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1 Introduction: Discrete Event Simulation

The systems which we are able to create become larger and more complex every day. We have moved beyond
a point where one is able to predict the performance of a large system, be it a complex computer network
or a super-sonic airplane, by purely analytical means. It is now necessary to simulate the operation of
proposed systems in order to better understand their behavior. Additionally, simulation is a useful tool to
examine events unlikely to occur in the “real world”, such as a nuclear attack. As the size of a simulation
increases it demands more computing time. Naturally then, one would like to utilize the recent advances in
parallel computing technology to speed up the execution of simulations. Unfortunately, it is a non-trivial
task to efficiently implement a parallel simulation system, though several techniques have been developed to
do so. This paper presents an analytical model of the performance of one distributed simulation algorithm,
Time Warp (TW) [1]. We analyze the operation of TW when run on two processors and obtain exact
results for important performance measures; most notably, the speedup of two processors over execution on
a single processor. To better understand Time Warp and our underlying model of it, we first discuss parallel
simulation in general.

Parallel Discrete Event Simulation (PDES) is generally sccomplished by partitioning the simulation
into logical processes (LP) which simulate some physical process in the system. Each LP maintains an
independent local dock indicating how far forward in simulation time it has progressed. Processes interact
by sending and receiving timestamped messages. Each process operates autonomously by receiving Imessages,
performing internal computation and sending messages. A process will terminate once its local clock, the
time of receipt of the message currently being processed, has reached some user specified value. Certain LPs
perform operations only in response to messages (the messages carry the work), while others perform internal
computations regardless of whether any messages have arrived. For example, an LP which is simulating a
single server queue would only perform an operation in response to the arrival of a message (customer). On
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the other hand, an LP which simulates a customer arrival process would be able to operate without receiving
any messages at all, it just keeps generating customers. Nicol [2] discusses these two types of logical processes
in more detail.

Each LP could be placed on its own processor, and one might hope that we could then gain speedup
proportional to the number of processors used. Unfortunately, this is often not the case as the system being
simulated may have only limited parallelism [3]. Also, the PDES algorithms themselves limit parallelism
in their attempts to prevent the simulation from deadlocking and to ensure correctness. Several competing
techniques have been developed to address deadlocking and correctness [4][5]. The algorithm of interest for
this paper is Time Warp [1] which uses a rollback mechanism invoked only when needed for synchronization.
The essential problem to address when designing an algorithm for distributed simulation is to maintain
causality between events. In the physical system, event A might have a direct causal effect on event B.
When these two events are executed on two separate processors, it is non-trivial to efficlently make sure
that event A actually occurs before B in real time. Time Warp maintains this causality by restoring a
previous state and re-executing any operations it finds to have violated causality. The next section describes
the algorithm in more detail.

1.1 Time Warp

The basic idea behind Time Warp is to allow each LP to advance forward as fast as it can without regard
to the operation of the other LPs in the system. A TW process will choose the message with the minimum
timestamp in its input queue; set its local clock to the time on that message; process the message; then find
the next smallest message in the queue, etc. It is possible that a “straggler” message could arrive with a
timestamp less than the local clock time of the LP. When this happens, the process is forced to “roll back”
to a time before the timestamp of the arriving message This is able to be accomplished because the system
periodically saves the state of the LP. Any effects of having advanced too far (i.e. erroneous messages)
are canceled through an elegant technique called anti-messages [1]. Any possible gain from the aggressive
behavior of the Time Warp mechanism does not come without a cost. One of these costs is the overhead
associated with the aforementioned state saving. There are two performance tradeofis to keep in mind when
choosing the frequency of state saving. If we save state very often, we pay a large time penalty in real time
for all the data saving operations. If we choose to save state less often, we run the risk of having to roll
back much further into the simulation time past than the time of the message causing the rollback, thus
paying the real time cost of re-executing correct events. Lin and Lazowska [6] address exactly this issue and
find an optimum state saving interval based on certain assumptions asbout the arrival of messages and state
saving costs etc. We don’t examine this tradeoff in our work. Rather, we force each processcr to save state
after the execution of every event so as to keep the model tractable. Another overhead of state saving is
the space required to save the history of the LP. Fortunately, we do not need to keep all state information
back to the beginning of the run. A concept called Global Virtual Time (GVT) [1] allows the system to
periodically throw away obsolete information. GVT is defined as the minimum of all the local LP clocks and
the timestamps of ali messages in transit. Since nothing in the system has a timestamp less than GVT, no
process could ever be forced to roll back to a time prior to GVT. Obviously GVT is a very difficult measure
to obtain, since we cannot take a “global” snapshot of this distributed system [7). Algorithms have been
developed to calculate a lower bound on GVT [8] which can be used as an estimate to free up memory space.

1.2 Previous Work

Our research focuses on the analysis of the average case behavior of Time Warp when run on two ProCessors.
We will solve explicitly for the average rate of progress of simulation time per unit real time of a two
processor TW system. Using this measure we find the speedup of a two processor TW system over the
execution of the processes on a single processor. We further solve for interesting performance measures like



the average state buffer occupancy. Very little work has appeared in the literature which discusses average
case behavior of TW. Lavenberg et al. [9] and Mitra and Mitrani [10] have examined models similar to
ours, and we will address their relationship to this work in Section 6. Madisetti [11] [12] provides bounds
on the performance of a two processor system where the processors have different speeds of processing and
move at constant rates. Madisetti extends his model to multiple processors, something we do not address
in this work. Lin and Lazowska [13] have examined Time Warp and conservative methods by appealing to
critical path analysis. They have also examined TW itself [6] [14] [15] to better understand the state saving
overhead, rollback mechanisms and processor scheduling when running the TW algorithm. Though their
work provides important insights, it generates different types of results than ours. Nicol [2] has provided
bounds on the performance of parallel “self-initiating” models where the processors schedule their own state
recalculation. Finally, an overview of the results of this paper appeared in an earlier work (16].

The next section introduces our model for Time Warp. Section 3 provides its exact solution. In Section 4
we examine some performance measures including speedup. In Section 5 we take limits on various parameters,
and we discuss the relationship of this work to that of Lavenberg et. al and Mitra and Mitrani in Section 6.
In Section 7 we examine a restricted version of the model in detail. Finally, in Sections 8 and 9 we provide
some concluding remarks and notes on future research directions. )

2 A Model for Time Warp on Two Processors

Assume we have a job that is partitioned into two processes, each of which is executed on a separate processor.
As these processes are executed, we consider that they advance along the integers on the x-axis in discrete
steps, each beginning at x = 0 at time ¢ = 0. Each process independently makes jumps forward on the axis
where the (integer) size of the jump is geometrically distributed with mean 1/5 ({ =1,2). The amount of
real time between jumps is a geometrically distributed number of time slots with parameter o (i =1,2).
After process i makes an advance along the axis, it will send a message to the other process with probability
@ {i=1,2). Upon receiving a message from the other (sending) process, this (receiving) process will do one
of the following:

1: If its position along the x-axis is equal to or behind the sending process, it ignores the message.

2: If it is ahead of the sending process, it will immediately move back (i.e., “rollback”) along the x-axis to
the current position of the sending process.

Let
F(t} = the position (on the x-axis) of the First process (process one) at time ¢
and
S(t) = the position of the Second process (process two) at time .

Further, let .
D)= F(t) - S(¢)

D(t} = 0 whenever Case 2, a rollback, occurs. D(t) is a Markov process whose behavior we are interested
in studying. From our assumptions that F'(0} = §(0) = 0, we have D(0) = 0. Clearly, D(t) can take on any
integer value (i.e., it certainly can go negative, see Figure 1). [ ! | INSERT Figure 1 HERE ! | ] We
will solve for
P = ImPDE)=kK k=0,1,2,..
ny = limPD{Et)=-k] k=1,23,..
t—o0

namely, the equilibrium probability for the Markov chain IX(t). Moreover, we will find the speedup with
which the computation proceeds when using two processors relative to the use of a single processor.



This is a simple model of the Time Warp distributed simulation algorithm where two processors are
both working on a simulation job in an effort to speed it up. They both proceed independently until such
time as one (behind) process transmits a message in the “past” of the other (ahead) process. This causes
the faster process to “rollback” to the point where the slower process is located, after which they advance
independently again until the next rollback.

The interpretation of the model is that the position of a process on the axis is the value of the local
clock of that process. The amount of real time to execute a particular event is modelled by the geometric
distribution of time slots between jumps. The geometrically distributed jumps along the axis indicate the
increase in the virtual timestamp from one event to the next. Messages passed between processors (with
probability ¢) have virtual time stamps equal to the virtual time of the sending process. The messages
convey only synchronization information; they do not carry any work. We assume that each LP is always
able to perform work regardless of whether any messages have arrived. The messages are used to synchronize
the processors and may be thought of as carrying state information only, not extra work.

Our model assumes that states are stored after every event, otherwise a rollback would not necessarily
send the processor back to the time of the tardy message; rather it might have to rollback to a much earlier
time, namely, that of the last saved state. Another implicit assumption is that each process always schedules
events for itselfl. We assume that communication between processors incurs no delay from transmission
to reception. Finally, our model states that messages that arrive in the virtual-time future are ignored.
They are not queued, nor do they require work in the future. Messages (at any time) are only used for
synchronization. We are mainly interested in the cost of the synchronization itself, not communication. For
a model which takes into account the queueing of message see our extensions to this work [17].

It should be easy to see that this system will always make progress. Even if each processor always sends a
message to the other (¢ = ¢; = 1), the Global Virtual Time of the system will always advance. For example,
imagine that processor one (F}) is at point z; on the axis (virtual time) and processor two (P) is at zs
where z; < z 30 that P, is behind B,. By the definition of our model, when a processor completes an event
it moves by at least one step and possibly sends a message. Therefore, P; can only send a message to P at
a time which is greater than or equal to z2 + 1. Therefore, P4’s actions at the present time can not roll back
Py or GVT. P, on the other hand, precisely determines the value of GVT and the rate at which it advances
at the present moment. Since P will advance at least one step when it advances, GVT will make progress
and the system will make progress. It should be noted here that the two-processor system is attractive since
it will not suffer from “cascading rollbacks” [18] where a processor that gets rolled back causes another to
roll back and so0 on.

3 Discrete Time, Discrete State Analysis

In this section we provide the exact solution for the discrete time, discrete state model introduced in Section 2.
Although, as we proceed, the equations may look formidable, the analysis is quite straightforward. First, we
provide some definitions.

oy P[i** processor advances in a time slot]

T 1-oy

A, = % (Only processor 1 advances in a time slot)

A = oa; (Only processor 2 advances in a time slot)
As

Aq

Ji

ajay (Both processors advance in a time slot:)
@15y (Neither processor advances in a time slot)
P[Processor 1 advances j units | it advances)

I

= ﬂaF{HU >0) Bi=1-8)



g = P[Processor 2 advances j units | it advances)

= BBTG>0 B=1-8)
m = P[Procs. 1 and 2 advance the same dist. | both advance]
Bba
1-8,8,

P[i** processor sends a message after advancing]

G = 1-g

Since the transitions in our system are quite complex (there are an infinite number of transitions into
and out of each state) we choose to show the state diagram only for a simplified version of our system where
b1 =P =1in Figure 2. [ ! ! INSERT Figure 2 HERE ! | | This is the case where the Pprocessors
only make jumps of a single step (from k to k + 1).

The steady-state balance equations for our completely general system (no restrictions on B;) are:

i=1

k-1 ]
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s=k+1 =1
k-1 oo

+A% ) m Z Ji+h—igy
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=1 j=1

k-1 [ -3
[Ai+ A2+ As(l—7m+qm)n, = A (z gk + Zpigu-i)
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+ATL Y ™ Y Gienils

=0 =l
+ATL Y P Y gy k21 (2)

=1 j=l

L ] [~ -]
m=1-3"m-Y n
i=1

i=1



The above equations will have a steady-state solution only if ¢1,42 > 0 and o, ag > 0. These are reasonable
limitations. The alphas must be greater than zero or else each processor will take an infinite amount of time
to process an event. Each of the ¢;s must be greater than zero so that each processor has some positive
probability of being rolled back when it gets ahead.

We define the following z-transforms

PR =Y e, Q) =3 met, and F(z) =3 furk = —PZ_
k=1

k=1 pect S (1-B2)

Using Equation 1 we solve for P(z) by multiplying each term by 2* and summing from k = 1 to oo.
Since this equation has so many summations, we list the solution for each term separately and omit the
derivations. (The derivations may be found in [19].) Also, since P(z) and Q(z) are symmetric with respect
to (a1, a2),(f1,4) and (q1, g2), we only need to solve explicitly for P(z).

Z (AL + A2+ Ay — AsGom) pez® = (-41 + Ag + Az — Aﬁz_ﬂ&) P(z)
=1 1-5,4

o0 k-1
Z A, Zpifk—i = A1F(z)(P(z) + po)
k=1 =0

Alzz*zn.-fku = AF(2)Q(B))
praey

i=1

45,3 # Y pgs = b (P(z) - i’%@)
=1

= S=k+1 z— Py
- o oo As5r518:B0 zP(B,)
z* X - Pal
A3 g ¢=zk;1p‘ ; f195+i-k (YN AP A ( (2) A )
o0 k-1 oo

SONPYD IR oo - SRUCREs
k=1 =0 j=1 ~ P15s)

Asty i Z+ i ™ i gifitai = Ast,8 lﬂﬂf (i)Q(ﬂl)
=1 =1 =l 1-515,

Finally, by combining terms, we arrive at the following equation which defines P(z).

(A1 + Ay + Ay — Asyr) P(2) = AIF(2) (P(2) + o + QA1)

Ao _zP(By)
-8 (P % )
AsTyB1 828, _ zP(By)
T=P.Ba)z - B (P &) -5 )

Asg BB F(2)




We simplify this equation by solving for P(z) = N(z)/ D(z), a ratio of two polynomials, explicitly.

N@E) = 2(8:(AsBiBa+ A (1-BB)) 3 (1 - B1z) P(By)
— BBy (A1 (1 - BiB,) + AsBiBa%a) (2 — Ba) (mo + Q(BL))) (3)

D(z) = B, (1 - 3132) [(Al + (A + A3)El) 2
~ (A1BiB + (A1 + As + A3) (1 + B, By) + BoT, (AsB, — Aspr)) =
+B2( A1 + Ay + Az) + A oy) {4)
We simplify D(z) to _ _
D(z) =3, (1 —51.32)%(2 -n)(z—r2) (5)

where r, and ry are the roots of the quadratic expression in D(z). .
Using the quadratic equation we solve for the roots (1, ) as given below.

—bpx V br2 ~4ay;

(rlirﬂ) = 20'?

where

ap = A1+ Bi(A2+ As)
by —((A1 + A2 + A)(1 + B, Ba) + ALBiBy + Bala(ALB — AsB))
o = mUh+&+Aﬂ+&%%

Since Q(z) is symmetric to P(z), we proceed to find the roots, (s, 2,) of the denominator of Q(z) to get

—bn & Vb — 4ancy
2a,

]

(’ll 32) =

where

= As+FB3(A1 + As)
—((A1+ A2+ A)(1 + B15y) + A2BaBy + Big (A1 Bz — AsR))
= Bi(A1+ A+ A3) + A8,

Gn
bn
tn

In Section 3.1 we show that ry and ry arereal, r; > 1and0 < r < 1. Since P(z) a Y o p2t is the
transform of a probability distribution, we know that P(z) must be analytic whenever | z |< 1. Therefore,
the numerator of P(z) must equal zero when z = ry since ry < 1. Plugging ry into Equation 3 and setting it
equal to zero we solve for P(3,)

BBDy(ra - Bo) (o + Q1)
Ba%a (AsPiBy + As(1 - 1Ba)) (1 = Bira)’

D, and Dy, are constants given below. We then substitute P(f,) back into N(z) (Equation 3) resulting in

the following equation. _ _ _
N(z) = PPa (L =BiBs) Dyx (ra — 2) (o + Q(BY))
B 1- 31"2

P(By) =

7



Therefore,

) < P1Dpz (po + Q(B1))
= A - 9 o
and by symmetry o 3 )
_ BDus (o + P(y)
A= A=) (- 2 0
where
Dy, = A(1~58)+ ABiAg, (8)
D, = A(1- E132) + A Bogy. (9)

We solve for the unknown constants P(5,) and Q(f,) by solving Equations 6 and 7 simultaneously with
z replaced by 5; and B, respectively.
P(B,) = K(m+ Q@A)
Q(Bl) Kn (pD + P(BZ))

Solving them simultaneously yields.

PR = png(1+K,.)

1- KK,
3 — Ka(l + K,)
Q(B1) —'——Ll " KK,
where
A8, D,
K, = = — 10
T eGP (<Fum) 4o
Blﬁ?Du
K, = = = 11
an (o1~ Br) (1~ Fyra) 1)
Substituting these values into Equations 6 and 7 and simplifying we find
C,
P(z) = ;’:“"T: (12)
Qz) = :f"—_C: (13)
where
- BiDp (1 + K} 14
G = TTKK)e(-Fn) a4
B2Dn (1 + Kp)
Ca = 15
0= KoKy) an (1 - Fss) (18)
By conservation of probability we know that P(1) + Q(1) + pg = 1. Therefore,
1
Po= (16)
HEARE

8



Finally, we invert the z-transforms to get our final answer.

1\*
Pk = Cpm(;) k=1 (17}

L3

Curo (}17)* k>1 (18)

3.1 Root Locus

In this section we show that ry and rs are real, r, > 1 and 0 < r, < 1. To show that the roots ry and r are
real, we must show that the quantity under the square root is greater than or equal to zero, or that

b2 —dapcy 2 0

Substituting in the values for a,, by, ¢, and simplifying, we find that the roots will be real if the following
inequality is satisfied.

(Bra1 = Broa)? + B s (By — an)’

+ 2B00m (Fren@i + B (a1 (2 - By — a3) + Bron)) 2 0 (19)
Since all the factors on the left-hand side of Equation 19 are non-negative, the inequality must hold. There-

fore, both ry and ry are real roots.
We now show that r; > 1. Assuming it is true, we require

_ bt b’ —dag

1 20, 2 1
~bp+ /b’ —da > 24,
Vo' —dae 2 20+h
b' ~dape, > 4oy’ +4ayhy +b]

2
0 2 ap+h+o
Substituting in the values for ay, b, and ¢, we arrive at the condition
02 —piBrcoe (20)

Since all the terms on the right-hand side of Equation 20 are non-negative, the inequality holds.
To show that r < 1 we need to prove the following

—bp — /8" —dapgy
mE 20,

<1
~b /b — g < 2,
| ~bp—20 < /b’ —dag,
b’ +4ayby + 40,7 < by’ — dapc,
Gtbt+e < 0



which was shown above to be true.
Finally, we show that r» > 0. We require

—by — /" — dapey

2ay

—bp — /b —4ay,
b+ y/by” — 4y,
Vo' ~ dapc,

—4apcp

v

v

IA

IA A

0

0 (multiply by — 1)

—by

0

(21)

Since ap and ¢, are non-negative, the inequality in Equation 21 holds, thus proving that r; > 0. Similar
proofs follow for (s;, s3), the roots of Q(z).

4 Performance Measures

With the complete solution to the Markov chain in hand (Equations 16, 17 and 18), we calculate several
interesting performance measures. The first is K; which is defined as the average distance processor one is
ahead of processor two, given that processor one is ahead. This measure is useful in determining the number

of states that will need to be saved on average as we will see below.

R _ 2211 kp;,
! mﬂ’k

r1

Tl—l

We find a symmetric value for processor two.

of buffers needed for state saving when processor one is ahead is

and for processor two

Rz - Zﬁl kny
3 k1 T

5

8 — 1
Since we know the expected size of a state jump at processor one is 1/, we find that the expected number

10

E[Buffers needed when Proc. 1 is ahead]

E[Buffers needed when Proc. 2 is ahead]

K,
=+
-3

nfy
A (22

R,
I3

= (23)

n-1




Another useful measure, 8, is the probability that processor one needs more than b buffers for storing
state,

615 = P[Proc. 1 needs > b buffers)

= z P[Proc. 1 is using i buffers]

i=bt+1
o oo

= Y Y P[Proc. 1is using i buffers | Proc. 1 is k units ahead) p,
i=bt] k=i

0 ™ )
= Z Z P[Sum of i geometric random variables = k| p;

s=bt1 k=i
on e =1\ ki 1\*
- SE( D)
i=b+1 k=i !
A A )"
= (C, =
PP (’"1 - 1) ("1 -A @9
If &1 =1 (single step state jumps), then 6, reduces to the following expression.
[+ =]
Copo
By = = 25
1b b=¥+1pk om0 (25)

A similar (symmetric) value, ©,;, can be found for processor two. The quantity of most interest though is
speedup, and we calculate its value in the next section.

4.1 Speedup

Using the formulae for px and n, we calculate the speedup S when using two processors versus using only
one. S is the rate of progress when using two processors (R;) divided by the rate of progress when using
only one processor (R)). The rate of forward progress for one processor {obviously not running Time Warp)
is defined as the average rate of virtual time progress per real time step of the two processes defined earlier
by the real time and virtual time geometric distributions (Section 2). Since process one completes events
(on average) every 1/a; seconds and process two does 3o every 1/ay seconds and they make jumps in virtual
time of distance 1/8, and 1/8, respectively, then the average rate of virtual time progress would be

R AR+TE ab+af
‘T2 T T 288

1



The average rate of forward progress for two processors is the expected “unfettered” rate of progress (without
rollbacks) per time step minus the (rollback-distance-weighted) expected rollback rate per time step for the
two processors. The first three terms (positive terms) in the following expression give the forward rate while
the negative terms give the rollback rate. The negative terms are derived by noting that when a process
advances f units and causes the other to rollback r units, the net progress is given by the difference (f —r).

- A A 1.1
mo- prgra(geg)
0o i—1 oo i-1
—Avep ) Sy gli—i) ~Aap Y« Y fii- )
=2 =1 =2 =1
oa k-1 o0 k-1
—As@ Y P Y igks— A1y S ifis
k=1 i=1 k=1 i=1
o o0 kH-l s o k-l
—As2 ) PR Fi Y 0kei-s — Astr Yomed o Y iferics
k=1 i=1 J=1 k=1 i=l J=1

~Aq Y ey fi > igkiiss — A dmd & D G furies
pase k=1

=1 =1 j=1 =1 i=l =l

As with the P(z) calculation we list the solution for each term separately, but since each pair of terms above
is symmetric with respect to f and g we only need to derive the closed-form solution for one of the two. The
derivations can be found in [19].

o0 -1
Mamd (Y gli-j) = Jebiluam
=2

i=1 Ai(1 - B,B,)
o0 k-1
i Em Lo = m s
o g”"gﬁ kgljg”" - T s n -f’g,))
Asqy gm .;i; Ji gjgk-ﬁﬂ = &(lf%%fgﬁ 8
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Finally, combining all the terms together we find the formula for speedup.
2615 A | A 1 1
5= (aoag) [Rr s (5+)
ABiBrgpe  AsBabram
Al -B1B)  B(1-BiBs)
__AeBCprs AigiSiCaposy

(=B —-12 (81-B)(s ~1)

Asg2BCopo (("1 - B) + BiByry )

(1- E1F2)(rl -1)2 B (n —32)
A_w_l_ﬁlcnpo ((31 ~B,) + ﬁzﬁlil )

(1 - B,5:)(s — 1) B (s1 - B1)
Amﬂxﬁgcppo AvBoB Crmo

—32(1 - E1Ez)("1 - 1_32) N 1‘31(1 —51‘52)(31 - El) (26)

5 Limiting Behavior

Before examining the results of the previous section, we explore what sorts of models arise when taking
limits on the o and 8 parameters. The next three subsections will present the results for (a1,03) = 0 and
(b1,82) — 0. By taking these limits we transform the geometric distributions into exponential distributions,
thus moving from discrete time and state to continuous time and state.

5.1 Continuous Time, Discrete State

We transform our model into a continuous time, discrete state (CD) model by taking the limit as a; and
o — 0 while keeping the ratio Elz constant and defining ’i = a. We can take the limit either on the p;
equations or on cur formula for speedup. The final result for speedup is given below.

S=2(1_ Po (( Cogafary + Craqifhi 81 )) @
mn

£+2 ~B)(r =1 (8- By)m — 1)
where
Do = !
) (&)
c afi(1 - BB)(1 + Ka)
T (- KK)T-Bir)(1 - Ba)
c. 35(1 - B\A)(1+ K;)
(1 - K,K,.) 1- 3282)(1 — fra)
K, = aB1By(1 — B\Ba)

(1-Bin)(1-B@)(n -R) -
K = a8:8,(1 - B,5a)
" (1 - Ba22)(1 — Bra)(a1 — B)
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(ri,re) = (1 +Bz(lza%2;)31ﬁzﬁ2) s
\/(1 +Aa(1 - Bia) + Blﬁzﬁﬂz - 4(1 - fi3)(By + £aqy)
2(1 - A1a)

\/(1 +B1(1 - Ba) + ByBiagy)’ - 4(1 - B2a) (B, + Bragy)
2{1 - Ba)

5.2 Discrete Time, Continuous State

We create a discrete time, continuous state (DC) model by taking the limit as 8 and S — 0 while keeping

%.1 = b. We find the value for speedup by taking limits on the speedup formula calculated for the discrete

time, discrete state model. The resulting formula is given below. We first substitute 8 = 8, /b, then take the
limit as 5, — 0. When taking the limit, we were often confronted with functions of the form 0/0 and were
forced to use ’Hospital’s rule repeatedly. Any terms of the form ¥’ are a shorthand notation for AF/0p.
We find

2(A1+ As + Agb + Ash)  2Asm (P + @) .
o + angb (14 b) (a1 + agb)
2poC, (Az (L1+8) g+ As ((l +B @1 +r]) +b(Pa + @) riz))
) (14 b) (o + aab) r{? (1 + brf)
2poCy (A1 (1+b)q1 + As ((1 +b) (1 +bs) + (o + ) -'i’))
(14 b) (o + azb) 4% (1 + £)

S =

(28)

where
ris

TR

(1+ K,) D,

= T ER) =) (h T AT A)

(1+K,) D,

G = AT RK) (1= t8) (A + A 7 A8)

_ Dy
T A=) (3+7) (A + A+ As)

K,

D,

S Twarh v am+ i
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D,= A+ A1:+ A3gy

D= Ay + A2z+ Asbq,

N 1
(o) = (%(A1+A2+Aa)){-AL—A3+5(A2+A3)—A2QZ

£ (41 + As = (42 + A1 - 2) + Ao)?

+ 4herT (Aa-+ As) (As + B g + A} }
(1, 9) = (2b(A1 +1A2+A3)) { At A —b(Ar+ As) — Aday

+ [(Al + A3 - b(Az + Ay))?
+ 2bq (A1 + 441 Az + 6A) Ay + 442 A3 + 4457

+ 2A1Azb + 241 Ash + A %bg )]} }

5.3 Continuous Time, Continuous State

Finally, we solve a continuous time, continuous state (CC) model by taking limits on both o and &. This
can be done either by going first to the CD (ay) or DC (&) model from DD, and then finishing by taking
limits on the other variable. The final equation for speedup is given below.

—of1- apCy’ _ aqpoCr’
5 ‘2(1 A+ brr) (at @) (1+s1')(a+ab)sf’) #9)

where
_ 7'1'31'
= Ci'n' + Cplsy! + /sy’
C = a(l+d)(1+K,)
P b(1 - K KR) (1 —ry)
__8(1+b)(1+Kp)
" 51 - K,K,) (1 - bay') .
K. = a(1+b)
P+ -7
K. a(1+b)

“ 1+ &) (1 - bay)
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(], ry) = —1+ab+3g, + /1 + Zab + a°t? — 2ag, — daby, + 23°6q, + BR
’ 2

(31,33)3 a—b+abﬁlzt\/az+2ab+$—2:abﬁl+2azbﬁl —2052614-02526?

6 Previous Work on 2-Processor Models

There has been some similar work on two processor Time Warp models. Lavenberg, Muntz and Samadi [9)
used a continuous time, continuous state model to solve for the speedup (Sim,) of two processors over one
processor. Their work resulted in an appraximation for speedup that was valid only for 0 < ¢ < 0.05, where
% is the probability that processor i will send a message to the other processor. Qur result for this CC case
is exact, has no restrictions on any of the parameters and therefore subsumes their work. In fact, we can
compare our results directly for a simplified case where @ = 1/2 (same processing rate for both Processors),
b=1 (same average jump in virtual time for both) and ¢ = g = q (same probability of sending a message),
which we refer to as the symmetric, balanced case. Lavenberg et al. derive the following approximation for

speedup in this case.
Slm.l 82— v 2q
Our equation for speedup in this restricted case is exactly

g 2(VB¥da-A)
VBHa+a

If we expand this formula using a power series about the point (¢ = 0) and list only the first few terms, we
see the essential difference between our result and Lavenberg et al.

Szz-\/ﬁ-l-g—iﬁ-;-‘iq-o@)

This clearly shows that the Lavenberg et al. result matches ours in the first two terms. Figure 3 shows the
Lavenberg et al. result and our result compared to simulation with 99% confidence intervals. [! | INSERT
Figure 3 HERE ! ! ]

Mitra and Mitrani [10] also solve a two processor model but use a discrete time, continuous state approach.
They solve for the distribution of the separation between the two processors and the rate of progress of the
two. In the definition of their model, a processor sends a message (with probability ¢;) before advancing. Qur
model has a processor send a message after advancing, This difference between the two models disappears
in the calculation of the average rate of progress. Their solution allows & general continuous distribution for
the state jumps (virtual time), but requires (deterministic) single steps for the discrete time. In each time
slot both processors always advance forward in virtual time some arbitrary distance. In our model this is
equivalent to setting a; = az = 1. Since our analysis only supports an exponential distribution for state
changes, but their analysis doesn’t have a distribution on time, neither model subsumes the other.

Finally, the DD and CD models have not appesared in the literature, although an early version of this
work has been published by Kleinrock (20]. It is a simplified version of the CD model where 8, = 8 = 1
(which is single step state jumps). Figure 4 shows how all of this work fits together. The work discussed in
this paper covers the shaded region. [ ! ! INSERT Figure 4 HERE ! ! |
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7 Results for a Restricted Model

In order to better understand our results, we examine a restricted version of the CD model (i.e. the model
analyzed in {20]). In this less general model we eliminate two variables by forcing each processor to advance
exactly one virtual time unit each time it advances (8, = B, = 1). Again, we define ¢ as the interaction
parameter; the probability that processor i sends a message to the other processor. We also define a as the
ratio ﬁg where J; is the rate for the continuous time distribution for processor i (rate at which messages
are processed). The parameter a can be thought of as a measure of “load balancing”. When a = 1 /2 the
load is balanced.

The solution for this simplified system is given below.

§=2 (1 - o ((:le)a + (,10311)’))

) ()

1+ /T —daag,

2a

1+\/I—Zaaq1
Za

n =
8 =

The equations above indicate that speedup reaches a maximum value of two when ¢ = @ = 0 (no
interaction). Since neither processor hinders the other, we can exploit the full potential of each Processor.
In general one might assume that the speedup would simply be twice the speed of the slowest PTOCEssor.
In fact, the system does a little bit worse. Even though one processor might be faster than the other, it is
possible (stochastically) that the slower processor gets ahead of the faster one. At this point it is possible
that the faster processor could cause the slower one to rollback. Overall therefore, the speedup is less than
twice the speed of the slower processor on average.

Figure 5 shows the speedup for the symmetric case where ¢y = g2 = ¢, [! ! INSERT Figure 5§ HERE
1] though it does not show the discontinuity in the function S at ¢ =0. For ¢ =0, § = 2 for all a and so
§ is discontinuous for all a # 1/2. This is not shown in the figure. For q = 0 no messages are sent, therefore
no rollbacks will occur, and it is clear that S =2. Forg>0asa —0ora — 1 (A — 0 or Ay — 0), then
the speedup goes to zero as shown in the figure. This occurs because one process moves extremely slowly
(compared to the equivalent single process) and it will eventually drag the faster process back to its lagging
position. The TW system moves at less than twice the speed of the slowest processor, while the equivalent
single processor moves at the average rate 5*-34‘1 It is clear that load balancing is extremely important since
good speedup only occurs near a = 1/2. Notice that the interaction parameter is important when a is near
1/2.

Figure 6 shows the speedup for the balanced case where A; = Ay, [ | | INSERT Figure 6 HERE |
! ] Note that the speedup is 2 for 1 = g = 0 and goes to 4/3 for ¢ = g = 1 Specifically, it never goes
below one. We always get speedup with two processors as long as a = 1/2.

Figure 7 shows the speedup for the extremely simplified symmetric, balanced case where ¢ = ¢ = g and

A=Az =A. [! ! INSERT Figure 7 HERE | ! | For this special case the formula for speedup is
4
S=
24+ /g



Note for ¢ = 0 that § =2 and for ¢ =1 we have § = 4/3. We can see this last result intuitively. Since each
process always sends a message to the other after it advances, then the time for both processes to advance
one unit is equal to the maximum of two exponentml delays at rate A which is 3/2 times 1/, Thus, the
rate of progress for each process is sunply . Since both are moving at this rate, the sum equals while
R; = A which yields S =4/3 for g = 1. The curve shown in Figure 7 is the “spine” of the surface plotted in
Figure 5 and is the “45 degree” line (gy = ) of the surface plotted in Figure 6.

7.1 Optimality Proofs

Using the simple model described above, we prove several results about optimality with respect to the
parameters of the system. We first show that the speedup is monotonically decreasing in both ¢ and gg,
the interaction parameters (i.e. q1 and g should be as small as possible). We do this by showing that g% is
negative. If we differentiate S with respect to q; we arrive at the following formula

gj b(q1,9,a) ( —(-1+ 2a)? - 2aaq + (1 — 2a)y/1 —4aE'q1)

where $(q1, g2, a) is a non-negative function of ¢,q,a and is given below
1286%8%,

Q(ql: &, a’) = ¥
(-1 +2— 7@ @) (-1 + 403 - 1) - VI - 1)V T@)
where
f(z) =1 —4daGz
In order to show that £ FI is negative, we must show that
— (-1 + 24a)* — 2a3q; + (1 - 2a)y/T — 4aaq; <0 (30)

When a > & 5 Equation 30 is trivially satisfied. Our concern is in the range 0 € a < 5, in which case our
condition becomes

—(-142a) -2a8q < —(1-2a)y/1—4aag, <0
2 2
(~(-1+20)* - 2a?iq1) > (~(1-2q) m)
4d%q? —Ba’qi? + 4a'p? > 0
411231’2(,112 >0

which is trivially true. A similar (symmetric) proof for ¢; is omitted here.

Optimization with respect to a is a little more difficult, When we differentiate S with respect to a we
get such a complicated formula that it is prohibitive to solve for the optimum value of a. Fortunately, by
plotting § versus a, ¢ and ¢ (Figures 5 and 6} we see that § is unimodal*and that the optimum value of a
is 1/2 (M = A2). When we plug this value (a = 1/2) into 45 we see that the result is 0.

a8  _2(-(0-d)e)+a(1-7)

=0
Oaja=} -1 -%)
To show that this is 8 maximum we must show that the second derivative is negative at a = 1/2.
#s  _ S(A+va) (atvavE+2n/E+a+ WG +as) @
20"y VE/E+ VB + aVE) /E
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Equation 31 is clearly negative since the numerator is negative and the denominator is positive. For the
more general case, where the processors are not restricted to single step advances, we find from analyzing
plots of speedup that the above result (a = 1/2 (A; = A;) for optimal performance) generalizes to
/\1 _ Az b= a
B TR T T 1
meaning that the average “unfettered” rate of progress in virtual time for each processor should be the
same. For a fixed value of a the best performance can be found when Equation 32 is true, and overall best
performance is found at @ = 1/2 with Equation 32 holding true.

We have not seen this result before in the literature since the two processor models haven't been general
enough. It says that for optimum performance we would like to place tasks on processors such that the
average “independent” rate of progress in virtual time is the same for both processors, Ideally we want
this to be true while also having each processor execute events at the same rate (a = 1/2). This result
is generally applicable to systems consisting of more than two processors. The intuition is that if every
processor tends to move forward in virtual time at the same rate as the others, then the processors will
remain nearly synchronized without suffering a large penalty for rollbacks.

(32)

7.2 Adding a Cost for State Saving

One simple way of examining how state saving overhead affects the performance of the system is to modify
the value of R,, the rate of progress on a single processor. We introduce & parameter ¢ (¢ > 1) that indicates
how much faster events are executed without state saving. If ¢ = 2 an event completes twice as fast on
average without state saving. Since our model requires that each processor save its state after every event,
we can think of each event as taking longer to complete in the TW system than in the single processor
system where no state saving is required. We note here that this is actually an upper bound on the cost for
state saving in this two processor system. Lin and Lazowska [6] have shown that to achieve minimal state
saving costs, TW should save state less often than after every event. This result depends on certain system
parameters, most notably the cost for state saving. We make no attempt to optimize the frequency of state
saving, nonetheless this simple model provides some interesting results as shown below.

By examining the CD model with the single step restriction (as above) we arrive at the following value

for R)

R = ¢ (Al 2+ /\2)

For this model we find that the new formula for speedup is simply 1/c times the old value. Let us examine
a very simple case in detail. If we look at the symmetric, balanced case, the updated formula for speedup is

4
5=+ Ve

It is easy to see that as ¢ — oo speedup will go to zero. For ¢ > 2 Time Warp with two processors is
always worse than running on one processor without TW. Conversely, for ¢ < 4/3 TW always wins out. The
interesting range is 4/3 < ¢ < 2. In this range, certain values of ¢ will yield speedup, while others won't.
We are most concerned with the boundary where § = 1 which is the transition from areas where TW on
two processors helps to where it hurts. Setting S = 1 and solving for ¢ we find the necessary condition for
two processors running TW to be faster than the single {(non-TW) processor.

4(2-¢)?
=Ta

Figure 8 shows the regions in the ¢ — ¢ plane where TW on two processors is effective and where it is not.
Thus, if we know the values of both ¢ and ¢ for our symmetric, balanced system we can immediately tell
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whether the application will run faster under Time Warp on two processors. [! ! INSERT Figure 8
HERE ! ! ]

8 Conclusions

In this paper we have created a model for two processor Time Warp execution and provided the results of
its exact solution. The model is general enough to subsume the work of Lavenberg, Muntz and Samadi [9]
and to partially subsume the work of Mitra and Mitrani [10]. Further, we examined a simplified version of
our model and showed for optimal performance that the processors should send as few messages as possible.
Further, ¢ (the interaction parameter) has a large effect on speedup for when the load is balanced and
speedup changes rapidly when g is near zero. Tasks should be placed on processors such that the average
“independent” rate of progress in virtual time is the same for both processors to achieve good speedup.
Ideally we want this to be true while also having each processor process events at the same rate (M = M)
Finally, we addressed the cost of state saving by using a very simple extension to the model, and examined
its effect on performance. Small state saving costs or infrequent message interactions indicate that TW is
effective in gaining speedup.

9 Extensions and Future Work

There are several avenues to follow for future work. One is to add message queueing to our model. Currently
any message that arrives in the future is ignored. There are many simulation models where the messages
actually carry some work. Another addition would be to charge some cost for rollback. In the present model,
rollbacks are free and therefore, there is no penalty for speculative computing. We have exact solutions for
modeis that address these concerns and they will appear in & future work (17]. The most important area to
address is the extension of the model to accommodate more than two processors. Certainly an exact Markov
chain analysis, which uses the difference in virtual time between the processors as its state variable, will
quickly become intractable. We have therefore opted for bounds and approximations, this work is reported
in {21].
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Figure 5: Speedup for the Symmetriccase =g = ¢



Figure 6: Speedup for the Balanced case A\; = Ay = A,
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