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Abstract

Asynchronous iterations and random iterations are two commonly-used iteration (or re-
laxation) schemas in multiprocess systems, which correspond to message-passing and shared-
memory models, respectively. Asynchronous iterations (Al’s) are iteration processes of a map on
a product space that essentially allow, at each iteration step, application of an arbitrary subset
of component maps of the map to a vector of any previous values of components, while random
iterations (RI's), on the other hand, are iteration processes of a family of maps on a common
space in which one and only one map out of the family is selected and applied successively at
each iteration. These iterations have been extensively studied in the context of contracting and
more general nonexpansive maps on metric and Banach spaces for establishing conditions that
guarantee their convergence and uniqueness of convergence. In this report, we study these two
kinds of iterations for maps on partially ordered sets. We show that asynchronous iterations
can be used to compute least fixed points of continuous maps on some complete partially or-
dered product sets (e.g., product cpo’s and lexicographic ¢po’s), and that any (a-) confluent or
semi-confluent family of continuous maps on a common cpo have a non-empty set of common
fixed points and random iterations can be used to compute the least common fixed point of the
family.

*This research is supported by NSF grant IRI-8917907



1 Introduction

This report is an extension of [Wan89]. Here we are interested in two problems of computing least
fixed points of continuous maps on complete partially ordered sets (cpo’s): (i) given a cpo (X,C)
where X = II;c7X; is a product set and a continuous map F: X — X, compute the least fixed
point uF € X of F; and (ii) given a family of continuous maps f;: X — X, : € I, on a common
cpo X, compute the least common fixed point p{f; |7 € I} of the f;’s when it exists.

In an abstract sense, these two problems correspond to finding a least solution to a system z = f(x)
in message-passing and shared-memory parallel and distributed processing systems. Examples of
these kinds of fixed-point computation include constraint satisfaction systems, program data-flow
analysis, graph algorithms [BT89], rewriting systems [DJ90}, and many others. Frequently used
are iterative methods of solving such problems; that is, given an appropriate initial value for x,
an iterative algorithm repeats the assignment = «— f(z) until a fixed point is found. In fact, it is
known that problem (i) can be solved as a system of equations by two classic methods: iteration and
elimination. For example, Tarski showed in his fundamental fixed-point theorem [Tar55} that the
least fixed point #F can be computed by iterative application of F' to the least element 1 of X and
1F is equal to the supremum U{F?(1)} of the iterative sequence {F*(L)|t =0,1,2,...}, where F*
is F iterated t times, and Bekié provided a “bisection lemma” in [Bek84] (also see [Mos89a]) which
allows use of the elimination method for simultaneous equations to compute pF. As for problem
(it), a few results exist for the cases where family F' of maps are commuting, f; - f; = f; - fi. For
example, for a finite, commuting family of continuous maps, the least common fixed point exists
[DeM64] and can be computed by iteratively applying any composite map g = fi, fi, -+ fi, (i # ik
for 7 # k) to the bottom element 1 [CC79).

In this report, we are interested in using asynchronous iterations (AI's) as given in [Bau78, BT89]
and random iterations (RI’s) as given in [Bru82, Tsi87] to compute least fixed points in problem (i)
and (ii), respectively. Roughly speaking, an asynchronous iteration is a discrete iteration in which
at each iterating step any subset of components of a point is updated by corresponding component
maps and other components remain unchanged, while a random iteration is an iterative process
in which one and only one map that is randomly chosen from a family of maps is applied at each
iterating step.

The motivation for considering Al's and RI’s is to account for parallel and distributed implemen-
tations of iterative methods (like Tarski’s iteration) on a multiprocess system such as a message-
passing or shared-memory system [BT89], in such a way as to reduce possible communication and
synchronization overhead between cooperating processes. For asynchronous iterations, “this reduc-
tion is obtained not by forcing the processes (component maps) to follow a predetermined sequence
of computation, but simply by allowing a process, when starting the evaluation of a new iterate,
to choose dynamically not only the components to be evaluated but also the values of the previous
iterates used in the evaluation” [Bau78)], while for random iterations this reduction is achieved by
choosing an arbitrary process (map) from a given family of processes and applying it to the result
of previous applications at each iterative step.

These methods have been successfully applied in different situations. For instance, AI's have been
used to solve linear equations with coefficient matrices of spectral radii less than 1 [CM69] and
other numerical problems [BT89)], and to compute the fixed point of general contracting maps on



Banach spaces [Bau78] or some variant spaces [BT89], while RI's have been taken as an effective
mean of computing common fixed points of, most notably, a family of contraction or more general
nonexpensive maps on metric and normed spaces [Bru82}, and a family of maps on topological
spaces for which Liapunov functions can be defined [Tsi87].

An instructive parallel drawn between the two very fundamental fixed-point theorems, Banach
and Tarski theorems, also promotes the raising of problems (i) and (ii) in the present study. The
Banach theorem asserts that a contracting map on a Banach space (complete normed space) has
a unique fixed point, which can also be explicitly computed by an iterative process analogous to
that in Tarski’s theorem. In Banach’s Theorem, the approximating sequence converges because the
normed space is complete and its limit is a fixed point thanks to the continuity of the contracting
map. In Tarski’s theorem, the order-theoretic notions of completeness and continuity replace the
topological ones in Banach’s theorem. In fact, given a contracting map on a Banach space X, we
may define an ad hoc ordering on X so that Tarski’s theorem is applicable. Denote by z* the unique
fixed point of F on X. Then the ordering is given by the reflexive-transitive closure of the relation

zCy ifandonlyif |[z—2z|>|ly—=z"|.

It is straightforward to check that, for any z¢o € X, the upper set, zol= {z|z0 C z}, of zg is a
cpo with bottom L = zp and F restricted to 2o is a continuous map with respect to the order
L. Now according to Tarski’s theorem, F has a least fixed point, which turns out to be the unique
fixed point z* of F as given in Banach’s theorem. In fact, very recently, it has been shown in
[Bar91] that Banach’s theorem is indeed a particular case of Tarski’s theorem, by embedding a
metric space (or similarly a norm space) into a partially ordered space, which is not dependent on
any contractive functions on the metric space, so that any contractive function is a continuous map
on the poset and it has the unique (least) fixed point. However, if in turn X is a cpo and F is an
order-theoretically continuous map on X, it is usually hard to construct a norm |- || on X such that
X equipped with || - || becomes a Banach space and F is a contracting map. Some examples of how
to imposing quasi-metrics (differing from metrics in not requiring that d(z,y) = 0 implies = = y)
and generalized metrics (not requiring symmetry of metrics and additive commutativity of metric
values) on cpo’s are given in [Smy91] and [JMP86], respectively. Even in these cases either the
quasi-metrics or generalized metrics depend on specific cpo’s, or they are suitable for general cpo’s
but fail to introduce the Scott topology (which will be defined later in Section 2) or topologies that
are consistent with partial orders on cpo’s [GHK*80] and hence have no guarantee on an order-
continuous map being metric-continuous. In this sense, Tarski’s theorem is more fundamental than
Banach’s theorem. Therefore, not only do problem (i) and (ii) complete the picture of using Al’s
and RI’s to compute fixed points provided in both the theorems, but they have a more profound
significance than their counterparts in metric or norm spaces.

A key property that asynchronous iterations and random iterations can possess is a kind of canonic-
ity, i.e., that, starting with a point, every iteration converges to a unique fixed point. Very similar to
rewriting systems, the canonicity is usually decomposed into two components: convergence, which,
like termination in rewriting systems, ensures that every iteration approaches a fixed point, and
confluence, which ensures that there can be at most one fixed point for iterations starting with a
same initial point to converge to. A natural consequence of a canonical Al or RI system is that Al’s
or RI’s compute the same fixed points as do simple, common iterations, so that they asynchronize
or randomize the usual iterations of computing fixed points.

The purpose of this report is to provide some results on the canonicity of AI’'s and RI’s of continuous



maps on complete partially ordered sets. OQur results show that the least fixed point computed by
a continuous map on a product order and alternative extension orders on the product of a family
of complete partially ordered sets can be computed by arbitrary asynchronous iterations, and that
the least common fixed point of an a-semi-confluent family of continuous maps on a common cpo
can be computed by any fair a-random iterations, which generalizes a classic result on computing
the least fixed point of a commuting family of continuous maps by a composite map.

The rest of the report is organized as follows. In Section 2 we recall some basic concepts and
notations on partially ordered sets. We give the definition of Al’s in Section 3. In Section 4 we
prove that the least fixed point of an (w-) continuous map over a product cpo or a lexicographic
cpo, that is computed by the Tarski’s (parallel) iterative approximation, can be computed by any
Al defined in Section 3. We then define RI’s formally and discuss their relation with term rewriting
systems in Section 5, and show that RI’s can be used to to compute the least common fixed point of
any confluent family of continuous maps in problem (ii). We finally conclude in Section 6 with some
possible implications of our results for the semantics of programming languages and concurrency.

2 Preliminaries

Here we give some notations and concepts that will be used in the rest of the report. For a general
discussion of partially ordered sets (posets), we refer to [Bir69, DG82, DP90, NR85, Sco72].

A partially ordered set (poset) is a pair (X,C), where X is a non-empty set and C is a binary
relation on X , called a partial order, that has reflexive, antisymmetric and transitive properties.
Given two partial orders T, C2 on X, Cy is an extension of Cy if, whenever z Cy y, z E2 ¢.

Let (X,C) be a poset and § be a nonempty subset of X. 5 is directed if for any z,y € 5, there
exists some z € S such that ¢ C z and y C 2. A special case of a directed subset is a countable
ascending chain, which is a sequence {z(t) € X |t =0,1,2,..} withz(0) C 2(1)C ---Cz(t)C - -~
An upper (lower) bound of § is some z € X with z C z(z C 2) for every z € S. The supremum LIS
(infimum NS) of §, if it exists, is the least (greatest) such z. The least point of the whole set X,
if it exists, is denoted by L. A pointed poset is a poset with least point L. A complete partially
ordered set (cpo) is a pointed poset (X, C) in which every directed subset S has supremum US.

Let (X,C, L) be a cpo. A subset U C X is open if (i) for any z,y € X, 2 € U and z C y implies
y € U; (ii) for any directed subset § C X, uS € U implies SN U # @ . The family of all such open
subsets of X induces a topology on X called the Scott fopology ([Sco72]). A sequence of points in
X, {z(t)|t=0,1,2,...}, converges to x € X, written as lim;_,o, £(t)} = z, if whenever U is open and
z € U, then there exists some T > 0 such that z(¢) € U for all t > T. {«(t)} converges finitely if
there exists some T such that for any ¢/ > T, z(#') = lim;—.c 2(¢). Notice that in the Scott topology
any directed sequence S converges to its supremum LIS and, typically, any infinite ascending chain
{z(1)} converges to U{z(%)}.

A map F: X — X is monotone if for every z,y € X, 2 C y implies F(z) C F(y). F'is w-continuous
if for any countable ascending chain 2(0) E (1) C 2(2) C --- in X, F(U{z(t)}) = U{F(z(t))}. F
is continuous if for any directed set § € X, F(US) = U{F(z)|z € S}. Note that every continuous



map is w-continuous, and every w-continuous map must also be monotone, since z C y implies
F(z) = F(u{z,y}) = UF({z,y}) = F(z) U F(y) € F(y). It is known that this definition of
continuity of a map coincides with the continuity of a map defined in terms of the Scott topology
in the usual topological sense.

Let I be a non-empty set and X; (i € I) be a family of non-empty sets. Denote by X = [[;; X; the
product set of X;, consisting of elements of form z = [z;];e7 with z; € X;. When (X;,C;) (i € I) are
a family of cpo’s with with bottom elements L;’s, denote by (X,C) the product poset of (X, ),
namely, X = [L;er X; and, for any z = [2:)ier, ¥ = [vilier € X, 2 C y if and only if #; T; y; for
all i € I. It is easy to check that product poset {X,C)is a cpo with bottom element 1L = [L;];es.
However, the Scott topology on the product cpo X is in general not a product topology of the
Scott topologies on cpo’s X;. But, for any sequence {z(?)} in X, lim;_,o z(t) = « if and only if
limy— o z;(t) = 2; for all i € I. Also, if X, X;(i € I) are cpo’s and F:IlierXi — X, then F is
monotone (w-continuous, continuous) if and only if f; is monotone (w-continuous, continuous) for
every ¢ € I ([Sco72}).

There is another way to impose an order on a product set X = [],.; X; of posets (X, E;). Assume
that [ is linearly ordered (i.e., for any 4, in I, one and only one of cases i < j, i = j and j < 1
occurs). The lezicographic order on X (with respect to the order on [) is the reflexive closure of
the relation C defined by [x;] T [1] if and only if there exists some j in [ such that z; C y; and,
for all k < 7, zx =; yx. Clearly, the lexicographic order is an extension of the product order.

Given a family of non-empty sets X;,¢ € I and a family of maps f; from product set X = Il;¢;X; into
X;, we denote, for any Iy C I, a map Fr,: X — X as follows. For any z = [#;)ier, ¥ = [%:]ie1 € X,
y = Fr,(z) if and only if, for all 1 € T,

L f,(a:) if el
L S if ¢l

That is, y = F,(z) results from changing the i-th components of z to f;(z) for all i € Iy. In the
cases that Iy = I and Iy = {i}, Fy, is also written as F and Fi(= f;), respectively. Notice that F
is the product of the maps f;, that is, F' = [fi]ies.

3 Asynchronous Iterations

Definition 1  Given a non-empty (index) set I, an asynchronous iteration scheme is any pair
(Z,8), where

I={I{tyCI|t=1,2,..}is a sequence of nonempty subsets of I,

S = {{[si(t)];erli € I(t)} |t = 1,2,...} is a sequence of sets of functions of I into N (the set of

natural numbers); that is, for every t > 1 and every i € I(t), s;'-(t) € N for each j € 1,

satisfying conditions:



(a) Vi € I, i occurs infinitely often in the sets I{t),t = 1,2,...;i.e., {t|4 € I(¢)} is infinite for
all 2 € I;

(b) Vt > 1 and Vi € I(t), s5() C ¢ — 1, for each j € I;

(¢) limy_oo min{si(t) | j € 7,1 € I(t)} = oo.

Definition 2 Let X = [[;c; X; be the product of X;’s, f X — X a family of maps, z € X
a point, and (Z,8) an asynchronous iteration scheme. An asynchronous iteration or trajectory of
F starting at z in (Z,8) is a sequence {z(¢)]t = 0,1,2,...} of points of X defined recursively by
2(0) =x,and fort > 0,i€ I,

- fillzi(s5(t)))jer)  if i€ I(2)
' zi(t = 1) if i g I(t)

which is also denoted in a compact form by z(t) = Fyy)(z(s(1)))- 1

The definitions given above can be interpreted together as follows: At each time instant ¢ > 1, I(1)
indicates those components ¢ € I of point z(¢ — 1) that need to be updated, with the remaining
components left unchanged. The updating of z(t—1) into z(t) is achieved by applying f; (z € I(t)) to
the values z J(SZ(t)) of all components known at previous times, namely the values of all components
z; at times s_f;-(t) < t. Thus, the asynchronization is reflected by the freedom to update any subset
of components at each time and the freedom to use any previous values of components. Conditions
(a), (b) and (c} on asynchronous iteration schemes are fairly reasonable restrictions to rule out
some exceptional cases: condition (a) guarantees that no component will be abandoned forever
without being updated, condition (b) states the fact that only previous values of components can
be used in the current updating, and condition (¢) requires that, eventually, the values at early
times will not be used any further in updating, and more recent values of the components will be
used instead.

In terms of concurrent programming, asynchronous iterations characterize behavior of a multipro-
cess, message-passing distributed system. Consider the index set I as a collection of (identifications
of ) processes in the system. If the maps f; are thought of as functions implemented on individual
processors, then Z can be regarded as activation sequences of the processors and § as commu-
nicating sequences between the processors. For instance, first-in-first-out (FIFO) communicating
channels can be characterized as: if t; < t3 and i € I(ty) N I(t2), then sj(tl) C 3§(t2) for all j € I;
i.e., only the most recently available values of components are used in the further updating though
they could be delayed. Now, conditions (a} and (c) become liveness properties of the processors
and communication channels between the processes, respectively.

Classical iteration methods in numerical computation {Blu72] like point Jacobi, block Jacobi, Gauss-
Seidel methods, as well as others introduced more recently such as chaotic relaxation [CM69],
random sequential iteration [Hop82], execution sequences [Tsi87], to name a few, can all be regarded
as special asynchronous iterations with different schemes (Z,S). We list some of them as follows.
For the details of these special cases, see [Bau78] or the related references.



(a) Parallel iteration. This is the most common iteration, where I() = I and sj(t) =t—1, for
alli,jeTand t =1,2,..;

(b) Sequential (point Jacobi) iteration. This applies only to cases when [ is finite and is based
on the strategy of using the most recently updated components: IW)={1+(t—-1) (modn)}and
si(t)y=nl(t—1)/n],j € I(t),i € I(t),t =1,2,....

Note that there are n! different sequential iterations, corresponding to the n! possible permutations
of {1,...,n}, which change components only one at a time in the order prescribed by the permuta-
tions. All sequential iterations have the same fixed points as those of the parallel iteration [Rob86] -
we will generalize this result later to any asynchronous iteration. But they may introduce different
limit cycles (explain);

(¢) Block sequential (block Jacobi) iteration. The block sequential iteration associated to the
ordered partition {I;} (k= 1,2,...,n) of set [ is defined in [GCP85] by

Vk € {1,...,n},Vi€ I, z:(t + 1) = fi(y*(1))

where
y'(t) = z(t)
k _ :L‘(t-{-].) iij'Ilu...UIk_l
Y5 (t) = { :cj(t) otherwise. for k€{2,...n}.

This corresponds to our definition as I(t) = Iy when k = 14((f—1)mod n}) and s;-(t) =nf(t—-1)/n]
forall je fand i€ I(t),t =1,2,..;

(d) Random sequential iteration. Each time only one component is chosen randomly with equal
probability, I(t) = {:} and s;-(t) =t-1;

(e) Chaotic relaxation. This kind of iteration is very similar to asynchronous iteration, except it
requires that ¢ — s}(¢) be uniformly bounded by some fixed positive integer s foralli e I{t),j €I
andt=1,2,...;

(f) Execution sequence. This is the case where all sj-(t) =t - 1. Then a trajectory is expressed
by

z(t) = Fp(e(t - 1)).
If each I(t) is represented by its set-theoretically characteristic function o(t) = [0;(t)]jer, Where

o;(t) = 1 or 0 depends on whether i € I or not, then the trajectory can also be defined in a closed
vector form

z(ty=o(t) - Fle(t-1)+ (1 —o(t))-z(t - 1)

where the dot product is interpreted in an obvious way.

The definition of asynchronous iterations given above is similar to the one given by Bertsekas and
Tsitsiklis in [BT89] together with their assumption 1.1 (like conditions (a) and (c) above), which is
a generalization of Baudet’s in {Bau78] (which requires that sj(t) = s;(t) for all ¢ € I(f)) and the
original chaotic iterations by Chazan and Miranker in [CM69]. However, unlike their definitions, we
make no assumption that index set I have to be finite. Therefore, our definition makes asynchronous
iterations applicable even in the cases like I = N* (k-dimensional discrete grid of processors) and



I = R¥ (k-dimensional continuous grid of processors) with k& > 1, where each I(t) (¢ = 1,2,--")
could be taken, for example, as {0,1,2,...,t}* and [—t,1]*, respectively.

Definition 3 A point z € X is said to be a fired point of an asynchronous iteration of F’ in
(Z,8), i, starting at =z, the trajectory z(t) = z for every ¢t > 0. [

In [Par87, Rob86], it has been shown that any fixed point of a sequential iteration of F'is a fixed
point of the parallel iteration of F' and vice versa. The following theorem generalizes this to any
asynchronous iteration.

Theorem 4 For any ¢ € X, z is a fired point of an asynchronous iteration of F in (I,8) if and
only if ¥ is a fizred point of F.

Proof:  The if part can be easily shown by induction on t. The only-if part proceeds as follows:
if z #£ F(z), then for some i € I, 2; # f:(x), which leads to z:(1) # fi(2(s(%0))) = fi(z), i € I(to)
for some ¢g. This contradicts z({g)=z. B

Two major issues regarding asynchronous iterations are their convergence and determinacy. Con-
vergence means that any asynchronous trajectory converges (in a certain sense) to some fixed point
of map F, and determinacy requires further that, starting at a given point, asynchronous itera-
tions in different asynchronous iteration schemes, when converge, will converge to a unique point.
Clearly, convergence and determinacy together ensure that starting a point, a unique fixed point
will be reached by any asynchronous iterations. In [CM69], a necessary and sufficient condition for
the convergence and determinacy of asynchronous iterations was obtained for linear operators on
the n-dimensional real space R™, provided the spectral radii of the operators are less than 1. Later
in [Bau78], a sufficient condition was given for contracting maps on R” (or in general any Banach
space). A quite general result for finite product sets was provided in [BT89] which assumes only a
notion of convergence on structures of the product sets but needs the so-called “Synchronous Con-
vergence Condition” and “Box Condition” that are equivalent to identifying Liapunov functions in
the stability analysis of nonlinear dynamical systems [LaS86]. In the next section we will establish
some results on the convergence and determinacy of asynchronous iterations for continuous maps
on complete partially ordered sets.

4 Computing Least Fixed Points

Through this section, we will fix X;, i € I, as a family of cpo’s, X = I;e;X; as a product set
(which may be partially ordered in many different ways like the product and lexicographic orders),
F as a map from X into itself, and (Z,S) as an asynchronous iteration scheme. Clearly, any
result on convergence and determinacy of asynchronous iterations depends on an order imposed on
product set X. We first give the result for the product order, and then generalize it to other partial
orders with the lexicographic order in particular that are complete extensions of the product order.
Finally, we provide a more practical formulation of asynchronous iterations and give a result on
convergence and determinacy for this new formulation.



We first consider X as the product cpo of X;'s. The following two lemmas establish a comparison
between “growth rates” of an asynchronous iteration and the parallel iteration when map F' is
monotone.

Lemma 5 Suppose that F is monotone and x € X is such that z C F(z). Then trajectory {z(t)}
of F starting at = in (Z,8) satisfies

z(t) C F'(z), £ =0,1,2,....

Proof  First notice that the assumption  C F(z) implies that z = F(z) C F(z) C F*(z)C ---
is a countable ascending chain.

The proof that z(#) C F?(z) proceeds by induction on t&. When ¢ = 0, z(0) = =z = Fo(2).
Suppose that z(#) C F'(z) for all 0 = ¢ < t. Now consider the case for t. For i ¢ I(2),
z:{t) = z(t ~ 1) T; (F*Yx)); C; (FY(z));. Fori € I(t), sg(t) Ct~—1forall j €I (by condition
(b) on §), and z;(s(t)) E; (F*"!{z));, which implies that [2i(si(t)]jer C© F*1(z) and () =
fillzi(s5(®)len) C f F*~}(z)) = (F*(x));. Hence z(¢) C F'(z) forallt =1,2,.... W

Lemma 6 Suppose that F is monotone and x € X is such that 2 C F(z). Then, for trajectory
{z(¥)} of F starting at x in (I, S), there exists a sequence of integers, to <ty <ty < ---, such that,
forp=10,1,2,..,

(*) FP(z) C z(t), for all t > t,.

Proof:  Again notice that z T F(z) implies that z = FO(z) C F(z) C F?(z) C - - - is a countable
ascending chain. We proceed with the proof by induction on p.

Base case: p = 0. Take to = 0. An induction on ¢t > 0 shows that () holds for 2o = 0: when ¢ = 0,
FO(z) = 2 = 2(0), and when ¢ > 0, by the condition (b) on &8, sj(t) Ct—1,5elifieI{t), and,
by the induction hypothesis, z T z(s(t)). Thus,

xr E FI(t)(:E) E FI(t)(.’B(S(t))) = .’B(i), for all ¢ Z io = 0,

which completes the basge case.

Induction Hypothesis: For p > 0, there are integers {5 < #; < - -+ < t,—1 such that (*) holds for all
q, 0 C ¢ < p. Assume that ¢, has been found and (+) holds that for all ¢ = 0,1,...,p— L.

Induction Step: First, define r, by
rp = min{k |Vt > k, s5(t) > t,_y,for i € I(t),5 € I}
Such r, is well-defined due to condition (c) on 8. Further, 7, > t,-1, by condition (b) on §. Hence,

FPY(z) C a(rp).



Take any t > r, and consider an arbitrary i-th component zi(t) of z(t). If ¢ € I(t), let 7 =
[2;(s%(2))];er. By the choice of ry, sj(t) 2 £,z for all j € I and FP~l(z) C 2* by the induction
hypothesis. This shows that

(FP(2))i = i PP~ (=) T ful2") = =i(t).

On the other hand, if i ¢ I(t), the ith component does not change, z;(t) = z;-1(t). Therefore, as
long as the i-th component is updated between times r and t, (FP(z)); C z:().

Now define ¢, as
t, = min{t|t > r,and I(r)U---UI(t)=1T}.

Such t, is well-defined due to condition (a) on Z. Then, for any t > t,, every component of z(t)
is updated at least once between times r and t, and therefore FP(z) C z(t). This shows that (¥)
holds for p, which completes the induction and the proof of the lemma. ®

Here is the main result of this section.

Theorem 7 Suppose that X = i1 X; is the product cpo of cpe’s X;(1 € I) and F: X — X is
continuous. Then trajectory {z(t)} of F starting at L in any asynchronous iteration scheme (I, S)
is directed and converges to the least fired point uF of F.

Proof  According to Tarski’s theorem, F has the least fixed point pF in X and pF = U{F*(1)|t =
0,1,2,...}. Since the continuity of F implies its monotonicity, the conclusions of Lemmas 5 and 6
hold for z = L. For any #(t),z(t2) € {2(?)}, let p = max{t;,t;}. Then, from lemma 6, there is
some t, such that

#(t1) © F1'(1) C FP(L) C 2(t,), and z(t2) T F2(L) C FP(L) C x(ty),

which shows that {z(#)} is directed. As X is a cpo, {z(t)} has supremum U{z(?)} in X. By Lemma
95
()} T U{FY(L)} = uF;
and, again by Lemma 6,
pF T U{=(1)}.
Hence limy_, o, {z(3)} = {z(t)} = uF. »

Corollary 8 Under the same condition of Theorem 7, {z(t)} converges finitely in any asyn-
chronous iteration scheme if and only if {F*( L)} converges finitely.

We now consider two generalizations of Theorem 7. The first one concerns different complete
partial orders on X that extend the product order. In some cases (see [Bos85] for many examples),
the product order may not serve a right purpose. Instead, other complete partial orders like
lexicographic orders need to be introduced. The next theorem states that, as long as these orders
are extensions of the product order, the conclusion of Theorem 7 remains true.
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Theorem 9 Let X = ;1 X; be the product set of sets X;(i € I}, (X,C)acpoand F: X — X a
continuous map with respect to C. If the order C is an extension of the product order on X, then
the trajectory {z(1)} of F' starting at L in any asynchronous iteration scheme (I, S) is directed and
conuverges to the least fized point pF' of I.

Prooft  Since Fis continuous, pF = lim, o F™(L). According to Lemma 5, 6 and the assumption
that [ is an extension of the product order, the trajectory {z()} is directed and converges to the
limit of F™(L1), that is, u¥. 1

Since any lexicographic order is an extension of the product order on a product of partially ordered
sets, we have

Corollary 10 If F is continuous with respect to a lezicographic order on X, then the conclusion
of the theorem holds.

The second generalization of Theorem 7 involves generalizing the definition of asynchronous itera-
tions in their spatial dimension, in order to adapt a practical modeling of iterative computations in
distributed processing systems of message-passing type. Consider index set I as a set of (virtual)
spatial sites of individual processors within a multiprocessor network system and each X; as a local
state space at site . In many practical situations, due to restrictions associated with the network
model, topology, etc., sites may not all share directly a common global state space as a product
set of all local state spaces (like X in the previous section), or they may not be able to distinguish
local values coming from different local sites (as in shared memory models). Rather, each site has
its own local conception of a global state space, namely, its own input state space ¥;, and local map
f; is defined from Y; into X;. The conversion from local state spaces X; at all sites 7 € [ to a local
input space Y; at site ¢ is a (virtual) map ¢;:[];¢; X; — Y, which is determined or carried out by
the network communication protocol. This formulation results in the following spatially-ertended
asynchronous iteration

et = | FE s Oen) i i€ ()
' zi(t - 1) if 1 ¢ I(1)

It is clear that when all ¥; = [[;¢; X; and ¢; are identity maps, spatially-extended AI's reduce to
the AT's on the product [];¢; X;. However, the conclusion of Theorem 7 still holds for this kind of
extension of Al’s.

Theorem 11 Suppose that X; and Y; are all cpo’s, and f;:Y; — X;, ¢i:[I; Xi — Y: are all con-
tinuous with respect to respective cpo’s. Then a spatially-extended asynchronous iteration {z(t)} of
F = [fi] starting at L in any asynchronous iteration scheme (I,8) is directed and converges to the
least fixed point uF of F.

5 Random Iterations

Definition 12  Given an ordinal o greater than or equal to the first limit ordinal w [Sho67] and
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given a non-empty (index) set I, an a-random iteration scheme is a map r from set {317 € o} of
ordinals less than « into set 1. An a-random iteration scheme r is fair if, for each i € I, cardinality
Card(r71(1)) of set r~1(¢) C a is Card(a)/Card(I). [

Definition 13 Let X be a topological space, where a notion of limit of a (transfinite) sequence
makes sense, and let F = {f;; X — X |i € I} be a family of maps. An a-random iteration or
a-trajectory starting at a point o € X according to an a-random iteration scheme r, denoted by
", is a (transfinite) sequence {z"(8) € X | B € a}, recursively defined as follows: 27(0) = %o, and,
for any 3,0 € 8 € «,

27 (3) = feg-1y2"(8 — 1) if § is a sucessor ordinal

- lim,egz™(y)  if B is a limit ordinal.
We often omit prefix @ when a = w and simply speak of random iterations schemes and random
iterations. i

In the case @ = w, the definition of a-random iterations reduced to the ones of execution sequences
in [Tsi87] and random products in [Bru82].

A point z in X is a common fized point (or irreducible, as used in the rewriting system theory
[Hue80]) of a family F of maps on X if f(z) = « for all f in F. Denote by Fiz(F) the set of all
common fixed points of family F and by pF the least common fixed point of ¥ when it exists.
Clearly, a point z is a common fixed point of F if and only if any fair a-trajectory of z is a transfinite
sequence of x itself. A point y is called an o-limit point (or a-normal form) of z if there is an
a-random iteration " with z"(0) = z and z"(a) = y.

As for asynchronous iterations, convergence and determinacy are also two properties of major
interest. A family F' of maps on a topological space X is convergent if any random iteration of any
z in X has a limit point which is a common fixed point, and ¥ is deterministic if any point has at
most a unique limit point that is a common fixed point. identical.

Random iterations find application in concurrent systems of shared-memory type, rewrite systems
and rule-based deduction systems. The basic computing mechanism in all these systems is that
one and only one process or rule out of a pool or a set of them is activated or applied at each
computation step, resulting in a common piece of memory or a term being updated or rewritten
successively. Consider rewriting systems [DJ90] as an example. Recall that a rewriting relation is
a binary relation — on T = Tg(X), the set of all terms on a signature ¥ using variables from a
countable set X, satisfying that, if s — ¢ with Var(s) C Var(t), where Var(s) is the set of all free
variables of s, then u[sa], — u[to],, for all terms s, ¢ and u, all positions p in u, and all substitutions
o. A rewrite system is a set of rewriting rules of the form v — v, where u,v are terms in T’ with
Var(u) C Var(v). Associated with a given rewrite system I' is a family F(T') of maps on terms
constructed as follows, which represent the intensional meaning of the rewriting system. For any
rewriting rule v — v € T, any substitution o and any position p, define a map f: Tx(E) — Tx(X)
by

ot if Jw,s = wluel,,t = wlvelp
s} = { s otherwise.
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and let F(I') be the set of all such formed maps. It is clear that each map f is well defined and that,
if T is countable, F(I') is also countable. Also, a rewriting sequence in I' corresponds to a random
iteration of F(T'). As well known, the theory of rewriting systems is a theory of normal forms.
Important properties of a rewriting system are (finite) termination, which guarantees the existence
of normal forms, and confluence (or the Church-Rosser property), which ensures the uniqueness
of normal forms. It can be easily seen that these two properties correspond to the properties of
convergence and determinacy of random iterations, if we do not insist on finite terminations, and
that a normal form in a rewriting system I' is a common fixed-point of corresponding family F(T').
Thus, studying random iterations of F(I') is equivalent to studying rewritings in T'.

Also because random iterations have a wide range of applications, many fundamental concepts and

results in various applicative areas help to pursue a general study of RI's. For instance, a concept

of confluent RI’s can be formulated in the same spirit of rewriting systems. A family F = {f;} of
. il & [ 4 o o4 [+ Y I3 . .

maps is a-confluent if &~ o> C 3 o &, where = is the a-transfinite reflexive-transitive closure

of the union of graphs {(z, fi(z))} of all fi’s, & is the inverse of =, and o is the composition of

binary relations.

Not surprisingly, we can have the following result, which corresponds to a similar fundamental
result on existence and uniqueness of normal forms in rewriting systems.

Theorem 14 If F is a-convergent and a-confluent, then each point has a unique a-normal form.

Proof:  Since F is a-convergent, any point has an o-normal form. If a point z has two normal
forms, say ¥, z, then y =% w, z = w for some w, which is only possible when y = w = z as y,2
are normal forms. 1

6 Computing Least Common Fixed Points

In this section, we are interested in how to use random iterations to compute the least common fixed
point uF of a family F of continuous maps on a cpo X . A classic result related to this is the following
cpo-and-continuous-map version of the corresponding theorems occurred in [Tar55, DeM64, CC79)
for monotone maps on lattices.

Theorem 15 Let F' be a commuting family of continuous maps from a cpo X into itself, i.e.,
f(g(2)) = g(f(2)} for all f,g € F and all x € X. Then F has a non-empty set of common
fized points Fiz(F) in which the least element pF exists. Moreover, when the family is finite,
F={fli=1,2,...,n}, and g is a composite map of F, i.e., g = fi, fi, - fin, Fiz(F)= Fiz(g).

Since common fixed points of a finite, commuting family ¥’ of monotone maps are identical to fixed
points of any composite map g, the least common fixed point uF is the least fixed point ug. If, in
addition, maps in F are all continuous, then pF can be simply computed by iterating g starting
with the bottom element; that is,

pF = pg = Un—oog"(L).
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We realize that iterating a composite map is a random iteration scheme and the above theorem
can be indeed generalized to any random iteration scheme.

Theorem 18 The least common fized point puF of a finite, commuting family F of continuous maps
from a epo X into itself can be computed by any fair random iteration t” of the family starting with
bottom element 1, pF = Up»oz"(n) with z7(0) = L.

Prooft  Assume that F' = {fi,..., fn} and fix a composite map g of F, say g = fy--- fm. Now
let r be a fair random iteration scheme and z" be the trajectory starting with L. Consider an
increasing sequence of integers, ng < 7y < ... < 7; < ... such that, for any ¢ > 0, z"(n;) = hi(g' (L))
for some h; (which is a composite of some maps in F) and {z"(n;)} is a nondecreasing sequence.
Clearly, such sequence {z"(n;)} exists thanks to 7 being fair and each A; is continuous. Notice that

2"(ni) = hi(g'(1)) = ¢'(Ri( 1)) 2 ¢°(L)-

Then ‘
#F = Uieg' (L) C Wisoz"(ni) E Unyoz’ (n) C pF,

which shows Upsez"(n) = pF. 1

A simple case where a family F is commuting is that F' consists of a finite number of iterates of
a single map f, that is, F = {f*, ..., f'm}. The previous two theorems say that Fiz(F) = Fiz(f)
and pf = uF can be computed by any random iterations of F'. This could be useful to speed up
convergence rate of iterating f in a multiprocess environment in which each constituting process
computes an iterate fi of f.

Certainly, F' being a commuting family is a strong condition. We now relax it to a semi-confluent
family.

Definition 17 Given a family F of maps on a set X, denote by #™ the set of all possible finite
composite maps out from F. F is said to be strong semi-confluent if for any z € X, u,v € F”,
u(v(z)) Jv(w/(z)) for some v’ € F*. F is said to be weak semi-confluentif for any z € X, f € F,
u € F*, u(f(z)) D f(v'(z)) for some u' € F*. 1

Clearly, a strong semi-confluent family is weak semi-confluent, and a commuting family is strong
semi-confluent. Generally, a weak semi-confluent family is not necessarily strong.

Another example of strong semi-confluent families comes from a restricted class of asynchronous
iterations. According to the definition, AT's are always associated with product spaces and allow
using any previous values at each iterative step, while RI's live on any set but are restricted to only
using most recent values. When Al's of a map F on a product set X = [];; X; are restricted to
execution sequences (see Section 3) which use only the most recent values, they are equivalent to
RI’s of a family of maps f1,: X — X, Iy C I, defined by

(fr,(x)); = { (F:(c;))] igﬁg for every je I,
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and the least common fixed point of f,’s exists and is equal to the least fixed point of F". From
Lemmas 5, 6 in Section 4, the resulting family {F7,} is strong semi-confluent.

Theorem 18 Let X be a w-complete poset and F a weak semi-confluent family of monotone maps
on X with a non-empty set of common fized points, Fiz(F)# 0. Then

(i) there ezists a least common fized point uF in Fiz(F);
(ii) for any z € X, if f(z)C z for all f € F, then uF C z; and

(i1i) Fiz(F) is w-complete with respect to the induced order.

Proof: (i) Let
A={ze X|zC f(z)for all f € Fand z C yfor ally € Fiz(F)}.

Clearly, L € A. If g€ F,z € A, y € Fiz(F), g(z)Eg(y) = y. I in addition f € F, then there
exists some u € F* such that f(g(z)) Jg(u(z)) Jg(z), because of the weak semi-confluent property
and z € A, Thus, g(A) C A. Tt is easy to see that A is w-complete. For any fair random iteration
2" starting with an element 27(0) in 4, let f(z) = US2yz"(n). Clearly, 2 3 f(z) for all z in A.
Then f has a fixed point @ € A, i.e., "(n) = a as long as 27(0) = a. Thus a = pF.

(ii) Let #]= {z € X|z C z}. =z is w-complete and f{z}) C 2| for all f € F. By (i),
z| NFiz(F) #0. Thus, uF C z.

(iii) Let {y, |n > 0} is an w-chain in Fiz(F) and let y = Uxyn, where Uy mean that U is taken
upon X. The upper set y] is w-complete. It is easy to verify that f(y1) C y7 for all f € F. By (i),
there is a least fixed point z in Fiz(F)Nyt. Clearly, z = Upiz(r)yn, Where Up;y(F) mean that U is
taken upon Fiz(F). n

In that case that F is further a strong semi-confluent family, the theorem implies F' is deterministic.
More precisely,

Corollary 19 Let X be an w-complete poset and F a strong semi-confluent family of monotone
maps on X. If a fair a-random iteration z7 starting with bottom element L converges to a fized
point, then the fized point is uF'.

Proof:  The proof is similar to the one for (i) of the theorem. First of all, the theorem guarantees
the existence of uF. Let

A={rz € X|zCu(z)forallu € F*andz C pF}.

Clearly, L € A. If v € F* and z € A, v(z) Co(pF) = pF. If in addition u € F, then there exists
some 1’ € F* such that u(v(z)) Jv(w/(z)) Jv(z), because of the strong semi-confluent property
and z € A. Thus, v(A) C A. Also any a-random iteration z" starting with an element in A is
nondecreasing and z7(3) C uF. Hence if y = z" () is a fixed point, then y = puF". 1
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7 Conclusion

We have studied two kinds of general iterations: asynchronous iterations of a map on a product set
and random iterations of a family of maps on a common set. Qur results show that the least fixed
point computed by a continuous map on a product order and alternative extension orders on the
product of a family of complete partially ordered sets can be computed by arbitrary asynchronous
iterations, and that the least common fixed point of an a-semi-confluent family of continuous maps
on a common cpo can be computed by any fair e-random iterations, which generalizes a classic
result on computing the least fixed point of a commuting family of continuous maps by a composite
map.

Least fixed points of continuous maps on various cpo’s play a very important role in (theoretical)
computer science. One of the most significant application is to provide a rigorous semantics defi-
nition of programming languages ranging from deterministically sequential to nondeterministically
distributive ones [NR85]. Since also every recursive function is the least fixed point of certain
continuous functionals on some complete partially ordered set [Kle52], we expect that the results
obtained here may soon find some applications particularly in recursive theory [Mos89a, Mos89b]
and computer science, e.g., program semantics [NR85, Par87, Sco76], verification [dB80, Man74],
and synthesis and transformation [BW82, MGMWT79].
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