 10% 2
El | null | 10% 6 8
8
9

El | null | 12%
El1 | Mark | 12% 13
El | Jay |12% 13 20
E2 | Ron | null 1
E2 | Ron | 8% 2

E2 | Ron | 10% 8 19
E2 i null 10% 19 20
E3 | Ron | null 1 20

Table 2.2: Result of event-join(Manager,Commission) in Table 2.1



The authors note that the most difficult step in processing the event-join is to
determine the interval during which some attributes assume null values since it is
assumed that null values are not stored in the temporal database. For example,
in order to produce the first tuple <E1,Tom,nuil,1,2> in Table 2.2, one would
have to determine that El has a data value (i.e., “Tom”) stored in the relation
Manager but E1 does not have a data value in the relation Commission during
the interval [1,2) (see Table 2.1). In [Seg89], several algorithms are proposed for
processing event-join. Here we briefly outline the modified sort-merge algorithm
which appears to perform better and is closely related to our approaches; readers
may refer to {Seg89] for details of the modified nested-loop join as well as the join
algorithms using the Append-Only Tree structure described earlier.

For the event-join(X,Y) where X and Y stand for X(8,U,ValidFrom,ValidTo)
and Y(S,V, ValidFrom,ValidTo) respectively, the approach is to sort both rela-
tions by S as the primary order and then by ValidFrom as the secondary order.
If there exists an object s which has a tuple in X (respectively Y) but not in Y
(respectively X), the event-join generates an outerjoin tuple with a null value for
s. When the object s has some tuples in both X and Y, the join algorithm deter-
mines the time interval during which an attribute assume a null value. As tuples
of the same object are sorted by ValidFrom values, one can easily determine the
intersection interval as well as the time interval for the outerjoin tuple (if any).
For example, suppose the first tuple of an object s in both relations are denoted
as z, and y,, and “z,.ValidFrom<y,.ValidFrom and y,.ValidFrom<z,.ValidTo”
holds, then an outerjoin tuple whose interval is [z,.ValidFrom,y,.ValidFrom) is
generated because no subsequent Y tuple (that have not been read) will have a
smaller ValidFrom value than ,.ValidFrom. The join process completes when
all tuples in both relations have been read.

There are several comments. First, the join algorithm for TE-join when both
relations are sorted by -he surrogate (as the primary sort order} and then by
ValidFrom (as the secondary sort order) is similar to the above event-join algo-
rithm except that the outerjoin tuples are not generated. Second, in the event-join
and TE-join algorithms, both relations are scanned only once and only one tu-
ple from each relation is kept in the buffer for comparison. Lastly, the authors
consider null values in the event-join operation but the role of null values in a

select operation is not defined accordingly. In other words, in order to process a



query involving both the event-join as defined above and some select predicates,

the event-join algorithms must be used prior to applying select operations.

2.3 Definitions

We now define several terms that are used frequently in this dissertation.

Definition 2.1  “A op c¢”, where A is an attribute, op is a relational operator
(>, >, =, <, <, #) and cis a constant, is called a comparison predicate. Similarly,
“A op B” for attributes A and B is called a join predicate. A subclass of join
predicates is called temporal join predicate if both attributes A and B are time
attributes. g

Definition 2.2 A query qualification in conjunctive normal form is a conjunc-
tion (A) of several join predicates and comparison predicates. A query qualifica-

tion involving relations Ry, -+, Rm, m>1, is denoted as P(R1,- -+, Ry ) or simply

P. |
Definition 2.3 Given numbers aq, - -+, am, for some m>1, max(a;,- -, am) re-
turns a; such that a;>a;, where 1<j<m and 1<i<m while min(ay, - - - , am) returns
a; such that a;j<a; where 1<j<m and 1<i<m. |



CHAPTER 3

Temporal DBMS vs Relational DBMS

In this chapter, we discuss the fundamental concepts and background information
regarding temporal databases. Particularly, we address a very important issue,

namely, the differences between a temporal DBMS and a relational DBMS.

This chapter is organized as follows. In Section 3.1, we present the temporal
data model that we adopt in this dissertation, the “append-only” type of updates
to temporal data and the statistical information. Although we note that there
is no theoretical difference between time attributes and integer-based attributes,
we show in Section 3.2 that there are several interesting characteristics of tem-
poral data and queries that we should consider for more efficient temporal query
processing and optimization. In Section 3.3, we show that temporal operators
proposed in many literatures can actually be expressed in relational expressions
or relational queries. This verifies our conjecture that temporal operators are
really syntactic sugar for query qualification, and thus do not increase the power
of the query language. In other words, most (if not all) temporal data models
proposed in the past are equivalent to relational data model. Finally, we discuss

the classes of queries that we consider in this dissertation in Section 3.4.

3.1 Background Information

3.1.1 Temporal Data Model

We adopt a modified version of the time sequence concept in [Sho86, Seg87] as the
basic data construct in our temporal data model'!. We treat time as a sequence

of discrete, consecutive, equally-distanced points {¢,, t1, -- -, now}, where now

L Other temporal data models such as [Cli85, Sno87] which employ one or more time at-
tributes to represent time-varying information would suffice. However, temporal query pro-
cessing and optimization are largely ignored in their work, which is the main focus of this
dissertation.
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is a special marker that represents the current time. That is, time points are
totally ordered and are monotonically increasing. The sequence of time points
can simply be treated as isomorphic to the natural numbers, and therefore we do

not specify the time unit.

For stepwise-constant time-varying attributes, we use a time-interval tuple,
<S,V,TS,TE>, where 5 is the identity of the object, V is a continuous time-
varying attribute of concern, TS and TE represent valid start time and valid end
time respectively. That is, TS and TE are ValidFrom and ValidTo time attributes
respectively. Semantically, a tuple <S,V,TS,TE> represents an object S with the
attribute value V during the period {TS,TE). Naturally, within a tuple the T3
value is always smaller than the TE value. For discrete time-varying attributes,
we use triplets <S,V,TA>, called time-point tuples, where TA is a time attribute.

We assume that all temporal relations have a homogeneous lifespan — [0,now).
Furthermore, it is assumed that a time-varying attribute can have at most one
data value at any point in time. Note that the time-varying attribute V in both
stepwise-constant and discrete time sequence can be generalized as a list of at-

tributes as opposed to a single attribute.

In the data model, ihe TS, TE and TA are referred to as time attributes (or
simply timestamps) while other attributes are referred to as non-time attributes.
A time-interval temporal relation is a set of time-interval tuples while a time-
point temporal relation is a set of time-point tuples. In this dissertation, we will
focus mainly on time-interval temporal relations. Unless ambiguity arises, we

refer time-interval temporal relations to as temporal relations.

Using the taxonomy in [{Sno85], the TS and TE timestamps are called the
effective or valid timestamps as opposed to the transaction timestamps, and a
database system which handles valid times is called a “historical database”. It
is our view that supporting transaction time and valid time share many com-
mon features. Particularly, our query processing algorithms and optimization
strategies can be equally applicable in both rollback DBMS and historical DBMS
described in the previous chapter. The readers should bear in mind that we
are dealing with a “historical database” although we use the term “temporal
database” as temporal data refers to both current data and history data. In this
dissertation, we use the terms “temporal databases” and “historical databases”

interchangeably.

24



smith | assistant | tsy | teg

smith | associate | tsy | tes

smith full tsy | tes

Table 3.1: A sample Faculty relation

An example of temporal relations is Faculty(Name,Rank, TS, TE)?. Together
with the following integrity constraints and assumptions, this example is used in
a subsequent chapter for illustration purposes. Name is the identity of a faculty
member. For attribute Rank, we consider only three different ranks -— assistant,
associate and full. We assume in this example that an assistant professor can be
promoted only to an associate professor and then to a full professor. In other
words, there is a chronological ordering among the data values that the Rank
attribute can assume. For the same faculty member, e.g., “smith” as illustrated
in Table 3.1, “te;<ts,” and “te;<tss” must hold. The interval [TS,TE) of a tuple
is the time during which the faculty member holds the indicated rank. We also
assume that a faculty member is at exactly one rank at any time between be-
coming an assistant professor and termination as a full professor. As we mention

above, for any tuple z, “z.TS<z.TE” always holds.

3.1.2 Updating Temporal Data

In the data model, we consider the “append-only” update policy:

1. Time-point relations — when the attribute U of an object s has a new data

value u at time t,, a tuple <s,u,t,> is inserted.

2. Time-interval relations —

2 The example is borrowed from [Sno87]. Also, the relation is in the first temporal normal
form (1TNF) [Seg88].



(a) When a data value v {of attribute V) of an object s is valid at time
t,, a tuple <s,v,t,,now>> is inserted into the relation.

(b) When the data value v is no longer valid at time ¢., the TE timestamp
of the tuple (i.e., “now”) is updated to .. i.e., the tuple becomes

<8,0,k5,te>5.

That is, we only consider insertion of tuples and modification of now in the model.

We can now define current and history tuples of time-interval temporal rela-

tions, and data streams as follows.

Definition 3.1 A current tuple is defined as a tuple whose TS value is a spe-
cific time point and whose TE value is “now”. A history tuple is defined as a
tuple whose TS and TE values are specific time points (i.e., its TE value is not

‘Cnow”). |

Definition 3.2 A data stream is defined as an ordered sequence of data objects

or tuples. O

Unless ambiguity arises, data streams usually refer to time-interval temporal

relations sorted on either TS or TE timestamp in this dissertation.

Two situations naturally occur in which tuples can be organized as a data

stream in the append-only databases:

1. Current and history tuples are stored in the same file structure: whenever
a tuple (i.e., <s,v,ts,,now>) is created, the tuple is appended to the data
stream. When the data value (v) is no longer valid, say at time point {.,
the TE value of the existing tuple in the data stream is then modified to

t.. In this approach tuples are sorted by the TS values in increasing order.

2. Current and history tuples are stored in the different file structures: when-

ever a tuple (i.e., <s,v,t,,now>) is created, the tuple is inserted into a table

3 Modifying an existing data value corresponds to updating the TE timestamp of the existing
tuple followed by inserting a new tuple for the new data value.
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that stores only current tuples, i.e., in a current store. When the data value
(v) is no longer valid at time point t., the TE value of the tuple is modi-
fied to t.: the history tuple (<s,v,t,,t.>) is then removed from the current
store and appended to the data stream. In this approach, tuples in the data

stream are sorted by the TE values in increasing order.

Tuples in a data stream can be stored using a variety of file structures such as
sequential file and Bttree although different file structures generally have different
retrieval and storage cost. The most important requirement is that tuples in a
data stream can be efficiently accessed one at a time and in the order of successive

timestamp values.

3.1.3 Temporal Data Statistics

Temporal data has several characteristics and statistical properties that are of
interest here. These characteristics and statistics represent valuable information

that provides some guidelines on evaluating a proposed scheme.

For time-interval temporal relations, time-varying attributes (or similarly re-
lationships) can also be classified as continuous or non-continuous [Seg87]. A
continuous time-varying attribute must have a valid non-null value during the
object’s lifespan, whereas a non-continuous attribute may not have a valid value
(or equivalently it has a null value) during some period of time. For example,
the stock price can be considered as a continuous time-varying attribute (types
A and B in Figure 3.1) while a person checking out a book from a library can be

a non-continuous time-varying relationship (type C in Figure 3.1).

In addition to the above characteristics, we will make use of several statistics.
First, the relation lifespan (denoted as TRy;) is assumed to be [0,now), and is
continuously expanding. The effective lifespan of an individual tuple, which is
mentioned earlier, is specified by the pair of timestamps — [TS,TE). The average
tuple lifespan is represented by T, and the average time between two consecutive
insertions of tuples to a relation is represented by Tin, as depicted in Figure 3.1.
The mean rate of insertion of tuples into a relation (denoted as A) is 1/Tins.
For continuous attributes, these two figures are directly related: Tj,s is Tis/Ns,
where Ns is the average number of surrogates in the temporal relation. These

statistics will be used to characterize the performance of the proposed schemes
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Figure 3.1: Characterization of temporal data

to be discussed later.

3.2 Timestamps vs Ordinary Attributes

From a theoretical view point there is no fundamental difference between times-
tamps and integer valued attributes such as the quantity of a product ordered
and department numbers. However there are significant practical distinctions
with respect to the mainer in which temporal data is updated and queried. In
the following, we list their major distinctions. We would like to emphasize that
some of the distinctions may have been pointed out by other researchers, and the

list is not necessarily complete.

1. Time is advancing in one direction.
The time domain is continuously expanding. One can imagine that the

value of the most recent time point (now) is monotonically increasing.

2. The constraint “R.TS<R.TE” holds for every time-interval temporal tuple.
Naturally it is assumed that for each tuple its TS value must be smaller

than its TE value. While most researchers implicitly make this assumption,

it is seldom pointed out that this assumption can play a role in query

processing and optimization (see Chapter 4).

3. Types of queries may be different.

Temporal queries share many common operators with conventional



queries such as select and natural join. The following highlights the ma-
jor differences which are more in the nature of characterizing the types of
temporal queries that might be expected and which would be more rare
for non-temporal database systems. As we show in a later section, these
queries can be expressed in terms of traditional relational algebra or query
languages such as SQL and QUEL, and are often ignored by conventional

query processors in terms of optimization.

¢ The join condition ofien contains a number of inequality join predicates

involving only timestamps.

e A special kind of select query, commonly called snapshot or interval
query, allows users to “view” the database content that is active over

a period of time or as of a particular time,

e “within” operator — This operator represents the “distance” relation-
ship between two entities. For example, find all events that occur

within 5 minutes from the time an event X occurred.

The workload characteristics generally have a significant impact on the
data organization. For example, for applications in which temporal data
is more frequently accessed via surrogate values, tuple retrieval via surro-
gates should be as efficient as possible, e.g., “chaining” tuples of the same

surrogates together as suggested in [Ahn86).

. Meta-data (i.e., statistics, properties, and characteristics) of temporal data.

The most commonly mentioned meta-data includes lifespan, time gran-
ularity, and regularity of temporal data along the time dimension. The
meta-data of a relation can be significantly altered after an operator is
applied to the relation. For example, it is pointed out in [Cli87, Seg87]
that the lifespan may be changed as a result of temporal qualification. In
this dissertation, meta-data is not our major concern; readers may refer to

[Cli87, Seg87] for more details.

. Temporal data update characteristics.
Temporal data can be classified as “static” or “dynamic”. “Static”
means that once a piece of data is inserted into the database, it will not

be updated. Otherwise, it is “dynamic”. In general, history data is usu-
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ally static in nature although some literature suggests supporting retroac-
tive updates {e.g., [Lum84]). Proactive update is another proposed feature
that is seldom found in conventional database systems. In most work, the
append-only update policy is adopted. Moreover, users cannot update the
timestamps arbitrarily but users can query timestamp values. Coupled with
the fact that time is advancing in one direction, this kind of update suggests
that a special storage structure that exploits the append-only policy may
be more efficient (e.g., [Ahn88, Gun89])*.

6. The special markers “now” are stored in current tuples.

In general, the effective update times are not necessarily monotonically
increasing with respect to the order of updates (e.g., due to concurrency
control systems). The marker “now” of a tuple can be set to an arbitrary
value although it is generally assumed that “now” is the latest current
time. More importantly, the marker “now” cannot be treated as if it were
the largest value in the time domain which is continuously expanding®. For
this reason, the comparison between “now” and any other data values have
to be defined accordingly. For example, given a time point {, one has to
define what the comparison predicate “R.TE<t” means for current tuples

(i.e., those whose TE value is “now”).

7. Temporal data can be partitioned into the current and history versions.

There is a natural separation of temporal data into current and history
data. Current tuples tend to be more frequently accessed than history tu-
ples, especially in business applications. Moreover, due to the append-only
update policy, the current tuples are always modified when time-varying at-
tribute values are changed. This distinction may suggest using a different
storage structure (and storage media) for history and current tuples (e.g.,
[Ahn88]). For example, storing current tuples using a separate file structure
allows us to eliminate storing the special markers “now” and therefore con-
ventional indexing techniques can be used for current data (e.g., indexing
the TS timestamp or other non-time attributes). Note that the TS and

4 This also suggests that if retroactive update is not supported, one can store as many tuples
in a disk page as possible so that higher disk utilization can be achieved. Generally, indices
using dynamic splitting algorithms tend to lower the disk utilization.

% The marker “now” can be viewed as an unbounded variable in a logic programming
language such as Prolog [Ste86]. Once it is set to a value, it cannot be changed.
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TE values for all history tuples are known since “now” is not stored in any

history tuple.

8. Time-varying attribute values can be continuously varying.
The data values of some time-varying attributes can be represented by
a function of time. For example, consider the position of a moving vehicle.
Suppose that instead of storing a data value for every time point, we store
the initial position and the speed of each vehicle. The current position of a

vehicle can be expressed as:
current_position = initial_position + speed x time_elapsed.

That is, the current position of a vehicle can be computed using the extrap-
olation function. This distinction is seldom discussed or even addressed in
temporal database research work, but it appears in the area of simulation
and temporal deductive databases [Kab90, Nar89]°.

To summarize, although there is no theoretical distinction between a timestamp
and an ordinary integer-based attribute (i.e., there is no fundamental difference
between temporal DBMS and relational DBMS), making use of these character-
istics of temporal data and queries, as we will argue, are essential to the efficient

implementation of temporal DBMS.

3.3 Temporal Operators

In this section, we discuss several temporal operators that are commonly used
in temporal DBMS literature; they are temporal join, “within”, select, “time-
project”, and “time-union” operators. We show that except for the “time-union”
operator, which returns a single interval that is equivalent to several overlapping
or contiguous intervals, these operators can be expressed in terms of relational

algebra or relational query languages such as SQL and QUEL.

§ This type of extrapolation function can also be found in spatial databases. Moreover, one
can think of temporal relation of this form contains {theoretically) infinite number of tuples.
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Temporal . . - .
OpexPators Time axis . Explicit Constraints

(1) X equal Y  — X.TS=Y.TS A X.TE=Y.TE
(2) X meet Y X——me- Y X.TE=Y.TS
(3) X start Y % ____________ X.TS=Y.TS A X.TE<Y.TE

(4) X finish Y $ T Y. TS<X.TS A X.TE=Y.TE
(5) X contain Y $ T X.TS<Y.TS A Y.TE<X.TE
X X.TS<Y.TS A Y.TS<X.TE
(6) Xoverlap ¥ &7 Y A X TE<Y.TE
X

(7) X beforeY ~ X-———r =-=----- Y X.TE<Y.TS

TS = ValidFrom, TE = ValidTo
Integrity Constraints: X.TS<X.TE A Y. TS<Y.TE

Figure 3.2: The 13 possible time-interval temporal relationships

3.3.1 Join Operators

Allen [AlI83] presents thirteen elementary temporal operators of time-intervals
which are listed in Figure 3.2. We note that these temporal join operators, which
often contain inequality predicates involving only timestamps, are just syntactic
sugar for the query-specific constraints that are given in the right hand column
of Figure 3.2. Note that the overlap operator is asymmetric with respect to the

operands, and one can define . a symmetric version as follows:
intersect-join(X,Y) — “X.TS<Y.TE A Y. TS<X.TE”.

In [Cli87, Gun91], the time-join (denoted as T-join) and the time-equijoin
which is also called the natural time-join (denoted as TE-join) have been pro-
posed. In [Gun91] the TE-join is defined as:

Two tuples from the joining relations qualify for concatenation if their
time intervals intersect and the equality join predicate P (“z.5=y.S")

on only non-time attributes hold.



The TE-join is a T-join when the equality join predicate P is actually “true”. In
[Gun91}, it is noted that “the concatenation of tuples is non-standard, since only
one pair of TS and TE attributes is part of the two joining tuples”. It turns out
that both T-join and TE-join can actually be expressed in terms of the standard

relational operators as follows:

TLy1sXxTE (OP A X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE(X,Y) )
U TLy.1sy.1E (OP A x15<Y.18 A Y.TE<X.TE(X,Y) )
U TLx1sx.TE (OP A v.Ts<x.T8 A X.TE<Y.TE(X,Y) )
U TLxTsy.TE (OP A Y.TS<X.TS A X.TS<Y.TE A Y.TE<X.TE(X,Y) )

where X(S,U,TS,TE) and Y(S,V,TS,TE) are temporal relations, L is a projection
list (X.S, X.U, and Y.V), and P is a join predicate “X.5=Y.5”. Suppose we are
interested in only the tuple pairs that satisfy the join condition, then the TE-join

and T-join become the intersect-join as opposed to the union of four joins:

O.P A intersect—join{X,Y} (XaY)

That is, the query response consists of tuple pairs whose participating tuples

intersect and satisfy P.

In [Seg89], the event-join(X,Y) is defined as:
TE-join(X,Y) U TE-outerjoin(X,Y) U TE-outerjoin(Y,X)
where the TE-outerjoin(X,Y) is defined as”:

For a given tuple 2 € X, outerjoin tuples (with null values) are gen-
erated for all time points t € [z.TS,s.TE) where there does not exist
y € Y such that t € [y.TS,y.TE) and the join predicate “z.S=y.5”

(i.e., involving only non-time attributes is satisfied.

As in the case for the TE-join, the TE-outerjoin can also be defined in terms
of relational algebraic operators. Below we show that the TE-outerjoin can be
defined in traditional tuple calculus. From the relation X(S,U,TS,TE), we first

obtain a new relation (denoted as X) which contains tuples of null values (of

7 Note that the TE-outerjoin is really not the same as the “outerjoin” operator defined in
{CodT79].
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R 7 “ry.S=x,.5"

Figure 3.3: Deriving the relations X, X¢ and X from X

attribute V) for each surrogate in X that is not explicitly stored in X, as illustrated
in Figure 3.3 3

X = { t<S,U,TS,TE> | 321 3z, (71 € X A 22 € X A 2;. TE<z,. TS A
£1.9=2,.5 A t.5=21.S A t.V=null A 1. TS=2,.TE A t.TE=z,.TS
A= Jza (z3 € X A 21.5=23.5 A

[23.TS,x3.TE) intersect {t.TS,t.TE) ) ) }.

Next, we obtain from X another relation (denoted as X;) which contains the

“first” tuple (of attribusz V) for each surrogate in X:

Xg = {t<S,U,TS,TE> | 3z; (2, € X
A—dzy (22 € X A 21.5=12.85 A 2. TE<L.TS ) ) }.

Lastly, we obtain from X another relation (denoted as X;) which contains the
“last” tuple of attribute V for each surrogate in X:

X; = { t<S,U,TS,TE> | 3z, ( z; € X
A t.S=z1.8 A t.V=z,.V A t.TS=2..TS A t. TE=2,.TE
A - 31132 ( Iq € XA $1.S=.'132.S A tTESfL‘gTS ) ) }

Similarly we can obtain three new relations (Y, Yy, and Y)) from relation Y.
Using these six new temporal relations, the TE-outerjoin(X,Y) and the TE-
outjoin(Y,X) are:

8 We assume that a time-varying attribute can have at most one data value at any point in
time.
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TE-outerjoin(X,Y)
= TE-join(X,Y) U TEgjoin{Xs,Y¢) U TE-join(X1, Y1) U TE,-join(X,Y)

TE-outerjoin(Y,X)
= TE-join(Y,X) U TE¢-join(Ys,X¢) U TEp-join(Y,X1) U TEo-join(Y,X)

That is, the TE-outerjoin is the union of four joins. The first three joins account
for the cases in which a surrogate appears in both relations X and Y, while the last
join (i.e., TE,-join) accounts for the case in which a surrogate appears only in one
relation (but not in the other relation). The joins TE-join(X,Y), TEi-join(X,Y),
and TE,-join(X,Y) are defined as follows:

TEs-join(Xg, Ys) = { t<8,U,V,TS,TE> | 3= Jy (ze€Xe ANy €Yy
A 2.8=y.5 A z.TS<y. TS A y. TS5<2.TE
A tS=z.8 A t.V=2.V A t.U=null A t. TS=2.TS A t. TE=y.TS ) }
U
{t<S,UV,TS,TE> |3x Jy (z € Xr Ay € Y
A 2.5=y.S A 2. TE<y. TS
A t.S=z.8 A t.V=2.V A t.U=null A t.TS=2.TS A t. TE=2.TE ) }

TE-join(X,,Y)) = { t<S,U,V,ISTE> |2z Jy (2 € XK1 Ay € Y)
A 2.8=y.S A 2. TS<y.TE A y. TE<z.TE
A tS=2.S A t.V=z.V A t.U=null A t.TS=y.TE A t. TE=2.TE ) }
U
{t<S,U,V,TS,TE> |Jz y (e € X1 Ay €Y,
A 2.5=y.S A y.TE<2.TS
A t.8=z.S A t.V=e.V A t.U=null A £.TS=z.TS A t. TE=2.TE ) }

TE,-join(X,Y) = { t<S,U,V,ITS,TE> |Jz (2 € X
At.S=z.S A t.V=2.V A t.U=null A t.TS=z.TE
AtTE=z TEA-TJy(yeY AzS=yS))}

Before we continue our discussion, let us emphasize once again that, to the
best of our knowledge, all temporal join operators that have been proposed in the
literature can be exprevsed in terms of conventional relational algebra. In other
words, these join operators do not increase the expressiveness of the temporal
query language (compared with the relational algebra). This argument is equally
applicable in a later subsection which concerns snapshot operators.
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3.3.2 “Within” Operator

This is a special kind of join operation and there are two “within” operators
which are distinguished by the combination of operands: time intervals and time
points. Given two time-interval relations X(S,U,TS,TE) and Y(S,V,TS,TE), we

define the within-i-i operator as:

within-i-i(X,Y,N) holds if

o “[X.TS,X.TE) intersect {Y.TS,Y.TE)” holds, or
o (0 < Y.TS—X.TE < N)V (0 £ X.TS-Y.TE < N)” holds.

A pair of X and Y tuples satisfy the join condition if their “distance” does
not exceed N. We note that this operator can be expressed in terms of SQL
or QUEL queries. Essentially, using the operand relations (X and Y), one can
obtain two temporary tables (denoted as X’ and Y’) — containing all the origi-
nal tuples but with the TE value of each tuple incremented by N units of time.
The within-i-i(X,Y,N) becomes intersect-join(X’,Y’), i.e., a join between the two
temporary tables.

Given a time-interval relation X(S,U,TS,TE) and a time-point relation Y(S,V,
TA), we define the within-i-p operator as:

within-i-p(X,Y,N) holds if

e “Y.TA between [X.TS,X.TE)” holds, or
e “O<Y.TA-X.TE < N” or “0 < X.TS—Y.TA < N” holds.

A pair of X and Y tuples satisfy the join condition if their “distance” does not
exceed N. As in the case for the within-i-i operator, the within-i-p operator can
be expressed in terms of SQL or QUEL queries. Given a time-interval temporal
relation X, one can obtain a temporary table (denoted as X’) — the TS value of
each tuple is decremented by N units of time and the TE value is incremented by
N units of time. Together with relation Y, the within-i-p(X,Y,N) operator becomes
a join operation whose join condition is “X’.TS< Y.TA A Y.TA<X"TE".
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3.3.3 Snapshot Operators

We discuss several commonly used snapshot operators (i.e., selection on times-
tamps) — between, intersect, as of, and time-slice operators whose use allows us
to “view” the database content that is active during a particular time interval or

at a particular time point.

The between, intersect, and as of operators can be defined in terms of com-

parison predicates on timestamps as follows:

¢ between — Given a time point T and a time interval [tq,t.), “T between
[te, te)” holds if and only if “t,<T A T<t.” holds.

e intersect — Given two time intervals [TS,TE) and [t,, t.), “[TS,TE) intersect
[ts, te)” holds if and only if “t,<TE A TS<t,” holds. “Op(R4,:-+,Rm)
intersect [ts,te)” is defined as:

O-P A oo A [R;.TS,R;.TE) intersect [ts,te) A - (Rla e ,Rm)
where P is a query qualification.

o as of — This operator is a special case of the intersect operator. Given a
time interval [TS,TE) and a time point t, “[TS,TE) as of t” holds if and only
if “t between [TS,TE)” holds. However, “[TS,TE) as of now” is equivalent
to “TE=now”. “Tp(Ry, -, Rm) as of t” is defined as:

Op A [R;.TS,R1.TE) as of t A -+ A [Rm.TS,Rm.TE) as of t (Rh T :Rm)

where P is a query qualification.

In [Cli87], the time-slice operator is defined as the intersect operator except
that its definition also requires that the lifespan of a selected tuple be the inter-
section of the lifespan of the qualified tuple and the query specific interval. As
in the T-join that is discussed earlier, the intersection of the lifespans can be ex-
pressed in terms of a union of four different expressions. If we are only interested
in selecting tuples whose lifespan intersects with the query-specific interval, the

time-slice operator becomes a single conventional select operation:

Tp A [X.TSX.TE) intersect [t1,t2) (2%)-
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In short, the snapshot operators are equivalent to a conjunction of several
comparison predicates involving only timestamps. The following query, which
is another example of select operation, selects tuples that satisfy a predicate P

involving only non-time attributes during the entire interval [t1,t2):

Op A X.18<t; A t2<X.TE (X)-

3.3.4 Time-project and Time-union Operators

The time-project operator, denoted as 7T, basically projects on the pair of times-
tamps of a temporal relation: Tx1sx.TE (X). Together with a select operator,
one can find the time intervals of tuples that satisfy a query qualification P:

Tr(Op (X)) = T xasx1E ( Fp (X) ).

We note that this combination of the time-project and select operators appears as
the tdom operator in {Gad88] and as the dynamic time-slice operator in [Cli87].
For example, the following query retrieves from the time interval(s) during which

Tom was the manager of Sales department:
7TT( T Dname=Sales A Mgr=Tom (DEPT(Dname,Mgr,TS,TE)) )‘

If a person was the manager of a department during several periods of time, more

than one interval (not necessarily overlapping) may be returned. For example,
71"1‘( O Mgr=Tom (DEPT) )

returns the interval(s) during which Tom was a manager. If Tom was the man-
ager of several departments at the same time, the query response contains several
tuples of which time intervals overlap. This leads to some observations. First,
in the response to the query it is often more natural and intuitive to return one
or more disjoint intervels each of which is equivalent to several overlapping or
contiguous intervals. Towards this end, one can define a time-union operator
which performs this operation. Second, the time-union operator can play a role
in query optimization when the result from the time-project operator is joined
with other temporal relations. However, the time-union operator is really a fixed

point computation which cannot be expressed in terms of traditional relational
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algebra®. Essentially, the fixed point computation is to join the interval relation
with itself repeatedly until no new tuple is generated. For an interval relation
r(TS,TE), the join condition is the “overlap-join(r,r) or meet-join(r,r)”. The fol-
lowing logic program (using syntax similar to Prolog [Ste86]) implements the

time-union operator!®:

time-union(TS,TE) :- concat(TS,TE), - overlap(TS,TE).
concat{TS,TE) :- r(TS,TE).

concat{TS,Te) :- r(TS,TE), concat(Ts,Te), TS<Ts, Ts<TE, TE<Te.
overlap(Ts,Te) :- r(TS,TE), TS<Ts, Ts<TE.

overlap(Ts,Te) :- r(TS,TE), TS<Te, Te<TE.

3.4 Classification of Queries

We first discuss a general classification of common queries and then focus on

temporal join queries that are of interest in this dissertation.

3.4.1 General Classification

Common queries can be broadly classified using different criteria. Firstly, queries

can be partitioned into select and join queries.

Select Query This is often viewed as n-dimensional range search, e.g., selecting
employee records whose age is between 40 and 50: O 4o<age<so (Employee).

Various indexing techniques can be used to speed up the search process.

Join Query We consider two types of joins — inequalily join and equi-join,
Inequality joins are often expensive to process while equi-joins can be pro-
cessed efficiently by a number of algorithms such as sort-merge joins and

hash joins.

Secondly, we can partition attributes in the query qualification into 1) non-

time attributes only and 2) timestamps only. Together with the select and join

9 Incidentally, a variant of this fixed point computation is proposed as a linear recursion
operator in [Tuz90]. Their data model, however, only implicitly references timestamps.

10 Unfortunately there is no “standard” language or operator for recursion and for this
reason, we use a logic programming language. On the other hand, one need not implement the
time-union operator using recursions [Leug1].
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query classification, we obtain a 2 by 3 matrix:

non-time attributes only | timestamps only
select O vyso (R1) T Ts<so (Ra)
equi-join J r,u=mr,.v (R1,Ra) O R,.Ts=R,.Ts (R1,Ra)
inequality join || O g, u<m,.v (R1,R2) O R,.TE<R,.1s (R1,Ra2)

where R; and R, are time-interval temporal relations. Note that a query can

contain a mixture of these qualifications.

Thirdly, any query in these six categories can further be augmented with
a snapshot operator, forming a snapshot or interval query. We distinguish two
types of snapshot (or similarly interval) queries: snapshot select and snapshot join
queries. The first type involves selection based on attribute values as of a certain
time: e.g., O s=s1 (R) as of t; while the second type involves joining several
relations as of a certain time: e.g., Op(Ry, --,Rm) as of t;. Since snapshot
operators also involve timestamps, queries with both a snapshot (especially as
of) operator and other cualification on timestamps may produce null responses if
the “combined” query qualifications evaluates to false. For example, the following

queries return null responses:

*» 0 rrE<t (R) as of t = O rTE< A RTS<e A t<RTE(R)

¢ O R, TE<R,.1s (R1,Re) asof t
= 0 R,.TE<R;TS A Ry.TS<t A t<Ri.TE A Ry.TS<t A t<Ro.TE (R1, Rg)
3.4.2 Temporal Select-Join Queries

We define a general class of queries called Temporal Select-Join (TSJ) as follows.

Definition 3.3 TSJ is defined as the set of relational algebraic expressions of
the following form:

TP®R,y,Rm) (R1 X X R,m) or Op(R;,~Rm) (Rl, see, Rm)

where P(Ry,---,Rm) or simply P is a query qualification and Ry,---,Rp, m21,

are time-interval temporal relations. a

40



We distinguish between several subclasses of TSJ join queries. This classi-
fication provides a meaningful partitioning of query types with respect to the
difficulty and complexity of query processing and optimization. Each subclass
has a restricted form of query qualification and is amenable to a particular query

processing algorithm. Informally, their characterizations are:

Disjoint Join The join condition between two tuples does not require that their

intervals overlap, as illustrated in Figure 3.4(a). For example, queries with
join conditions “R;. TE<R;.TS” or “R;. TE<R;.TE” belong to this category.

Overlap Join The join condition between two tuples requires that their intervals
share a common time point, i.e., they overlap. We consider two special kinds

of overlap joins whose formal definitions will be presented shortly:

TSJ, — All participating tuples that satisfy the join condition share a
common time point, as illustrated in Figure 3.4(b). For example,
finding a complex “event pattern” in which all events occur during
the same period of time (or as of a particular time point) can be

viewed as a TSJ; join query.

TSJ, — The tuples that satisfy the join condition overlap in a “chain”
fashion, as illustrated in Figure 3.4(c). However, not all participat-
ing tuples that satisfy the join condition share a common time point.
For example, finding an event pattern in which events occur in some

overlapping sequence can be viewed as a TSJ; join query.
Note that all TSJ; queries are also TSJ; queries.

We now precisely define the classes of queries that are of interest here. Given
a query Q = Opg,,Rm) (R1, -+, Rm), We construct a join graph (denoted as G)
from the query qualification P(Ry,- - -, Rm) using Algorithm 3.1 below. Based on
the join graph, we are able to formally define TSJ; and T5J; join queries.

Algorithm 3.1  Join Graph.

There are m nodes in the join graph G; each node represents an operand
relation R;, 1<i<m, and is labeled with the name of that relation. We add an
undirected edge between nodes R; and R; (i#]) to G if the following condition is
satisfied:
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Figure 3.4: Classes of temporal joins

P(Ri,+,Rm) = Ri.TS<R,.TE A R; TS<R;.TE.

That is, for each m-tuple <ry,---,7n,>, where 1, € Ry, 1<k<m, that satisfies

the qualification P(Ry,---,Ru), 7 and r; must span a common time point'!. O

Definition 3.4 TSJy: A query Q = Op(r,,Ra) (R1,*+, Rm) belongs to TSJ,
if the following conditions hold:

1. The number of operand relations in Q is greater than 1, i.e., m>1.

2. The join graph G constructed using Algorithm 3.1 is a connected graph,

i.e., all nodes in G are connected.

Definition 3.5 TSJ;: A TSJ; query is also a TSJ; query if the join graph G
constructed using Algorithm 3.1 is a fully connected graph. In other words, for
all i and j such that i, j € {1,---,m} and i#j:

P(Ry,--,Ruw) = R;. TS<R,.TE A R;.TS<R,.TE.

11 This condition is defined such that we can also handle the join predicate “X. TE=Y.TS”
for a join of two relations. Testing the implications can be readily achieved via algorithms
presented in [Ros80, Ull82, Sun89]. Moreover, semantic constraints optimization can be used
to add more edges in the graph.



That is, for each m-tuple <ry,---,rm>, where ry € Ry, 1<k<m, that satisfies the
join condition P(Ry,- -, Ru), all participating tuples (r4’s) must span a common

time point. .

Theorem 3.1 Common Time Point:

Given a query Q = Op(r,,Rm) (R1,+**,Rm) € TSJ;. For each m-tuple

<Py, ,Tm>, where rp € Ry, 1<k<m, that satisfies the join condition P, all
participating tuples (ry’s) span a common time point. O
Proof:

The proof basically follows from the definition of TSJ;. Consider a
m-tuple <ry,-+-,r,>, where ri € Ri, 1<k<m, that satisfies the join
condition P(Ryq, -+, Ri). Without loss of generality, let us assume
that tuples r; and r; do not share a common time point, where i, ]
€ {1,---,m} and i#j. Then, exactly one of the following conditions
holds:

1. r.TE < r;. TS, i.e., r; ends before r; starts.

2. r;.TE < r;. TS, i.e., rj ends before r; starts.

In either case, the m-tuple <ry,- -+, 7, > would not have been gener-
ated by the join because “r;. TS<r;, TE A r;,TS<r;. TE” is false and
thus the m-tuple does not satisfy the join condition P(Ry,---,Rm).
Q.E.D.

The class of TSJ; and TSJ; are multi-way temporal joins (such as temporal
pattern queries) in which the lifespans of tuples intersect. The main characteristic
of these join conditions is that a tuple r; € R; does not join with (theoretically)
infinitely many “future” tuples r; € R; which start after r; ends'?. Counter-

examples include the Cartesian products across multiple relations (i.e., no join

12 Or conversely, a tuple ~; € Rj which starts at time t does not join with (theoretically)
infinitely many “past” tuples r; € R; which ends before r; starts.
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predicates) and a query with the join condition “R;.TE<R;.TS". This character-
istic is crucial in developing the generalized data stream index and the parallel

query processing schemes to be described in later chapters.

Examples of TSJ; query include the commonly called “natural time join”
[Cli85, CLi87], “intersection joins” [Gun9l] which join relations in first temporal
normal form [Seg88]. Also, the temporal join operators listed in Figure 3.2 belong
to TSJ 1-

Example 3.1 Given temporal relations X, Y and Z. The following is a TSJ;
query:

o contain—join(X,Y) A contain—join(Y,Z) (XsYaZ)'
Although there is no explicit join predicate between relations X and Z, the TS5J;
definition is still satisfied. However, the following is a TSJ, query but not TSJ;:

o intersect—join{X,Y)} A intersect—join(Y,Z}) (X,Y,Z).

In Section 6.4, we will discuss TSJ; join queries in more detail. Until then,
we will focus on TSJ; queries. In the next subsection, we show that common

temporal queries can often be formulated as TSJ; queries.

3.4.3 Example TSJ; Queries

Consider the following temporal relations which store information on studios,

directors and stars in the film industry®:

Studio(Sname,Head, TS, TE} — the head of a studio

Dir(Dname,Sname, TS, TE) — the director who worked for a studio

Stars(Star,Dname.TS,TE) — the actor/actress in a film directed by a
director

where Sname and Dname stand for the name of studios and directors respectively.

13 These relations are adopted from the examples in [Cli87).
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Example 3.2 Find the head of a studio and the director who worked for the

studio at the same time:

. . 14
g intersect —join(Studio,Dir) A Studic.Sname=Dir.5name (Stule,DlI‘). *

Example 3.3 Find all combinations of studio heads, film stars and directors
such that the studio head was a star in a film that the director directed at the

studio during the same period of time:
O p, A p, (Studio,Dir,Stars)

where P, is “Studio.Sname=Dir.Sname A Studio.Head=Stars.Star A Dir.Dname
=Stars.Dname” and P, is “intersect-join(Studio,Dir) A intersect-join(Studio,
Stars) A intersect-join(Dir,Stars)”. O

Let us consider examples in a different application domain. Suppose we have
the following temporal relations which store information regarding departments

and employees:

Emp(Ename,Salary,TS,TE) — employee salary
Dept(Dname,Mgr,TS,TE) — department manager

Sales(Dname,Revenue,TS,TE) — department sale revenue

where Ename and Dname stand for the name of employees and departments

respectively, and Mgr stands for the name of the department manager.

Example 3.4 Find the manager whose department revenue was less than

$200K:

o intersect —join{Dept,Sales) A Sales.Revenue<$200K (Deptasales)'

]

14 A more appropriate response might include two “computed” fields which represent the
lifespan of a joined tuple. In this dissertation, we focus only on the query qualification which
is a major optimization issue.
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Example 3.5  “Inefficient management”: suppose we want to find the combi-
nation of departments and employees such that during the period of time when
the employee earned more than $100K, the employee was the manager of the
department, and during the same period of time the department’s revenue was

less than $500K. This query can be formulated as:

) contain—join(Sales, Emp) A contain—join{Dept,Emp) A P (Emp’Dept,Sa’leS)

where P is “Emp.Salary>3100K A Sales.Revenue<$500K A
Sales.Dname=Dept.Dname A Emp.Ename=Dept.Mgr”. Qa

In the following chapters, we discuss the optimization issues raised by the use
of various temporal operators. First, we present a stream processing approach to
processing temporal join and semijoin operations. As temporal data often has
certain implicit ordering by time, the stream processing approach which takes
advantage of data ordering is often the preferable alternative to conventional
methods.
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CHAPTER 4

Processing Temporal Join Operators

In this chapter, we consider query processing and optimization for temporal
join queries, a topic which receives little attention until recently [Seg89, Leu90,
Gun91]. We observe that there are several interesting characteristics which are
peculiar to temporal databases: (1) a temporal join query often involves pat-
terns of events; (2) a temporal join query often contains a conjunction of several
inequalities over the time domain and no equality conditions; and (3) temporal
data is rich in semantics, and semantic query optimization is particularly desir-
able in the presence of a number of inequalities. These characteristics provide
new opportunities for optimization. Ignoring these, as in conventional relational

systems, can result in poor performance.

We discuss join and semijoin operations which are the most common and ex-
pensive computations i~ database systems. We introduce a stream processing
approach which takes advantage of data ordering. As temporal data often has
certain implicit ordering by time, the stream processing approach, as we demon-
strate, is a good alternative. We should emphasize, however, that the stream
processing algorithms that we present are merely additional strategies that a
query optimizer should consider, and are by no means substitutes for traditional

query processing methods such as the nested-loop joins.

The idea of stream processing has also appeared in [Ben79, Pre85, Ore88,
Par90]. These researches share the basic principle of the stream processing
paradigm in that input data should be in a certain order before the processing
commences. [Ore88] focuses on processing spatial image data stored using pixel
representation which is not appropriate in many proposed temporal data models.
Its implementation relies on a special transformation, called the z-transform, and
consequently there is only one interesting ordering, namely the z-order (lexico-
graphical ordering of z-transformed values). In [Ben79, Pre85], a main memory

algorithm, called the plane sweep algorithm, is discussed and can be used to re-

47



port all intersecting pairs of planar line segments. Although time attributes (i.e.,
TS and TE timestamps) can be thought of as the endpoints of horizontal line
segments, the algorithm is primarily designed to find all line segment pairs which
intersects at a single point, and therefore it is not directly applicable to processing
join queries. Moreover, only a single sort ordering of data items is considered in
this algorithm while in our approaches, temporal relations can be sorted on the
TS or TE timestamp. Nonetheless, these methods emphasize the importance of
data ordering. Here we are more concerned with (1) the impact of various data
ordering on performance issues, mainly memory workspace requirements, and (2)
efficient processing algorithms for temporal join and semijoin operations. As we
show, the optimal sort ordering for these temporal join operators may depend on

the statistics of data instances as well as the operator itself.

One may argue that stream processing algorithms are not useful unless data
is properly sorted. With an abundant amount of main memory and processing
cycles available, one can sort the input streams “on the fly” with marginal ad-
ditional cost as assumed in [Sto88]. The algorithms we describe would still be
applicable although the streams are actually memory resident. Furthermore, as
we described in Chapter 3, there are natural situations where tuples are sorted

on TS or TE timestamp when the append-only update policy is in use.

Semantic query optimization has been discussed in the literature [Kin81,
Chak84, Jar84, She89)] but apparently has not been widely used in conventional
systems. Semantic constraints in temporal databases occur more naturally and
are more plentiful, and consequently a query optimizer should profitably exploit
the semantics. We will briefly discuss the role of semantic query optimization in
temporal databases after discussing more basic query processing and optimization

issues.

The remainder of this chapter is organized as follows. We illustrate, in Sec-
tion 4.1, the conventional approach to processing a complex temporal query. In
Section 4.2, we discuss a stream processing approach for the implementation of
temporal join operators. We informally discuss the role of semantic query opti-

mization in Section 4.3. A brief conclusion is included in Section 4.4.
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4.1 Conventional Approach

In this section, we describe the deficiencies of conventional relational database
systems in processing temporal queries. Temporal queries using the extended
constructs (i.e., temporal operators) described in the previous chapter are usu-
ally processed in the following way. First, queries with temporal operators are
translated into equivalent queries in a relational language such as Quel. The
translated queries are then optimized and processed by conventional relational
query processors. This approach is generally inefficient for processing temporal

queries as we demonstrate below.

Consider a relation Faculty(Name,Rank,TS,TE) as described in the previ-
ous chapter, and the following Quel query modified from [Sno87]': Superstar —
Who got promoted from assistant to full professor while at least one other facully

remained at the associate rank?

range of f1 is Faculty
range of 2 is Faculty
range of f3 is Faculty
retrieve into Stars{Name=f1.Name,TS={1.TE,TE=f2.TS)
where f3.Rank=associate and fl.Name={2.Name and
f1.Rank=assistant and {2.Rank=full and
(fl intersect £3) and (f2 intersect f3)

These intersect operators can be translated directly into equivalent clauses (e.g.,

in Quel) involving inequalities. That is,

(fl intersect £3) = f1.TS<f3.TE A {3.TS<{1l.TE
(f2 intersect £3) = f2.TS<{3.TE A f3.TS<f2.TE

! The original TQuel query in [Sno87] is:

range of fl is Faculty

range of 12 is Faculty

range of a is Associate

retrieve into Stars(Name=fl.Name)
valid from begin of {1 to begin of f2
where fl.Name={2.Name and fl.Rank=assistant and f2.Rank=full
when (fl overlap a) and (f2 overlap a)
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Figure 4.1: (a) Parse tree for the Superstar expression and (b) its optimized

version

The corresponding relational algebraic expression for the Superstar query is:

71 (0¢ (Faculty, x Facultyp, x Facultyg))

where I, s

fl.Name, {1.TE, {2.TS

@ is f1.Name=f2.Name A fl.Rank=assistant A
2 Rank=full A f3.Rank=associate A ¢
& is f1.TS<f3.TE A f3.TS<f1.TE A

2. TS<3.TE A 13.TS5<f2.TE

This algebraic expression can be represented as a parse tree {Ull82], as de-

picted in Figure 4.1(a). The parse tree can then be ameliorated by applying

well-known traditional algebraic manipulation methods, e.g., the selections and

projection are pushed as far down the parse tree as possible (see Figure 4.1(b)).

There are several interesting observations about the “conventionally opti-

mized” parse tree in Figure 4.1(b):

1. There are three references to the Faculty relation in the parse tree imply-

ing that it is joined with itself twice — conventional systems would scan

the relation several times. If we view the query as a “Superstar” pattern
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matching against the Faculty relation, one might wonder if we are able to
answer this query with only a single scan of the relation. Roughly speak-
ing, we are looking for a pattern composed of three tuples — an assistant
professor, a full professor and an associate professor. That is, instead of
performing multiple scans, a single scan of the relation might be possible
by recognizing this query gualification as describing a pattern against the
data.

2. The first join (i.e., “fl.Name=f2.Name”) in the parse tree can be efficiently
implemented as an equi-join using conventional approaches such as nested-
loop join, merge join or hash join. The second join, an inequality join, is a
Cartesian product followed by a selection with the condition being a con-
junction of inequality predicates — ¢ ?. Traditionally, the best strategy for
processing inequality joins appears to be the conventional nested-loop join
method®. With only a single inequality as the join condition, we have no
choice but the nested-loop join method. Since time points are totally or-
dered and the join condition is a conjunction of several inequalities involving
timestamps, one might wonder if there are any more efficient processing al-
ternatives. In the past, little attention has been given to this form of query

qualification because:

¢ in traditional database applications, queries seldom contain inequality
joins, and

e when inequalities do occur, in most situations the join condition has
only a single inequality predicate; for example, in a database which
stores employee and department relations, we might want to retrieve

employees who earn more than their manager.
The situation is quite different when we consider temporal databases:

¢ inequality joins appear more frequently and naturally because tempo-
ral queries often involve patterns of events, and therefore inequality
joins need to be explicitly considered in the query optimization,

2 Note that range search (e.g., salary > 10K and salary < 20K) is different from this form
of query qualification.

3 One can do a little better in that the inner loop may terminate even before finishing the
scanning of the relation. However, this “modified” nested-loop join still requires multiple scans
of operands.
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e the join condition often contains a conjunction of several inequality

predicates which further indicates that optimization might be possible.

3. Recall that there is an integrity constraint in the Faculty relation: a chrono-
logical ordering of data values — assistant, associate and full. This ordering
implies that being an assistant professor must occur before being promoted
to a full professor, i.e., “f1.TE<f2.TS” always holds in the presence of
“f1.Name=f2.Name”. This constraint, together with the “intra-tuple” in-

tegrity constraints,
fi.TS<i.TE for 1=1,2,3

imply both “f1.TS<f3.TE” and “f3.TS<f2.TE” hold. Therefore these in-
equalities in @ are redundant — i.e., they are subsumed by other inequal-
ities. The important point is not so much this particular case; rather it is

the process of semantic query optimization.

The above observations suggest that, in addition to traditional set-oriented rela-
tional operators, we may need other alternatives to process temporal queries. In

subsequent sections we will present and discuss a number of such alternatives.

4.2 The New Approach

We discuss a stream processing approach for temporal query processing in this sec-
tion. Algorithms that implement temporal operators are presented. The tradeoffs
among sort orders, the amount of local workspace and multiple passes over input
streams are discussed, For properly sorted streams of tuples, we show that tem-
poral join operators can often be carried out with a single pass of input streams

and the amount of workspace required can be small.

4.2.1 The Notion of Stream Processing

Abstractly, a stream can be defined as an ordered sequence of data objects [Abe83,
Par89, Par90]. Stream processing resembles the notion of dataflow processing in
database systems [Bor82, Bat88, Ore88]. A classical example of stream processing

is the merge-join where hHoth operands are sorted on the join attributes; the join
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can be efficiently executed and the sort ordering of its output can be utilized by

subsequent operations [Smi75, Sel79).

There are several intrinsic characteristics of stream processing in database
systems. First, a computation on a stream has access only to one element at a
time and only in the specified ordering of the stream (via a data stream pointer).
Second, the implementation of a function as a stream processor may keep some
local state information in order to avoid multiple readings of data streams. The
state information represents a summary of the history of a computation on the
portion of a stream that has been read so far; the state may be composed of copies
of some objects or some summary information of the objects previously read {e.g.,
sum, min, count etc.) Using the local state information, the implementation of a
stream processor can be expressed in terms of functions on the individual objects
at the head of each input stream and the current state. Third, there are often

tradeoffs among the following factors:

1. the minimal size of the local workspace which depends on the function itself

and the statistics of specific instances of data streams,
2. the sort ordering of input data streams, and

3. multiple passes over input data streams.

Very often stream processing requires input streams to be properly sorted in
order to perform the computation while only reading the input streams once.
In addition, the sort orderings of input streams greatly affect the size of local
workspace required. Conversely, suppose there is enough local workspace to keep
all data objects. Then only a single pass over the input streams is required and

theoretically the sort ordering would not be important.

Let us consider a simple stream processor, which is shown in Figure 4.2, lists
all employees and computes their average salary. The input is a data stream
of employee salary tuples — the period when an employee earned a particular
salary, and the output is a data stream of employee and his/her averaged salary.
The point here is that the state contains summary information (i.e., the partial
sum and length of time interval), and the function (i.e., average) is expressed
in terms of the current state and an input tuple. Suppose that the input data

stream is sorted or clustered on the employee name. The stream processor needs

53



{-+-, < emp;, salaryj, ts,te >, - -}

i partial_sum - { -, < empj,avg >,-- }

length

Figure 4.2: A stream processor which computes the average salary for each em-
ployee

only one set of registers for the partial sum and the length of employment as
state information. As soon as a record of new employee is read from the data
stream, the stream processor can output the result for the previous employee.
That is, the input data stream is read only once. Now suppose the data stream is
neither sorted nor clustered on the employee name, the stream processor would
have to keep a table of registers — a set of registers for each employee. That is,
more workspace is required so that the input data stream is read only once. If
there is not enough workspace for the entire table of registers (i.e., we keep only
a portion of the table), the input data stream have to be read multiple times for

the computation. These are the tradeoffs for this example.

In the next section, we discuss the application of stream processing techniques
to processing temporal joins. In these discussions, the sort ordering of streams

plays a major role.

4.2.2 Sort Orderings

Suppose we have temporal relations X{S,U,TS,TE) and Y(S,V,TS,TE). We are
interested in the effect of various sort orderings on the efficiency with which
it is possible to implement the temporal join operators (listed in Figure 3.2)
in the stream processing paradigm. We illustrate the idea using the “contain”

relationship which has only inequalities in its explicit constraints*. Before we

4 For temporal operator with equality predicate(s), an obvious stream processing method
appears to be sorting both relations on attributes that are involved in the equalities followed
by a conventional merge-join, and perhaps combined with filtering using other predicates in the
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proceed, we should note that the operators listed in Figure 3.2 are in fact join
and semijoin operations. Because of this, the only form of state information
we need consider is subsets of the tuples previously read and not any summary

information such as sum, min, etc.

4.2.2.1 Contain-join(X,Y)

The contain-join(X,Y) outputs the concatenation of tuples X and Y if the lifes-
pan of X contains that of Y; that is, “X.TS<Y.TS A Y.TE<X.TE” — i.e., the
“contain” relationship in Figure 3.2. The generic algorithm for processing a tem-
poral join operator (such as inequality join) is shown in Figure 4.3. The specific
instance of this generic algorithm depends on the sort orderings of data streams.
In this chapter, we present the contain-join algorithm in more detail for the case
when both relations X and Y are sorted on the TS timestamp in ascending or-
der (see Figure 4.4(a)). The following conventions and notations are used in the

algorithm:

1. There is an input buffer for reading tuples from each stream, denoted as
<Buffer-x, Buffer-y>, and the tuples in these buffers are denoted as z; and

yp respectively.

2. The expected difference between TS values of two consecutive X (respec-
tively Y) tuples is 7. (respectively 7,). If there is no selection on the input

data stream, 7 is T}, shown in Figure 3.1.

3. The absolute value of the difference between y,. TS and z;.TS is denoted as
[. That is the “distance” between the data stream pointers of X and Y.

Algorithm 4.1 Contain-join(X,Y).?

1. Initially the first tuple from each stream is read and stored in the buffer.

operator.

5 The separation of this join algorithm into several phases is pritnarily for the sake of
explanation; it is possible that Steps 2, 3 and 4 can be combined together to gain better
performance.
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Figure 4.3: Generic stream processing algorithm for temporal joins
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2. Join phase: Qutput the tuple pair for any tuples in the workspace (i.e., the
state information) that join with the tuple just read. Note that additional

housekeeping must be done for maintaining the output sort ordering.

3. Garbage-collection phase: discard X tuples in the workspace if “X. TE<y;.T5”
holds. Also discard Y tuplesif “Y.TS<x;.TS” holds. The garbage-collection
conditions must guarantee that the Y {respectively X) tuples being dis-
carded do not satisfy the join condition with any subsequent X (respectively
Y) tuples that have not been read.

4. Read phase: Copy the previously read tuple(s) into the workspace as state
tuple(s). There are two different situations in deciding which stream of
tuples is to be read. The first case is when “y,.TS<z;.TS” as shown in
Figure 4.4(b). Asall Y tuples read so far do not join with z,, clearly the next
step is to read the next Y tuple. The second case is when “y,. TS>x;.TS”
as shown in Figure 4.4(c). The workspace contains:

(1) X tuples whose lifespan span y.TS and
(2) Y tuples whose TS value is in region l.
A heuristic can be used to decide whether to read the next X tuple or Y

tuple which is presented below.

5. The algorithm terminates if either stream has been exhausted and there is

no corresponding state tuple. Otherwise, go to Step 2. o

A heuristic algorithm which decides whether to read an X tuple or a Y tuple
is as follows. If the next X tuple is read, the expected TS value is 2,.TS+7.
The number of Y tuples that would be garbage-collected can be estimated as
the number of Y tuples in the workspace with TS value in the interval {z;.TS,
1. TS+7,]. If the next Y tuple is read, the expected TS value is y,.TS+7,. The
number of disposable X tuples can be estimated as the number of X tuples in the
workspace with TE value in the interval [y,.TS, y;. TS+7,]. Based on these two
estimations, a decision can be made on which would yield a greater reduction in

the number of tuples in the workspace.

Another heuristic algorithm is this: if the number of Y (respectively X) tuples
in the workspace is larger than the number of X (respectively Y) tuples, the next

X (respectively Y) tuple will be read. If it is a tie, a tuple from either data stream
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Figure 4.4: Both X and Y are sorted on TS in ascending order (only the lifespans

are shown)

can be read. The relative merit of this simple heuristic is that it does not depend
on the data statistics (i.e., 7, and 7,). However, the expected performance may

not be as well as the previous heuristic algorithm.

For the contain-join operator, the contents of the workspace can be charac-

terized as follows:

1. If we keep reading X tuples such that all Y tuples in the state have been
garbage-collected, the maximal set of X tuples that are required consists of

all X tuples that span the time instant y,.TS.

2. Conversely, if we keep reading Y tuples such that there is no X state tuple,
the maximal set of Y state tuples that is required consists of those whose

TS value lie in the lifespan of wxy.

For the case when the relation X is sorted on TS and the relation Y is sorted
on TE in ascending order, the algorithm is similar to the above one with the

following exceptions:

1. Read phase: In the first heuristic algorithm which uses data statistics, if
the next Y tuple is read, the expected disposable X tuples are those in the
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interval [ys. TE,y;.TE+7]] where 7, is the expected difference between the

TE values of 2 consecutive Y tuples.

2. Garbage-collection phase: Dispose of X tuples if “X.TE<y;.TE”, and dis-
pose of Y tuples if “Y.TS<z},.TS”.

3. The state is {X tuples whose lifespan span y,.TE} U {Y tuples whose lifes-

pans are contained within [}.

We now summarize the state information requirements of processing the
contain-join for other sort orderings in Table 4.1. Note that (1) it is gener-
ally inappropriate to have one relation sorted in ascending order and the other
in descending order. (2) Sorting both relations X and Y on attribute TE in
descending order would have the same effect as sorting them on attribute TS
in ascending order because of symmetry (although the TS and TE timestamps
“exchange” their roles); the lower half of Table 4.1 is therefore the mirror image

of the upper half.

4.2.2.2 Contained-semijoin(X,Y) & Contain-semijoin(X,Y)¢

Contain-semijoin(X,Y) is defined as {z | € X and 3 y € Y such that z’s lifespan
contains y’s lifespan}. Contained-semijoin(X,Y) is defined as {z | + € X and 4
y € Y such that z’s lifespan is contained in y’s lifespan}. In a later section, we
show that contained-semijoin may be used to efficiently process the Superstar
query.

For semijoins, a stream processor can output a tuple as soon as it finds the
first matching tuple. Based on this property, we devise an efficient algorithm
which requires just one buffer for each input stream for the case when relation X
is sorted on TS and relation Y is sorted on TE in ascending order as shown in
Figure 4.5. The contain-semijoin(X,Y) algorithm for this sort ordering is shown

as follows.

Algorithm 4.2 Contain-semijoin(X,Y).

% Similar to “restriction” operator in [Seg87].
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sort orders contain contain contained

relation X | relation Y || -join(X,Y) | -semijoin(X,Y) [ -semijoin(X,Y)
TS| 7 |TS| 1 (a) (c) ()
TS ! | TS| | - - -
TS| 1 |TE| 1 | ) (@) :
TS I |TE| | - - (d)
TE| T | TS T - - (d)
TE{ | |[TS| | (b) (d) -
TE{ T |TE| 1T - - -
TE| | |TE] | (a) (c) (c)

T Sorting the corresponding timestamp in ascending order.

|l Sorting the corresponding timestamp in descending order.

- The sort ordering is not appropriate for stream processing — no garbage-
collection criteria.

(a) state = {X tuples whose lifespan span y,.TS}

U {Y tuples whose TS value lie in region !}
(b) state = {X tuples whose lifespan span y;,.TE}

U {Y tuples whose lifespans are contained within region [}
(c) state C {X tuples whose lifespan span y. TS}

U {Y tuples whose T'S values lie in region !}

(d) local workspace = <Buffer-x, Buffer-y>.

Table 4.1: Effect of various sort orders on contain-join, contain-semijoin & con-
tained-semijoin
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Y(S,V,TS,TE): y ——u-—

Y2 b m—
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Y4 Z L

Figure 4.5: X is sorted on TS and Y is sorted on TE in ascending order

Repeat the following steps until one data stream is exhausted. Suppose we
have z; and y; tuples in the input buffer. Then, one of the following conditions
must hold:

o “23.TS<y.TS A 4. TE<2, . TE” — l.e., 7y and ys satisfy the semijoin con-
dition, and thus z; is output. The next X tuple is read.

o “y,. TS<23. TS” — i.e., 7 and y, do not satisfy the semijoin condition”.
Furthermore, y, cannot be contained in subsequent X tuples which have

larger TS values, and thus the next Y tuple is read.

o “z;,.TE<y;,. TE” — i.e., 2y and y; do not satisfy the semijoin. Furthermore,
@, cannot be joined with subsequent Y tuples which have larger TE values,

and thus the next X tuple is read.

It can be easily verified that for this particular data sort orderings only one tuple

from each stream needs to be kept in the main memory. o

It should be mentioned that the above algorithm can also be applied to
contained-semijoin(Y,X) for the same sort orderings with slight modification —
when the semijoin condition is satisfied, ¥ is output and the next Y tuple is read.
For other sort orderings (e.g., both streams are sorted on TS), we only list the

local workspace requirements in Table 4.1.

7 Tt does not matter what the relationship between z,.TE and y;.TE is.
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Figure 4.6: Relation X is sorted on TS (and then TE) in ascending order

sort order on X || contained-semijoin(X,X) | contain-semijoin(X,X)

TS i (a) (b)
TS | | - (a)

(a) the state is {z,} and Buffer-x for z,.

(b) if X is sorted into {z1,- -+, 2.}, the state for a tuple z; is a subset of:
{z; | j > i and z; overlaps with a;}.

Table 4.2: Effect of various sort orders on the contained-semijoin(X,X) and con-
tain-semijoin(X,X)
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We note that for contain-semijoin(X,X) and contained-semi-join(X,X), the
stream of tuples may he scanned twice if we apply the semijoin algorithm pre-
sented above. To avoid this kind of inefficiency, we therefore devise a more
efficient algorithm which scans the stream only once provided that it is sorted
properly. As an example, suppose the relation X has primary sort ordering on
TS and secondary sort ordering on TE in ascending order as shown in Figure 4.6,
only two buffers are required (see Table 4.2 for summary). The algorithm for
contained-semijoin(X,X)} is as follows, and in the next section, we discuss the

circumstances under which this algorithm can be used for the Superstar query.

Algorithm 4.3  Contained-semijoin(X,X).

1. Read the first tuple from the stream and store it as the state tuple, denoted
by z,.

2. Read the next X tuple (z;) and do :

if “2,.TS=x,.TS”, replace x, with z;, as the state tuple

else (i.e., “z,. TS<z;.TS” holds)
if “z,. TE<z,.TE”, replace z, with x; as the state tuple
else (i.e., ;s lifespan is contained within that of x,)

zy is output and z, remains as the state tuple.

3. Repeat Step 2 until all tuples have been read.

It is interesting to consider using a semijoin algorithm as a preprocessor for
a join operation. Intuitively, the advantages are: (1) the output stream from
a semijoin operation has the same sort ordering as the input stream — order-
preserving, (2) with proper sort orderings, the semijoin algorithms scan input
streams only once and eliminate a number of “dangling” tuples, and thus the size

of workspace for subsequent join operations may be reduced.

4.2.2.3 Intersect and Before Operators

In this section, we briefly consider the intersect-join and before-join operators.
The effect of various sort orders on the intersect-join operator are listed in Ta-

ble 4.3, which shows that the only cases in which stream processing is efficient
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sort orders intersect-join(X,Y) | intersect-semijoin(X,Y)

relation X | relation Y

TS| 1 | TS| 1 (a) (b)

(*) Other sort orderings are not appropriate and therefore they are not listed
here.

(a) state = {X tuples whose lifespan span y,. TS} U
{Y tuples whose lifespan span z;. TS} U
{Y tuples whose TS value lie in {} if y.TS > 2;. TS
{X tuples whose TS value lie in {} if 2;.TS > 1. T5S.

(b) local workspace = <Buffer-x, Buffer-y>.

Table 4.3: Effect of various sort orders on the intersect-join and intersect-semijoin

are when (1) both operands are sorted on TS in ascending order, or (2) both

operands are sorted on TE in descending order.

We mention earlier that the best approach for implementing before-join ap-
pears to be the nested-loop join. It is easy to verify that there is no sort ordering
that would significantly limit the amount of state information required when the
before-join is implemented by a stream processor. However, we do not mean to
imply that sorting is useless for nested-loop joins; with proper sort orders, nested-
loop join can avoid scanning the inner relation in its entirety. For before-semijoin,
one can easily devise a simple algorithm which scans both operand relations only

once and is independent of any sort orderings. For brevity, we omit the detail.

4.3 Semantic Query Optimization

Semantic query optimization techniques have been introduced and shown to be
potentially useful in many studies [Kin81, Chak84, Jar84, She89]. However the
techniques have not been widely used in conventional systems. The reason, we
speculate, might be that conventional application domains are seldom rich enough
in semantics, i.e., they contain only a few useful semantic constraints which the
query optimizer can profitably exploit. For temporal databases, time is unar-

guably rich in semantics and many temporal semantic properties/constraints do
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occur naturally. It is therefore our belief that, unlike conventional applications,
semantic query optimization can play a significant role in temporal databases. In
this section, we discuss informally the significance of semantic query optimization

in temporal query processing,.

Earlier we mention an interesting integrity constraint in the Faculty relation,
namely the chronological ordering of data values which the attribute Rank can
assume — assistant, associate and full. For every faculty member, being an
assistant professor must occur before being promoted to an associate professor,

which must then occur before becoming a full professor.

There are two consequences if the database system does not capture and use
this constraint. First, and most important, the optimizer would not be able to
recognize that the inequality join in the Superstar example is in fact a contained-
semijoin. The inequality join operation shown in Figure 4.1(b) can be described
pictorially using Figure 4.7(a). The equi-join on “fl.Name=f2.Name” shown in
Figure 4.1(b) concatenates those {1 and f2 tuples corresponding to those assistant
professors promoted to full professors. The inequality join then selects those fl
and f2 tuple pairs which satisfy the less-than join condition (4') as shown in
Figure 4.7(a). With the above semantic constraint, it is not difficult to see that

“f1.TS<f3.TE and 3. TS<{2.TE”

are redundant and the less-than join condition can be reduced to a contained-
semijoin condition as shown in Figure 4.7(b). Being able to recognize a contained-
semijoin allows the database system to make use of sort orderings and therefore

the stream processing techniques discussed in the previous section.

Taking this example one step further, suppose that there is no re-hiring of
faculty members, e.g., no assistant professors left the university and then later
were re-hired as full professors. That is, in Figure 3.1 “te;=ts,” and “te;=ts3”
are always true. In addition, suppose that all faculty members are hired as
assistant professors. With this continuous employment assumption, the Superstar
query can be transformed into: List associate professor X if there exists another
associate professor Y such that X is promoted from assistant professor level later
than Y, but X is promoted to full professor rank earlier than Y. The relational

algebraic expression for this query can be simplified into:

T'i Name,i.TS,i. TE(contained-semijoin(& g«( Faculty; ), 0gn (Faculty;)))
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“f1.Name={2.Name”

TS fIl TE TS 2 TE f1.TE {2.TS
e — [r——— e
assistant - * full ’
. ’ 3 ' . . 3 .
Tg associate TE 'f‘S associate TE

(a) (b)

Figure 4.7: (a) The inequality join in the Superstar query, and (b) its equivalent

contained-semijoin condition after semantic optimization

where 6 = “Rank=associate”. As shown in Figure 4.7(b), the period [f1.TE,
f2.TS) is actually the time during which the faculty member is at the associate
professor level. When the associate professor tuples are sorted on the TS times-
tamp in ascending order (or we explicitly sort on this attribute), the algorithm
contained-semijoin(X,X) discussed in the last section can be used to perform the
semijoin which requires only a single scan of tuples (i.e., all associate professor
tuples) and the local workspace is composed of only a state tuple and an in-
put buffer. For this particular query, the stream processing algorithm can be

extremely efficient.

The second consequence of the constraint on the Rank attribute is that we are
able to eliminate two redundant inequalities in &'; their presence makes it harder
to recognize the join as contained-semijoin and there is also some overhead due to
testing redundant qualification. Eliminating redundant qualifications is indeed a

by-product of semantic query optimization.

4.4 Conclusions

We illustrate the deficiencies of conventional systems for temporal query process-
ing using the complex Superstar query. This example leads to several observations
which suggest new requirements for temporal query processing strategies. The
most interesting and important observation is that inequality joins occur more
often and naturally in temporal queries, and often contain a conjunction of a

number of inequalities. For the Superstar example, it may be more eflicient to
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implement the inequality join using contain-semijoin instead of using nested-loop
join algorithm especially when tuples are properly sorted. These observations mo-
tivate our investigation of the stream processing strategies and suggesting new

avenues of research in temporal query optimization techniques.

We propose stream processing techniques for processing various temporal join
and semijoin operators. Given data integrity constraints and a temporal query,
we discuss the effect of various sort orderings of streams of tuples on the ef-
ficiency with which the operator is implemented and the local workspace re-
quirement in the stream processing environment. In particular, we note that
the optimal sorting order may depend on the query itself and the statistics of
data instances. We also briefly discuss semantic query optimization in tempo-
ral databases. As we mention in the previous chapter, temporal relations are
augmented with timestamps such as TS and TE. However, database users are
not allowed to update timestamps directly although a set of temporal operators
are provided for data manipulation. From an algebraic manipulation point of
view, these system-defined timestamps are the same as any user-defined integer
attributes. The main difference becomes evident when the semantics of TS and
TE timestamps are utilized in the semantic query optimization process. As we
can see from the Superstar example, the system might not be able to evaluate
the query using contained-semijoin without knowing the “intra-tuple” integrity

constraint.
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CHAPTER 5

Generalized Data Stream Indexing

In the previous chapters, we note that temporal joins (such as intersect-join)
often contain a conjunction of several inequality predicates, and argue that con-
ventional join methods such as nested-loop join and hash-join are ineflicient or
inappropriate for this type of join operations. In this chapter, we study the pro-
cessing of the snapshot or interval queries. That is, the query refers to tuples
that are active as of a particular time or over a certain period of time interval in
the past as opposed to all tuples in the entire relation lifespan. We propose an
indexing strategy that is appropriate for a certain subclass of complex temporal
inequality join queries that are qualified with snapshot operators such as the as
of and intersect operators. The strategy is to provide an indexing mechanism
such that tuples in proximity of the query-specific time interval or time point
can be retrieved efficiently. We discuss the advantages and limitations of the
proposed scheme from the query language point of view. A quantitative analysis
of the proposed scheme in terms of storage cost is presented, and optimization
alternatives for reducing the storage requirement are proposed. We compare the
proposed scheme with conventional indices (such as Bttree) and discuss under

what circumstances the proposed scheme is more efficient.

The organization of this chapter is as follows. In Section 5.1 we discuss the
notion of checkpointing a temporal query execution. Section 5.2 is devoted to
the query processing algorithms using checkpoints and their indices. A quantita-
tive analysis is presented in Section 5.3, and some optimization alternatives are
proposed in Section 5.4. Section 5.5 contains a discussion of related work and a
brief summary.
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5.1 Checkpointing Query Execution

We discuss the notion of checkpointing the execution state of a query (along the
time dimension) in the context of stream processing presented in the previous

chapter, and the indexing of checkpoints based on the checkpoint times.

5.1.1 Background Information

We consider the following subclass of queries for specifying the generalized data

stream indices:

e TSJ; queries where the query qualification do not contain any comparison

predicates involving timestamps, and

e all select queries that do not involve comparison with timestamps. For
example, given a relation X(S,U,TS,TE), the predicate “U>10" is an ac-

ceptable query qualification of a select query that we consider here.

The reason for focusing only on queries that do not involve comparison predicates
with timestamps is that these queries can be used to specify what information
will be stored in the index. Allowing comparison predicates with timestamps will
limit the use of data stream indices to a specific “time window” and thus the
indices may be of little use. This becomes clear when we discuss the proposed

technique below.

Recall that we consider data streams which are time-interval temporal rela-
tions sorted on a timestamp (i.e., either TS or TE). For simplicity of explanation,
we consider only data streams that are sorted in increasing order. That is, tuples
in a data stream can be efficiently accessed one at a time and in the order of

successive timestamp values using the data stream pointer.

5.1.2 The New Approach

To illustrate the idea more clearly, we consider a stream processor that imple-
ments a query Q € TSJ; with data streams X and Y as shown in Figure 5.1. A
stream processor that implements the processing of the query Q starts by reading
elements at the beginning of data streams. At any time point t, the execution

state of the stream processor includes:
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a stream processor for Q

dspy(t) —
dSPy(t) N Sq(t) T
dsp,(t)
X ' .
% : ~ time
t Y
dSPy(t)

Figure 5.1: Checkpointing the execution of a stream processor for query Q

e state information, denoted as s4(t), stored in the local workspace of the

stream processor.

o dspx(t) and dspy(t): the data stream pointers for X and Y respectively
which represent the position of the data stream at which the stream pro-
cessor has read so far. Recall that data stream elements are accessed one

at a time using the data stream pointer.

A checkpoint of the execution state of the query Q has the following charac-

teristics in terms of the state information and data stream pointers:

o The execution state at time t is stored in a checkpoint, denoted as ckq(t).

e Consider a time point t' which is greater than t. The execution state at t’
is a function of ckq(t) and all tuples in the data stream X (respectively Y)
between dspy(t) (respectively dspy(t)) and the first tuple in the data streams
after t'. That is, the execution state at t’ contains sufficient information so
that re-reading the portions of data streams prior to dspi(t) and dspy(t)

can be avoided.

The state information required depends on the query itself and we will define the
state information shortly. Intuitively, at any time the state information of a join

query consists of a subset of tuples of operand relations that are previously read.

In our approach the data stream indices are built by:
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e periodically checkpointing the execution of Q on data streams X and Y

along the time dimension, and

e checkpoints are in turn indexed on their checkpoint times as depicted in
Figure 5.2.

In the next section, we will define checkpoints formally, but to put it simply, a
checkpoint (e.g., ckq(tz) in Figure 5.2) at a time point (i.e., t3) contains some
information about the execution of Q on X and Y such that the response of an
interval query (e.g., Q intersect [t§.t) where t;<t} <t3) can be obtained in the

following way:

Find the appropriate checkpoint (e.g., in this case ckq(tz)) using the
time index on checkpoints, then access tuples in the operand data
streams appended after t;. “Continue” the execution of the query

(e.g., in this case Q) using the tuples thus accessed until t.

Since not all tuples of the operand data streams can be randomly accessed, one
can regard this approach as creating a sparse index on data streams using Q. The
sequence of checkpoints and the time index of checkpoints form the foundation
of the generalized data stream index proposed in this chapter. For convenience,

we refer to the query Q as the indezing condition’.

5.1.2.1 Creating Checkpoints

We first define the term state predicate, and then discuss its role in the generalized

data stream indexing technique and how checkpointing is performed.

Roughly speaking, a checkpoint can be viewed as a snapshot of the current
database content as of the checkpoint time. That is we store the tuple identifiers
(TID’s) of tuples that are active as of the checkpoint time as checkpoints, and
the temporal relations are periodically checkpointed. However, in general storing
the snapshot database content is extremely expensive. To limit the tuples that
we are interested in and are stored in the checkpoints, we allow using a state

predicate for every relation, which is defined as follows.

! More generally, the indexing condition Q can be a query that subsumes a set of frequently
asked queries. For example, Q can be O intersect—join(x,¥){X,Y).
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Figure 5.2: Time index on checkpoints

Definition 5.1 A state predicate for a relation R, denoted as P|., is a query
qualification on R. That is, P|, is a conjunction of several comparison predicate.
O

In other words, only those tuples which satisfy the corresponding state predicate
will be part of the checkpoints. The flexibility of specifying which tuples are of
most concern allows us to build a generalized data stream index.

Given an indexing condition Q = Opxv)(X,Y) € TSJ;, we can derive state
predicates for both data streams X and Y. A state predicate for data stream
X, denoted as P|x, is obtained from P(X,Y) by substituting join predicates and
comparison predicates that involve the data stream Y with “true”®. That is,
P|, contains only comparison predicates involving only X in P(X,Y). The state

predicate for the relation Y denoted as P|, is defined analogously.

Example 5.1 Consider the film industry examples presented earlier. The
query to find the head of a studio that the director “Fred” worked for at the

same time is:

g intersect—join(Studio,Dir) A Studio.Sname=Dir.Sname A Dir.Dname=Fred (Stule,Dlr)

? Recall that we consider only conjunctions of join and comparison predicates as query
qualification.



The state predicate for the relation Dir is “Dname=Fred” while the state predi-

cate Tor the relation Studio is “true”. O

The above “top-down” approach derives state predicates using the given in-
dexing condition. Alternatively, users can provide the state predicates for indi-
vidual data stream, i.e., a “bottom-up” approach. In this way, users specify a
state predicate for each data stream. For example, suppose the state predicates
for data streams X and Y are P|, and P|, respectively. The indexing condition,

which is a more general query (by default), is:

Q = O-PI,‘ A Ply A intersect.—join(X,Y)(X'sY)-

Given the state predicates P|, and P}y, we can now define a checkpoint. Three

kinds of information are stored in a checkpoint:

o the checkpoint time,
¢ the state information, and

o the data stream pointers.

For a checkpoint ckq(t) performed at time point t, let the checkpoint prior to
cky(t) be denoted as ckq(t™) performed at time t~, and the next checkpoint be

performed at time t*. The checkpoint cky(t) contains®:

1. The checkpoint time is t.

2. State information: there are two cases depending on whether the data

stream is sorted on TS or TE timestamp:

TS — We first consider when the data stream X is sorted on the TS times-
tamp. The state information of the data stream X, denoted as sy(t),
contains the tuple identifiers (TID’s) of all tuples # € X such that
“r TS<t A t< z.TE A P|,” holds, where P|, is the state predicate

for the data stream X. Basically the state information contains tuples

3 That is, t~ < t < t*. If there is no such cky(t™), ckq(t™) and t~ are assumed to be an
empty set and 0 respectively.
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which are active as of the checkpoint time and satisfy the state predi-
cate. Note that tuples in s.(t) either belong to sx(t™) or start during
the interval [t7,t).

TE — We now consider when the data stream X is sorted on the TE times-
tamp. The state information of the data stream X contains the tuple
identifiers (TID’s) of all tuples € X such that “z.TS<t* At*< z.TE
A P|,” holds, where Pl is the state predicate for the data stream X.
Basically the state information contains tuples which are active during
the interval [t,t*) and satisfy the state predicate. Note that the state

information at checkpoint time t depends on the next checkpoint time
t¥.

The state information for data stream Y can be obtained analogously.

. Data stream pointer: there are two cases depending on whether the data

stream is sorted on TS or TE timestamp:

TS — The data stream pointer for X contains the TID of tuple z € X such
that z has the smallest TS value in X but greater than or equal to t.

TE — The data stream pointer for X contains the TID of tuple z € X such
that z has the smallest TE value in Y but greater than or equal to t.

Using the data stream pointer, one can access the first tuple that is ap-
pended in the data stream after the checkpoint time t (and subsequent
tuples as well). The data stream pointer for data stream Y can be obtained

analogously.

In addition to the three basic types of checkpoint information for each operand

data streams X and Y, one can also store the TID’s of matching tuple pairs as

the incremental result in checkpoints. Given a checkpoint cky(t) at time t and

its next checkpoint time t*, we denote X, and Y, as the portion of data streams
X and Y respectively that are appended during [t,t1). Note that X, and Y; can
be accessed via the data stream pointers dsp«(t) and dspy(t) respectively. We
also denote Si(t) and S,(t) as the tuples retrieved using the TII}’s in the state

information s (t) and s,(t) respectively.

The incremental result of Q stored at t, denoted as irg(t), contains the TID’s

of the following matching tuple pairs:
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checkpoints " cky, (to) | ckq,(t1) | ckq (t2)
£ to £y t,

sx(t) {x0, x1} | {x1, X3} {xs, Xa}
dspx(t) {x2} {xi} {x7}

Table 5.1: Checkpoints of Q; in Figure 5.3

Op( (X USk(t)), (YeUSy(t)))

that is, the tuple pairs that satisfy the join condition. A pair of TID’s need not
be stored if both TID’s have been stored in the state information at checkpoints.
Generally speaking, storing incremental result of Q may require a significantly
large amount of space and thus it is likely very expensive. When we discuss
the query processing algorithms in the next section, we will focus on the three
basic types of checkpoint information which can always be used to compute the

incremental result.

We illustrate the approach using several examples. We start with Example 5.2

in which the indexing condition is a simple select query on a data stream X.

Suppose the data stream X(S,U,TS,TE) is sorted on TS and
consider Q; = Gys10(X) as the indexing condition. That is, the state predicate

Example 5.2

Pl is “U>10". The checkpoint ck at time point t contains:

1. The checkpoint time is t and dspy(t) contains the TID of tuple x € X as

defined earlier.

2. The state information at checkpoint time t, s,{t), contains tuples & € X
such that “z.TS<t A t< z.TE A z.U>10" holds.

Consider an example data stream in Figure 5.3, in which we assume that all
tuples satisfy the state predicate “U>10". Assuming there is no checkpoint prior
to ckq,(to), the contents of checkpoints cky,(tg), ckq,(t1) and ckq,(t2) are listed
in Table 5.1. i
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Figure 5.3: Data stream sorted on TS: checkpointing the query Qi

Example 5.3 Consider that both data streams X and Y are sorted on the
TS timestamp as shown in Figure 5.4, and a query Q2 = Tintersect—join(x,¥)(X,Y)

as the indexing condition:

1. The checkpoint time is t, and the data stream pointers contains the TID’s

of tuples from X and Y as defined earlier.

2. The state information at checkpoint time t contains tuple z € X and tuple
y € Y that are active at t. Note that the state predicates (P|¢ and P|y) are

“true” in this example.

In Table 5.2 we list the three types of information in the checkpoints as well as

the incremental result that can be stored in checkpoints. a

Example 5.4 This example differs from the previous one in that both data

streams X and Y are sorted on the TE timestamp as shown in Figure 5.5:

1. The checkpoint time is t, and the data stream pointers contains the TID’s

of tuples from X and Y as defined earlier.

2. Suppose the next checkpoint time is determined to be t*, the state infor-
mation at checkpoint time t contains tuple ¢ € X and tuple ¥y € Y that are
active at t¥. As in the previous example, the state predicates (P|, and P|)

are “true”.
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Figure 5.4: Data streams sorted on TS: checkpointing the query Q;

checkpoints || ckq,(to) | ckg,(t1) ckq, (t2} ckq,(ts)

t to t t2 t3

sx(t) {} {x0, x1} {x1, xa} {xs, X6}

sy(t) {} {yo, y1} {ya} {}

dspy(t) {x0} {x2} {xa4} {x7}
(

dspy (t) {yo} {yz2} {va} {ys}
irg, (t) {} { <x1,y2>, | { <xa,73>, [ { }
<X2,¥1>, <Xy, Y4,
<X2,¥2>, <Xs5,¥4> }
<X3, ¥1>,
<xX3,y2> }

Table 5.2: Data streams sorted on TS: checkpoints of Q; in Figure 5.4
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Figure 5.5: Data streams sorted on TE: checkpointing the query Q;

In Table 5.3 we list the three types of information in the checkpoints as well as

the incremental result that can be stored in checkpoints. O

Let us now discuss the situations when tuples are appended to the data stream.
Recall that we adopt the append-only update policy. We first consider the data
streams sorted on the TS timestamp, i.e., current tuples are also in the data
streams. When a current tuple (i.e., <s,u,ts,now>) is updated (i.e., now is set
to a specific value), its TID may have to be stored at multiple checkpoints as
state information if the tuple satisfies the corresponding state predicate?. For
data streams sorted on the TE timestamps, the corresponding TID may have
to be stored at multiple checkpoints when a history tuple (i.e., <s,u,ts,te>) is
appended to the data stream.

5.1.2.2 Time Index on Checkpoints

Given a sequence of checkpoints as illustrated in Figure 5.2, one can easily build
a time index on checkpoints based on the checkpoint times. That is, given a time
point t, the checkpoint taken at t, or the previous checkpoint or the next check-

point can be accessed directly. Moreover, conventional methods such as Bttree

% From a different perspective, we are allowing late updates and therefore the state infor-
mation at some checkpoints may have to be refreshed accordingly.
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checkpoints || ckq,(to) | ckay(t1) ckq, (t2) ckq,(ts)

{ to t1 to t3
sx(t) {x0, xa} | {x1, Xa} {xs, Xe} {}
sy(t) {vo, y1} | {ys} {} {}

(t) {xo} {xo} {x1} {xs}
dspy(t) {yo} {yo} {ys} {ys}

irg, (t) {1} { <x1, 52>, | { <xa,y3>, | { }
<X2, YI>1 <X4, y4>a

dspy

<X2,¥2>, | <Xs,¥4>}
<X3,¥1>,
<X3,Y2> }

Table 5.3: Data streams sorted on TE: checkpoints of Q2 in Figure 5.5

can be used for implementing this type of indexing. For example, checkpoints
are stored at leaf nodes of a B*tree as variable length records.

5.2 Query Processing using Data Stream Index

In this section, we discuss the processing algorithms for some types of complex
temporal snapshot or interval queries using the proposed checkpointing and in-

dexing scheme, and discuss their limitations.

Suppose we have a generalized data stream index based on the indexing con-
dition Q@ = Op(X,Y) € TSJ;. Let Op:(X,Y) € TSJ; and Q' be a query of the
following form:

Q' = Op(X,Y) intersect [t,,t.), or
Q' = Op:(X,Y) as of ts, where ts£now.

In order to use the data stream index for processing Q’, one has to obtain two
predicates from P’ as in the case for state predicates — P’|y and P’|y. That is,
P’]x (respectively P’|,) is obtained by replacing all terms in P’ that involve Y
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(respectively X) with “true®®. Furthermore, we require that Pl = P|x which
is the state predicate that is used to determine and store the state information
of data stream X. Similarly, we require that P’y = P[,. The implications are
necessary because the state information in checkpoints obtained using P has to
be a superset of the state information that would have been obtained using P’
instead of P, and therefore the checkpoints contain sufficient information for query
processing. The query processing algorithm that uses the data stream index for

the intersect queries is stated as follows.

Algorithm 5.1  Using the State Information and Data Stream Pointers.

1. Given the query specific interval [te,te), access the latest checkpoint, de-
noted as ck,, prior to t, using the time index on checkpoints. Let the check-
point time of ck, be t, and the data stream pointers be dspx(t) and dsp,(t).
If a data stream is sorted on the TE timestamp, the latest checkpoint prior

to t., denoted as cke, 1s also accessed.

2. Retrieve the tuples using TID’s in the state information that are stored in
the checkpoints ck, (or in ck, if the data stream is sorted on TE), and apply
the predicates P/|, and P’|, on tuples in X and Y respectively.

3. Retrieve tuples in X and Y which are appended during [t,t.) by following
the data stream pointers dspy(t) and dsp,(t), and apply the predicates P’|,
and P’|, respectively.

4. The set of all tuples from steps (2) and (3) contains all the tuples that
should participate in the join. Select tuple pairs that satisfy the user query
qualification P’. Note that the tuples that have to be kept in the workspace

are limited to tuples spanning a common point in time. ]
For the as of queries, the query processing algorithm remains essentially the same
except:

In the step 3, tuples that are appended during the interval of [t,t,]

(instead of [t,t.}) are accessed.

% More restrictive predicates (P’|x and P’|,) may be obtained by using constraint propagation
algorithms {U1182, Chak84, Jar84] which will also be described in a later chapter.
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With the data stream indices, it can be shown that the following classes of

queries can also be processed using the above algorithm:
1. Op/(X) intersect [tg,t.), where P’ = P|,.

2. Op(Y) intersect [tst.), where P’ = P,.

Example 5.5 Consider the query iniersect—join(x,¥)(X,Y) intersect [t,,t.) in
Example 5.3 where:

e the indexing condition is Cintersect—join(X, Y} (X, Y ),
e both data streams X and Y are sorted on TS, and

e the checkpoints of the corresponding data stream index are shown in Fig-
ure 5.4 and Table 5.2).

In step (2), we retrieve tuples {xo,x1} and {yo,y:1}. By following the data stream
pointers {{x2,y2}), the join operation in step (4) produces tuple pairs: { <x1,y1>,
<X1,¥2>, <X1,¥3>, <Xz, ¥1>, <X2,¥2>, <X3,¥1>, <X3,¥2>, <X3,¥3>, <X4,¥3>,
<X4,¥4>, <Xs,y4> }. Note that had the incremental results been stored in
checkpoints, this query can also be processed by using both the state information

and incremental results (i.e., without using data stream pointers). o

Let us consider another processing strategy in which only the data stream
pointers stored in checkpoints are used. Suppose that the data streams are sorted
on TS, and we are interested in retrieving tuples that started during [ts,t.). For

example, consider:
¢ the indexing condition is Q = Op(X), and

o the user query is Q' = Tpi A X.TS between [ts,te) (X)a
where P’ is a comparison predicate involving only non-time attributes (it is

not required that P’ implies P or vice versa).

For this type of queries, the query processing algorithm that uses the data stream

pointer only is as follows.
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Algorithm 5.2  Using the Data Stream Pointer only.

1. Access the latest checkpoint, denoted as cks, prior to t; using the time

index. Let the checkpoint time of ck, be t.

2. Retrieve tuples which start in [t,t.) by following TTD)’s in dsp«(t) and apply
the query qualification P’. (]

Example 5.6 Consider a query Oys10 a X.TS between [tto) (%) and the example
data stream in Figure 5.3. The checkpoint prior to ts is cky(to). Following the
dspx(to), i.e., {x2}, tuples x;, X3, x4, X5, and Xe are retrieved in step (2). When
the tuple xg is accessed, step (2) stops and Xg is discarded from the response as

its TS value is greater than t.. The query response is {xs, X4, Xs}. O

Let us now discuss the limitations of the proposed checkpointing and index-
ing scheme. In the proposed scheme, only TSJ; queries and the select queries
(both without comparison predicates involving timestamps) are allowed as the
indexing conditions. Recall that for TSJ; join queries, the lifespans of all par-
ticipating tuples have to intersect with each other. To understand the impor-
tance of this restriction, let us consider “before-join(X,Y)” whose join condition
is “X.TE<Y.TS” as the indexing condition. That is, tuples that satisfy the join
condition do not necessarily intersect. Given a tuple z € X which starts at some
time t, we note that » may join with theoretically infinitely many “future” tuples
y € Y which start after the tuple  ends. Or conversely, the tuple y € Y may
join with theoretically infinitely many “past” tuples « € X which ends before the
tuple y starts. For the query processing algorithms that are presented earlier to
work properly, the TID of tuple z has to be stored at every checkpoint after the
time point t. This requires significant storage space and renders the proposed
scheme inefficient. With the restriction, we only need to store in a checkpoint
the TID’s of tuples that span the checkpoint time.
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5.3 Quantitative Analysis

We consider the overhead of storing the state information in checkpoints. First,

we list some required notation:

e ) denotes the mean rate of insertion of tuples into the relation.
e Ty denotes the average tuple lifespan.

e TR, denotes the relation lifespan.

e sizeqyple denotes the tuple size in number of bytes.

e size,q denotes the TID size in number of bytes.
Using Little’s result [Lit61], the average number of active tuples of a relation at
a random time, denoted as 1, is given by:
A= AT,

A reasonable assumption is that the number of active tuples at checkpoint times

is also T. Similarly, the total number of tuples in the relation is:
A TRy

Suppose that the selectivity of the state predicate q for the state information of
data stream X is oy, i.e., o4 is the fraction of tuples in X that satisfy q. The
number of TID’s stored in the state information is:

Ogq Okl = crq-nck-)\-Tls

where ng is the number of checkpoints that have been taken. We define the
overhead as the ratio of the storage size for state information over the relation
size:

Oq - ek - T1s - sizega/ { TRy - sizequple }

This quantity is consistent with our intuition that the overhead is smaller for (1)
relations with relatively short tuple lifespans (represented by the ratio T,/ TRy,),

and (2) more selective state predicate (i.e., o4 is smaller).
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5.4 Optimization: Reducing Storage Space

For the data stream indexing technique that is presented earlier, the state infor-
mation may still require a large amount of storage space when many qualified
tuples span the checkpoint times. The required storage space can be reduced as
follows. Consider two time points i~ and t where t~ < t as shown in Figure 5.6.
Suppose that there are only a few active tuples at the time point t~ and there
are a lot of insertions during the period between time points t7 and t. If we
had chosen the time point t as the checkpoint time, many tuples may have to
be included in the state information. From this point of view, we may prefer to

choose t~ (whose tuple “density” is low) as the checkpoint time.

One can utilize this idea differently. Here we choose the time point t as the
checkpoint time. Instead of storing in dspx(t) the first tuple of X that is appended
after t, we store the first tuple of X which is appended after t~. As illustrated
in Figure 5.6, dspy(t) contains the TID of tuple x; instead of x3. That is, we
“reset” the data stream pointer such that it points “backward” by some distance
to a point where the “density” of tuples is low. The state information s,(t)
now contains the TID’s of tuples which span the entire interval (t7,t). Using
the query processing algorithms presented earlier, processing queries would have
to access more tuples, i.e., those which are appended during the interval (t7.t).
The tradeoff is that the state information s.(t) contains fewer tuple identifiers.
Below we present a quantitative analysis of this storage reduction optimization

alternative.

In the following we assume that all tuple lifespans are independent and ex-
ponentially distributed with mean T),. Suppose that the distance between t~
and t is T for all checkpoint times t. We further suppose that the unit cost of
reading a tuple using the data stream pointer (i.e., sequentially) is costeq and
that of reading a tuple using TID is costyang which is generally more expensive.
The expected value of the overhead of storing state information at all checkpoints

becomes:
Ply>t] ‘o4 - ne - Ty - sizeva/ { TRy - sizewyple}

where y is a random variable representing the tuple lifespan and Ply>t] is the
probability that a tuple would span the entire interval (t~,t). The probability
Ply>t] equals:
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1 — Ply<t] = e/

Note that the number of TID’s (per checkpoint) that are eliminated from being

stored in the state information is:
(1=e W) g - ATy,

and the cost of reading the tuples via these TID’s is:
Cua = (1— e'iﬁ:) gt A - T + coStrand

The number of extra tuples that have to be read sequentially using the “reset”

data stream pointer is A -1 and the cost of reading these tuples is:
Cieq = A1 cOSteeq
The slopes of Cig and Cieq at t =0 are:

dCyig I

dt li=0

dCseq
dt

= 0g* A COStrang

o = A - COStgeq

Let C, be the ratio of (¢ cOStrand/COstseq). For C<1, there will be no intersection

at any point in time other than time point 0 (Figure 5.7(a}). Let us now consider

the cost difference:
D= Ct,id - Cseq

An upper bound for the cross-over point (denoted as t, in Figure 5.7(b)) is:

T __ ggqcostiand T __ LT
tmax = Cost,::n ‘Tls = Cr Tls

The largest cost difference can be obtained by solving the following equation:

%—E:— = A (O'q + COStrang ° B_E/T_l' - COStseq) = 0
i.e., E = loge(zﬂ'_cm) . T—]S- = loge(cr) . T_ls

costieq

Solving the equation “D=0" numerically, the cross-over points (t,) for several C,

values are:

for G, = 1.5 Ty, T, = 0.87 Ty
for C; = 2 Ty, To = 1.59 Ty

We note that as C, exceeds 3 Tj,, the cross-over point approaches tayx.
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5.5 Previous Work and Conclusions

Several temporal indices have recently proposed (e.g., [Rot87, Gun89, Kol89,
Lom89, Elm90, Kol91]); they are extensions of traditional dense indexing methods
such as B*tree or multi-dimensional indices such as R-tree, and are based on
explicit timestamp values in tuples. One can compare the storage requirement
of these methods with the proposed scheme. For example, if we create a Bftree
index on the TS timestamp, there is an index entry in the Bttree for every tuple
in the relation. Recall that the relation lifespan is TR)s and the rate of insertion
of tuples is A. The totat number of TID’s stored in the leaf nodes of the B¥tree,

which is also the total number of tuples in the relation, is:
B - A . TRIS

Assuming that the state predicate in our proposed scheme is “true” and thus the
selectivity (o4) is 1. The number of TID’s stored in the state information of all

checkpoints is:
CK = ng-A-T

where ny is the number of checkpoints that have been taken®. The above two

figures would be the same when:
Nepg = TR]_B/ T;

Let us consider the dif’zrence in the number of TID’s, i.e., D = B—CK. The

derivative of I) with respect to time is given by:

dD _ VTR oy LT L dngg
ac A dt A-The dt

Note that the relation lifespan is continuously advancing and thus %%11 is 1.
Hence, the difference (D) remains unchanged if we checkpoint the query at a rate
of:

o = 1T,

However, if the checkpointing frequency is smaller, the data stream index requires
less storage space. Moreover, the checkpointing frequency should be smaller than

1/t, (where T, is the cross-over point of the costs Cyg and Cop in Figure 5.7(b))

6 More precisely, each checkpoint also contains a data stream pointer. On the other hand,
there are fewer non-leaf noces in the time index on checkpoints compared with the B tree.
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such that the storage reduction optimization strategy discussed earlier can be

employed.
Other related work includes [Sto89, Val87]. In {Sto89], partial index has been

proposed and is related to the notion of indexing condition presented in this
chapter. Storing the TID’s of joined tuple pairs as join indices is proposed in
[Val87] and is similar to the idea of incremental results that can be stored in

checkpoints.

To summarize, we propose a checkpointing and indexing scheme that is suit-
able in temporal database environment. The generalized data stream index can
be used to efficiently process a subclass of complex joins qualified with a snapshot
operator, especially when the query-specific time interval (e.g., in as of queries)
is relatively short compared with the lifespans of data streams. This issue has
not been addressed in other indexing approaches. Furthermore, it is envisioned
that existing software (e.g., Bttree) can be reused in the implementation of the
indices. We also study the storage cost of this approach analytically and propose
optimization techniques for reducing the storage requirement. Finally, we note
that for large data streams which are less frequently accessed, a conventional
index may need a large disk space and thus data stream indices become very

attractive alternatives.
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CHAPTER 6

Query Processing in Multiprocessor Database

Machines

There are several classes of temporal queries. Among the most difficult to process
is the multi-way joins (i.e., complex temporal pattern queries) whose join condi-
tion often contains a conjunction of several inequality join predicates. In general,
these queries are often expensive to process. The difficulty of the problem can
be further increased for the large temporal relations. Recently, there has been a
growing interest in multiprocessor database machines which appear to have bet-
ter price-performance than traditional DBMSs residing in mainframe computers.
With the availability of relatively cheap parallel database machines, one should
and can exploit parallelism for processing this type of queries — an approach that
is seldom pursued. Moreover, a crucial design issue in these database machines is
the fragmentation strategy which specifies how tables are fragmented and stored
in the database system. The fragmentation strategy has a great impact on the
efficiency of query processing. However, fragmentation strategies for temporal

data have been largely ignored in temporal database environment.

In Chapter 4 we propose stream processing algorithms for processing tempo-
ral inequality join and semijoin operations. In Chapter 5 we propose the check-
pointing and indexing scheme for processing temporal snapshot and interval join
queries. In this chapter, we develop parallel strategies for TSJ; join queries based
on the stream processing paradigm and the checkpointing and indexing scheme,
and show the parallel strategies can be attractive alternatives. Recall that for a
TSJ1, all participating tuples that satisfy the join condition must share a common
time point. For an inequality join of two relations, a straightforward approach
is to dynamically and fully replicate the smaller operand relation among all pro-
cessors. The parallel strategies proposed here are based on partitioning temporal
relations on timestamp values. An analytical model is developed for estimating

the number of tuples that have to be replicated; this model indicates in what
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situations only a fraction of a relation is replicated among processors as opposed

to fully replicating the entire relation.

Another subclass of complex queries is the snapshot and interval join queries
which are join queries as of a certain time point or over a certain time interval in
the past. We also discuss optimizations can be achieved when these queries are

processed using our proposed parallel strategies.

The organization of this chapter is as follows. Section 6.1 is devoted to a
discussion of various existing fragmentation strategies for temporal relations. The
parallel query processing strategies and optimization alternatives will be the main
focus in Section 6.2. Implementation issues of the parallel strategies will be
addressed in Section 6.3. Section 6.4 contains a discussion of other possible
parallel query processing strategies. Finally, we discuss the related work and

conclusions in Section 6.5.

6.1 Temporal Data Distribution

We consider a generic “shared-nothing” multiprocessor database machine [Sto86,
DeW90] as illustrated in Figure 6.1, which has n nodes connected via an intercon-
nection network. Each node has a processor, some main memory and secondary
storage devices such as magnetic disks. In this section, we discuss how a time-
interval temporal relation can be partitioned and distributed in such a database
machine, and the tradeoffs involved with respect to the efficiency of processing
the various classes of queries: select, join and snapshot queries as listed in Chap-
ter 3. Readers should keep in mind that whether or not a query qualification
involves the partitioning attribute generally has a predominant impact on query
processing efficiency, and therefore a specific fragmentation strategy can facili-
tate processing some kinds of queries while it may cause other queries to be more

expensive to process.

A number of well-known fragmentation strategies have been proposed and
implemented in multiprzcessor database machines {Ter85, DeW90, Gha90]. They

include:

1 We use the terms nodes and processors interchangeably — a processor also refers to its
processing capability and associated disks.
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Figure 6.1: A generic “shared-nothing” multiprocessor database machine

e round-robin,
¢ hashing, and

¢ range-partitioning.

Hashing and Round-robin We first discuss the hashing and round-robin
strategies as both strategies attempt to spread the workload more evenly among
processors by distributing tuples randomly. For our discussion, we consider re-
lations X(S,U,TS,TE) and Y(S,V,TS,TE) which can be fragmented on any at-
tributes such as S, V or TS2. We first consider the case in which both relations

are fragmented on their surrogates, i.e., S is the partitioning attribute.

Select queries with an equality predicate involving the partitioning attribute
(such as “X.5=1") are processed by a unique processor. On the other hand, selec-
tion on non-partitioning attributes (e.g., “X.TS=50") and even range-searching
on the partitioning attribute (e.g., “50<X.S<100”) generally involves all proces-
sors. However, the parallel search is efficient only when the number of tuples
processed on each processor is relatively large. The reason is that the overhead
of starting and ending a subtransaction on a processor becomes small relative to
the total work on a processor when the processor has to work on a large amount of
tuples. If the select query has a highly selective predicate and there is an index on
the search attribute, the parallel search is relatively inefficient as most processors
would have wasted their resources on starting and committing a subtransaction

which performs little work on searching tuples.

Let us now consider join queries, A naive approach to achieve parallelism is

to fully and dynamically replicate the smaller relation at all processors, which

2 The partitioning attribute can be a single attribute such as § or a “composite” attribute
composed of multiple attributes such as § and TS.
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is very expensive unless the relation is small. This expensive data movement
does not occur when the join condition implies an equality predicate on the par-
titioning attribute (i.e., “X.S=Y.S”) and both operand relations are fragmented
using the same partitioning function (e.g., the same hash function). In general,
data movement is required for inequality joins such as temporal join operations.
For example, consider contain-join(X,Y) whose join condition is “X.TS<Y.TS
A Y.TE<X.TE”. We note that tuples with close (but unequal) TS values are
likely to be stored at different processors due to the randomness of hashing or
round-robin strategies regardless of the partitioning attribute. Unless there is an
additional qualification that limits the data that has to be examined, an expen-
sive data movement is required prior to the execution of local joins, in parallel,

on each processor.

A snapshot query generally requires all processors to participate since qual-
ifying tuples are likely to be stored at all processors. As in the case of a select
query, indexing techniques such as in [Elm90, Kol90] and the generalized data

stream indices in Chapter 5 may be used to speed up the tuple retrieval locally.

Choosing the partitioning attribute involves several issues. First, the deci-
sion will depend on the frequency of various queries. For example, if most (both
select and join) queries involve the surrogates, the surrogates may be good candi-
dates for the partitioning attribute. Second, the decision may also depend on the
attribute domain itself. As an example, suppose the domain of a time-varying
attribute consists of on!y a small number of entities, say 50. For large relations,
hashing on this attribute may produce a skewed data distribution and thus may
have an adverse effect on query processing efficiency. Note that although surro-
gates are guaranteed to be unique in the database system (i.e., the values will not
be re-used), a surrogate value may appear in a temporal relation more than once.
To use the uniqueness of data values as the criterion of choosing the partitioning
attribute, a composite attribute <S,TS> may be a better candidate®.

Range-partitioning The range-partitioning strategy can be characterized by

clustering and storing tuples with close (or equal) partitioning attribute values

3 For continuous time-varying attributes {i.e., each object has one attribute value at any
point in time), a value of the composite attribute <surrogate,timestamp> can uniquely de-
termine a tuple. For this reason, one can also choose <S,TE> as the partitioning attribute.
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Figure 6.2: Range-partitioning along a non-time attribute

at the same processor. That is, the partitioning attribute is also the clustering
attribute. We consider three types of range-partitioning strategies for a temporal
relation Y(S,V,TS,TE).

Non-time Attribute The first strategy is to partition the relation Y along
a non-time attribute dimension (e.g., V) as illustrated in Figure 6.2. This strat-
egy partitions the attribute domain into a fixed number of intervals, and tuples
in the same range are stored at the same processor. For example, as shown in
Figure 6.2, tuples with V values in the range of [v1,v;) are stored in processor p;.
The query processing algorithms for select, join and snapshot queries under this
partitioning strategy are similar to the hashing and round-robin schemes that are
discussed earlier. For example, select queries with an equality predicate involv-
ing the partitioning attribute (e.g., “V=1") are executed in a single processor.
However, there are some (and perhaps slight) differences. First, range search
queries on the partitioning attributes may sometimes be executed on only a sub-

" is performed only at

set of processors. For example, a range search “Y.V<vg’
processors p; and p;. For an equi-join involving the partitioning attribute {e.g.,
“X.U=Y.V"), the join can be executed in parallel without data movement if the
join attributes are the partitioning attribute and both relations are fragmented

using the same range-partitioning function.

In the simplest application of range partitioning, the number of partitions is
the same as the number of processors in the system and therefore each processor

is assigned a single partition. Recently it has been proposed in [Gha90] that

93



"1 P2 Pa P4

.
b - - - - - -
- e - - -———— -

» time

tl tg t3 ta t'5

[
=2

-
-3

Figure 6.3: Range-partitioning along a timestamp

the domain is partitioned into a large number of smaller ranges and thus each
processor is responsible for more than one partitions. This approach to processing
select queries can be more efficient while keeping the workload among processors

more balanced at the same time.

Time Attribute The second strategy is to partition the relation along a
timestamp (e.g., TS) as illustrated in Figure 6.3. For example, tuples that start
during the interval [t;,t;) are stored in processor p;. Using this scheme, equi-joins
on non-partitioning attributes (e.g., non-time attributes) become more expensive
to process as many tuples have to be moved among processors. However, parti-
tioning relations based on a timestamp may be a good alternative for temporal

query processing — below we discuss this scheme in more detail.

Let the processors be denoted as p;, for 1 <1 < n. There are a total of ny;

intervals in the partitioning function:

[tlutZ)v teey [t'npi""l’t'npi)’ [tnpi’tnpi+1)'

We refer to t; and [t;,t;11) as partitioning boundaries and partitioning intervals
{or simply partitions) respectively. Partitioning relations on the TS (respectively
TE) timestamp is called TS (respectively TE) range-partitioning. As the relation
lifespan is assumed to be [0,now), by convention t; is 0 and ty 41 is now. In
general, we require that the number of partitions be at least as large as the
number of processors, i.e., nyi>n. For simplicity, we adopt the hybrid range-

) [ty
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partitioning scheme in [Gha90]: an interval [t;,t;41) is assigned to p; if i equals j
modulo n. For TS range-partitioning, processor p; stores a fragment of X, denoted
as X;, which contains tuples of X that start during the interval [t;,t;y1), i.e., “X.TS
between [t;,t;41)” holds. Similarly for TE range-partitioning, X; contains tuples

that end during the partitioning interval.

Consider that both relations X and Y are TS range-partitioned using the same
partitioning function. That is, tuples that start during the interval [t tiy1) are
stored at processor p;. For contain-join(X,Y), tuples with close TS values are
likely to be clustered within the same processor and therefore a pair of tuples
that satisfy the join condition are likely to be stored at the same processor.
However, a partitioning boundary may lie between the start times of tuples z
and y that satisfy the join condition and thus tuples @ and y are actually stored
at different processors. In short, processing temporal join in parallel may still

require dynamically copying some fraction of tuples between the processors.

For range search queries and snapshot select queries involving the partitioning
attributes, we note that the queries may sometimes be executed on only a subset
of processors. For example, suppose we want to find the attribute values as of a
certain time t, which fails in the partition [t;,t;41). As qualified tuples can start
at any time earlier than t,, processors from p; to p; (which may be only a subset
of processors) would generally have to participate in the search, unless there is
some additional information which would limit the search to a smaller subset of

processors.

In Chapter 4 we note that sorting relations on different timestamps may
improve the efficiency of processing some queries in a centralized DBMS. For
example, processing contain-semijoin(X,Y) using stream processing algorithms
requires only minimal buffer space (enough for one tuple from each relation) when
X is sorted on TS and Y is sorted on TE. Consider another example query: meet-
join(Y,X) whose join condition is “Y.TE=X.TS”. These queries may be more
efficiently processed if the relation Y is range-partitioned on the TE timestamp
and X is range-partitioned on the TS timestamp. In other words, selecting either
TS or TE timestamp as the partitioning attribute may also depend on the types

of common temporal join operations.
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Figure 6.4: Two dimensional range-partitioning a temporal relation

2-dimensional Partitioning The above two range-partitioning schemes
can be considered as one dimensional as there is only one partitioning attribute.
A third strategy is to partition the relation in a two dimensional fashion; one
can imagine we superimpose a Grid File structure [Nie84] on the search space.
Each grid (i.e., rectangle) can be of different size and is assigned to a specific
processor. One possible approach is illustrated in Figure 6.4: the search space is
partitioned horizontally and vertically into regular bands, resulting in a number
of rectangular grids of the same size. Grids within a vertical band are assigned
to processors in a “staggering” fashion. For example, processor p; stores grids

with solid boundaries as shown in Figure 6.4.

We note several interesting points with respect to query processing using
multi-dimensional partitioning compared with the one dimensional schemes. For
simplicity of explanation, let us compare the TS range-partitioning scheme and
the two dimensional scheme (i.e., the TS timestamp is the partitioning attribute
in both cases). For the two dimensional scheme, a range search may be executed
on a subset of processors (as in the TS range-partitioning scheme). For exam-
ple, tuples with condition “Y.V>v, A Y.V<vz A Y. TS=t,” can be retrieved by
processor py. Range search on only one partitioning attribute, however, involves
some optimization issues. For example, in the TS range-partitioning scheme (i.e.,
one dimensional), a search on “Y.TS=t,” is performed only at a single proces-
sor (i.e., p4) whereas in the 2-dimensional scheme, the search is performed at all
processors. That is, the two dimensional scheme attempts to spread the work-
load across all processors and thus reduce the query response time. Ideally, the
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reduced query response time would be approximately about 1/n (where n is the
number of processors) of the response time in the one dimensional scheme plus
the overhead associated with coordinating the parallel search. This strategy may
be beneficial if the number of tuples processed on each processor is relatively
large. When the number of tuples processed is small (e.g., only a few tuples were
inserted at time point t,), the gain due to parallelism may not be offset by the
associated overhead. For an equi-join that can be executed in parallel without
data movement, the join condition has to imply “X.U=Y.V A X.TS=Y.TS” since
there are two partitioning attributes. Note that the class of join queries to be
processed in this fashion is smaller as the join condition is more restrictive. For
this reason, join queries and snapshot join queries are generally more costly to

process.

In the remainder of this chapter, we will further develop parallel query pro-
cessing schemes based on range-partitioning on timestamp and show that these
schemes may be good alternatives for complex temporal join queries and snapshot

queries.

6.2 Parallel Temporal Query Processing

In this section, we discuss parallel processing strategies for complex temporal

queries based on the following approach:

Temporal relations are range-partitioned along the time dimension.
Each processor will work independently on the partitions that are
assigned to it. The query response is the union of results from all

processors.

We first briefly revisit the notion of checkpointing the execution state of a query
that is presented in the previous chapter. Based on this notion we show that
once sufficient state information has been constructed at every partition (i.e.,
replicating some tuples between processors), queries can be processed in paral-
lel without additional data transfers. We discuss several optimization strategies
and present a preliminary quantitative analysis of our approach. Before we pro-
ceed, we differentiate two classes of range-partitioning function: homogeneous

and heterogeneous, which are defined below.
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Figure 6.5: Constructing state information at partitioning boundaries

Definition 6.1 Relations are referred to as homogeneously range-partitioned
if their partitioning functions are identical, i.e., all the partitioning boundaries
are identical. If different range-partitioning functions are used, it is referred to

as heterogeneous. O

In this section, we focus on TSJ; join queries whose operand relations are homo-

geneously range-partitioned.

6.2.1 State Information at Partitioning Boundaries

We now outline the parallel processing strategy for TSJ; queries. In Chapter
5, we discuss the notion of periodically checkpointing a temporal query execution
along the time dimension. At every checkpoint, we store the checkpoint time,
state information and data stream pointers as checkpoints. This notion of peri-
odic checkpointing can be easily applied to parallel query processing in database

machines as described below.

The analogy to pericdic checkpointing in parallel database machines is that
temporal relations are homogeneously range-partitioned on a timestamp (TS or
TE), i.e., processor p; is assigned an interval [t;,ti+1) as depicted in Figure 6.5.

One can simply assume that the data stream pointers at the partitioning bound-
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ary t;, dspx(ti) and dspy(ti), are “pointing” at the relation fragments X; and Y;
respectively. Given a query Q, the strategy is to construct sufficient state infor-
mation at every partitioning boundary so that each processor can independently
process the query Q on its local relation fragments using the constructed state in-
formation. For example, as shown in Figure 6.5, processor p; will process its local
fragments X; and Y using the state information sq(t;). Similarly, pi+, will process
Xiy1 and Yiy; using the state information sq(ti41). In general, the strategy has

three distinct phases:

Replication Phase Construct sufficient state information for every partition.

Join Phase The query can be executed by each processor using its local relation

fragments and the constructed state information.

Merge Phase The query response is produced by merging the results returned

from all processors and eliminating duplicates.

Let us emphasize that the TSJ; queries are multi-way temporal joins. For the
sake of simplicity of exposition, we concentrate on joins of two relations unless

otherwise stated.

6.2.2 Replication Phase

In this subsection, we discuss the construction of state information at each par-
tition for a query to be processed in parallel by each processor. Intuitively, the
replication phase is to copy tuples whose lifespans intersect with each other such
that they co-exist at the same processor for the subsequent join phase. Based on
the query qualification, one can derive a state predicate for each operand rela-
tion*. Using the derived state predicates, one may be able to limit which tuples
should be copied as we shall see shortly. For a query qualification P(X,Y), a
state predicate for relation X can be derived from P(X,Y) by substituting join
predicates and comparison predicates that involve the relation Y. Analogously,

we can derive a state predicate for relation Y.

By propagating constraints between attributes, one can sometimes find a more

restrictive state predicate. For example, consider the query of finding the head

4 As we discuss in Chapter 5, a state predicate for a relation R, denoted as P|., is a query
qualification on R.
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of the studio “MGM?” and the directors who worked for the studio at the same

time is:
O-intersect—join(St.udio,Dir) A Studio.Sname=Dir.Sname A Studio.Sname:MGM(StUdlo?Dlr)'

Using the abovementioned (simplistic) method, the state predicate for the re-
lation Dir is “true” while the state predicate for the relation Studio is “Stu-
dio.Sname=MGM?”. Intuitively, only tuples in relation Dir that satisfy the predi-
cate “Dir.Sname=MGM” would participate in the join and thus only these tuples
should be replicated as state information. For completeness, we describe here a

mechanism in which bounds on timestamp values can be propagated between

relations [U1182, Chak84, Jar84, She89].

We first consider constraints (i.e., upper and lower bounds) on timestamps of

individual relation R: .
ts~ < TS < tst and te” < TE < te?

where ts~, tsT, te” and te* are constants. That is, the values of TS timestamp are
bounded by the interval [ts~, ts*) and those of TE are bounded by [te™,tet). If a
particular timestamp is not explicitly constrained, its default constraint interval
is [0,n0w). Since in ou: data model the TS value must be smaller than the TE

value in each tuple, the two constraint intervals are therefore related:

e If te~ < ts, the constraint on TE becomes: ts~ + 1 < TE < te*.

o If tet < tst, the constraint on TS becomes: ts~ < TS < tet —~ 1.

That is, the data values of TS or TE may further be constrained. From now on,
without loss of generality, we assume that “ts~ < te™” and “ts™ < tet” hold for
each individual relation in our discussion. Note that if the lower bound is larger

than or equal to the upper bound, the query response must be necessarily null.

The relationship among constraints on timestamps can be easily explained
and determined using a constraint graph structure — Algorithm 6.1 can be used
to construct a constraint graph G using the query qualification P.

Algorithm 6.1  Constraint Graph Construction®:

5 Note that whether or not P has a comparison predicate that involves the operator “#”

100



. For each timestamp T of an operand relation, there is a node (labeled with
T) in the graph G. Each node is tagged with a pair of values representing

the upper and lower bound of the constraint on the timestamp data values.

. For every relation R;, a solid directed arc from the node R;.TE to node
R;.TS is added to G.

. If “Ty<Ty” is a predicate in P for any timestamps Ty and T, a solid
directed arc from the node T, to the node T is added to G. Similarly, a
dotted directed arc from T, to T, is added to G if “T;<T,” is in P.5

. If “Ty=T,” is a predicate in P for any timestamps T, and T; of different
relations, we merge these nodes together resulting a single node (labeled
with {T;,T;}) that represents both timestamps T; and T;. The largest
lower bound of nodes Ty and T, becomes the lower bound of the new node
{T1,T,}. Similarly, the smallest upper bound of T, and T. becomes its
upper bound.

. Given the graph G that is constructed so far, we detect if there is a cycle
in G. A path from a node T3 to a node T, exists if (1) there is a (solid or
dotted) directed arc from T, to Ty, or (2) there is a directed arc from T to
another node T3 and there is a path from T3 to T;. A cycle exists if there

is a path from any node to itself. There are two cases when a cycle exists:

¢ The cycle has at least one solid directed arc (which represents “<”
relationship). In this case, the user qualification is identically false

and thus the query produces a null response.

o All the directed arcs in the cycle are dotted arcs (which represent

“<" relationship). In this case, all the nodes in the cycle are merged

3]

together as in the case of “=" relationship. The lower and upper

bounds of the new node are determined accordingly.

Note that for any TSJ, query, G is partially ordered. a

and a timestamp (e.g., “Ri.TS # t,”) does not have any impact on the graph construction
algorithm.

8 In Chapter 4, we note that semantic query optimization can play a significant role in query
optimization. Using additional semantic information regarding temporal relationships between
timestarmps, more arcs may be added in the graph.
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TS, = Stars. TS

TS, )= TE, TE, = Stars.TE
TS4 = Dir.TS
TE4 = Dir.TE

[0,1/85) [1/87,now)

Figure 6.6: Constraint graph for Example 6.1 — upper and lower bounds on
timestamps

When the constraint graph is constructed using the Algorithm 6.1, constraints
can be propagated between nodes using Algorithm 6.2 below.

Algorithm 6.2 Constraint Propagation: The upper bounds are propagated
from roots to leaves whereas the lower bounds are propagated in the opposition

direction. Suppose that the constraint on a node Ty is [t{,t{) and that on a
node T, is [t7,t7).

1. Dotted arc: for a dotted directed arc from a node T; to a node Ty, the
propagation of the upper bound of Ty to T results the new upper bound

of Ty being min(tf,t3). The propagation of the lower bound of node T, to
T, results the new lower bound of T, being max(t7,t7).

2. Solid arc: If the arc from T to Ty is solid, the new upper bound of node T,

is min(t7,t3 — 1). The propagation of the lower bound of Ty to T; results
the new lower bound of T; being max(ty,t; +1).

O

Example 6.1 Consider the film industry examples. Suppose we want the
combinations of all stars and directors such that the star acted in films directed
by the director during the entire period of time in which the director worked for
a studio for the entire interval {1/85,12/86). The query is:
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O contain—join(Stars,Dir) A Dir.TS<1/85 A 12/86<Dir.TE (Stars,Dir).

The constraints on timestamp values are represented by a constraint graph as
shown in the Figure 6.6. A node represents a timestamp and a solid arrow
represents the “before” (i.e., <) relationship between two timestamps. The values
of timestamps “Dir.TS” and “Dir.TE” are bounded by [0,1/85) and [1/87,now)

respectively’.

The constraints on timestamp values are then propagated among nodes. For
example, in Figure 6.6, the TS values of relation Stars (i.e., TS,) are bounded by
the interval [0,12/84) while the TE values (i.e., TE,) are bounded by [2/87,now).
Thus, the state predicate for the relation Stars becomes “Stars. TS<12/84 A
2/87<Stars. TE”. O

Given a query Q@ = Op(X,Y) € TSJ1, we first derive a state predicate for
each operand with the results being denoted by P|; and P},. Using these state
predicates, one can construct the state information on each processor which is

defined as follows.

Definition 6.2 Given that a partitioning interval [t;,tit1) is assigned to pro-
cessor pj, the state information for a relation R at the partitioning boundary t;,

denoted as s,(t;), contains:

{r]|reRArTS<t; A t;<r.TE A Pli(r) } if R is TS range-partitioned
{r|r €RA"TS<tip1 A tig1 <r.TE A P|.(r) } if R is TE range-partitioned

where P|, is the derived state predicate for the relation R, and P|;(r) holds for
the tuple r. O

Essentially, all qualified tuples (based on the state predicate) whose lifespan in-
tersects with the partitioning interval [t;,ti4+1) and are not stored in the local
fragments at processor p; will be replicated at processor p; as the “state informa-
tion”. As soon as the state information for all operand relations at all partitions
have been constructed, the join phase, which is the focus of the following subsec-

tion, can proceed.

7 We assume that the time granularity in this example is “month”, i.e., consecutive months
are mapped into consecutive integers.
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6.2.3 Join Phase and Merge Phase

For a query Q = Op(X,Y) € TSJ;, each processor p; can execute Q using its local
relation fragments and the state information constructed at p;. The response to

Q is the union of the results (eliminating duplicates) from all processors:
U 1cigny { Tr(Xusy(t)) U Op(Yisx(ti)) U Op(Xi,Y3) }

where n,; is the total number of partitions. For a TSJ; join query involving m

relations, we can use the following strategy:

U 1gigns § OP( (R U se (8))s -+ (Runi U se (1)) ) }

where R;; is the ith fragment (i.e., partition [ti, t;41)) of the relation R;, 1<j<m,
which is stored at processor p;. In other words, the local join for each partition
is this: for each relation R;, we “merge” its state information (i.e., s;,(t;)) with

its local fragment (i.e., R;;), and then join all the newly “merged” fragments.

We sketch the proof of the correctness of the parallel join strategy for TSJ; queries

as follows:

Given a query Q = Op(Ry,---,Rm) € TSJ;1. By the definition of
TSJ:, each m-tuple <ry,ry, -+, 7>, where rp € Ry for 1<k<m, that
satisfies the join condition must have a common time point, denoted
as t., as illustrated in Figure 6.7. That is, for each participating tuple
i € Ry, 14 satisfies the derived state predicate P|g, (otherwise ry will
not be a component of the m-tuple <ry,rs, -, ry>). Without loss
of generality, we assume that t. falls into a partition [t;,ti;1) which is
assigned to a processor p; ®. Specifically, “t; <t A tc < tiyy” holds.
For every participating tuple, r,. € Ry, 1<k<m, exactly one of the

following conditions must hold:

1. The relation Ry is TS range-partitioned and the tuple r; starts
during the partition [t;, ti4+1). That is, r is a tuple in the relation

fragment stored at processor p;.

8 It is possible that the operand tuples share a common time interval that spans multiple
partitions. In this case, the m-tuple may be produced by meore than one processor. The final
merge phase would eliminate the duplicates.
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Figure 6.7: A m-tuple <ry,73,---,7»> that satisfies a TSJ; join condition

2. The relation Ry is TS range-partitioned and the tuple ri starts
earlier than t; and span the partitioning boundary t;. That is,
i should have been replicated at processor p; as the state infor-

mation.

3. The relation Ry is TE range-partitioned and the tuple rx ends
during the partition [t;, t;4+1). That is, 7« is a tuple in the relation

fragment stored at processor p;.

4. The relation Ry is TE range-partitioned and the tuple ry ends at
or later than t;41 and span the partitioning boundary t;y;. That
is, rx should have been replicated at processor p; as the state

information.

Therefore, each component in the m-tuple <ry,ry,--+,7n> can be
found either in the state information or in the local fragment. Hence,
the m-tuple <ry,rg,- -+, r,> is produced by the processor p;. In other
words, every m-tuple in the query response is produced by at least a

processor in the parallel join processing strategy. Q.E.D.

8.2.4 Optimization: Reducing State Information

The definition of the state information of a relation at a partition as qualified
tuples (based on the derived state predicates) that span the partition is general

enough to support the parallel query processing strategy for all queries in TSJ;
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whose operand relations are homogeneously range-partitioned. In this subsec-
tion, we discuss some optimization opportunities in which the number of tuples

replicated as state information can be reduced.,

6.2.4.1 Asymmetry Property

First, we define the asymmetry property of operands in a TSJ; join query with
respect to the TS and TE timestamps.

Definition 6.3 Given a query Q = Op(g,,..hm)(R1,- "+, Rm) € TSJ1. The
relation Ry, k€{l, --,m}, has the asymmetry property with respect to the 7.
timestamp if the following condition is satisfied:

P(R4, -, Ru) = Rp. TS > R..TS, vV 1<i<m. 0

Definition 6.4 Given a query Q = Op®,,-Rm)(R1,"*,Rm) € TSJ1. The
relation Ry, ke{l, --,m}, has the asymmetry property with respect to the TFE

timestamp if the following condition is satisfied:

P(Rq,",Ru) = Ri.TE < Ri.TE, V 1<i<m. O

For each m-tuple <ry,---,r,> that satisfies the query qualification P, where
r; € R; for 1<i<m, the asymmetry property with respect to the TS timestamp
means that the tuple r. must have the maximal TS value among all partic-
ipating tuples. For example, consider contain-join{X,Y) whose join condition
is “X.TS<Y.TS A Y.TE<X.TE” and overlap-join(X,Y) whose join condition is
“X.TS<Y.TS A Y. TS<X.TE A X.TE<Y.TE”. The relation Y in both contain-
join(X,Y) and overlap-join(X,Y) has the asymmetry property with respect to
the TS timestamp. Similarly, the asymmetry property with respect to the TE
timestamp means that the tuple r, must have the minimal TE value among all
participating tuples. For example, the relation Y in contain-join(X,Y} and the

relation X in overlap-join(X,Y) have this asymmetry property.

Depending on whether a relation is TS or TE range-partitioned, the asym-

metry properties can be used to show that constructing the state information for
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some relation is redundant, and therefore the replication phase for that particular

relation can be eliminated.

Theorem 6.1 Redundant State Information.

Given:

e a query Q = Op(Ry,---,Rm) € TSJy, and

e there are m’, where 1<m’<m, relations which have the asymmetry property
with respect to their partitioning timestamp (we use a subscript j to denote

these relations as R; where j = {1,---,m'}).
Conditions under which the state information for a relation is redundant are:

e AllRy’s,j = {1, --,m'}, are TS range-partitioned. Then the state informa-

tion of all R;’s are redundant.

e AllRy’s,j = {1, --,m'}, are TE range-partitioned. Then the state informa-

tion of all R;’s are redundant.

e Some R;’s are TS range-partitioned while others are TE range-partitioned.

That is, R;’s can be partitioned into two disjoint sets:
Rj|rs and R;|rE.

The first set corresponds to TS range-partitioning while the second set
corresponds to T range-partitioning. Then relations in either set have the

redundant state information property®. |

Proof  We now sketch the proof for the Theorem 6.1 as follows:

We consider the case of the TS range-partitioning; the argument for
other cases is similar. Given a TSJ; join query, all the components of
each m-tuple <ry,---,r,>, where r; € R; for 1<i<m, that satisfies
the join condition must have a common time point. Also, given that

® Then we have a choice of selecting which relations to have the redundant state information
property.
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relation Ry, ke{1, - -,m}, has the asymmetry property, the component
r+ in the m-tuple must have the largest TS value and therefore the
r.TS value must also be a common time point. Since the relation Ry
is TS range-partitioned, the m-tuple must have been produced in the
partition where the tuple r; is stored. Hence, the tuple ry need not

be replicated to other partitions for the join process. Q.E.D.

There are several interesting observations that can be made. First, when all
temporal join predicates are inequalities, only one operand relation has the re-
dundant state information property. Second, for contain-join{X,Y) the relation Y
has the asymmetry property with respect to both the TS and TE timestamps. For
this reason, state information for the relation Y need not be constructed regard-
less of whether the relation is TS or TE range-partitioned. Thirdly, when there is
an equality temporal join predicate (e.g., “X.TS=Y.TS” or “X.TE=Y.TE") be-
tween two relations, and both relations have the asymmetry property with respect
to their join attribute (i.e., timestamp), Y has the redundant state information
property if the state information of X is redundant (or vice versa). As another
example, consider meet-join(X,Y), whose join condition is “X.TE=Y.TS", and X
is TE range-partitioned while Y is TS range-partitioned. Both relations have the
asymmetry property with respect to the partitioning timestamp, and thus the

state information for both X and Y are redundant.

Example 6.2  Consider the overlap-join(X,Y) whose join condition is “X.T5<
Y.TS A Y.TS< X.TE A X.TE<Y.TE”. Suppose that the relation Y is TS range-
partitioned. Only the state information of the relation X (but not relation Y)
has to participate in the join phase. Therefore one has to replicate only tuples of
relation X as state information, and the construction phase of state information

of the relation Y can be eliminated. O

Example 6.3 Consider Example 6.1. The join condition is “Stars. TS<Dir.TS
ADir.TE<Stars.TE”, i.e., “contain-join(Stars, Dir)”. If the relation Dir is TS
range-partitioned, its construction phase of state information can be eliminated.
That is, one has to replicate only tuples of relation Stars as state information.

O
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6.2.4.2 Use of Statistics

We show how several simple statistics on the data in each partition can further
reduce data movement and discuss their pros and cons. Again, for the sake of
simplifying our discussion, we focus on joins of two relations — X and Y, assuming

both relations are TS range-partitioned.

Suppose that the database system keeps the maximum and minimum of the
TS and TE values for every relation fragment. For example, the TS and TE
values of a relation fragment Y; (i.e., the partition [t;,t;y1)) of the relation Y
are bounded by the intervals: [Y;.TSmin, Yi-TSmax) and [YiTEmin, Yi.TEmax)
respectively. We further suppose that the fragment Y; is stored at processor
pi- Together with the query qualification, the statistics can be used to further
reduce data replication of the relation X. To illustrate this point, we consider the

following examples:

e Consider the overlap-join(X,Y) whose join condition is “X.TS<Y.TS A
Y. TS<X.TE A X.TE <Y.TE". Intuitively, tuples in the relation X that
span the partitioning boundary t; and whose TE values are smaller than or
equal to Y;.TSmix need not be sent to processor p; because these X tuples
do not join with any tuples in Y;. This is also true for X tuples that span

t; and whose TE values are larger than or equal to Y;. TEqpax—1.

e Consider the contain-join(X,Y) whose join condition is “X.TS<Y.TS A
Y.TE<X.TE”. Tuples in the relation X that span t; and whose TE val-
ues are smaller than or equal to Y;.TEn, need not be sent to p; as state

information.

¢ Consider the meet-join{X,Y) whose join condition is “X.TE=Y.TS”. Tuples
in the relation X that span t; and whose TE values are smaller than Y;. TSqin

or larger than Y;.TSma.x need not be sent to p; as state information.

To eliminate redundant tuples from being replicated as state information, one
can make use of the constraint propagation algorithm that is presented earlier.
For example, consider the overlap-join(X,Y) whose constraint graph is shown
in Figure 6.8. After the upper and lower bounds have been propagated, the
TS values of relation X are bounded by the interval [0,Y;. TSmax—1) while the
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Figure 6.8: Overlap-join(X,Y): “X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE”

TE values are bounded by [Y;. TSmin+1,Yi.TEmax—1). The state information of
relation X at the partitioning boundary t; therefore contains:

{z]|ze€XAzTS<t A t;<2.TE A P|x(x)
A 2.T8<Y;.TSmax—1 A Yi.TSmin<z.TE A 2. TE<Y; TEmax—1 }

where the derived state predicate P|, is actually “true” for the overlap-join{X,Y).
Note that the predicate “2. TS<Y;.TSmax—1" is subsumed because “z.TS<t;” and
“;<Y;. TSpmax” hold.

The tradeoffs for these optimizations include that keeping these statistics con-
sistent for every relation fragment incurs some overhead. For example, suppose
the relation Y in the above example (see Figure 6.8) is TE range-partitioned, i.e.,
the state information of relation Y has to be constructed. This means that the
four statistics (Y;.TSmaxs Yi-TEmax, Yi-TSmin and Y;. TEnin) do not always reflect
the actual bounds on the timestamp values. Therefore the actual bounds have
to be computed after the state information of relation Y has been completely
constructed, and the results have to be broadcast to all senders (i.e., the proces-
sors which send tuples X). This may require substantial coordination overhead
between processors. Moreover, determine if a tuple should be sent to a processor
requires the evaluation of a more complex qualification. However, for the operand
relation that has the property of redundant state information discussed earlier,

the four statistics of this relation do represent the actual bounds.

6.2.5 Participant Processors

For the parallel processing strategies that are discussed earlier, all processors
participate in the replication and join phases. However, for some TSJy queries, it

cant be determined a priori that some processors necessarily return a null response
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when they perform the local join. Similarly, it can also be determined a priori that
some processors need not replicate some fragments of a relation in the replication
phase (in the sense that the relation fragments will not contribute to the query
response). These situations may occur when the user query qualification contains
some comparison predicates involving timestamps (such as in snapshot or interval
queries). To illustrate the idea, we first define the notion of replication-interval

and join-interval.

Definition 6.5 The replication-interval for an operand relation in a query is
defined as the minimal interval with the property that only tuples whose parti-
tioning timestamp (i.e., TS or TE) value falls within the interval can possibly

participate as state information!®. O

Definition 6.6 The join-interval for a query is defined as the minimal interval
with the property that only tuples whose partitioning timestamp value falls within

the interval can possibly contribute to the query response. O

Definition 6.7 A join processor is referred to as a processor that has to par-
ticipate in the join phase (of our parallel processing strategy), i.e., the processor
which has a partitioning interval that intersects with the join-interval. Otherwise,

it is referred to as a non-join processor which necessarily returns a null response.
a

Definition 6.8 A replication processor is referred to as a processor that has to
participate in the replication phase {(of our parallel processing strategy), i.e., the
processor which has a partitioning interval that intersects with the replication-

intervals. Otherwise, it is referred to as a non-replication processor. (]

10 Note that if the relation has the property of redundant state information discussed in the
previous section, the corresponding replication-interval is necessarily null (i.e., no tuples will
be replicated as state information).
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If the join-interval is null, the join response is necessarily null. Similarly, if
the replication-interval for a relation is null, tuples of that relation need not be
replicated as state information. Otherwise, tuples in the replication-intervals are

replicated on join processors as state information for the join phase.

The join-interval and replication-intervals for a given query depend on the

following:
1. the TS and TE range-partitioning functions, and
2. the query qualification:

e the relationship between the comparison predicates involving times-

tamps and the temporal join predicates.

e the property of redundant state information discussed earlier.

Earlier we address the issue of determining the upper and lower bounds on the
TS and TE values of each individual relation by propagating constraints between
relations using a constraint graph. Below we address other issues; we first define

the l-intersect operator that will be used in the remainder of this section.

Definition 6.9  Given two non-null intervals [ts;, te;) and [ts,, te;), we define:

l-intersect([ts, te;),[tse, teg)) = [max(tsy, ts2), min(te, tez))!.

That is, the time interval that the l-intersect operator produces is the intersection
of the two operand intervals. If the left-end value of an interval is larger than or

equal to the right-end value, the resultant interval is equivalent to a null interval.
O

The impact of TS and TE range-partitioning schemes on join-intervals and
replication-intervals is as follows. Consider a TSJ; join query with relations R;
and R;. Suppose that the upper and lower bounds of the timestamp values have
been determined — where ts; and ts} represent the lower and upper bounds on
the TS timestamp of relation R respectively, and similarly te; and te} for the
TE timestamp as illustrated in Figure 6.9. There are three cases to be considered
depending how R; and R; are (TS or TE) range-partitioned.

11 The operator max({A,B) (respectively min(A,B)) returns the larger (respectively smaller)
value of A and B.
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te” TE; tet

i

R; tsy TS; tst
tsy . TS; . tst time
R; tey TE; ' tet
- ————— case 1 ------- »-
~---- case 2 ~------ -
-~ - case § ------- »-
Constraints:
tsp < TS; < tst ts; < TS; < ts;*j‘
tey < TE; < tef tey < TE; < te:g

TS; < TE; and TS; < TE; for all tuples

Figure 6.9: Determining the join-interval and the replication-intervals

Case 1: R; and R; are TS range-partitioned

There are three situations to be considered:

1. When neither R; nor R; has the property of redundant state information,

the join-interval for the query 1s:
[max(tsy, ts; ), min(max(ts}, ts}), tef, te)).

The replication-interval for relation Ry, where ke{i,j}, is:
l-intersect( [min(ts,, ts;;), min(ts}, tsf)), [ts, ts7) ).

In Figure 6.9, the join-interval is [tsr‘j ,te; ), and the replication-interval for
R; is [ts;, ts}) while that of R; is [ts7, ts]).

2. When the relation R; (but not R;) has the property of redundant state

information, the join-interval becomes:
[max(tsy, ts;), min(tsy, tef)),

and the replication-interval for R; is a null interval while that of R; is:
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[tsy ,min(tsy, tsg))).

3. When both relations R; and R; have the property of redundant state infor-

mation, the join-interval becomes:
l-intersect( [ts, ts}), [ts;, ts) )2

and the replication-intervals of both relations are null intervals.

Example 6.4 Find the directors who joined a studio sometime during the
interval [1/85,1/86) and also became the head of the studio sometime during
[1/86,1/87):

O 1/85<Dir.TS A DirTS<1/86 A 1/86<Studio TS A Studio.TS<1/87 A P (Studio,Dir)

where P is “intersect-join(Studio,Dir) A Studio.Sname = Dir.Sname”. Suppose
that both relations Studio and Dir are TS range-partitioned. The constraints
on the TS timestamps of both relations are illustrated in Figure 6.10. The join-
interval for the query is [1/86,1/87). The replication-interval for relation Dir is
[1/85,1/86) and that for relation Studio is a null interval. That is, the state
predicates for relations Dir and Studio are “1/85 < Dir.TS A Dir. TS < 1/86 A
Dir.TE > 1/86” and “false” respectively. The join phase involves only joining the
state information for the relation Dir and the local fragments of relation Studio
that start during [1/86,1/87)'2. i

Case 2: R; and R; are TE range-partitioned

When both relations are TE range-partitioned, the join-interval and replication-
intervals are simply “mirror-images” of those for the above TS range-partitioning
case. To simplify our presentation, we consider only the situation when both
relations do not have the property of redundant state information. That is, the

join-interval is:

12 Note that there must be an equality join predicate “R;. TS=R;.TS” in the query qualifica-
tion.

13 One can obtain tighter bounds by examining (and thus accessing) local fragment of relation
Studio that start during [1/86,1/87), as well as further analyzing the temporal join operators
involved.
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1/85 Dir.TS 1/86

time

1/86  Studio. TS 1/87

Figure 6.10: Constraints on TS timestamps of relations Dir and Studio

[max(min(tey, te; ), ts;, ts ), min(tef, tel)).
In Figure 6.9, the join-interval is [te;, te}). The replication-interval of Ry, where
k is either 1 or J, 1s:

l-intersect( [max(tey;, tey), max(te}, tel)), [te},, te} ) ).

Case 3: R; is TS range-partitioned and R; is TE range-partitioned

1. When neither R; nor R; has the property of redundant state information,

the join-interval for the query is:

[max(ts;, ts; ), min(te;l:,te;’j')).

In Figure 6.9, the join-interval is [ts; ,tel'.'j' ). The replication-interval of R;

is:
[ts;,min(te}, tsf))
while that of R; is:
[max(ts, te;),te}).

2. When the relation R; (but not R;) has the property of redundant state

information, the join-interval becomes:
[max(tsy, ts;; ), min(tsy, tel)).
The replication-interval of R; is a null interval while that of R; is:

[max(ts, te;;),te;’j‘).

3. When the relation R; (but not R;) has the property of redundant state

information, the join-interval becomes:
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[max(tsg, te;), min(tel, te})).
The replication-interval of R; is a null interval while that of R; is:
[tsy; ,min(ted, ts)).

4. When both relations have the property of redundant state information, the

join-interval becomes:
l-intersect( [ts;;, ts}), [te;, tef) ).

The replication-intervals are null intervals.

In summary, the above syntactic mechanism can be used to determine which
processors have to send data as state information and which processors have to
receive data as state information. One may wonder if we can move tuples from
join-interval to replication-interval for the join phase. In general, all tuples in
the join-interval would have to be replicated to all partitions in the replication-
intervals which is very expensive and should be avoided. In the following subsec-
tion, we discuss the overhead of constructing the state information — the analysis

is based on the approach presented in Chapter 5.

6.2.6 Quantitative Analysis

We present a first-cut quantitative analysis on the overhead associated with con-
structing state information of a relation. The overhead associated with construct-
ing the state information for a relation R can be measured in terms of the number
of tuples to be replicated since the communication and/or storage costs will be
directly related to this number (and the tuple size). We let A be the rate of inser-
tion of tuples into the relation R, T}, be the average tuple lifespan, and TRy, be
the relation lifespan. Using Little’s result [Lit61], the average number of tuples

that are active as of a particular time, denoted by 7, is given by:
= A T

A natural assumption is that the average number of active tuples at partitioning
boundaries is also i. Similarly, the total number of tuples in the relation R is:

A+ TRys.
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Suppose that the selectivity of the state predicate ¢ that is used to construct the
state information for the relation R is ¢ and is defined as the fraction of tuples
in R that satisfy q. The number of tuples that are copied as state information is

then given by:
Oq Np T = 0q-Np- AT

where nj, is the number of partitions at which state information has to be con-
structed (i.e., the partitioning intervals that overlap with the join-interval dis-
cussed in the previous section). Note that n, must be smaller than the total

number of partitioning intervals (np;).

Definition 6.10 The overhead is defined as the ratio of the number of tuples

to be copied over the total number of tuples in the relation:

aq-np-)\-T_b/()\-TRls) = a,-np - T1s/TRy. a

The quantity is consistent with our intuition that:

e n,: the overhead increases as the number of partitions with state informa-

tion increases.

¢ o, the more selective the state predicate (which constructs the state infor-
mation) is, the less overhead is incurred. For this reason, one should derive

more restrictive state predicates for operand relations.

o T\s/TRy: the overhead is smaller for relations with relatively short tuple
lifespans (compared with the relation lifespan).

Note that the above analysis does not depend on whether the time-varying at-
tribute is continuous or non-continuous. In case of continuous time-varying at-

tribute, the average number of active tuples at a particular time is:
A= AT, = Ti-(Ns/Ti,) = Ns

where Ns is the average number of surrogates in the relation.
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6.3 Implementation Issues

In this section, we discuss several implementation issues that are pertinent to the
TS and TE range-partitioning schemes, including issues involving storing state
information statically and late updates. We also discuss the application of these
range-partitioning schemes to situations where the access patterns to current
and history data are different, and when temporal data are modeled as non first
normal form relations. Finally, we discuss the extension of the notion of state

information for aggregate functions.

6.3.1 Continuously Expanding Time Dimension

Although we regard time points as natural numbers, a major difference between
the time domain and an integer domain (such as department number) is that
the time dimension is continuously expanding. Moreover, it is advancing in one
direction, i.e., the current time is getting larger. This leads to some design issues

as described below.

For the range-partitioning function presented earlier, the processor p,; stores
tuples of the last partition [t,;,now). Assume that, for the moment, tuples are
evenly distributed amoug all processors. As time evolves, more tuples with start
time (or end time) greater than t,; are inserted at processor p,,. Eventually,
the workload at processor p,, will be much higher than other processors. The
problem is that time is continuously advancing and we have a fired number of

partitions. We now briefly discuss several solutions:

Variable number of partitions This approach basically splits the last parti-
tion into one or more intervals. That is, the total number of partitions

increases as time advances.

Dynamic splitting This is based on balancing the number of tuples kept
at each processor. Suppose that each processor should keep about the
same number of tuples. When the number of tuples in p,, exceeds this
threshold, the last partition [t,,;,now) is then split into two disjoint
intervals — [tn,;,tn,41) and [ty 41,n0w). The latter interval is assigned
to any processor, denoted as pu+1; a simple approach, called “round-

robin” [DeW90], is to choose processor p; where j equals npi+1 modulo
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n. Tuples which belong to the partition [t,41,n0w) are moved from
Png; 1O Pny+1.

Static splitting This is based on static range-partitioning. The idea is to
choose the partitioning intervals a priori such that the last partitioning
boundary t,,; is large enough that no update time would exceed this
value. As time evolves to a certain point, we split the last partition
[ta,;,now) into one or more intervals — [tnys tagi+1)s [Engit1s bogit2)s = s
[tny+inow). These new intervals are then assigned to processors ac-
cordingly. This kind of static splitting has the drawback that tuples
may not be evenly distributed among processors, but re-organization

(as in dynamic splitting) seldom takes place, if it ever does.

Recall that the overhead of constructing state information of a relation at

all partitioning boundaries is:
Ov =04 (npi — 1) - Tis/TRye

where o is the selectivity of the state predicate q, np; is the total number of
partitions, T), is the average tuple lifespan, and TRy, is the relation lifespan.
The rate of change of the overhead is given by:

dng; d TR
dOv __ g - T"" . ,-'[‘1:{1.!‘_,_-1“,?2 - (npi_l)'_'i_&
dt — a4’ s TRZ

The rate of change remains constant if the numerator equals 0. That is,

dng;
TR;S-—CI—E—(np;—l)-E‘—%J& = 0.

Note that the relation lifespan is continuously advancing and the rate of
change of the relation lifespan (i.e., #f) is 1. To obtain an intuitive

interpretation, we let the current relation lifespan be:
TR]s == (npi - 1) ‘ T]B.

If we create a new partitioning boundary (i.e., id’-'f‘) at a rate of 1/T),
(i.e., the average length of partitioning intervals is Ty, ), the overhead (Ov)
will remain the same. On the other hand, the overhead increases if we
create partitioning boundaries faster. Again, this is consistent with our
intuition that for shorter partitioning intervals, more qualified tuples may

span multiple partitions and therefore the overhead increases. As a rule of
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thumb, the length of partitioning interval should be greater than the average
tuple lifespan. Note that if we denote the average length of partitioning

intervals as Ty, the average number of tuples in a partition is given by:

A Th
Fixed number of partitions This approach is to dynamically re-adjust the
partitioning function to maintain a fixed number of partitions. The idea is
to split the last partition [t,;,now) into [ty ,tay+1) and [ta,41,n0w), choose
a particular processor p and relocate its tuples to its neighbor(s), and the
partition [t ;41,n0w) is assigned to processor p. We discuss two alternatives

to relocate tuples:

2-processors Choose two processors, p; and pj41, whose partitioning in-
tervals are [t;tiy1) and [tiy1,tip2) respectively, and move tuples that
belong to the partition [t;,tiy:) from p; to piz1. Processor p; is re-
sponsible for the partition [t ;+1,n0w) while p;41 is responsible for the
merged partition [t;,t;+2). Note that the number of tuples in pity is

roughly twice as many as it was before the re-adjustment.

3-processors Choose processors pj, pi+1 and piy2 whose partitioning inter-
vals are [t;,tiy1), [tit1,tit2) and [tize2,tips) respectively, and move half
of the tuples of the partition [ti41,ti42) to pi and the rest to pj+z. That
is, the partitions for p; and pj42 are [ti,tir) and [ty tiz3) respectively,
where ty is a time point between t;;; and t;42. Processor pjy; is re-
sponsible for the new partition [t;+1,now). Note that the numbers of

tuples in p; and pjy, increase roughly by half.

There are several tradeoff factors. First, dynamic re-adjustment requires moving
tuples between processors and therefore the frequency of re-adjustment and the
associated overhead should be kept minimal. For example, in the 2-processors
scheme, re-adjustment irobably occurs less frequently as the fragment size dou-
bles after the re-adjustment. Second, tuples should be more evenly distributed
after the re-adjustment. For example, the 3-processors scheme may produce a
more even distribution of tuples as the fragment is split into two halfs. In spite of
potentially expensive re-adjustment overhead, there are some advantages. Firstly,

the number of partitions is fixed. Consequently, less state information will have
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to be constructed during the processing of complex temporal queries. More-
over, in the other two schemes, the number of partitions becomes larger as time
evolves, and eventually some kind of re-organization is needed to keep these parti-
tions manageable (and thus accessing the range-partitioning function is efficient)

[DeW90]. The dynamic re-adjustment scheme avoids this situation.

6.3.2 Storing State Information Statically

As opposed to dynamically constructing state information, an alternative is to
statically store the state information. One approach is to pick a frequent query
whose query qualification is Py for a relation X4, and use Py to create and store
the state information at each partitioning boundary. That is, the static state

information for relation X at the partitioning boundary t; contains'?:

{z|zeXAzTS<t At;<z.TE A Py(a) } if X is TS range-partitioned
{z]z€XAz.TS<tiy1 A t;11<2. TE A Py(z) } if X is TE range-partitioned

Similarly, we create and statically store the state information of the relation Y
using a predicate P,. In order to process a user query Q = Op(X,Y) € TSJ;, we
require that “P|, = P,” and “P|, = P,” hold, where P}y and P|, are the state
predicates derived from P as discussed earlier. The implications are required
because the static state information has to contain all relevant tuples in order to

process a portion of Q by each processor independently.

Using the quantitative analysis that is presented earlier, the overhead of stat-
ically storing state information of a relation X at every partitioning boundaries
is:

0q - (npi — 1) - Tis/ TRy,

where o4 is the selectivity of the state predicate Py, ny; is the total number of
partitions, Ty, is the average tuple lifespan and TRy, is the lifespan of relation X.

In general, the more selective the state predicate is, the less space is required

for storing state information statically. On the other hand, the class of queries

14 Fquivalently we can pick a query that subsumes a set of frequent queries.
15 Note that if retroactive update is supported, it may be necessary to “refresh” the static
state information as the updated tuple may span different partitioning intervals.
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that can be processed in parallel without moving additional data (i.e., construct-
ing state information dynamically) becomes smaller. Below, we will discuss some
mechanisms in reducing the storage requirement of state information and their
tradeoffs.

Ratio of Partition Boundaries & State Information The approach can
be regarded as reducing the state information along the processor dimension.
Specifically, only a subset of partitioning boundaries are selected for storing state
information statically. That is, only a subset of processors will store static state
information. For example, one can store state information at every other parti-
tioning boundary. The tradeoffs include that not necessarily all processors have
to participate in processing some queries. For example, suppose that relations
are TS range-partitioned. Consider that a simple “as of” query such as finding
the data value of a time-varying attribute of an object as of a particular time,
e.g., O s=10 (X) as of t;. In general, at least processors from p; to p; would have
to participate in processing the query. With state information stored at every
other partitioning boundary, at most two processors (pj—1 and p;) are required to
perform the search.

Suppose that we statically store state information at one out of g partitioning
boundaries. The overhe:d of storing state information statically in this approach

is:
oq (npi — 1} - Tis/(g - TRs)

Interestingly enough, one can view this approach from a different direction.
In the original scheme, each processor stores a relation fragment and some state
information. In the above approach, a portion of the relation fragment is statically
moved and stored at another processor. From this point of view, the query

processing workload is spread among the processors.

Partitioning Boundaries Another alternative is to select partitioning bound-
aries such that fewer tuples span the boundaries. For example, one can choose
a time point t’ as the partitioning boundary where there are many new tuples
inserted right after time t’. If we had chosen a time point after t’, many tuples

(which span t') may have to be included as state information.



One can utilize this idea as suggested in Section 5.4. Consider two processors
pi-1 and p; which store partitions [ti_1,ti) and [t;, ti41) respectively. Instead of
storing qualified tuples that span t; as state information at p;, we choose a time
point t where t;_; <t/<t;, and store only qualified tuples that span both t’ and
t;. To process queries in parallel as before, processor p; has to read from the
partition [t;_y, t;) from p;_y but only the portion (t', t;). In this scheme, processor
pi—1 would send qualified tuples to p; that belong to the partition (t',t;) and span
t;.

The quantitative analysis is similar to the analysis presented in Section 5.4.
Suppose that the distance between t' and t; is t for all partitioning boundaries t;,
and that all tuple lifespans are independent and exponentially distributed with
mean Tj.. The overhead of storing state information statically at all partitions

1s:
Ply>t] roq - (npi — 1) - T_ls/TRls

where y is a random variable representing the tuple lifespan and P[y>t] is the
probability that a tuple would span both time points t~ and t. The probability
Piy>t] equals:

t —
1 — Plogyst] =1 A .%: . e/ dy

= -

6.3.3 Late Updates

Although we assume that time points are monotonically increasing, update times
are not necessarily so'®. This leads to a problem if tuples are statically replicated
as state information. Consider the TS range-partitioning scheme and a current
tuple r<s,v,t2,now> stored at processor pz. The issue is: since the TE timestamp
of tuple 7 can be set to any time point between [to+1,now), should tuple r be
statically replicated in all processors from pa to py, as the state information?

There are several ways to tackle this problem. A solution is to assume that

we are dealing with transaction times and to enforce that database updates are

16 Interesting enough, the Time Index proposed in [Elm90} did not address this issue. It
appears that update times are implicitly assumed to be monotonically increasing.
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performed in increasing order of transaction times. Ensuring the monotonicity

can be readily achieved using a system clock.

Another straightforward solution is this. The tuple r is statically replicated in
all other processors as state information. When the TE value of tuple r is updated
to a specific value (say at t;), the duplicates at processors whose partitioning
boundary is greater than t; are removed from the state information while the
duplicates at processors whose partition boundary is smaller than or equal to t;
will be updated accordingly. This approach is optimistic in the sense that if most
updates occur at a time greater than the last partitioning boundary (t,), not
many duplicates will be removed. If we assume that “now” is the largest current
time point, “now” would be greater than the latest partitioning boundary t,
and thus no duplicate will be removed.

An alternative approach is to specify that all current tuples (i.e., TE value
is now) are not replicated; only history tuples (i.e., TE<now) are replicated as
state information. In the next section, we further explore this alternative further,
keeping in mind that current tuples are more frequently accessed via surrogate

or attribute values rather than timestamp values.

6.3.4 Current Tuples and History Tuples

In the previous sections, we focus on processing of complex temporal pattern
queries and snapshot queries. Although one should not ignore these queries,
the most frequently accessed tuples may be predominantly the current tuples
especially in conventional business-oriented applications. This type of access
pattern may appear often for several reasons. First, many users may be interested
in only current tuples and might view the temporal database as if it were a “static”
current database. Moreover, updating the value of a time-varying attribute will
modify the current tuple by setting its TE value (“now”) to a specific time point.
One of the characteristics of the access pattern in business-oriented applications
is that current tuples are often accessed via a given surrogate (or key) value or
a time-varying attribute value, e.g., accessing department records by name or
department number. This suggests that a different fragmentation strategy for
current tuples (instead of range-partitioning on timestamps) may provide more

efficient access.
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Hybrid Fragmentation Scheme To support efficient access to current tuples
based on non-time attributes and to facilitate temporal query processing at the

same time, we propose the following hybrid scheme:

o Current tuples are distributed among the processors using any fragmenta-

tion method. For the sake of explanation, we use hashing in our discussion.

e History tuples are range-partitioned on a timestamp (TS or TE) as proposed

before.

That is, temporal relations are partitioned into two logical disjoint fragments:
“current” and “history” fragments. The idea of this hybrid scheme is rather
simple: as the temporal database is being updated, history tuples are “migrated”

to a particular processor based on their timestamp values.

It should be emphasized that the two logical fragments (current and history
fragments) can be stored in different file structures, although we might want to
treat them as a single logical entity for discussion purposes. Such separation
enables us to access the current fragment more efficiently. For example, one can
create indices on the current {ragment as in conventional databases. One can
also avoid storing the special markers “now” in current tuples as they are really
redundant in the current fragment. Nonetheless, for a temporal relation R that

is TS range-partitioned, processor p; logically keeps tuples specified as:

Ri={r|reRA((r. TE=now Ah(r)=1)V
( 7.TE # now A r.TS between [ti,tix1) ) }

where h(r) is a hash function to be applied on attribute(s) of R such as the

surrogate.

Note that since temporal relations are logically partitioned into current and
history fragments, the append-only update model that is presented at the begin-
ning of this dissertation has to be slightly adjusted to incorporate the fact that
updating a current tuple will generally migrate the corresponding history tuple
between processors.

State Information & Temporal Query Processing The parallel processing

strategies presented earlier basically remain unchanged in the hybrid scheme.
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The state information is dynamically constructed using both current and history
fragments. Since the current fragment is neither TS nor TE range-partitioned,

the state information for partition [t;,t;4+1) contains the following current tuples:
{r|reRAHEPTE A rTS<tiy1 A Pu(r) }

As in the case of TS or TE range-partitioning schemes, history tuples are also
replicated as state information as before. After the replication phase, each proces-

sor can individually process its local history fragments and the state information.

For state information to be stored statically, we adopt a somewhat different
strategy in that only qualified history tuples (i.e., no current tuples) are repli-
cated and stored. For example, for the relation R that is TS range-partitioned,

processor p; statically keeps tuples specified as:

Ri={r|reRA((rTE=now Ah(r)=1)V
( r.TE # now A ( ( r.TS between [tj,t;41) ) V
( r.TS<t; AtiSt.TEAP(r) ) ) ) }

where P, is the predicate for constructing the static state information.

A point to note regarding the redundant state information property that is
discussed earlier. For the hybrid fragmentation scheme, the property does not
hold because the current fragment is not range-partitioned based on the TS or
TE timestamp. However, if only the history fragment is involved in the user
query, one can still eliminate the construction phase of an operand that has the
asymmetry property. A condition in which only history fragment of a relation

Ry is involved is given by:
P = Rix.TE#now

where P is the user query qualification. If we assume that now is the largest

current time point, the above condition is equivalent to “P = Ry. TE<now”.

6.3.5 —1NF temporal relations

There are several common ways to model temporal data. The data model that
is presented earlier uses a pair of timestamps to represent the tuple lifespan and
thus can be regarded as tuple-versioning [Ahn86] or first temporal normal form
(1TNF) [Seg88]. Another approach is attribute versioning [Ahn86], including the
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Figure 6.11: A temporal tuple (s,) with multiple time-varying attributes

nested or non-first normal form (~1NF) temporal data models {Gad88a, Tan89].
In the attribute versioning approach, a temporal relation may have more than one
time-varying attribute; each attribute value is tagged with a pair of timestamps

representing its lifespan. Consider a relation with three time-varying attributes
A, B and C;

R(S, A,TSA,TE4, B,TSs,TEg, C,TSc,TEc)

Typically, a tuple has a surrogate value and several timestamped data values for
each attribute. For this reason, the tuple is in =1NF. For example, Figure 6.11
shows the attribute values of a tuple (s;) over time. The corresponding —~1NF
tuple is shown in Figure 6.12 and its normalized version is shown in Figure 6.13.
For —=1NF relations, the database update model remains essentially unchanged
— the difference is that the append-only update policy is applied on the attribute
level and thus no additional —=1NF tuple is inserted when an attribute value is
updated. In other words, the size of a ="1NF tuple grows as more history attribute
values are appended to it. It should be noted that a temporal relation in -1NF
(e.g., Figure 6.12) is conceptually equivalent to a materialized join on surrogate
value using the corresponding normalized relations (e.g., Figure 6.13), although

a different file structure may be used for storing —~1NF tuples.

Range-partitioning -1NF relations on a time attribute is rather straightfor-

ward as before. Let us consider the hybrid scheme on TS range-partitioning:



S | A [TSa,TEa)|B [TSs,TEg) | C [TSc,TEc)
81 | a1 {ti,ts) by [t1,t2) ¢ [t1,ts)
ag {t3,ts) by [tz,t4) ¢y [ta,te)
a3 [ts,now) b3 [t4,t7) c3 [tests)
b4 [t7,ﬂ.010) Cy4 [ts,now)
Figure 6.12: A =1INF tuple for s,
S |A|TSs | TEa S| B |TSs | TEg S |C|TSc | TEc
81 aq tl t3 51 bl tl tg 57 Cy t.l t3
51 ag t3 ts 81 bg tg t4 51 | C2 t3 ts
81 | a3 t5 now S b3 t4 tr 51 | Cs tﬁ tg
sy | by | tr now s; | ¢4 | ts now

Figure 6.13: Normalization of tuple s;




e The current fragment of s; is represented by the following tuple, and is
stored at a processor determined by a fragmentation method such as hash-

ing:

sy | ag [ts,now) | by [tr,now) | cq [ts,now)

Note that the start times of current attribute values are different.

e The history fragment is range-partitioned based on the TS timestamp. To
explain the idea, we consider a partitioning boundary tj, as shown in Fig-
ure 6.11. History attribute values which start prior to ty, are stored at one
processor, say p;, while those after ty, are stored at another processor, say

p2. For tuple s;, processor p; stores the following portion:

1 | a1 [t1,ta) | by [t1,b2) | €1 [t1,ta)
by [ta,t4)

while p; stores:

si | ag [t3,ts) | ba [ta,t7) | c2 [ta,te)
ca [te,ts)

e State information can be constructed and stored statically. Consider the
most general case in which the state predicate to construct the static state
information is “true”. The portion of tuple s; stored in processor p; be-

comes:

sy | a1 [t1,63) | bz [t2,te) | €1 [t1,t3)
ay [ta,ts) | ba [tat7) | c2 [ta,te)
C3 [t‘ﬁat'S)

¢ Updating an attribute value may “migrate” the history attribute value. For
example, suppose the attribute A of tuple sy is updated to a4 at time to
(which is later than tg). The history value az is then moved to processor p;

which would store (without state information):

s1 | a2 [t3,b5) | b3 [ta,t7) | €2 [te,ts)
as [ts,te) c3 [te,ts)
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6.3.6 Temporal Aggregate Functions

The notion of state information is not limited to qualified tuples that span par-
titioning boundaries, and can be further generalized in the context of stream
processing. Recall that the state information of a stream processor at a particu-
lar time t’ represents a summary of the history of a computation on the portion
of data streams that have been read before t'. Generally speaking, it may be very
difficult to characterize the state information (and therefore its storage require-
ment) for an arbitrary computation. However, the notion of state information

can be easily defined for aggregate functions.

Suppose that we ask an aggregate query: find the weekly sales volume from the
daily sales records'”. We further suppose that the data is range-partitioned on a
yearly basis among processors, e.g., processors p;—; and p; store the partitions for
the years of t;_; and t; respectively. That is, the temporal data s not time-interval

tuples. The state information at processor p; can be defined as:

tuples whose timestamp values are during the last week of the year
of t'i—1°

To process the aggregate query in parallel, each processor p; has to send (at
most) tuples in the last week of its local fragment to its “successor” processor.
For example, p; sends copies of some tuples in its local fragment (i.e., year of
t;) to pig1 as state information. Note that the number of tuples in the state
information for this aggregate query is bounded — at most one week of daily

sales records.

6.4 Other Parallel Temporal Join Strategies

The strategies that are presented earlier may not be applicable in some situa-
tions, e.g., TSJ, queries. In this section, we discuss several alternative parallel

strategies.

17 Several temporal aggregation operators have been proposed and defined in [Sno86, Seg87].
An example taken from [Seg87] is: “Get a series of 7-day moving averages of book sales.”
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(a) (b)

Figure 6.14: Join graph for the TSJ, query in Example 6.5

6.4.1 TSJs Queries

In the previous sections, we discuss the parallel processing strategies that are
suitable for TSJ; queries only. Here we explain why these strategies cannot be
utilized for a more generally class of join queries — TSJ;, and suggest some
alternatives in processing these queries. Recall that TSJ; are join queries whose
join conditions do not require all participating tuples to share a common time

point (but the participating tuples must overlap).

Example 6.5 Given temporal relations X, Y and Z. The following query
belongs to TSJ; (but not TSJ,):

O intersect—join(X,Y) A intersect—join(Y,Z) (X1 Y>Z)

and its join graph is shown in Figure 6.14(a). O

Consider Example 6.5. As in the case for TSJ;, we assume relations are ho-
mogeneously range-partitioned on time attributes. For a tuple triplet < z,y,z >
that satisfies the join condition, the tuples z and z may not overlap with each
other and thus may actually reside on different processors. In other words, even
if sufficient state information for all operand relations have been constructed as
before, the query may not be processed in parallel without moving additional

data. The essential difference here is that the state information of temporary
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tables may have to be constructed dynamically during the join sequence while it

is not required for TSJ; queries.

Processing TSJ; queries can be somewhat more complicated than TSJ; queries
in general. For example, we can first construct a join sequence for pairwise
join execution using the join graph built from the join query qualification. In
Example 6.5, it is “X-Y-Z”. Suppose the join sequence is to join relations X and
Y first, and then join the result with relation Z, as illustrated in Figure 6.14(b)!®:

Replication Phase I Construct the state information for relations X, Y and
7, denoted as s, (X), s, (Y) and s;(Z) respectively, at every partitioning

boundary t;, as described before.

X-Y Join Execute the join between X and Y in paralle], the result being a tem-
porary table (denoted as XY) which is also fragmented among processors.

The fragment of XY stored at p; is:
XY = O-ny(xivsti(Y)) U OPXY(YisSti(X)) U UPXY(XiaYi)

where X; (and Y; respectively) is a relation fragment of X (and Y respec-

"

tively) stored at processor p;, and Pxy is “intersect-join(X,Y)

Replication Phase IT Construct the state information for relation XY at every
partition. That is, A tuple pair < z,y > in XY is copied to processor p; as

state information, denoted as sy, (XY), if its y component spans t;.

XY-Z Join The final query response becomes joining the Z fragment with XY
fragment and s, (XY). That is,

Q = Ulgign {O-Pyz (XYiash(Z)) U O'P_vz (Ziasti(XY)) U O-PyZ(XYisZi)}

where Z; is a relation fragment of Z stored at processor p;, and Pyz is

“intersect-join(Y,Z)”.

18 Ohviously, there is a tradeoff in choosing which join to be processed first. For example,
joining Y and Z may produce a smaller temporary relation than joining X and Y, and therefore
the overall cost may be cheaper if we join Y and Z first.
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6.4.2 Sequential/Pipelining

This strategy assumes that relations are homogeneously TS range-partitioned.
In conventional databases, “pipelining” often refers to the paradigm in which
data “Bow” through relational operators such as join and select without being
stored in temporary files. The sequential/pipelining strategy here refers to the
dataflow among processors and to the fact that state information is sent from one
processor to another sequentially. The approach stems from the observation that
the processor py, which stores tuples in the first partition [t1,t;), can immediately
proceed to execute the jcin since we assume that the state information at t; (equal
to 0) is empty. While the local join in processor p; proceeds, qualified tuples that
span the next partitioning boundary t, are copied to processor pz. Processor p;
can start its execution at any time but it can not finish the execution until it has
received all the necessary state information from p;. This execution mechanism

continues for p; until p,,; which stores the last partition [ts;,now).

This sequential/pipelining scheme can significantly reduce the interconnec-
tion network traffic congestion due to the simultaneous tuple shuffling among all
processors. The initial query response is faster as the first processor can start
the execution without delay. However, processing the query takes longer as it
has to go through from a processor to another, and the total query response time
may be too long that pipelining becomes unacceptable especially when operand

relations are range-partitioned into many fragments.

6.4.3 Semijoin and Join

This method can handle both homogeneous as well as heterogeneous range-
partitioning. The semijoin is actually a pre-processing mechanism that can also

reduce the number of tuples copied between processors.

Recall that in an earlier section, we discuss alternatives in reducing the
amount of state information using four statistics: the maximum and minimum
of the TS and TE timestamp values of a relation fragment X;. The idea is
that instead of keeping these four statistics, each processor p; scans the operand
fragment X; and determine its exact fragment lifespan which is obtained by “con-

catenating” the lifespans of overlapping tuples in X;. Note that the fragment
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lifespan may consist of more than one interval'®. Using the fragment lifespan of
X; in processor p;, each processor can determine which Y tuples should be copied
to p; for executing the join, for example, sending Y tuples which overlap with
the fragment lifespan of X;. Readers may note that only relation X is required
to be range-partitioned on a timestamp; other fragmentation strategies (such as

hashing) can be used on relation Y.

One can compare this approach with the alternative that uses the four statis-
tics discussed earlier. The above approach has to pay the overhead in determining
fragment lifespans (e.g.. scanning fragments once). However, fewer tuples may
be sent between processors especially when the fragment lifespans are several
disjoint intervals. That is, there are “gaps” in the fragment lifespan that can be

used to avoid sending redundant tuples as state information.

6.5 Previous Work and Conclusions

The parallel processing schemes that we present in this chapter is a substantial
extension of the work on generalized data stream indexing in Chapter 5 — the
notion of checkpointing the execution state of a query appears in both chapters.
In Chapter 5, we propose an indexing technique based on periodically checkpoint-
ing on data streams which are sorted on the timestamp values. Checkpoints are
statically stored and can be indexed on checkpoint times. In this chapter, we

apply the idea of checkpointing in parallel database machines.

[Kar90] is apparently the first publication that appears to support temporal
features in multiprocessor database machines. The paper, however, only discusses
a front-end syntactic translator for a relational database system regardless of
whether or not the database system is residing on a multiprocessor database
machine. Moreover, there is no discussion on query processing and optimization

as well as fragmentation strategies.

A partitioned storage for temporal databases is proposed in [Ahn88]. The
idea is to split the storage structure into the history store and the current store,

and is similar to the hybrid range-partitioning scheme proposed in this chapter.

19 If the query qualification has a comparison predicate on relation X (e.g., “X.U=u") and
an index on that particular attribute exists, one can use the index to retrieve qualifying tuples
and determine the “fragment lifespan”.
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The current store contains current versions and perhaps some history versions
of temporal records while the history store contains only history versions. The
major issues involved are 1) mapping temporal queries into queries on two storage
structures, and 2) update procedures. Their emphasis is on select queries and
equi-joins. The idea of archiving a portion of history tuples into optical disks
also appears in [Sto87, Kol90].

In [DeW91] a “partitioned band” join algorithm is proposed to evaluate the
»20,

so-called “band join
A “band join” between relations R and S on attributes R.A and 5.B
is a join in which the join condition is “R.A—¢; £ S.B £ R.A+¢,”,

where ¢; and c; are non-negative constants.

In the band join algorithm, ranges of the operand relations R; and S;, where 1 €
{1,---n}, are found such that (1) R = U; Ry and S = U; S;, and (2) for every
tuple r in Ry, it is required that all tuples of S that join with r appear in 5;.
The complete join is formed by joining R; and S; for each range (i=1,---,n) and
merging the result. With the assumption that the width of a “band” (i.e., c1+c3)
is small, the major concern in [DeW91] is to choose the range sizes such that
each of the R; fits entirely into the buffer pool. For the parallel version of the
band join algorithm, each join between ranges R; and 5; can be performed by a

separate processor.

One can process the above band join using our strategies as follows. Suppose
both relations R and S are range-partitioned based on the join attribute (R.A
and S.B) using the same partition function (this assumption is easily relaxed
and would just result in greater data movement as discussed below). We further
suppose that a partitioning interval [v;,vit1) is assigned to a processor p;, i.e., a
tuple » € R (similarly for tuples in S) is stored at p; if its join attribute value
falls into this interval. The replication phase then involves copying tuples s € S
to p; if the value of s.B falls into the interval [v;—cy,vi) or [Viy1,Vig1+¢2). When
both ¢; and c; are small, tuples from only processors pi—y and pi41 are replicated
at processor p;. After the replication process, the join can be processed as the
merging of the results of the parallel local joins. If say R is partitioned on the

20 One can think of it as a “fuzzy” equi-join.
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join attribute but S is not, then the same strategy works except that the tuples

replicated on processor p; may come from all other processors.

To recap, we discuss parallel query processing strategies for complex temporal
join queries and snapshot queries, and show that the strategies are sound for TSJ,
queries. A number of optimization alternatives have been addressed. We have

also discussed several data fragmentation strategies for temporal data.
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CHAPTER 7

Conclusions and Future Work

7.1 Contributions

The focus of this work has been on processing and optimization strategies for
temporal queries. In the following, we summarize our major contributions to this

arca.

e We show that most temporal operators (except for the time-union operator)
are equivalent to relational expressions, and thus establish the argument
that the major distinction between temporal DBMS and relational DBMS
is in the area of query processing and optimization. In fact, this area is

seldom explored until recently [Seg89, Leu90, Gun91].

¢ We propose stream processing techniques for processing temporal join and
semijoin operations. Stream processing algorithms, which takes advantage
of the ordering of input streams, can be very efficient. We also discuss the
trade-offs between the input sort orderings, minimal size of workspace where
state information is kept and the number of scans of input streams. Note
that these trade-cfls are seldom addressed in the existing literature. One of
the major contributions is that the optimal sort orderings may depend on
the statistics of data instances as well as the operator itself. For example,
it may be more efficient if an input stream is sorted on TS while the other
input stream is sorted on TE (such as for contain-join).

e We propose generalized data stream indexing techniques that can be used
to efficiently process a subclass of complex joins qualified with a snapshot
operator, especially when the query-specific time interval (e.g., in as of
queries) is relatively short compared with the lifespans of data streams.
The data stream indices become very attractive especially when the storage

space required for the indices is relatively small compared with conventional
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indices such as Bttree. One of the major contributions is the set of storage
reduction schemes where the amount of state information that we store as
checkpoints can be reduced, and the fact that there is a limit on the gain

due to this optimization scheme.

e We propose parallel processing algorithms and optimization strategies for
a subclass of temporal joins. The parallel algorithms are based on parti-
tioning the relations along a time dimension. We also consider a number of
alternatives in reducing the number of tuples to be replicated across proces-
sors. A quantitative analysis is provided to estimate the number of tuples
to be replicated, and based on this quantity, one can determine when our

proposed strategies perform better than conventional methods.

e We classify temporal join queries into TSJ; and TSJ,. This classification
has two major consequences. First, it helps us understand the applicability
of various algorithms and strategies on processing these types of queries. A
by-product is that it identifies the limitations of our generalized data stream
indexing techniques and the parallel processing algorithms in that they are
not directly applicable for TSJ; queries. Second, although we concentrate
most on TSJ; queries, the algorithms and strategies presented can form the

foundation for processing TSJ, queries.

e This research work opens up many avenues for future work in temporal
query processing and optimization that have been largely ignored in the
past. In the following section, we point out several directions of the future

research.

7.2 Future Work

There are many research directions which require further investigation. They

include:

e statistical information gathering,
¢ generalized stream processing algorithms,

o global optimization problem,
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® semantic query optimization,

e parallel processing strategies for TSJ, queries and queries whose operand

relations are heterogeneously TS or TE range-partitioned.

Statistical Information Gathering Statistical information about databases
is known to be important in query optimization. For temporal databases, it
appears to be more critical. In addition to conventional statistical information
such as relation size and image size of indices, estimating the amount of local
workspace becomes necessary. There is also a question of how this information

can be obtained efficiently and summarized in a suitable form for the optimizer.

Generalized Stream Processing Algorithms In Chapter 4, we assume that
the workspace is large enough for holding all the necessary tuples so that the join
operation can be performed by scanning input relations once. More general algo-
rithms are required to handle the situation when overflow occurs. Assuming that
the query optimizer requests a workspace of certain size for a particular opera-
tion before a stream processing algorithm starts, there are several alternatives to

handle the “overflow” problem:

o The workspace is managed by a virtual memory manager, i.e., the workspace
is mapped onto a swap space. This simple solution may have a severe per-

formance penalty as there is no control over the paging activities.

¢ When overflow occurs, the join operation can be “continued” using 3 sepa-
rate joins. Let us outline the approach here. Suppose we join data streams
X and Y. We denote the portion of data stream X (respectively Y) that
have not been read as the “remainder” of X (respectively Y). The first two
joins are to join the state information of X with the remainder of Y, and vice
versa. This can be done via scanning the reminders of both data streams
only once. The last join is to join the remainders of both data streams
using a nested-loop join. Note that estimating the expected performance
of this kind of generalized stream processing algorithms is important and

worth the investigation.
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Global Optimization Problem One of the most important area for future

work is the “global” optimization problem which can be stated as follows.

Generally a query optimizer is given the following information:

e a list of available indices,

a list of available join strategies,

e the data statistics,
¢ the sort ordering of input operands,
e the available workspace, and

e the cost model.

For a given user TSJ query in the form of Op(Ry,--,Rm), where
Ri’s (1<i<m) are temporal relations and P is a query qualification
(i.e., comparison and join predicates), the query optimizer generates
a query plan which is a sequence of operations (such as sorting the
input data and performing a selected join strategy) which includes
determining of the join ordering. The global optimization problem is

to choose a plan with the cheapest cost.

We note that most of the research work in temporal databases to date has only
considered storage structures, query processing algorithms for simple temporal
queries (such as select and join), and indexing methods. The point here is that
in addition to the new strategies for individual join operation, we should also

consider the global optimization problem.

Semantic Query Optimization In Chapter 4, we note that time is rich in
semantics, and one can exploit semantic query optimization techniques in gen-
erating a better query plan. Its use will be more crucial when the global query

optimization problem is tackled, and it should be addressed in the future.

Parallel Query Processing Strategies In Chapter 6 we concentrate on TSJ,
queries (i.e., all participating tuples that satisfy the join condition must share
a common time point). A natural extension is investigate the parallel query
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processing strategies for TSJ; queries whose operand relations that are hetero-
geneously range-partitioned, and for TSJ; queries. It appears that our parallel
join strategies presentesl here can be easily adopted to process TSJ, queries: the
join sequence can be obtained by a graph reduction algorithm on the join graph

constructed using Algorithm 3.1. These areas need to be investigated further.
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