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Abstract

Central to the mission of concurrent engineering is the early discovery and correction
of problems that may arise during the life cycle of a product. To achieve this mission.
an environment supporting the strong sharing of applications and data, and their creation
is essential. This environment must allow multiple collaborating users to share the same
data through one or more shared applications. Changes made by one user are to be seen
immediately by the other users. Such an environment provides a foundation for critiques
and debates among all the parties involved in requirements analysis, specification. design.
manufacturing, maintenance and product changes.

This paper describes the results of research in the UCLA Collaborative Design Laboratory
in which we have built such an environment, called coSARA, to support strong sharing
and to support prototyping strongly sharable concurrent engineering applications. CoSara
realizes strong sharing by extending Common Lisp objects to support replicated objects and
broadcasting methods. The coSARA system allows users to prototype a strongly sharable
application by graphically specifying the application’s data model, structure, and behavior:
then by linking various library modules, multiple users can execute and test the application.
As an example, this paper demonstrates how the coSARA methodology is used to build
strongly sharable block diagram editor.

Keywords: Concurrent Engineering, CSCW, Groupware, Sharable Applications, Multi-
user Interfaces, Graphical Programming, Executable Specification.



1 Concurrent Engineering and Strong Sharing

The terminology, concurrent engineering was first reported in 1986 in the Institute for De-
tense Analyses (IDA) Report R-338. That report defines concurrent engineering as:

“...a systematic approach to the integrated, concurrent design of products and
their related processes, including manufacture and support. This approach is
intended to cause the developers, from the outset, to consider all elements of the
product life cycle from concept through disposal, including quality, cost, schedule.
and user requirements.”

Concurrent engineering is an organizational activity involving people of varying disci-
plines in a product development enterprise. The chief goals of concurrent engineering ap-
plications are to reduce time-to-market, increase quality, and decrease life cycle cost. Since
people’s activities and decisions are interdependent, we must make it easier for people Lo
work together, sharing ideas, getting critiques, making suggestions, and informing others.

Communication and coordination support are the keys to successful concurrent engincer-
ing. If an environment helps to expose progress and enables timely feedback, product team
members can argue with each other, are more likely to expose weaknesses, and can work
to improve a product as it progresses from abstract representation to physical reality and
beyond to its eventual obsolescence. Errors and poor decisions may then be more readily
detected and corrected early in the product development process.

A fundamental requirement for concurrent engineering applications is sharing without
introducing a priori restrictions on that sharing. In particular we should not simply accept
the notion of restricted sharing usually found in a database. Multiple users should be able
to work closely together sharing common data and using the same or several different appli-
cations. This means that users should be able to see in real time, the decisions and actions
of each other as reflected in changes to the data. By doing so, users should be able to work
together, tracking each other’s work, transferring information among themselves sooner. and
making decisions and suggestions sooner, so as to improve the product development. This
required style of sharing is what we call strong sharing.

Strong sharing has two aspects: strong sharing of data and strong sharing of applications.
As shown in Figure la, strongly shared date would allow multiple users to access and modify
the same data concurrently using different applications. As one application modifies the
data, the other applications are able to see the results immediately. For example, a marketing
person could use a cost analysis spreadsheet application at the same time as a manufacturing
person uses an inventory application and a designer uses a design parts program. As the
designer selects the parts to be used in a new product, the spreadsheet program shows the
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Figure 1: Strong Sharing

change in cost and the inventory application shows how many of those parts are in stock.
Thus the designer, manufacturer, and marketing person are able to discuss the tradeofls of
using various parts for the new product.

As shown in Figure 1b, a strongly shared application would allow multiple users to con-
currently use an application and its data. Each user has the same view of the application
and any action taken by a user is seen by all the users. Some examples of strongly shared
applications useful for concurrent engineering include a brainstorming tool for capturing
and coordinating group ideas, a shared sketch editor and a shared block diagram editor for
product teams to define a high level definition of a product, navigation tools for product
teams to jointly navigate through vast product data and to set up a shared focus for group
discussions, a shared history tool for facilitating annotations of design objects and design
processes, and a voting tool for facilitating group decisions or determining the opinions of
the group.

Combinations of strongly shared data and strongly shared applications can be used 1o
generate hybrid multi-user configurations as shown in Figure lc. Multiple users are able to
interact using the same strongly shared data. Some of these users run independent single-user
applications. Others may even be working closer together, sharing the same application.

1.1 Barriers to Concurrent Engineering

Three major barriers to effective collaboration are the time barrier, the place barrier, and the
work barrier. The time barrier has two aspects. The first aspect deals with the accessibility
of data on demand. When a group of people are collaborating on or reviewing a product
design and one of them locks the data, all others that need this data are forced to wait until
the lock is removed. Such delays can inhibit reasonable interaction between the individu-
als. The second aspect has to do with the feasibility of sharing the dynamic aspect of the
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data. If a product design were questioned as to whether the design was meeting prescribed
requirements, the designer might want to show a simulation experiment to the members of
the group to convince them of the design’s validity. Another member of the group might
want to suggest a “what if” experiment. The project may suffer if such data sharing can not
be done in a timely fashion.

The place barrier deals with being able to work together and share across different loca-
tions. There is a universal desire to reduce the need for physical movement from one location
to another in order to proceed with product development. Large delays are incurred becausc
of travel necessary to coordinate activities of individuals. Even though we do not expect to
achieve the same quality of interaction as occurs in face-to-face meetings, we expect that
an environment providing stronger sharing, enhanced by proper protocols and multi-media
facilities could attract an enthusiastic following.

The work barrier deals with the sequential nature of work. In planning any product
development, we seek opportunities to divide tasks among as many individuals as we can
afford and then through coordination, bring their results together. Such parallelism always
carries a risk that individual subsystems may be incompatible with each other. We do not
want to destroy potential parallelism by forcing each participant to complete his or her task
and then be forced to evaluate the results one at a time to discover inconsistencies. We want
to be able to observe progress in each other’s work and to be able to flag inconsistencies as
soon as we notice them.

Strong sharing overcomes many of the problems associated with the time, place. and
work barriers. With respect to the time barrier, strong sharing allows group members full
access to the data at all times and it allows the sharing of the dynamics of the data. With
respect to the place barrier, strong sharing allows users to work in remote locations and
intimately share the same information limited only by inherent network delays. With respect
to the work barrier, strong sharing allows users full access to the data and therefore full
parallelism. Users no longer have to wait for information to be unlocked. Also since data
is accessible as it is changed, incompatibilities are detectable early, thereby possibly making
the final integration process smoother. We believe strong sharing to be essential for nexi
generation concurrent engineering applications that will allow users to work more closely
together. However software development tools and techniques need to be developed thal
help application builders create these strongly sharable concurrent engineering applications.

1.2 Requirements for Strong Sharing

In building a system that supports strong sharing and the generation of strongly sharable
concurrent engineering applications, we have identified two basic requirements for strong
sharing. They are:



1. Shared Data — The data must be accessible on demand by all users sharing the data.
Users of the data also need to be able to save the data into some permanent storage
so that the data extend beyond the life of an application.

2. Shared Operations — One needs to be able to write functions on the shared data such
that the effects of those functions are seen by all users of the data. These sharable
functions should operate in real time such that everyone sees the actions at the same
time.

Strong sharing allows maximum concurrency, but trades off consistency. Multiple users
are able to have constant access to the data. This allows users to see the data in inconsistent
states and allows users to make conflicting actions on the data. In order to prevent this chaos.
an environment supporting strong sharing will need to satisfy an additional requirement:

3. Coordination Support — Strong sharing systems need safeguards to prevent inconsis-
tencies and to prevent the users from destroying each other’s work.

Satisfying these three requirements allows one to achieve both strong sharing of data
and strong sharing of applications. By definition, strong sharing of data is achieved when
these requirements are satisfied since each user will be able to access the data (shared data
requirement) and the actions on the data will be seen by all the users (shared operations
requirement). How the requirements help realize strong sharing of applications is explained
in the next subsection.

1.3 Strongly Sharable Applications

Strong sharing of applications can be achieved using the results of the strong sharing re-
quirements. An application, in an object oriented framework, consists of a set of objects
and a set of methods applied to those objects. By making the objects of an application and
their operations strongly shared, the application becomes strongly sharable. The objects
of an application include objects to represent the state of the application, the application’s
user interface objects, and the application’s data. FEach of these objects will be accessi-
ble by all the users. In particular, strongly sharing the application’s user interface objects
means that each user will be able to access the user interface. Each user is then able 10
manipulate the shared application through the user interface. By making the application’s
methods be shared (the shared operations requirement), any action by a user is seen by all
the other users. The coordination support requirement is then needed to help the multiple
users operate the shared application in a non-destructive fashion.

Given an environment that supports strong sharing, if the users of a strongly shared
application are indistinguishable from the perspective of the application (i.e. the application



does not assign roles to the users), then a design methodology for single-user applications
can be used to build that strongly sharable application. The application builder just needs
to make sure that the application’s objects and methods are strongly shared. All actions hy
each of the users are shared and made visible to everyone else. This is the approach we use
in the coSARA system which is explained in more detail later.

1.4 Related Work

Two types of architectures, centralized and replicated, can be used to realize strong sharing
[AHUJ90]). With centralized architecture, only one instance of the data or application is used
and it is stored at a central site. For strongly shared data, all sites are able to access the
data at all times from that central site. For strongly shared applications, all sites send their
inputs to the application running at a central site. The application then sends the outputs
to all involved sites. The chief advantage of this architecture is that synchronization and
consistency are easy to maintain. The centralized version has several disadvantages though.
It generates more network traffic since inputs and outputs need to be broadcasted to all the
sites. The centralized system is sensitive to single point failures at the central site or in the
network. The central site also acts as a bottleneck to the system.

With replicated architecture, each site keeps a copy of the data and applications. For
strongly shared data, operations on the data are applied to all the copies. For strongly
shared applications, each user’s inputs are broadcast to all sites. The outputs are then
handled locally by each of the replicated applications. The chief advantages of this approach
are the reduced network traffic and the robustness of the system. The chief disadvantage is
the difficulty in ensuring consistency across the different sites. The replicated architecture
has two variations: (1) full replication where each site has a complete copy of all the shared
data and applications, and (2) replication-on-demand where each site only has a copy of
data and applications that the site is using.

One example system using full replication is CoLab [STEF87]. CoLab is a computer-
augmented meeting room developed at Xerox PARC for small groups. The meeting room
has workstations for each participant and a common display screen. The computers are
connected by a local-area network to support the sharing of ideas.

Full replication for a product development environment is however not practical. Each
site would be required to have vast amounts of data and execute numerous applications.
Running a copy of an application that one is not interested in, unnecessarily degrades the
computer’s performance. Product development environments require a more opportunistic
approach where data and applications are shared only when needed. Qur system, coSARA
uses the replication-on-demand paradigm. This saves space and processing resources since
only those data and applications of interest need be copied to a given site.
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Little work has been reported on providing tools for generating strongly sharable ap-
plications. Most of the work has shown how to convert existing single-user applications to
multi-user applications. The main approach taken uses a centralized architecture where a
conference manager interface collects the inputs from different sites and passes them to the
application [GREE90]. The conference manager interface then takes the output from the
application and transmits it to all the involved sites. This approach does not support the
strong sharing of data. Heterogeneous applications are not able to share the same data.

SharedX [GARF89] and COMIX [SRIN92] are two examples of the conference manager
approach where both systems act as the conference manager interface. SharedX is an X
window server tool that allows multiple users to share the same application. It provides
strong sharing of an application. All users sharing the application see exactly the same
windows and are able to use the application. COMIX is an application sharing server that
also allows multiple users to share the same application. SharedX and COMIX suffer from
the previously mentioned problems of using a centralized architecture and using a conference
manager approach. They both also liinit the way multiple users can interact with the shared
application. The COMIX systern only allows one user to use the system at a time where
control is determined by a chalk passing protocol. SharedX either allows one user at a
time access or a first come, first serve merging of all users’ inputs. In contrast, strongly
shared applications generated using coSARA overcome these problems by using a replicated
architecture and by allowing application builders greater control over how multiple users
interact with the application.

2 The coSARA System

Given the need for strongly sharable concurrent engineering applications, the next question
becomes how does one generate those applications. We show that one solution is offered Iy
the coSARA (collaborative Systems ARchitect Apprentice) system [MUJI91]. CoSara has
its roots in the Systems ARchitect Apprentice (SARA) system developed by Estrin et al.

users, resulted in the coSARA systena.

The coSARA system is both an environment for realizing strong sharing and an environ-
ment for prototyping strongly sharable concurrent engineering applications. The coSARA
system (see Figure 2} consists of three main components: (1) the Object World infrastruc-
ture, (2) the coSARA tools, and (3) the coSARA library. The Object World infrastructure
provides a framework for realizing strong sharing. The coSARA tools are a set of design
and analysis tools used for prototyping strongly sharable applications. The coSARA library
consists of a set of models and software modules which are also used for prototyping such
applications. The coSARA system is written in Conunon Lisp running in a UNIX and X
Windows environment on a network of SUN workstations.
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Figure 2: coSARA Architecture
2.1 Realizing Strong Sharing

The Object World infrastructure provides the necessary support for realizing strong shar-
ing of data and applications. It satisfies the strong sharing requirements (as discussed in
Section 1.1) by supporting the sharing of data and their operations, and by supporting the
coordination of the usage of the data.

Since objects provide a convenient and natural granularity for sharing, we used an object-
oriented infrastructure for supporting strong sharing. That infrastructure is called Object
World. This infrastructure defines a top-level object class, sharable that allows the sharing
of 1ts mnstances. This 1s accomplished by being able to transmit a copy of an instance from
one site to another. All objects that inherit from this class will also be sharable. The shared
objects are able to share their operations by broadcasting their method invocations to all
sites with copies of the object. Such methods are called broadcast methods. By specifying
whether a method broadcasts itself or not determines whether the actions are to be done
globally on all sites or locally on a single site. This flexibility allows users to control the
level of sharing. An operation may he composed of several intermediate steps. The level
of sharing deals with whether those intermediate steps are broadcasted to all the copies or
whether only the final resultant step is broadcasted. The end results are the same. but the
amount of shared and local activity is different.

Applications built on top of the Object World infrastructure are able to strongly share
their data. Those applications need to make their data be subclasses of the class sharable.
and need to use the broadcast methods that manipulate the shared data. So whenever one
application makes a change to the data, the other applications are notified of that change.
This allows multiple users, using heterogeneous applications, to work together on the same
data. We have tested this ability by being able to use independently, a graphical browsing
tool and a graphical editor tool on the same design data. The browsing tool allows a user to
navigate through the design in hoth high and low level views. The editor tool allows a user
to build and modify the design. As the design is changed by the editor, the browsing tools
reflects those changes immediately.

I



How strong sharing is realized is explained in more detail in section 4 on “Implementat ion
of Strong Sharing.”

2.2 Generating Strongly Sharable Applications

The coSARA tools and library are used for prototyping strongly sharable applications using
the coSARA Design Methodology. This methodology works in two major steps: (1} con-
structing formal, graphical models of the application; and (2) linking the models with the
coSARA library software modules and actual windows, and then executing the complete
linked structure. The first step is based on three formal, graphical modeling languages. each
supported by an appropriate editor: OREL (Object RELation) [MUJI91], SM (Structural
Model}, and GMB (Graph Model of Behavior) [IESTR86!, which respectively are used to
specify the application’s data model, structure and behavior. The tools supporting the sec-
ond step are (1) the GMB Editor, which links executable software modules to the GMB
models, (2) the User Interface Translator, which links real windows to the application’s user
interface, and (3) the Token Machine, which executes the application by interpreting its

GMB models.

The resulting application is strongly sharable. This is because all the objects of the
application are built using the Object World infrastructure. The modules in the library
also use the Object World infrastructure to achieve shared operations. Finally, the models
of the application use the Object World infrastructure and are therefore strongly sharable.
Thus, the application as represented by its objects (application object, data objects. and
user interface objects) and its specification models are sharable.

Each user is able to join an application by requesting the application’s objects and models.
This results in the creation of a copy of all these objects and models at the requesting site.
Requesting just the main application object is sufficient since it will retrieve all the other
objects and models. Leaving a shared application consists of informing the other users that
one is leaving and deleting the application from ones local workspace.

Strongly sharable applications allow any number of users to join and leave at any time.
Each user appears no different from any other user to the application. However as the number
of users increase, the coordination of the users and the load on the system become prob-
lematic. We recognize these problems and are currently only addressing strongly sharable
applications for small groups of less than ten designers.

The coSARA methodology has three main attributes that make it useful for prototyping
strongly sharable applications. First, it allows formally specifying an application. This pro-
vides structure to the design process and makes it easier to have tools for detecting errors
in the design. Second, the coSARA methodology has its roots in modeling concurrent svs-
tems [ESTR86]. This ability is useful for modeling strongly sharable applications since such



applications can have multiple user operations occurring at the same time. For example.
multiple users may be independently, but simultaneously creating a block in a block dia-
gram editor. To capture this feature, the coSARA modeling languages are able to represent
multiple threads of control. Third, the models are graphical. This facilitates specifying and
understanding the concurrency involved in strongly sharable applications. Users are able to
see the concurrency graphically rather than having it buried in some textual description.

Using the coSARA system, we have built such strongly sharable applications, e.g. a
group browsing tool and a strongly sharable block diagram editor. The following section
demonstrates in more detail how the block diagram editor was constructed using the coSARA
system and the coSARA design methodology.

3 Generation of Strongly Sharable Applications

In the coSARA design methodology, strongly sharable applications are seen as consisting
of three major components: the semantics is the collection of methods that implement the
services provided by the application; the user interface is the component that allows and
controls the interaction between the users and the application’s semantics; and the data
model i1s the collection of data structures and their basic manipulation methods needed to
support the operation of the application’s semantics and user interface. The methodology
works 1n six steps, as outlined in ig. 3:

Application’s

Application’s

Semantics & Semantics &
Application’s User Interface User Interface
Data Model Structural Behavioral
(OREL) Models (SM) Models (GMB)
1] 2] 3]

COSARA
Library
Linking, L
L’ Instantiation, 3;%?2{’ ation’s
Execution ype
4,56

Figure 3: Diagram of the coSARA design methodology (the numbers below the boxes refer
to the steps in the methodology).



1. graphically specify the application’s data model;
2. graphically specify the structure of the application’s semantics and user interface:
3. graphically specify the behavior of the application’s semantics and user interface:

4. link the models to software modules from the coSARA Library (and code any applica-
tion specific modules not yet in the library):

5. instantiate the application and its user interface objects and link them to the models:
and

6. execute and debug the application with the coSARA Token Machine and analysis tools.

We illustrate the methodology by presenting these steps in greater detail, as they were
applied in the design of a simple, strongly sharable block diagram editor (BDE). This editor
allows multiple users to concurrently draw and move rectangular blocks and the links between
them. It communicates with the users through a drawing window and a dialog box. Fig. 1{a)
shows a sample drawing window using the block diagram editor.

Operationally, a block is drawn by pushing down the mouse’s left button at the upper
lefthand corner, dragging the mouse to the lower righthand corner, and releasing the button:
links are drawn by a sequence of single-clicks of the left button at the vertices of the link.
ending with a double-click. As soon as a new block or link is drawn, the editor opens a small
dialog box in which the user types in the figure’s label. Both blocks and links are moved by
pressing down the mouse’s right button inside a block or on a link’s segment, dragging the
object with the mouse to the new location, and releasing the button. This brief description
will serve as the basis for determining the editor’s data, semantics, and user interface models
in the next subsections.

3.1 Modeling the Application’s Data

The data model of a strongly sharable application is a description of the collection of classes
and their manipulation methods needed to support the operation of the application. OREL.
an object-oriented modeling language, which incorporates relations and is supported by the
OREL graphical editor, provides six primitives to specify (1) simple classes, (2) compos-
ite classes, (3) recursive composite classes, (4) class attributes (slots), (5) relations among
classes, and (6) class inheritance.

Fig. 4(b) shows the OREL model for the block diagram editor. [t is constructed as follows:
the application’s semantics and user interface are represented as two top-level composite
classes (BDE-AS and BDE-UI} participating in the same relation (CALLBACKS); each type of
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Figure 4: The block diagram editor: (a) during operation; (b) OREL model.

object handled by the application becomes a component class (BLOCK and LINK) of the
composite class BDE-AS; and objects’ properties (label, links, pointlist, etc.) become
attribute slots in these component classes. For simplicity, we do not describe the class
representing the user interface (BDE-UI). The relation CALLBACKS indicates that each instance
of the application uses an instance of the user interface to communicate with the users.

The OREL compiler translates an OREL model into the appropriate class definitions.
and the necessary methods for creating instances, assigning values to their slots, adding or
removing the component objects of a composite object, etc. Common Lisp Object System
(CLOS) code is produced and stored the coSARA Library.

3.2 Modeling the Application’s Structure

The structural model of a strongly sharable application is a representation of the hierarchy
of software components implementing the application. SM, a language supported by the SM
graphical editor, provides three primitives to describe such structures: (1) modules represent
application components, (2) sockets represent the modules’ communication ports. and (3)
interconnections represent connections between the modules’ sockets.

The structural model of the block diagram editor is shown in Fig. 5(a). Starting with a
top-level module with no sockets, BDE, which represents the application itself, the applica-
tion’s software structure is hierarchically decomposed by refining modules into submodules.
until the behavior of each module is precise enough to be represented by a single GMB model.
BDE contains submodules BDE-AS and BDE-UI, representing the application’s semantics and
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user interface. The components of BDE-AS and BDE-UI are discussed below.

3.3 Modeling the Behavior of the Application’s Semantics

The semantics component of a strongly sharable application is a representation of the meth-
ods implementing the services provided by the application. An application’s semantics mocl-
ule contains one submodule for each component class in the data model. In Fig. H(a).
submodules Block and Link in module BDE-AS represent the ability of the block diagram
editor to manipulate blocks and links. The behavior of these submodules is specified in terms
of GMB.

GMB, supported by the GMB graphical editor, models three related aspects of the he-
havior of an application: (1)} a control graph models the flow of control among the events
{(nodes) that occur in the application, similar to a Petri net; the partial ordering of thetr
activity is determined by directed control arcs connecting them; (2) a data graph models the
flow of data between computation units {(codesets} and data storages (datasets); the type
of access of the codesets over the datasets is determined by directed data arcs connecting
them; and (3) an interpretation associated with the data graph describes the values stored
in the datasets and the computations implementing the activity of the codesets.

The GMB model of each semantic submodule contains datasets for storing all the in-
stances of the component class, and codesets representing the methods that can be applied
to those instances. The GMB model for Block is shown in Fig. 5(b). It includes the necessary
behavior to create instances of blocks (codeset MakeFig) at specific positions on the drawing
window, to store them {dataset FigLst), and to move them to different positions (codesel
MoveFig). The meaning of a GMB model is defined by a token machine, as explained in
section “Executing the Application”.

3.4 Modeling the Behavior of the Application’s User Interface

The user interface of a strongly sharable application is the component that allows and coun-
trols the interaction between the users and the application’s semantics. It is specified as
a collection of interactors connected to a collection of dialogs. For example, in Fig. H{a).
module BDE-UT contains submodules Interactor and Dialogs.

Interactors are ahstractions of things such as buitons, menus, dialog boxes, scroll bars.
drawing windows, etc. An interactor models the actions, produced by the users, to which
it responds (e.g., pressing a key on the keyboard. clicking or moving the mouse, etc.). and
the responses that it produces due to requests received from the dialogs (e.g., highlighting a
screen region, drawing or erasing a figure, etc.). Dialogs model the syntax of the communi-
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cation between the interactors and the application’s semantics, specifying which sequences
of actions received from the interactors are valid, and the points in these sequences at whicl
information is sent back to the interactors. Each dialog describes one valid sequence of
actions.

Interactors and dialogs are represented by SM modules, which communicate via sockets
and interconnections. Their behavior 1s described using GMB meodels. The user interface
of the block diagram editor contains one interactor and four dialogs. Module Interactor
in Fig. 5(d) represents the drawing window where users perform all the actions and observe
the responses to them. The actions result in tokens placed on node N1's output control arcs:
LDn, LUp, ..., RUp. The responses are the result of the activation of the codesets DR, .. .. EL
to draw and erase rectangles and lines. Modules DoRect, MvRect, DoPoly and MvPoly. in
Fig. 5(a), define the action sequences required to define and move rectangles and polylines.
The behavior of DoRect is shown in Fig. 5(e). Modules representing interactors and dialogs

that behave in this way can be obtained from the coSARA Library, or they can be defined
by the Ul designers.

3.5 From Models to Executable Prototypes

We explain now the linking and instantiation steps of the coSARA design methodology. The
interpretation software modules (i.e., the executable code defining the functionality of the
codesets and the data types of the datasets) for the GMB models of an application reside
in the coSARA Library and are linked to the models using the GMB graphical editor. This
tool requests the modules’ names froin the designer, looks them up in the coSARA Library,
and links them to the corresponding codesets and datasets. The coSARA Library contains a
collection of general purpose software modules, as well as modules generated by the OREL
compiler from the data models. Any application specific module which is not yet part of the
Library and is not generated automatically by the OREL compiler, has to be coded by the
designer and stored in the Library before linking it to the models.

At this point, the models represent a complete specification of the application. An ex-
ecutable application object can be created now by instantiating the application class and
linking it to the models. As we said before, the class definition and the function to in-
stantiate it are produced by the OREL compiler from the application’s data model. Before
the application object can be executed, the user interface’s interactors have to be linked to
actual windows. A collection of methods to create windows reside in the coSARA Library
and can be used by the designers. The resulting windows are linked to the user interface’s
interactors during the installation of the application object. Now the application object can
he executed by the system’s token machine, as explained below.
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3.6 Executing the Application

The token machine is an interpreter of GMB models. The meaning of a GMB model can
be defined as follows: each node has an input and an output logic, and is mapped to one
codeset; the input logic defines the required distribution of tokens in the node’s input control
arcs for it to fire, which means that the tokens are removed and the interpretation of the
codeset mapped to the node is executed; the output logic defines which of the node’s output
control arcs receive a token when the codeset finishes its execution. We describe now the
activities that take place in the block diagram editor model when a user draws a rectangle.

defining a block.

To draw a rectangle on the drawing window, a user has to push down the mouse’s left
button, drag the mouse, and release the button. The interactor in Fig. 5(d) represents the
drawing window. When the user pushes down the button, and then when the button is
released, GA sends the action’s window position through arc Pos, and places a token on one
of N1’s output arcs: when the user pushes down the button, the token 1s placed on arc LDn:
when the button is released, the token is placed on arc LUp.

The tokens and data produced by the interactor travel to dialog DoRect. It is DoRect.
as shown in Fig. 5(e), that really requires a sequence of two actions to produce a rectangle.
After the second action is received, DoRect iuforms the semantic module Block that a new
rectangle has been defined: codeset End stores the positions of both actions in dataset Rect
and places a token on arc Fig. DoRect also informs the interactor that the rectangle was
defined, so that the interactor can draw it on the screen: End sends both positions through
arc Pts and places a token on arc ROn; this token eventually activates codeset DR in the
interactor, which does the drawing.

In Block, as shown in Fig. 5(b), the token on Fig fires node N1 thereby activating codeset
MakeFig. MakeFig's interpretation, shown i I'ig. 5(c), consists of a sequence of calls to the
CLOS methods produced by the OREL compiler, which are stored in the coSARA Library.
First, MakeFig creates a new block, i.e., a new instance of the class Block. Then, it gets
the values of the various slots (see Fig. 4(b)) of this new block: it reads the positions of the
rectangle’s upper-left and bottom-right corners through arc FigPos, and stores them into
the slots UL-x, UL~y, BR-x and BR-y; and it opens the dialog box in dataset D1gBox, asking
the user for a label, and stores the user’s reply into the slot Label. Finally, MakeFig stores
the new block by adding it to dataset FigLst.

3.7 Strong Sharing of Applications

It 1s important to note that the entire coSARA system is built on top of the Object World
infrastructure. The OREL. SM, and GMB editors, and the token machine are all stronglv



sharable applications because of the Object World. This means that the models, the instan-
tiated application and its user interface objects, and the actions of the token machine are all
strongly sharable. By using the software modules in the coSARA Library, which also uses
the Object World, the application’s operations are shared. Therefore, the application itsell is
strongly sharable. Given one instance of the application, other users are able to request the
application. Such a request results in the creation of a copy of all the application’s objects
(e.g., the application object, the user interface objects, and the models) at the requester’s
site.

Each user that shares the application is then able to use it. Actions by the users are
broadcast to all the sites having the application. The granularity of the multi-user interac-
tion is determined by the software modules. It depends on which methods in the modules
broadcast themselves and which do not. Executing non-broadcast methods results in the ac-
tions occurring locally at the site invoking the method. Executing broadcast methods resulis
in the actions occurring at all sites. For example, the dialog to create a block (DoRect) coun-
sists of pressing the mouse button (followed by moving the mouse) and releasing the mouse
button (see Fig 5(e)). Associated with the actions are software modules to be executed (the
interpretations associated with codesets Start and End). If both software modules broad-
cast, then all users would see the intermediate steps when one user creates a rectangle. By
only having the last module broadcast, the other users would only see the final creation of
a rectangle. The latter approach is used by the block diagram editor example.

When multiple users share the block diagram editor, each user gets a copy of the editor
and its user interface. Each user is then able to create and move the blocks and links. Facl
user’s actions are broadcast to all sites having copies of the editor. The resulting effect of
creation and move actions by multiple users is as if the actions are merged into some serial
order and executed by all the shared copies of the editor.

Besides its benefits, strong sharing allows the users to inadvertently interfere with each
other. In order to avoid such situations, the users are expected to coordinate their efforts by
either face-to-face communication or using some communication technology {e.g., telephone
and e-mail). The users can also use locking to prevent others from modify an object under
construction. The Object World provides locking and an inconsistency detection mechanism.

The multi-user aspect of the block-diagram editor hinges on the Object World infras-
tructure. The next section explains in more detail how the Object World implements strong
sharing.
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4 Implementation of Strong Sharing

This section describes how the Object World satisfies the three main features necessary
to support strong sharing as mentioned earlier; 1) shared data, 2) shared operations, and
3) coordination support. Shared data are objects tor which a replica can be created and
transmitted to a remote site, while shared operations are methods that operate on an object
and all of its replicas. A less restrictive version of locking than database locking is provided
that allows user cooperation to resolve potential deadlocks rather than aborting one of two
competing transactions. This section also describes how the Object World is used to create
shared operations which are stored in libraries for use by concurrent engineering applications.
in particular, the block diagramn editor described in the previous section.

4,1 Sharing Data

In order to share data, the Object World encodes an object as a string and then transmits
the string to a remote site using TCP sockets. The remote site then decodes the string.
hence creating an exact replica of the object. The Object World provides the encode-objiel
and decode-object methods through the sharable class to do this. The sharable class is an
abstract class and does not itself have any instances, but all sharable data in the coSARA
system are an instance of a class which inherits from the sharable class. In addition to the
encode-object and decode-object methods, two slot variables are inherited from the sharable
class, the unique object identifier, and the naine of the object. The object identifier and the
name of the object are used to request a copy of the object from another site. The actual
form of the encoded string is a list with the first three elements being the object class name.
the object name, and the object identifier. The rest of the encoding is a list of (slot name.
slot value) pairs. This type of encoding can be done dynamically in Common Lisp. since the
class (and hence the slot names and slot values) of each object is known.

The Object World also supports persistent objects. The save-object method makes a
saved image of the object. The save-object method applies the same encoding as is used by
encode-object for sharable objects. In addition to encoding the object to be saved, it 15 also
necessary to recursively save any objects pointed to by the object. An object server daemon
keeps the names of all saved objects in a directory (which is also sharable). When users
request an object, the object server can look up the object in the directory and retrieve i1,

An example will help make this encoding clear. Consider the block diagram editor of
the previous section. As part of the OREL model in figure 4b, the BLOCK class would he
expanded 1nto the following class definition:

(defclass BLOCK (sharable)
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((label :accessor label)
(links :accessor links)
(br-x :accessor br-x)
(br-y :accessor br-y)
(ul-x :accessor ul-x)
(ul-y :accessor ul-y)))

Note that the only difference between this class definition and a class definition that does
not support shared data is that one of the superclasses’ of the BLOCK class is the sharable
class.

An object of the BLOCK class has six slots {besides the slots of its superclasses). one
for the X and Y coordinates of the upper left (ul-x and ul-y) and bottom right corners
(br-x and br-y) of the block, one for the label of the block, and one for any links to the
block. The :accessor field of each slot provides a function to access the slot value. If Bl is
an object of class BLOCK, then the function (br-x B1) would return the X coordinate of
the bottom right corner of block Bl. A MAKE-BLOCK function is also generated from the
OREL model which creates and returns a new instance of the block class.

Consider an instance of the BLOCK class that has its upper left corner located at the
point (10,10) and its bottom right corner located at the point (25,25). The encoded repre-
sentation of this BLOCK as produced by the encode-object method is:

“(BLOCK \“block-1\" \“RA.asa-105558\" (LABEL . NIL) (LINKS . NIL)
(BR-X . 25) (BR-Y . 25) (UL-X . 10) (UL-Y . 10))"

Many Common Lisp data types are very simple to convert to the encoded form. Numbers
(e.g. 25) and strings (e.g. “RA.asa-105558") are encoded as a substring of the whole encoded
string. Unfortunately, sharable objects often contain data that are not so simple. Two
specific complex types of data that do not have an obvious encoding are site dependent
data and pointers to other sharable objects. Site dependent data are necessary for dealing
with objects in the Common Lisp X (CLX) window system interface. Objects dealing with
windows have pointers to several device dependent data structures (e.g. the name of a
machine, or the number of pixels in the display). Thus a window object on a site named
“ra” should point to the window manager on site “ra”, while a replica of that object on a
site named “sol” should point to the window manager on site “sol”. To accomplish this. the
decode-object method must be specialized to fill in certain slots with local values of the site
dependent data.

To handle slots whose values are pointers to sharable objects, the slot value in the encoded
form is represented by a call to read-object, the function to access an object. Assuming the

IMultiple inheritance is available but not used in this example.
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OREL model of the LINK class has already been compiled and loaded, if our original hlock
example had a link object, then the block encoding would be:

“(BLOCK \“block-1\" \“RA.asa-105558\"
(LABEL . NIL) (LINKS . ((read-object :id \“RA.asa-105561\")))"
(UL-X . 10) (UL-Y . 10) (BR-X . 25) (BR-Y . 25))

The string “RA.asa-105561" and similar strings are the unique identifiers of the objects.
This encoding is similar to the one before except now the block has (a list of) one link to
it. This one link is represented as the function to read in the object whose unique object
identifier is “RA.asa-105561". The decode-object function when reading in this description
and setting the value for the links slot will evaluate the read-object function and set the slo
value accordingly. The evaluation of the read-object function will return a pointer to the
proper object. In the case where the object is stored locally, a pointer to the proper object
is simply returned. In the case where the object is stored on another site, the read-objeci
function will request the object by its unique object identifier from another site, and in the
case where the object is stored in persistent storage, read-object will request the object from
the object server daemon. Once that object is received and decoded, its pointer is returned
as the value of read-object. Thus the new replica of the block object will be identical to the
original block instance.

4.2 Sharing Operations

The other major feature of sharable objects is that special methods, which we call broadcast
methods, operate on all shared copies of an object, regardless of which machines store it.
In our implementation, existing methods can be upgraded to broadcast methods with very
little work as will be demonstrated in the example.

Broadcast methods are composed of two different methods, one method that is executed
on the local site, and a second that is executed on the remote sites. The local site method
implements the actual method code and as a side effect, broadcasts to all the remote sites a
request to execute the second or remote site method. The remote site method contains only
the original method code, and does not have the side effect of broadcasting. If a remote site
were to broadcast back the method that originally caused the broadcast the system would
go into an infinite broadcast loop.

Continuing the previous BLOCK example from the block diagram editor should make
shared operations clear. The BLOCK class has a move method which takes as arguments
a block and the distance to move in the X and Y directions. The method then moves the
position of the block, and returns the modified block.
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We use the defbroadcast macro to define broadcast methods. Our definition for the niore
broadcast method is:

{defbroadcast move ((B BLOCK) DX DY)
(setf (ul-x B) (4 (ul-x B) DX})
(setf (ul-y B) (+ (ul-y B) DY))
(setf (br-x B) (+ (br-x B) DX}))
%s;atf (br-y B) (+ (br-y B) DY))

The broadcast method move takes a BLOCK as an argument, along with a distance to
move in the X direction (DX) and a distance to move in the Y direction (DY). The miove
method adds the distance moved to the X and Y coordinates of both the upper left cor-
ner and the bottom right corner, and returns the object. Note that the only difference for a
broadcast method from an ordinary method is that instead of using the normal method defin-
ing function, (i.e. defmethod), defbroadcast is used. The defbroadcast macro 1s the way that
sharable methods are written. When expanded, a broadcast method will consist of the local
site and remote site methods as mentioned before. The local site method uses the original
name (i.e. move) and functionality, but also broadcasts the move method to all remote sites.
The remote site method has the original name with “nb-", for non-broadcast, prepended.
The nb-move method provides the move method functionality without the additional code
to broadcast the method.

When a user executes a move method, two things happen on his machine. First, the more
method is broadcast to all sites. These remote sites run the version of the move method.
nb-move, that does not broadcast. Then, the actual moving of the BLOCK occurs on the
original local site. To understand this better, the actual macroexpanded code for the more
method is shown below:

(defmethod move ((B BLOCK) DX DY)

(if (not *syncx) is1 Are we in a broadcast?
(let ((*sync* nil)) ii; No - create new *sync* variable
(declare (special *synck))
(setf #syncx t) ;v ... and turn off future broadcasts
(broadcast—message ;17 ... but broadcast the nb-move method

(ow—update—socket *owx)
(concatenate ’string
"(propagate-update "
(get—dests B)
(write—to—string (cons ’nb—move (list (encode—all B})))
"))
(setf (BLOCK-ul-x B} (+ (BLOCK-ul-x B) DX)) :; Do the method code
(setf (BLOCK-ul-y B) (+ (BLOCK-ul-y B) DY))
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(setf (BLOCK-br-x B) (+ (BLOCK-br-x B) DX))
(setf (BLOCK-br-y B) (+ (BLOCK-br-y B) DY))

B)
(defmethod nb—move ((B BLOCK) DX DY)
(if (not *sync) ;13 Are we in a broadcast?
(let ((#syncx nil)) ;17 No - create new *sync* variable
(declare (special #syncs))
{setf *syncs t))) i3 ... and turn off broadcasting
(setf (BLOCK-ul-x B) (+ (BLOCK-ul-x B) DX}} ;; Do the method code

(setf (BLOCK-ul-y B) (4+ (BLOCK-ul-y B) DY)}
(setf (BLOCK-br-x B) (+ (BLOCK-br-x B) DX))
(setf (BLOCK-br-y B) (+ {BLOCK-br-y B) DY))
B)

The nb-move method should be cicar. When the main method (move) executes the call
to broadcast-message, a message is broadcast to all remote sites. A process running on each
remote site receives the broadcast and checks which objects are involved in this method.
If a receiver of the message finds that it stores the objects, that site executes the »b- or
non-broadcast version of the method. In this case, the function call is to nb-move.

There exists a problem that could cause extra and erroneous messages to be broadcast.
This is illustrated in figure 6. Consider a broadcast method ff) which as part of its code
calls another broadcast method named g{). Method f() is invoked on site 1 as shown in box
1 in the figure. Correct execution of f() would mean that both site 1 and site 2 execute
f(} (or nb-f()) and g() exactly once. Since f() is a broadcast method, the non-broadcast
version of f{), nb-f(), is invoked on site 2 as indicated by the dashed arrow pointing to box 2.
On site 1, f{) calls broadcast method g() while on site 2, nb-f() calls broadcast method g().
Neither g(} on site 1 nor g{) on site 2 should broadcast as the broadcasting of g() would cause

Site 1 Site 2
{ilccal) (remote)
2
£¢) | broadcasts | np-£ ()
*sync*=F *sync*=F
calls calls
4
g{) gQ)
*sync*=T *sync*=T

Figure 6: Preventing extra rebroadcasts



additional invocations of nb-g() which would be an error. This problem is solved by having
a dynamically scoped variable named *sync* which is set to TRUE if a broadcast method is
currently being executed. The dynamic scoping (really indefinite scope and dynamic extent
- a Lisp global variable) means that the variable can be referenced anywhere as long as its
binding is currently in effect. The defbroadcast macro provides code that tests and sets the
value of *sync* when the first broadcast method is entered (f{) in this case). Since *syne*
is TRUE when g() is executed on both site 1 and site 2, neither site broadcasts which is the
desired result.

4.3 Coordination Support

Strong data sharing is inefficient (and even counter productive) unless data consistency can
be preserved. In coSARA, two measures are taken to ensure data consistency [WU91]. First.
we use a dependency detection model [STEFS7] to detect data inconsistency. This is not
to restrict access to users, bul to alarm users of possible incousistency and to facilitate
access negotiations. Second, when data access becomes highly contentious, locking can
be used to prevent undesirable access. Locking is implemented with our extension to the
dependency detection model. Both read and write locks are available. When locking conflicts
are detected, users will be supplied with locking information on the object{s), and can
resolve them through negotiation. We assume that data accesses are coordinated. When
users share data in a face-to-face setting, such coordination can be easily achieved with the
richness of face-to-face interaction. When users are geographically dispersed, we assume the
aid of multimedia conferencing systems, telephones, email, or FAX. Such coordination is
sufficient to prevent users from frequently and destructively interfering with each other. In
our experience, these two measures have been sufficient in coordinating data access, detecting
corrupted data, and dealing with lock contention.

5 Conclusion

We have identified strong sharing as an essential requirement for generating concurrent eu-
gineering applications. Strong sharing of data and applications allows engineers to work
closely together. It overcomes the time, place, and work barriers that impede the concur-
rent engineering process. In addressing this requirement, we have developed coSARA. an
environment for both realizing strong sharing aud an environment for prototyping strongly
sharable concurrent engineering applications. With this environment, we have built strongly
sharable applications such as a block diagram editor and a graphical browsing tool. and
we are currently building a strongly sharable spreadsheet. We have also have shown how
heterogeneous applications can intimately share the same data.
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Our system allows application builders to use a single-user tool design methodology for
building multi-user tools. This makes it easier for them to build shared applications. They
do not have to learn a completely new paradigm for application building. This also makes
it easier to take existing applications and make themn strongly sharable. Also since the
applications are designed using primarily a single user focus, it should be easier for users to
build a conceptual model of the application. This can make it easier to learn how to use the
the application and thereby be more acceptable to the users.

The coSARA system itself is a strongly sharable concurrent engineering application. The
coSARA tools are strongly sharable since they have been built on top of the Object World
infrastructure. Multiple users are able to work together on the same coSARA models. Not
only does coSARA support the prototyping of strongly sharable applications, but since it
is based on the SARA design tools, it also supports the design, modeling, and analysis of
general concurrent hardware and software systems[ESTR86, LOR91].

Our work on strong sharing and the coSARA system has opened several additional prob-
lems and challenges for the future:

o Explicit Specification of Multi-User Interface Granularity - The granularity of the
multi-user interface is currently specified at the library level by choosing whether to
use broadcast or non-broadcast modules. However, this is hidden from the graphical
specification models of the application. In the future, we would like to be able to
specify the multi-user granularity in the graphical models wliere it is more apparent
to the application builders. We are looking at extending the GMB to allow richer
specifications of behavior to take into account better the effects of multiple users. One
particular extension we would like to add is being able to specify local versus shared
models. Local models would make a local copy for each user so that only one user
affects that particular model. Shared models are what coSARA uses now, in which all
users affect and share the same model.

o coSARA Compiler - The coSARA methodology uses an interpretation model for exe-
cuting the specifications of the strongly sharable applications. This is useful for pro-
totyping. A desirable tool would be a compiler that can take the specification models
and compile them into efficient code.

o Extending Strong Sharing to the C++ LEnvironment - Currently strong sharing is
supported in the Common Lisp/CLOS environment. We are currently looking at the
issues for providing strong sharing in the C++4 environment which is more efficieut.
but less dynamic.

¢ Building up the coSARA Library - In the future, we hope to supplement the coSARA
Library with more coSARA models and programn modules. One main area in which
libraries are useful is the multi-user interface. The models for the most common dialogs
could be stored in a library for immediate use.
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