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1 Propositional logic of predicates

By a predicate we mean an HOL [2, 4] term of type * -> bool, where * is called the domain of the
predicate and can be any HOL type. Propositional operators on Boolean terms can be lifted to form
propositional operators on predicates over the same domain. In the following P and 0 are predicates
of type * -> bool and x ranges over *. Also notice the notational convention of ‘doubling’ the
symbols of the original operators to form those of the lifted operators.

(TT)(x) = T
(FF)(x) = F
(" PY(x) = ~ P(x)

(P //\\ Q)
(P \\//
(P ==>> Q) (x)
(P == Q)

P(x) /\ Q(x)
P(x) \/ Q(x)
P(x) ==> Q(x)
(P(x) = Q(x})

Not only can propositional operators be lifted, but the notion of sequents can also be lifted to apply
to predicates:

(P I= Q) = (Ux. P(x) ==> Q{x))

where P and Q are called, respectively, the assumption and the conclusion of the lifted sequent.
Notice that ==>> and |= have different types:

==>> : (* => bool) =~> (* =-> bool) -> (* -> bool)
I= : (* => bool) -> (* -> bool) -> bool

*Supported by IBM Graduate Fellowship.



Hence it does not make sense to say whether P ==>> Q is true or false, but P [= Q is either true
or false.

The logic of sequents of predicates (with respect to propositional operators on predicates)
behaves exactly like the logic of sequents of Boolean terms (with respect to propositional operators
on Boolean terms). For instance, the lifted version of Modus Ponens is still valid:

TT = (P ==>> Q) TT |= P

so is the lifted version of ‘Deduction Theorem’:

(P//ANQ) I=R

P |= (Q ==>> R}

To be sure, there is a difference between a lifted sequent and an HOL sequent: the former has a
single assumption while the latter has a list of assumptions:

P Il=0Q VErsus pi, p2, p3 |- q

But since the latter is equivalent to p1 /\ p2 /\ p3 |- q, we will view the assumption of a lifted
sequent as a list of its individual conjuncts and TT as an empty assumption list:

PL //A\NP2//NVP3 =0 is viewed as P1, P2, P3 |=Q
T = Q is viewed as = Q

(Of course, only the two on the left have a formal meaning; the two on the right don’t.} The
significance of this view will become clear in Section 4. But before that, let us justify our interest
in the propositional logic of predicates by examining some of its applications.

2 Semantic embeddings of propositional logics

A common method of semantically embedding in HOL various propositional logics, such as program-
ming logics [5] and modal logics [3], is to use predicates in the HOL logic to represent propositions in
the embedded logic. Since, as explained in Section 1, the propositional logic of predicates behaves
just like the ordinary propositional logic, propositional reasoning in the embedded logic can be ad-
equately modeled by the lifted propositional reasoning in HOL. Furthermore, the higher-orderness
of predicates make it possible to semantically embed various non-propositional operators, such as
modal operators, by using the semantics of the domains of predicates. These ideas are illustrated
by the semantic embedding in HOL of Lamport’s Temporal Logic of Actions® {TLA) [6], which is
an on-going project of the author’s [1].

2.1 TLA in HOL

In TLA, there are three types of objects on which one wishes to have predicates:

'Only part of the features of TLA is mentioned in this paper; see Lamport’s report for a complete description [6].



stales : *state
transitions : *state # *state
behaviors : num ~> *atate

In other words, a state can be anything (usually a tuple representing the values of program vari-
ables), a transition is a pair of states (representing a step of program execution), and a behavior
is an infinite sequence of states (representing an infinite history of program execution). Predicates
on states are called state predicates or simply predicates, predicates on transitions actions, and
predicates on behaviors temporal properties.

In addition to the lifted propositional operators, there are two kinds of special operators on
various predicates in TLA: (type) coercion operators and temporal operators. Coercion operators
are defined by specializing the inverse image operator, as follows. Let £ : * -> % be any mapping.
For each predicate P : #% -> bool, the inverse image of P under £, {(inv £}(P) : * -> bool,is:

(inv £)Y(P) (x) = P(f(x))

(In mathematical literature (inv £)(P) is usually written as £~1(P).) In TLA, there are (among
others) four mappings between domains of predicates:

map_t_s (s : *state, s’ : *state) = s
map.t_s’ (s : *state, s’ : ¥state) = 8’
map_b_s (b : num -> *state) = b(0)

(b(0), b(SUC(0}})

map_b_t (b : num -> %state)

Their corresponding coercion operators are:

t_s = inv map_t_s : (*state -> bool) -> ((*gtate # *state) -> bool)
t_s’ = inv map_t_s’ : (*state -> bool) -> ((*state # *state) -> bool)
b_s = inv map_b_s : (*state -> bool) -> ((num -> *state) -> bool)
b_t = inv map_b_t : ((*state # *state) -> bool)} -> ((num -> *state} -> bool)

Coercion operators allow one to view predicates on one domain as those on the other. For example,
a little rewriting shows that:

(b_s P)(b) = P(b(0))

So b_s coerces a state predicate P into a temporal property by evaluating P at the first state of a
behavior. Similarly, b_t coerces an action A into a temporal property by evaluating A at the first
two states of a behavior, and t_s (t_s?) coerces state predicate P into an action by evaluating P
at the first (second) state of a transition.

The advantage of defining coercion operators by specializing inv is that one can prove properties
of coercion operators by specializing properties of inv, which have to be proved only once. For
instance, one can prove that (inv £) distributes over the lifted implicationz:

1f, P Q. (inv £)(P ==>> Q) = (inv £f)(P) ==>> (inv £)(Q)
As a special case, b_g distributes over the lifted implication as well:

P Q. b_s(P ==>> Q) = b_s(P) ==>> b_s(Q)

2In fact, (inv t) distributes over all lifted propositional operators.



In TLA, there are two modal operators [] (read: bor) and <> (read: diamond) on temporal
properties which express the notions of, respectively, always and eventually:

(] G)(b : num -> *state) = ! n. G{suffix n b)
(<> G)(b : num -> #*state) = 7 n. G(suffix n b)

where
guffixn b = \ m. b(m + n)

denotes the n-th suffix of behavior b. In other words, a temporal property G is always (eventually)
true of a behavior b if and only if it is true of the n-th suffix of b for all (some) n. Other temporal
operators can be defined in terms of [ and <>. For example,

(G "> HY = [J{(G ==>> <> H)

(read: G leads to H) expresses the notion that whenever G is true, H will eventually be true.

In TLA, not only the temporal properties of programs, but also programs themselves, are
expressed as predicates on behaviors. A program Prog which starts in a state satisfying the initial
condition Init, henceforth takes only steps allowed by action Next, and meets the fairness condition
Fair, is expressed by>:

Prog = b_s{(Init) //\\ [J(b_t(Next)) //\\ Fair
The statement that program Prog satisfies the temporal specification Spec is expressed by:
Prog |= Spec

It turns out that much of the reasoning involved in proving programs correct in TLA is propositional,
so it is important to have powerful tools in HOL to do propositional reasoning on predicates.

3 Predicates as sets

By identifying sets with their characteristic functions, predicates can viewed as sets. In this view,
a predicate P : * => bool is the set of elements of type * having property P:

P={x:*|Px1}

An extensive HOL8S library for predicates as sets, called the pred_sets library, has been written
by Melham [7] (based on earlier work by Kalker). Many operations and relations on sets have
logical interpretations if sets are viewed as predicates. With the notation of pred_sets, all of the
following are theorems:

UNIV = TT
EMPTY = FF
P INTER Q = (P //A\ @
P UNION Q = (P \\// @
PDIFF Q= (P //\\ "7 Q)
P SUBSET Q = (P |= Q)
PPSUBSET Q = (P I=Q) /\ "(P = Q)

DISJODINT P § (P //N\ Q) |= FF

This means that the proof technique presented bhelow can be used to reason about sets as well,
especially the Boolean algebra of sets.

*This is actually over-simplified, since TLA formulas takes the so-called stuttering into account; see [6].



4 Lifting tactics for propositional reasoning

At least in principle, one can always prove the validity of statements in an embedded logic by
expanding the definitions of operators and reasoning directly in HOL. But doing so defeats the very
purpose of embedding; if all the reasoning is to be done directly in HOL, then why bother with the
embedding in the first place? It is important to observe that an embedded logic provides its user
with not only more concise and elegant notations, but potentially also larger inference steps, than
available in plain HOL. Hence it seems reasonable to accept as a general principle that the user of
an embedded logic should perform as much reasoning as possible in the embedded logic. This is not
to say that the actual inference steps executed by the HOL system should contain few expansions
of embedded operators. Indeed, the technique described below involves a lot of translating back
and forth between the embedded operators and their HOL definitions. But the user should be
shielded from the implementation details and be able to imagine that she or he is doing proofs in
the embedded logic.

In HOL, there are extensive facilities for propositional reasoning on Boolean terms. Since we
have lifted propositional operators and sequents to apply to predicates, the natural next step is to
lift tactics to work on sequents of predicates. More specifically, we would like to have a tactical

pseq_TCL : tactic -> tactic

(the prefix ‘pseq_’ stands for ‘predicate sequent’) such that, when applied to (say) the tactic
DISCH_TAC:

P - P ==> q
==== ===== DISCH_TAC
P7-q
it produces a new tactic which performs:
7= P ==>»> Q
=== ====== psgeq_TCL DISCH_TAC
P7=10Q

Namely, (pseq_TCL DISCH_TAC) is ‘identical’ to DISCH_TAC except that |- is replaced by |= and
==> by ==>>, This idea is illustrated in the following HOL session?:

#g " (TT : * => bool } [= C (P //A\NQ //ANVR) ==>> (R //A\P) ) " ;; |
"TT I= ((P //\\ (@ //NN R)) ==>> (R //\\ P))"

#e( pseq_TCL DISCH_TAC );;
OK..
"(P /AN (Q /AN R)Y |= (R /AN B

Recall that the assumption can be viewed as a list of its conjuncts (with TT being the empty list).
So the last goal can be solved by rewriting with the assumption list:

#e( pseq TCL (ASM_REWRITE_TAC [ ]) );; Lz ]
OK..

goal proved

[- (P //N\\ (Q //\\ RB)) 1= (R //A\ P)

=TT |= (P //A\ (Q //A\N R)) ==>> (R //A\ P))

*HOL sessions are displayed in rectangular windows, each of which is labelled by a sequence number shown at
the upper-right corner. Side-effects produced in lower-numbered windows persist into higher-numbered ones until the
number is reset to 1, which marks the beginning of a new session.



Similarly, we can define a theorem tactical
p5eq_TTCL : thm_tactic -> thm_tactic

which lifts a theorem tactic on ordinary HOL sequents to a theorem tactic on predicate sequents,
where the theorem argument to the resulting theorem tactic must also be a predicate sequent. The
implementations of pseq_TCL and pseq_TTCL are described in the Appendix. Here we conclude
this section with an (only slightly) bigger example,

Consider the antisymmetry of the lifted implication:

#g " 1P Q : * -> bool. 2]
# (TT I= (P ==>>0)) /N{IT 1= (Q==>>P)) ==> (TT 1= ( P==Q }) " ;;
“IP Q. TT |= (P ==>> Q) /\ TIT |= (Q ==>> P) ==> TT |= (P == Q)"

#e( REPEAT STRIP_TAC );;
0K..
"TT |= (P - Q)"
L "TT |= (P ==>> Q)" 1]
[ "TT |= (Q ==>> P)" ]

Since the goal is a lifted equivalence, the lifted EQ_TAC is the appropriate tactic:

#e( pseq_TCL EQ_TAC );; L2
OK. .
2 subgoals
"TT |= (Q ==>> P)"
L "TT |= (P ==>> Q)" ]
[ "TT |= (Q ==>> P)" ]

“TT |= (P ==>> Q)"
L "TT [= (P ==>> Q)" 1
L "IT 1= (Q ==>> P)" ]

Now push the antecedent P onto the assumption list of the lifted sequent:

#e( pseq_TCL DISCH_TAC );; L
0K..
np I = Q"

[ "IT |= (P ==>> Q)" ]
[ "IT |= (Q ==>> P)" ]

Now ASSUME the first of the two assumptions of the goal:

#let asml = ASSUME " ( TT : # => bool ) |= ( P==>>Q ) * ;; [ ¢ ]
asml = TT |= (P ==>> Q) |- TT |= (P ==>> Q)

Now a little lifted resolution solves the first subgoal:



#e( pseq_TTCL IMP_RES_TAC asml );;
OK..
goal proved
. I-P I=0Q
I- TT i= (P ==>> Q)

Previous subproof:

"TT |= (Q ==>> P)"
LT I= (P ==>> " ]
L "TT I= (Q ==>> P)" ]

The second subgoal can be solved analogously:

#e( pseq.TCL DISCE_TAC );;
OK..
llq I: Pll
L "TT |= (P ==>> Q)" ]
L “TT = (Q ==>> P)" ]

#let asm2 = ASSUME " ( TT : * —> bool ) |= (Q==>>P ) " ;;
asm2 = TT |= (Q ==>> P) |~ TT I= {Q ==>> P)

#a( pseq_TTCL IMP_RES_TAC asm2 )i
0K..
goal proved
I-Qi=P
[- TT |= (G ==>> P)
I-TT |I= (P == Q)
I- 1P Q. TT |= (P ==>> Q) /\ TT I= (Q ==>> P) ==> TT |= (P == Q)

Finally, the above session can be condensed into one single tactic:

#g " P Q : * => bool.
# (TT = ( P ==>>0Q 3) /\ (TT |

= (Q==>>PF))==>(TT I= (P==0))";;
"IP Q. TT I= (P ==>>0Q) /\TT |= (Q =

=»> P) ==> TT |= (P == Q)"

#e{ REPEAT GEN_TAC THEN
#  DISCH_THEN \asml.

# let (asml, asm2) = CONJ_PAIR asml in

# pseq_TCL (EQ_TAC THEN DISCH_TAC) THENL

# map (pseq_TTCL IMP_RES_TAC) [asmi; asm2] );;
OK..

goal proved
[- 1P Q. TT |= (P ==>> Q) /N TT l= (Q ==>> P) ==> TT |= (P == Q)

Appendix: Implementations

Assume the following rewrite rules are available:



1P. (TT |I= P) = ('x. P(x)})
I- 'P. ('x. P(x)) = (TT |= P)

tt_pseq_THM
rev_tt_pseq_THM

I- 1P Q. (P I= Q) = (!x. P(x) ==> Q(x))
[- 'P Q. (!'x. P(x) ==> Q(x)) = (P I= Q)

pseq.THM
rev_pseq.THM

logic_THM = |- (!x. (TT)(x) = T }RAY
('x. (FF)(x) = F DIAN
('P x. (=" P)(x) = " P(x) DIAN
('PQ x. (P /AN Q) = P(x) /\ Q(x) ) /\
(P Q x. (PA\V// Q(x) =P \/ Qx) ) /\
('P Q x. (P ==>> Q)(x) = P(x) ==> Q(x)) /\
('PQx. (P == Qx) = (Px) = Q(x)))

rev_logic_THM = |- !x P Q.

( T = (TT)(x) JIA
( F = (FF)(x) Y 7\
( “P(x) = (7 P){(x) pRVAY

(P& /A Q)
P& V/ D
(P(x) ==> Q(x)
((P(x) = Q(x))

(P //\N Q) /A
(P \\V// D)) /N
(P ==>> Q(x)) /\
(P ==Q(x )

n w n n o

pseq_goal_var(_, "P |= (Q : %% => bool)") returns a fresh variable of type **.

let pseq_goal_var : goal -> term =
genvar o (\ t . (fst o hd) t 7 ": ") o snd
o match "$l= : (* ->» bool) -> (* -> bool) -> bool"
o rator o rator o snd

unfold_pseq_RULE "x" (P //\\ Q I= R) returns the Boolean sequent (P(x), Q(x) |- R(x});
unfold_pseq_RULE "x" (TT |= R) returns (|- R(x)).

let unfold_pseq_RULE (x : term) (th : thm) =
let (vl, th’) = SPEC_VAR_ALL th
in
( if (can (match "TT |= (P : * =-> bool)}") (concl th)) then
GENL vl o
PURE_REWRITE_RULE [logic_THM] o
SPEC x o
PURE_ONCE_REWRITE_RULE [tt_pseq_THM]
else
GENL vl o
S MP (LIST_CONJ o map ASSUME o conjuncts o fst o dest_imp o concl) o
PURE_REWRITE_RULE [logic_THM] o
SPEC x o
PURE_ONCE_REWRITE_RULE [pseq_THM]
) th?

.
ER )




unfold_pseq_TAC "x" (P //\\ Q ?= R) returns the Boolean sequent (P(x), Q(x) 7- R(x));
unfold_pseq_TAC "x" (TT ?= R) returns (?- R(x)).

let unfold_pseq_TAC (x : term) (asl, g) =

( if (can (match "TT |= (P : % -> bool)") g) then
PURE_ONCE_REWRITE_TAC [tt_pseq_THM] THEN
X_GEN_TAC x THEN
PURE_REWRITE_TAC [logic_THM]

else

PURE_ONCE_REWRITE_TAC [pseq_THM] THEN
X_GEN_TAC x THEN
PURE_REWRITE_TAC [logic_THM] THEN
DISCH_THEN (MAP_EVERY ASSUME_TAC o rev o CONJUNCTS)

) (asl, g)

2

fold_pseq_TAC "x" (P{x), Q(x) ?- R(x)) returns the predicate sequent (P //\\ Q 7= R);
fold_pseq_TAC "x" (7= R(x)) returns (TT 7= R}. Notice the use of FREEZE_THEN to prevent any
instantiation of x.

let fold_pseq_TAC (x : term) (asl, g) =
let rev_logic_THM_INST = ISPEC x rev_logic_THM
in
( if (null asl) then
FREEZE_THEN (\ th . PURE_REWRITE_TAC [th])
rev_logic_THM_INST THEN
SPEC_TAC (x, x) THEN
PURE_ONCE_REWRITE_TAC [rev_tt_pseq_THH]
else
POP_ASSUM_LIST (MP_TAC o LIST_CONJ) THEN
FREEZE_THEN (\ th . GEN_REWRITE_TAC (SUB_CONV o TOP_DEPTH.CONV) [ ] [th])
rev_logic_THM_INST THEN
SPEC_TAC (x, x) THEN
PURE_ONCE_REWRITE_TAC [rev_pseq.THM]
) (asl, g)

E

pseq_TCL (pseq_TTCL) removes and saves all assumptions of the goal, unfolds the definitions of
predicate sequent and lifted propositional operators, calls the argument tactic (theorem tactic),
folds the definitions, and finally puts back the original assumptions.



let pseq_TCL (tac : tactic) =
POP_ASSUM_LIST ( \ asl .
(\ g . let x = pseq_goal_var g
in
( unfold_pseq_TAC x THEN tac THEN fold_pseq.TAC x ) g
} THEN MAP_EVERY ASSUME_TAC (rev asl) )

let pseq_TTCL (ttac : thm_tactic) (th : thm) =
POP_ASSUM_LIST {( \ asl .

(\ g . let x = pseqg_goal_var g
in
let th’ = unfold_pseq_RULE x th
in
( unfold_pseq_TAC x THEN ttac th’ THEN fold_pseq_TAC x ) g

) THEN MAP_EVERY ASSUME.TAC (rev asl) )
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