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Abstract

The Lambek Calculus was proposed as a syntactic calculus of expressions of natural languages. A compu-
tation oriented analysis of one of its variants leads to the discovery of the property of local permutability;
and the theorems and proofs suggest directions for useful extensions of the systems to meet concerns of
specific applications, beyond linguistics. A couple of such possible variants are suggested and discussed.
Some recently proposed linguistic extensions are shown to be achieved in those variants, from an algebraic
consideration independent from the linguistic proposal. The study also pinpoints the similarity and differ-
ences between Categorial Grammars and Phrase Structure Grammars, from a computational perspective.
An implementation in Prolog is discussed and linked with the modularity and compositionality features of
the calculus, an instance of gain through interdisciplinary interplay.

1This research is supported by NSF grant IRI-8017907
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1 Introduction

The Lambek Calculus [La 58] is a formalism, proposed for the mathematization of symbolic manipulation
of expressions in natural langnages. As it was first developed as a mathematical system, notions of calculus.
algebraic structures and formal deductions were already incorporated in. With its decidability established
as a result similar to the Gentzen Cut Elimination Theorem [La 58}, the system serves as a very nice model
with many interesting linguistic and computational variants.

Yet, historically, as it was primarily applied to formal linguistic studies, a proof of weak equivalence of The
Lambek Calculus with context free grammar almost put a stop to its exploration in linguistic study, not to
mention its much less explored computational aspects. Only after phrase structure was no longer treated as
a deficit [PG 82] in linguistic study and paradigmatic diversifications were resurrected in linguistics, did the
Lambek Calculus and the associated Categorial Grammars revive and find renewed perspectives of inquiry
[OBW 88]. In particular, the previous identification with context free grammar is now known to be true
only for a simple variant of the Lambek Calculus, the Ajdukeiwicz-Bar-Hillel Grammars.

In this article, we study a variant of the Lambek Calculus, called the Simple Lambek Calculus in [Ben 88],
from a computational and formal perspective. Although we draw comparisons with and borrow ideas from
Categorial Grammar-based linguistic studies, we are not really addressing linguistic applications. Rather,
we treat the systern more as a formal system, a calculus, and a set of computational mechanisms, as it is,
abstracted from its linguistic significance, and try out variants toward possible computational applications.
However, we do expect that ignoring linguistic relevance in the beginning will still maintain its potential for
linguistic studies, as well as for symbol processing.

The article is organized as follows. In section 2, we first introduce the Simple Lambek Calculus and
establish its capacity beyond the formalism of context free grammars. This serves as a basis for later
exploration. Next, in section 3, we compare the Simple Lambek Calculus with categorial grammar, and prove
the difference between these two, from a computational perspective. The key emphasis is on the roles of the
M and G rules and their interaction, in this categorial formulation. Several iheorems about the properties
of this categorial version are established . Furthermore, the theorem and proof themselves shed light on
the comparison with phrase structure based formalisms, and suggest directions for possible variations. In
section 4, based upon the results established, we pinpoint about the difference between Categorial Grammars
and Phrase Structure Grammars, whose similarity and potential research parallels have been observed and
advocated, for example, in [Po 88]. In section 5, we describe an implementation in Prolog and discuss
further features of Logic Programming, in particular, unification and logical variables. These give not only
an edge in implementation, but also that in conceptual organizations and flexibility for variations. We also
learn how the principle of compositionality and related notions embodied in linguistic studies help modular
development of the implementation. It is a fruitful instance of interdisciplinary interplay. Then in section
6, we propose possible alternative Lambek variants, and point out in remarks how algebraic variants would
cover some linguistically proposed extensions. In particularly, we can account for the Multiple Dependence
in [St 88], which is not possible in the original Lambek Calculus, nor in the Simple Lambek Calculus. Finally.
we summarize the article and offer conclusions and directions for further researches.

2 The Simple Lambek Calculus

2.1 Lambek Calculi

Recently there has been revived interest in categorial grammar and its variants. Much of this interest has
come for its potential in linguistics, morphology, syntax and semantics and natural language processing and
acquisition, and {OBW 88} is recommended as a collective survey. The Lambek Calculus, as the common



formal system, has then enjoyed more detailed scrutiny and extensions in many directions. Variants of the
Lambek Calculus are being proposed, to extend its power, or to illustrate applications. Classical issues
regarding its weak equivalence with context free languages are now being put in doubt, or simply left as
unimportant issues as the paradigm and foci of research have evolved.

Among many others, a simple version, The Simple Lambek Calculus, a non-directional and non-associative
variant of the original Lambek Calculus, was proposed in [Ben 88], as an introduction to its variants and
framework for accounts of formal semantics and deductive power, with respect to intuitionistic propositional
logic. This system differs slightly from the original Lambek Calculus, in its being non-directional and
having no product categories. The former means the allowance of arguments on either sides in textual order
of functors. The latter simplifies the set of possible categories and thus consideration of associativity of
internal structures of type categories.

As a common generic component of any Lambek Calculus, type or category terms are constructed by
inductive closure of the following rules :

¢ All basic types, usually, e for entity and ¢ for truth values, are type terms.

¢ if @ and b are type terms, then so is (a, §), called a compound type.

The compound type term, (a,b}, has an intuitive interpretation as denoting the functions or mappings with
domain of type a and codomain of type b.

Historically, in the formal categorial paradigm in linguistics, another function-argument terminology is
used for compound types (a,b) where a is referred to as the argument type and b as the functor type.
Furthermore, the distinction between types and categories as syntactic types and semantic categories, for
strict formal usages of terminology, is not enforced here as it is irrelevant at the level of detail we pursue.

The following is the formal system for the Simple Lambek Calculus, a sequent calculus with three rules of
inference, where a;, b, ¢, are all metavariables ranging over type terms and ”;” is an associative connectives
for type terms.

Sequent Formula
ay;- ;G = b m>1
Axiom
a = a
Rule of Inference
(,} elimination
Ay ay = &
and
@iz 80 =  (b,c)
I_
ay; b+ = [
Left (,) introduction
ap; - an b = ¢
|_
815 3an = (be)
Right (,) introduction
biai;-- ;e = ¢
}_
ay; - an = (b,e)




2.2 Properties of The Simple Lambek Calculus

Important theoretical characteristics of this simple system are listed and compared with other formal systems
such as the Lambda Calculus, Heyting Algebras [Ben 88], and biclosed monoidal categories [La 88]. For our
discussion, the following properties are most related to our investigation and comparison (as the proof
for Permutation Closure was not provided in [Ben 88], we do it for the sake of self assurance and of self-
containment of the article) :

Lemma. 1 (M Rule Lemma)

[ a = ((a,b),b)

for arbitrary types a and b.
Proof. 1

1) a = a Ariom

2) (a,b) = (a,b) Aziom

3) a;(a,b) = b (.} Elim

4) a = ((a,b),0) Right (,) Intre

O

Theorem. 1 (Permutation Closure [Ben B8]) if a1; - ;a, = b is provable in the simple Lambek (al-
culus, then 30 15 a(1);-- ‘s @r(ny = b, for any permutation 7 of 1,--- n.

Proof. 2 We prove this by induclion on the length of antecedents.

o Basis : n =2

Given a3; a9 = b, we have

1) az=(a1,d) Left (,) Intro
2) a1 = ((a1,b),b) M Rule Lemma
3) as;a; = b 1),2) (,) Elim

o Inductive step : n = m + 1.

We need to prove that ay can be inserted info any of the m+1 positions between the remaining permuled
m elements. The firsi case is similar 1o the basis case. So, we only need to consider how the insert a,
into an arbitrary place.

1) apyjamyr = b Ind. Hypo.
2)  azamtr = (ar,b) Left (,) Intro
3} @iq1i i @mari a2 (ay, b) Ind. Hypo.
4) a1 = ((61,b),b) M Rule Lemma
3)  an;@i41; - Gmy1ia;c e = b 3).4) () Elim
6) Q@415 " Gmy13825 7 G = (ai’b) R‘ighi (’) Intro
Ty a; = ((a;,b),b) M Rule Lemma
8) a1 @41 i @mypr;a; -1 = b 60,7} (,) Elim
9 .- Repeat 6)-8)
10} a2; i@ a1 041 Qmypr > b
This compleies the the proof. a



With proper definition of acceptance, confirming the slogan of parsing as deduction, it is easy to establish
the non-context freeness of this simple Lambek Calculus, as a corollary.

Definition. 1 (Acceptance) A sequent of types, ay;---;a, is accepied by the simple Lambek Calculus iff
ay;- 3 an = § 15 a theorem of the calculus, where s is a special predetermined basic type symbol.

In categorial analysis of natural languages, each expression, or sequences of words, is assigned finiie
number of types from its categorial grammmar. Such type assignment is called lexical type assignment. Of
course, the categorization of lexicons definitely bears a lot of linguistic analysis, however, we only need to
note that it is a finite substitution as defined in [HU 79}. Given that, it is easy to have the corollary.

Corollary. 1 The sel of word sequences, after any lexicel type assignment, acceptable by the simple Lambek
Calculus, is not context free.

Proof. 3 Given that lerical type assignment is essentially an e-free finite substitution H, from standard
resulls concerning closure properties of context free languages under substitution and intersection with regular
sets, and closure properties of regular sets [HU 79], we see thal :

L = {a"bhc"}
{a*b*c™} N permutation(C).

and £ is not context free, so permulation(L) is not context free. Yel, permulation(L) is accepted by the
simple Lambek Calculus by the e-free finite substitution H, with the special iype symbol t :

H(a) — e
H(b) = (e s)
Hie) — (s,1)

Hie) — (s(1))

Since £ is not contert free, neither is permutation{L), nor in turn the e-free finite substitutions of L. We
have the resull that Simple Lambek Calculus is more expressive than any CFG. o

We note that permutation of a regular set would give us a non-context free set too. For instance, in the
above,
L = permutation{(abec)*) N {a*b"c"}.

3 Extended Categorial Grammar

While the Lambek Calculus is the fundamental theory for various categorial grammars, the formal calculus is
not employed directly in those applications. Rather, most are described by a set of category formation rules
and combination rules. We adopt a slightly notational change to retain the resemblance with the linguistic
usage, namely, a/b as functor a and argument b, which is the same as (4, @) in the Simple Lambek Calculus,
while undirectionality and non-associativity are kept intact. The following are the most widely used
set of rules, with annotation for later references :



Function Application :
F/X; X =FA

F
X;F/X  =pa F

Function Composition :
FIX;X]Y =pc F}Y
X/Y;F/X =pc FJ/Y

M (Montague) Rule :
A =u  X/(X/A)

G (Geach) rule :

X/Y =6 (X/2WY(Z)

Variants and extensions correspond to different sets of combination rules. Among others, Steedman’s
Extended Categorial Grammar [St 88] relates it to and extends it with various combinators of combinatory
logic.

While it is easy to establish that the above rules are theorems of the Simple Lambek Calculus, it is not
clear whether they form an axiomatic basis of the Simple Lambek Calculus. Also it is difficult to quantify
the expressive power and overall dynamic behavior of categorial grammars using these rules.

As a matter of fact, we can prove that the combination of these rules is strictly less powerful than the
Simple Lambek Calculus. In particular, global permutability is not true in the system of those four rules.

3.1 Basic Properties

Lemma. 2 Funclionel Composifion is redundant {i.e., il is derivable from other rules).

Proof. 4 Fach use of lhe rule of Functional Composition can be replaced by a step of the G rule plus a step
of Function Application :
=>rFc = =FA O =G

FIX;XIY =¢ (F/Y)[(X/Y)(X]Y)
= FA F/Y

As a remark, we note that the undirectionality can be reconciled as the composition of one M step and
one Function Application too, as :

X, F/X = F/(FIX);F/X
=>pa F

But, for reference to the Simple Lambek Calculus and A-terms representing different derivations, we maintain
the assumption of undirectionality in the article instead.

Theorem. 2 (Local Permutability) All permutations afa (n 1)-ary functor and its (n-1) arguments are

acceptable sequences. Namely, if v is ¢ permutation of 1,---,n .
If a5, =% a
then  ax(1);- - @x(n) :>EFA,G,M) a



Proof. 5 We note that both M and G rules are only applied to single lype terms, and thus so called type
shifting rules, withoul reducing or combining terms. Without loss of generality, as only FA is used 1o operale
on adjacent terms, we can simply assume all the arguments are of simple types, i.e. nol functional types.

and the functor is of type (({¢/an—1}/an—2) - far).

We prove the theorem by induction :

o Hase case : n = 2.

This is obvious, since the four rule sysiem is undirectional for the terms in anfecedents :

afa1;a;, =Fa a
aj;afa; =ra a

o Inductive case - n = m + 1.

Using the notion of Currying, we can have a (m)-ary functor act as a (m-1)-ary functional. To be
precise, we can treat the functor, ((afam) --/a1) as equal to (b/am—1)---/a1), with new pseudo type
symbol b = (afay). By the induclion hypothesis and undirectional Function Application, we only
need to consider the case when an, 1s immediately to the right of this (m)-ary funcior and the other
arguments are all io the right of this a,,, since other all other cases are reducible to cases fork < m-—1
by treating the (m)-ary functor as (k)-ary functionals first, with k < m — 1, and using the induction
hypothesis. In other words, ({((afam) - /ar)---/a1);ax is the same as ((bfag) -~ - Jar); ag; so the
induction hypothesis can be applied.

((a/am /(11), Um
( )i(a/(alam))

=c¢ _ ((a/am) - /a1)i((afam-1)/((a/am)/0m-1))
E )il

=M (a/am)---fa1);
=07% ((a/am) - /a); (((a/am-1) - [e1)/(((a/am)/am—1) - - - [a1))

(a/am-1)--/a1)

By the induction hypothesis, we have the resull for n = m+1.
Thus, the induction is completed and we have the theorem, (]

As an observation from the proof, we note that for each displaced argument, we need an M step and a
proportional number of G steps to proceed. The worse case for an (n+1)-ary functer with n arguments,
requires altogether an (n-1) extra M steps and (n x {n — 1)/2) G steps, in addition to n normal FA steps, to
recover the normal Function Application-only derivations.

Total number of steps
{(Fom (IxM+(m—1)xG+1x FA)}+1x FA
(n—DxM+(nx(n—-1)/2) xG+nxFA

I

The Geach (G) rule together with Montague (M) rule, as seen from the proof, allow a generalization of
ordinary Function Application, where the temporal ordering of applications to arguments, implicitly dictated
by the functor structure, is made free. Since Functional Composition is obtainable as one G step and one
Function Application, while using multiple instances of G steps on an argument term is indispensable for
the establishment of the theorem of Local Permutability, it is obvious that inclusion of the G rule is strictly
more powerful than Functional Composition, as a corollary.

Corollary. 2

LUFA FC,MY % LUFA,G, M)

10



Note, the local permutability is a properties between the functor and its arguments in immediate lower
layer. The property of course holds between any adjacent layers of functor and its arguments. So the
notion of Immediate Dominance (ID) and Constituent is available. The former mean the functor dominates
its arguments in terms of combination structure, and the latter refers to the recursively constructed terms
according to such dominance and combination. The theorem also establishes that the temporal ordering,
Linear Ordering, of arguments is irrelevant, as far as functor-argument relation, or now ID, is concerned. Of
course, natural languages and specific linguistic analysis would suggest constraints on the ID and possible
Linear Ordering.

QOther linguistic paradigms, in particular GPSG, have same characteristic notions as Constituent, ID and
Linear Ordering [Po 88). Observation of such concepts from local permutability demonstrates the close rela-
tionship of Lambek Calculus and Categorial Grammars with GPSG. We will say more about such comparison
in next section.

In addition, these observation of constituency and local permutability which leads to our invention of a
counterexample to the global permutability allowed in the Simple Lambek Calculus, and thus the difference
it expressive power.

Before stating that as a theorem and proving it, we need some more observations about the M and G
steps.

3.2 Properties of the M and G rules

Since only Function Application can combine type termms, and combination is only done for adjacent terms,
we have to appeal to the G and M rules to change, or more precisely, upgrade, term types to allow Function
Application to succeed in reducing the number of type terms in the sequence. Because of the restriction of
adjacency and purpose of reduction by Function Application, we only need to examine contexts of possible
functor-argument structures of adjacent terms with respect to which G and M rules can be applied and then
enable Function Application, and the effects on the structure of resultant type terms.

For M steps :

e Case 1 : no relation between the twe terms.

X/ba =pm X/bb/(bfa)
=>¢  (X/(b/a))/(b/(b/a)}); b/(b/a)
=ra X/(b/a)

This step combines unrelated argument, a, into its argument type by raising the argument type. Note
further application of M steps or G steps to the second terms will not get us further, since it will
prevent the unification with b in the first term, X/b. Also note, the unrelated second term will be kept
in the lower part of the right side of the argument type as a result.

¢ Case 2 : Second term as part of the internal functor structure.

(b/a)/X;a =m  (b/a)/X;b/(b/a)
=>¢  (b/a)/X;(b/X)/((8/a)/X)
=FA b/X

This step consumes a displaced normal argument. Ii is a kind of local permutation of arguments,
an extended form of Function Application; and the general case was established in the proof of the
theorem of Local Permutability.

11



» Case 3 : Second term as argument of first term.

(b/a);a =m (b/a);b/(b/a)

=FA b

This is just a variant of normal Function Application. In general, this includes cases when the first
term’s argument type can ezxactly be G- or M- raised from the second term. Otherwise, it is the same
as totally unrelated as case 1, e.g. :

b/(e/(c/a))ia =um l()b/(C/(C/a));C/(C/a)

=FA

Though it has effects on semantic aspect of changing the internal functor-argument meaning structure
of constituents, there is no difference as far as the reduction of type terms and its resultant syntactic
type is concerned.

As the formation of resultant type after a M step, namely, two instances of arbitrary type are stacked over
the atomically treated original type, these cases exhaust effectiveness of applying the M rule.

Similarly for G steps, but notice now the two instances of arbitrary type are distributed into functor and
argument part of a functional type term :

¢ Case 1 : Functor part of second term appears in the argument part of the first term

X/(afe);afb =6 X/[(a/c);((afc)/(b/c))
=6 (X/(b/e)/((a]c)/(b/c)); ((afc)/(b/¢c))
=ra X/{b/c)

This step applies the argument a into its raised argument type by replacing the internally outermost
type in the compound argument type.

Note the case when the argument of second term appears in the argument of the first term, i.e.
X/(b/c); a/b, has to be treated as a totally unrelated case, since neither G nor M steps on second term
can raise the argument term (&) to the functor position in the argument of first term. Furthermore,
the functor term & in the second term must be exactly the same as the outermost functor term of the
argument term of the first term; otherwise, e.g. X/(z/a)/c;(a/b), neither term G nor M steps would
keep the whole second term as atomic and so could not exactly match the functor term in the argument
of the first term.

Note also, as a result of above derivation, the position of unrelated argument (c) is intact.

In the degenerate case where ¢ = b, then Function Application, instead of above sequence of derivation,
should have been applied. Otherwise, divergent results would occur, namely X/(b/b) vs. X, the former
being produced by above derivation whereas the latter by direct Function Application. In general. the
degenerate case includes cases when arguments can be G- or M-raised from the second term :

X/((a/c)/(b/c));afb =a  X/((a/c)/(b/c));((afc)/(b]c))

=pa X

e Case 2 : argument of the second term appears in the functor of first term

(b/z)/X;afb =g (b/2)/X;(af2)/(b/2)
=>a (b/2)/X;((a/2)/ X)/((b/2)/X)
=FrA (a/z)/X

This step changes the original functor type by replacing its internally outermost type when used as
an argument type by higher order functors. Following the same reasoning as in case 1, it must be the
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outermost functor in the first term that the argument of second appears, and the case for the functor
of second term is again totally unrelated.

It is in effect an variant of Functional Compaosition, in turn an extended form of Functional Application.
A degenerate case is when X or z is nil, which then corresponds to the derivation of Functional
Composition from G step and Function Application.

s Case 3 :
(b/a);afb =g  (b/a);(a/a)/(b/a)

=Fra a/a

This is actually another degenerate case 2, when z = nil and X = a. Or, it is a case satisfying both
case 1 and 2. Once again, divergent results can occur, depending upon which type term, (b/a) or a/b,
is first G-raised and then combined by Function Application, we get &/b or a/a, respectively. This is
different from the degenerate case in case 1, though. Because, as far as the Calculus is concerned, they
both are valid, since they are all in form of axioms. Yet, X/(5/b) is not an axiom.

To summarize the major observations, we note that although unrelated arguments can be kept in the com-
pound argument type, they must be kept in stack-like ordering. Furthermore, the stack-ordering compound
type prohibits the normal consumption of arguments occurring later. This is due to a constraint of cutmost-
ness only is imposed as a result of stacking in the compound argument type, and consequently, iterative G
steps can only used to raise simple types to replace the compound type as whole, rather than simple types
of the compound. On the other hand, internal functor type structure is free to later combination with its
atomic arguments, as long as they are indeed genuine atomic arguments. This discrepancy confirms the
tree-like constituent structure, and also leads to the invention of counterexamples where normal arguments
of two adjacent constituents overlaps their normal arguments and consequently mutually block each other by
raising normal arguments into compound types, and leads to divergent derivations from normal or intended
one.

We also note that, totally unrelated adjacent type terms can be combined, with the cost of extra com-
ponent types (¥Y's) which could not be removed later.

Example. 1 Suppose the final goal 1s to take d as a sub-argument of ¢ ;

d ;e
= X/(X/d) p Y/(Y/e)
=q X/(X/d) v (Y/2)[((Y/c)/Z)
with unifier 6. {X = Y/e, Z=X/d}
(Y/e)/(Y/e)/d & (y/(y/e))/((y/e)/((y/c)/d))
=ra v/ ((y/e)/d)

Note that the :>12‘4r and = are the only rules to apply before the final FA. The former ts due 1o the facl that
both ¢ and d are atomic types and Y/c fails to unify with d. The latter is due to the failure of unification
with X/(X/d), if another =y is applied 1o Y/(Y/¢), or useless complexity if applied to X /(X /d).

Dually, if the final goal is to take ¢ as a sub-argument of d, we shall have the result as Y/((Y/d)/c). O

If ¢ is in the form of a/b, then by simplifying the same derivation, we have the results a/{b/d) or X/((X/d)/(a/b)).

3.3 Non Global Permutability

By previous examples and analysis of all applicable G and M steps, it is always possible to combine arbitrary
sequences of type terms into a single term, though the resultant term may be loaded with excessive copies
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of component types not occurring in the original sequence if not following normal composing ordering in the
derivation.

Granting that, 1t would be reasonable to further limit the application of G or M rules, if overioaded
control is to be prevented. Indeed, as commonly practiced, G rule applications are replaced by Functional
Caomposition, which, by the above analysis, corresponds to one G step plus one Function Application step.
On the other hand, X/({X/#)/e) can be thought as a pairing constructor as in the situation when ¢ and d
are both arguments to a two-place functor with X/((X/c)/d) as ordered argument. For instance,

(a/b)je ; ¢
Pairing (a/b)fc 3 X/(X/B)/e)
With unifieré: X 2 a

(a/b)/c : af((afb)/c)

b

=FA

However, such usage is actually a mixture of meta level with object level, as X was originally a meta
variable ranging over type terms. A more detailed discussion would be provided in the context of the
implementation in Prolog. It is good enough for readers to treat the X as a in the very beginning.

Alternatively, as a hint for generalization, since the combined term introduces undesirable excessive
internal structure, we may like to have ¢/d, in stead of Y/({Y/c)/d). This can be achieved by allowing :

o Y/(Y/e) = ar-1 c
Y/((Y/c)/d) =suom- vy/(y/(c/d))

=AMt L‘/d

As the notation indicates, this is an inverse of M rule and is applicable to internal substructure of a type
term too, rather than atomic whole in the original system. Generalization of this line is open for further
investigation.

Example. 2 The following sequence of iypes is an example for the non global permulabilily of the system
with Function Application, Funclional Composition, and G and M rules.

(s/a)/b; e b, afc
=" (s/a)/(b/c); by e/(d/b)
(or (X/({X/c)/((s/a)/b));

=" (s/a)/b; X/((X/b)/c); a/c
(or X/((X/e)/b)); afe

= (sfa)/b; c; a/(c/b)
(or X/((X/b}/(a/c)))

All these lead to some complicated compound lerms, in which adjacent pairs are unrelated, which are
not the desired simple term s. As lhey all have acquired non-reducible inlernal structures which cannot be
cancelled within those four sieps of Function Applications. This is due to the fact that, applications of the
M or G rules iniroduce copies of new internal types, one in the argument part and the olher in the functlor
part and there is no rule to convert between argument and funclor, while Function Applicalion can cancel
only one of them.

On the other hand, there is indeed an derivation of the simple term s, from the above overlapped sequence
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((s/a)/b; (afc; c); (%)
=ra ((s/a)/b; (a); (b))
=>u  ((s/a)/b; (s/(s/a)); (b))
) (6))
(6))

=a _((s/a)/b; ((s/b)/((s/a)/b)};
=FA ((s/b);
=>Fra s

In this counterezample of global permutability, the constituent structures is indicaled by pairs of paren-
theses. Nole how adjacent sub-constituents, {a/c ; ¢) and (b), are destroyed by overlappings in the previous
case. O

With counterexamples of this kind, namely, overlapping adjacent constituents, we have conclude cur com-
parison of the Simple Lambek Calculus with the commonly-used system of Function Application, Functional
Composition, G and M rules.

Theorem. 3

C
L{FA,FC, M,G))# £(Simple Lambek Calculus)

Remark On Context-Freeness

It 1s still left open so far in our study if

CF Z L({FA,FC,M,G})

Since FC is redundant, the key to the answer seems to lie upon the effects of the G and M rules. Essentially
they are type change rules. So if there are only finite number of possible types, where G and M rules are
only principles guiding their relatedness, then the system weakly equivalent with CF, i.e. accepting same
set of strings. If there are indeed infinite number of types, then by the well-known Konig’s Tree Lemma,
there is an infinite branch of applications of G or M rules, granting G and M rules are the type generating
mechanisms. In the case, the final answer is up to empirical judgement if natural languages have infinite
types, or infinite layers of intentionality as M rule was first employed. Of course, the number of natural types
corresponds to complexity of processing. This may be an account for some seemingly non-context-freeness
of natural language.

4 Categorial Grammar and GPSG

4.1 The Similarity

Categorial Grammar usnally only employs the notion of type raising, by the M rule and Functicnal Composi-
tion, possibly with some language-specific contextual restrictions. Type raising systematically adds flexibility
to type combination, by unilaterally changing type terms or indirectly reassigning types to lexicons. A di-
rect result is the non-constituent, or pseudo-constituents, as named in [Do 88], in addition to standard right
branching constituents in deep structures. As we have shown that the G rule is more powerful than FC'.
such categorial grammars are still less powerful than the system studied here, despite their linguistic reality
and potential as a model of competence. On the other hand, extension of classical Categorial Grammar, in
particular, correspondence with Combinators as in [St 88], and new combination modes, such as Functional
Substitution, were proposed. Currently it is being subjected to further scrutiny for their properties and
expressive power.
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The approach of categorial grammars is described as lexicalism [Mo 88), referring to its highly condensed
grammatical information into lexicon. In comparison with transformation approaches, GPSG sticks to phrase
structures, and replaces transformational rules by incorporating feature-value attributes into non terminals
and employing a meta rule schema to describe constraints between subtrees. Categorial grammars go cne step
further by pushing the phrase structures, coded as function-argument structures, into the lexicon. Qur study.
or the formal calculus itself, focuses only on the combinatorial aspects of syntax. Other linguistic aspects,
like morphological agreement and government, though not covered here, can actually be accounted for as
feature theories, by adding feature value sets to decompose or refine the classification of basic categories. As
long as these feature value sets has only finite combinatorial expansions, they have no theoretical advantage
in expressiveness over ther system we have described here. Logic Programming can encode those features
easily by terms and unification. And variants proposed in later section can further show the flexibility of
the studied system.

As we remarked previously on the notion of constituents in the proof of the theorem of local permutability,
we see a close resemblance between Extended Categorial Grammars with the four combination rules, and the
slash feature for subcategorization in Generalized Phrase Structure Grammar (GPSG) and its variants, such
as the Head-driven Phrase Structure Grammar (HPSG) [Po 88]. The similarity is not only declaratively,
in terms of notions of Immediate Dominance (ID), Constituency and major functors as Heads; bul also
operationally as can be seen from the proofs of theorems. In these proofs, an argument type is iteratively
built up, by the shifting up of G or M steps, to resemble the internal structure of the major functor type.
This computational process is the same as the matching processing of slash feature in GPSG. In brief, the
result obtained not only confirms the trend toward merging those two paradigms, but actually pinpoints to
the sites of agreement and disparity.

4.2 The Differences

In spite of the similarity, we note the system studied here is in fact a little more flexible than the ID
relationship and the slash feature in GPSG. While such flexibility may be useful, we may like to restrict it
by tmposing some controls over application ordering of G, M and Function Application steps.

Example. 3 While we have a constituent structure in following sequence,

(a/b; (b/c; <))
= Fa (a/b; |bH

=FA

the siz permutations are in effect all acceptable in the system, for example :

(bfe; (a/b; <))
=2>um6 (b/c; ((a/(8/c)/(6/(b/c)); b/(b/c))
=>ra  (b/e; af(b/c))
=FraA a

Note the structure of parenthesis and order of Function Application is the same, namely, lefl branching. In
general, a circular shift of a linearly structured constituents still has the above preservation property. .|
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5 An Implementation of FA + FC + G + M

5.1 Overview

Based upon the theoretical investigation of the system of FA + FC + G + M, and the operational charac-
teristics, we implement a version as a universal machine in Prolog.

Several features of this implementation include modularity with respect to compositional meaning, and
parameterization such as structure-building parse tree constructions. Examples from [St 88, Do 88] are used
for tests, using A—expression for representation of meaning and terms for parse trees. However, not all
linguistic examples can be accepted, for instance, Multiple Dependency in [St 88], which essentially due to
its combinatoric nature is cut of the scope of Lambek Calculus. By that, we mean the multiset properties
of occurrences are no longer true in such linguistic phenomena. On the other hand, such algebraic features
can be added as variants, as we do this in the next section.

Features of Prolog, in particular, logical variables and unification, are helpful both for implementation
and suggestions of extensions. In G steps or M steps, we already see uses of a kind of category variables
ranging over possible types. But those meta variables denoting arbitrary types can also be used directly as
ohject variables implemented by logical variables. Unification can then be employed to instantiate them n
accordance with contextual information of neighboring types. In general, first order unification and term
structure can be used for extending the space of possible types, in the Lambek Calculus. This is an advaniage
immediately available in Logic Programming environments like Prolog. In addition, unification and term
structure is obviously relevant for incorporating feature theory to make the Extended Categorial Graminars
compatible even with phrase structure approaches.

5.2 Features of The Implementation

There are experiences and observations learned from this implementation task in a logic programming envi-
ronment, and with regards to linguistic and programming principles. And we would like to discuss it in this
general setting, rather than specific codings. For the detailed code, please see the appendix.

¢ Universal Grammar, Completeness and green cuts in the implementation. Essentially, Lambek Calculus
or Categorial Grammars are universal grammars. It is to account for universal linguistic phenomenon,
even though English is the major focus. As a result, any implementation would serve as an universal
engine. On the other hand, since there are spaces for control, as the phrase “Algorithm = Logic +
Control” is applicable to any formal deductive system admitting computability interpretations. Lam-
bek Calculus is surely such a system. The declarative aspect, both linguistic and algebraic knowledge,
of the theory, are the properties, theorems and logical notions of derivability, The procedural aspect,
without reference to its linguistic significance, corresponds to how a theorem is established in this
system, namely, the process of deriving theorem, Our implementation bears such distinctions, more
than another instance of programming practice. Nonetheless, as the combinatorial complexity is huge,
we use cuts to add controls over the derivation. Indeed, it is less powerful theoretically, yet it is still
powerful enought to cover examples of linguistic interests in point. The reason is this implementation
corresponds to succeed once in the execution of Prolog program. And thase linguistic examples indeed
need one instance rule application only for each step. That is, there is no need to apply two rules on
the same terms. Furthermore, it is possible to relax those controls to achieve more completeness as
needed. The issue in point is complexity, rather than decidability or correctness. And what is heen
excluded is redundant derivations, though correct ones.

o Lexicalism of Categorial Grammars and Logic Programming Environment. Categorial grammars are
described as Lexicalism in linguistic, as it pushes all phrase structure relations and properties into
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lexicons. This is also why the Lambek Calculus can be a universal Grammars. From a programming
point of view, it allow a high degree of modularity and parameterization of program codes. For instance,
codes and design of the dictionary can be fully factored out from codes of the universal engine. While
this is a general principle of most programming environments, Logic Programming environments as
Prolog fit even better. The term structures, use of logical variables and unification mechanism match
the independence of the engine and lexicon dictionary, as they are fully separated as different sets of
clauses. Furthermore, it allows incremental design and coding, easy modifications and reuse of codes,
as witnessed from the similarity and changes of three versions of specifications. Also such modularity
suggests new variants, out of the perspective of Logic Programming. For instance, unification is factored
as a predicate eq/2, which suggests extensions into any useful equational theories, or in general, any
Prolog definable theories.

¢ Linguistic version of the Principle of Compositionality, namely, each expression is determined by the
constituent parts and the mode of combination, fits the counterpart of formal semantics of programming
language. Especially it shows the pragmatics of the principle for a computational implementation.
Herbrand term models, as semantics of logic programs, further blur the distinction of syntax and
semantics, and consequently distinguish logic paradigms by such close compatibility. In particular,
the part of modes of combination allows a modular replacement of set of combination rules, without
affecting other parts of the codes. This can be seen from the case analysis of M and G rules and their
ramifications for as modularized in implementations.

¢ The notion of proof as type, or formula as type, known as Curry-Howard isomorphism, also contributes
to the modularity of the universal engine. In other words, one derivation step corresponds to a step
of proof and also a step of processing the proof, regardless if it is meaning composition or parse tree
construction.

e Logic programming environment, in particular, logical variables and unification, facilitates the imple-
mentation, as explained above. Furthermore, it provides an easy extension with feature theory into the
Categorial Grammars, withnessed the trend of merges with phrase structure based approaches. How-
ever, it 1s not without potential disparity, for instance, the universal scoping and untypedness of logical
variables is different from the quantified variables in the semantic aspect of Categorial Grammars. It is
solved in this instance of implementation, by careful implementation of improper substitutions. Care
is needed for coping with other quantification and binding phenomena in other linguistic discourses.

In brief, the implementation is not only a computational version of the Lambek Calculus. More impor-
tantly, it demonstrates a close relationship between this linguistic paradigm and computer science. Further
interdisciplinary interactions definitely would benefit both, beyond a computation version of a linguistic
performance theory, or even beyond the performance and competence distinction itself.

In {Bu 88], the classical version, so-called Ajdukiewicz—Bar-Hillel Categorial Grammar, a forward direc-
tional version with Function Application as only rule of combination, is proved to be of same expressive power
as context free language. As a corollary, this implementation, as more general than the classical version, is
at least as powerful as context free languages. In [PG 82], phrase structure languages are convenient and
comprehensive for describing and explaining phenomena of natural languages Furthermore, traditicnal argu-
ments and examples for non-context freeness of natural languages are refuted as disguised context freeness.
As a result, context freeness is no longer thought as an inadequacy for the description of weak generative
capacity of natural languages per se, at least within this GPSG paradigm. Moreover, phrase structure is
an advantageous framework of the study and explanation of other linguistic phenomena, like acquisition,
meaning and processing, as advocated in [Po 88, PG 82]. Revival of Categorial Grammars as methodolog-
ical alternative benefits from the same line of arguments, more than its generative capacity. Furthermore,
the framework and extensions are even argued to be more naturally in accords with human processing, in
particular, on the aspects of non-constituent and incremental understanding [St 88]. And as we will show,
some variants of our system, using Sets as aggregate domain, would be able to cover cases in [St 88], Multiple
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Dependence. Other aggregate domains certainly would be able to incorporate more features not available in
the Lambek Calculus. This is not yet the case in current version and its implementation.

6 Other Possible Variants

6.1 Variant A

As shown in the example where unrelated type terms, a; b, can be pairedinto X/((X/a)/b). In fact, this can be
generalized into unrelated functor-argument terms, so, a1; - - - ay,, are paired into X/({({X/a1)/e3)/ - - /an).
In this case, X/(X/---) functions as an aggregation constructor. There are many instances of domains
with aggregation operators of different algebraic properties, like,Sets, Bags, String, Lists, Numbers etc.
So this extension actually suggests a powerful scheme for many an application domains. Along with the
property of Local Permutability, and the fact that most of aggregation domains are also permutation closed
for all aggregated elements, we propose an alternative restricted set of combination rules, nondirectional and
non-associative still, other than the commonly used set of {FA, FC, M} :

Definitions :
X/aggr(ay, - -an) (X/a1)/az)/ - -an)
Function Application I :

FiA; A = F

Function Application II :

Flaggr(ay,---,an);(a1; --;an) = F

Function Composition :

F/A;A/B = F/B

F, A, B are all non-aggr basic type terms, where slight relaxation to compound type may be considered
as an another variant. Basically, we replace all (n)-ary functor-argument structures as a unary function with
a n-aggr argument. Furthermore, we prevent it from being Functionally Composed. For other cases, like,
F, A, B, it is the same as conventional functor-argument terms, which in strict sense are restricted to be
unary with possible higher order arguments.

While G and M rules are explicitly eliminated, we note they are actually implicitly encoded in Func-
tional Composition, as G plus Function Application, and aggregate arguments, as M plus some G steps.
Intuitively, this set of combination rule would enforce constituents as arguments and phrase structure as
functor-argument relationship, as dictated by the aggregate argument and restricted Functional Composi-
tion, while allowing for some unbounded dependency enabled by Function Composition.

To illustrate the point, let’s see an example of derivation :

Example. 4
a/b; bfc; d; cfaggr(d,e); eff; f
=rc a/c;
= FAI €;
=Frall <
=FAI a

Note how the constituent is kept and eager functional composition previously available between (c/d)/e and
e/ f is blocked out. a
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6.2 Variant B

To tmpose further controls over the possible derivations, to allow a little more freedom of functional com-
position in last example, and to prevent the non-confluent derivations mostly due to undirectedness, the
following forward directional variant would be of more practical interests :

Definitions :

X/aggr(ay, - -an) = (((X/ai)/az)/---an)
[dentity -

F/aggr() = F

Function Application | :

FiA A = F

Function Apphcation II :
F/ﬂggr(al,'",Gi,"',ﬂﬂ)',(di) = F/aggf'(al,"',as'—l,ﬂi+1;"'|an)
Function Composition I :

F/A;A/B = F/B
Function Composition II :
F/(aggr---,a,-,---);a;/B = F/aggr(-~,B,-~~)

To simplify the case, we keep the constraint that F', A, B are all non-aggr type terms only.

Example. 5
afb; bfc; claggr(d,e); e/f; dfaggr(k); h; f
=Frc.I ajc;
=FC.aI c/aggr(d, f);
= FAII dfaggr();
=1Id d;
= FAH c/aggr(f); -
= FALD c/aggr();
=Id. 3
=FAS a

Note how only adiacent levels of constiluent is collapsed and how eager funclional composition is restored in
better controlled style. |

This version, though very much deviated from standard linguistic variants of Lambek Calculus, is most
interested and promising for the study of exchange and pattern processing in the pursuit of both authors,

6.3 Remarks

Remark 1.

The diversity of variants as illustrated above is majorly contributed by the local permutability. 1t is the
richest and most comprehensive, in the sense of combinatorial complexity of factorial explosion of allowed
patterns from finite objects. It is indeed this properties which underlies those diversity and powerful ex-
pressiveness. In addition, the directedness and controlled use of Functional Composition are another source
of introducing powerful variations. On the other hand, the complexity need be harnessed to fit complexity
requirement and special structural simplicity of specific applications. Of course, this is more an advantage.
For instance, in the application to set aggregations, we only need consider normalized sets, namely, eliminat-
ing the occurrence and ordering in permutations. And a notion of failure to be joinable can be characterized.
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To be precise :

Flset(X)j2; = F/set(X — ;)
F/set() = F
Or
Flset(X);z; = F
iffe;€X
failure L g X.
in (F/X;a:,-)
or
Y yex
in (F/X;Y)

Those different clauses correspond to different modes of acceptance in pattern processing, or equality
theory in general. And notion of failure would allow us to model backtracking or deadlock, as complementary
to acceptance.

Remark 2.

It 1s important to note that, by using the set aggregate in the second variant, we are able to encompass
the combinatory approach in [St 88], where Functional Substitution, a non Lambek Calculus feature, is used
to deal with the Multiple Dependency. We show how this can be done :

Functional Substitution :

(X/Y)/Z;Y[Z2 =P FS (X/2Z)
Set Aggregate :
X/set(Y,Z),Y]Z =rerr X/set(Z,Z)

= Set X/sel{Z)

It is even clear from this correspondence, that the nature of multiple dependence is to identify the two
referenced arguments as a single expression.

This coverage also demonstrates the potential bearing of linguistic significance, even it is pure out of
general algebraic or computational perspective.

Remark 3.

In effect, other than controls over local permutability, there is another line of generalization, which is
even power. Notice that, in all reduction rule sets proposed, there is always a notion of unification involved,
for instance, F/X; X, between functor and arguments. This could be in general equational theories, or
arbitrary theories, where decidability is desired, and perhaps reasonable complexity, since this is supposedly
a primitive mechanism in the system. This, along with the controlled permutability, can incorporate in a
rich set of algebraic properties. This is very useful for search of canonically represented value arguments. In
terms of implementation, this demonstrates another aspect of benefit of modularity by logic programming
and formal linguistic principles.

7 Conclusion and Further Researches

In this article, we have reported a computation oriented study of a formalism from linguistics. The Catego-
rial version of Simple Lambek Calculus is examined and its computational properties are established. Major
properties are established and used later for comparisons, implementations and suggestions of extensions.
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Among others, the property of local permutability in this categorial version plays the key role, as it em-
bodies the full combinatorial versatility of factorial varieties. Meanwhile options are left open for controls
of delicate refinement according to specific applications and needs. Through this examination, not only are
we able to draw comparisons with other linguistic paradigms, but also able to exploit the observations in
a computationally precise style. The experience of the implementations and the insights gained show the
benefit of interdisciplinary interplay, by a correspondence of notions of respective fields of studies. And it
demonstrates an instance of how knowledge and ideas in one field can be transformed into the other, and
vice versa.

The analysis and implementation altogether helps suggest useful and powerful variants of linguistic for-
malism, beyond original linguistically motivated Lambek Calculus and Categorial Grammars. Those variants
and potentially many others, not only bear interests in non-linguistic applications, but also exhibits how
some linguistic proposal can be covered by such extensions.

While the linguistic aspect is less emphasized or even neglected, it is a fact that linguistic intuitions
help shed light on the symbol-oriented perspective, along the line of computational, deductive and algebraice
aspects of the system and its applications.

As for further research, drawing from those suggested variants, focuses and directions of efforts would be
to exploit specific aggregate domains of interest, as [St 92, SVP 92]. Also the research here forms a relevant
foundation for the study of patterns and stream processing, which is currently under intensive study by the
authors. As it is proposed, the algebraic properties of aggregate domains and their defining characteristics
can be formalized and translated into rules compatible with or refining the set of core rules. As far as
the implementation is concerned, it would be fruitful to implement those specialized variants. As long as
the aggregate domain bear computational representation, it is very likely adaptable to the framework. As
this study suggests, Logic Programming environment is believed to be very helpful for implementations of
those possible extensions. Furthermore, we would like to see how those variants related to studies in natural
languages or to the aggregate domain per se, too.
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A Appendix : Prolog Implemen— geachable(R:W, (Y:2):X, (R:Z):X) :~

tations eq(¥,1).
% b. M rule.
Note all implementation is done in Sicstus Prolog 2.0. % a -> b/(b/a).
% lower case : X/Y ; Y/(Y/W).
mable{X:Y,W,X:(Y:W)) :- \+ eq(¥W,Y).
A.1 Pure Calculus mable(W,X:¥Y,X: (Y:W)) :- \+ eq(W.,Y).

% upper case : {X/W)/Y ; X/(X/W}.
mable{{(X:U):Y,W,X:Y) :-

N+ aq(W,Y),eq(U,W).
madble (W, (X:U):Y,X:Y) :-

\+ eq(W,Y),eq(U,W).

% Version 1 :
% Undirectional + FA + FC.
:- op{400, xfy, ':').

% Main program.

lanbek(Lexicon, Final) :-
lca(Lexicon, Clist),
calculus(Clist,Final).

% Lexical Category Assignment.

lca({1.037).
lca{{XiXs], [YIYs]) :-
dict(X,Y), lca(Xs,Y¥s).

calculus([X1, [X]).

calculus([X,Y|Xs],Z) :- ? dictionary :
1c(X,Y,XY), 1!, f for phras? t .
calculus([XY|Xs],2). A_ a cake which i believe that she ate.
calculus({X,Y|Xsl, [2]) :- dict{a, np:m).

dict{cake, n:r).

calculus([Y¥{Xsl, [YXs]), X .
dict(which, r:(s:np}).

lc(X,YXs,Z), !.

calculus([X,Y|%s],Z) :~ d%Ct(i'sffVP)'
geachable(X,Y,XY),!, dict(believe, fvp:s1).
calculus([XY|Xs],Z). d%ct(that,.si:s).

calculus([X,Y|Xs],2) :- d%Ct(She’s‘1VP)'
mable(X,Y,XY),!, dict(ate, fvp:np).

calculus([XY|Xs],2). v 1 b
A or p rase :

o - .
% Function Applicationm % 1 believe that she ate those cakes.

lc(F:X, Y, F) = eq(x’y)‘ d::lct(those, np:n).
lc(X, F:Y, F) :- eq(X,Y). dict(cakes,n).

% for phrase : john walks.
dict(john, n).
dict(walks, t:n).

% TFunctional Composition
1c(F:%, Y : Z, F:Z) :- eq(X,Y).
1c(Y:Z, F : X, F:Z) :- eq(X,Y).

% Type Raising % tor phrase : everyone loves someone.
Y a. Geach Rule dict(everyone,s:1vp).

Y a:b -> (a:c):(b:c) dict(loves,fvp:np).
dict(someone,s: {s:np)).

% Lower middle case.

% W:R -> ((W:Z):(R:Z)}. . ] .

geachable(X: (Y:Z), W:R, X:(R:Z)) :- % Underlying equational theory for
eq(W,Y) % defining matching. Currently, it’s

geachable(ﬂ:i X:(Y:Z), X:(R:Z)) :- % just first order unification.
eq(W,Y). eq(X,X).

% Upper middle case,
geachable((Y:Z):X, R:W, (R:Z):X) :-
aq(¥W,Y).
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A.2 With A-Terms as Meaning Component % Upper middle case.

Y% Versiomn 2 :
% Undirectional + FA + FC + M + G,

A together with Semantic Data Structure
% along with the parsing processing.

L}

%

:— op(400, xfy, *:7).
:- op(500, xfy, ’'of').

% Main program.

lambek({Lexicon, Final) :-
lca(Lexicon, Clist),
calculus(Clist,Final).

calculus([X], [X1).
calculus([X,Y1Xsl,Z) :-
1c(X,Y,XY),!,
calculus([XY|Xs],2Z).
caleulus([X,Y|Xs],[Z]) :-
calculus(fY|Xs], [YXe]),
1e(X,YXs,Z), !.
calculus([X,YIXs},Z) :-
geachable(X,Y,XY),!,
calculus([XY|Xs],2).
caleulus([X,¥1Xs]},Z) :-
mable(X,Y,XY),!,
calculus([XY|Xs]1,Z).

% Function Application

le(Vi of F:X,V2 of Y, V3 of F) :-
eq(X,Y), apply(V1,V2,V3).

lc(Vl of X, V2 of F:Y, V3 of F) :—
eq(X,Y), apply(Vz,V1,V3).

% Functional Composition

lc(Vi of F:X, V2 of Y : Z, V3 of F:Z) :-
eq(X,Y),compose(V1,V2,V3).

lc(VL of Y:Z, V2 of F : X, V3 of F:Z) :-
eq(X,Y),compose{V2,V1,V3).

% Type Raising

% a. Geach Rule
% a:b => (a:c):{b:c)
% Lower middle case.

geachable(V1l of X:(Y:Z), V2 of W:R,
V3 of X:(R:Z))
:~- eq(W,Y), simple_graise(V2,V1,V3).
geachable(V1 of W:R, V2 of X:(Y:Z),
V3 of X:(R:Z))
1= eq(W,Y),simple_graise(V1,V2,V3).
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geachable(V1l of (Y:Z):X, V2 of R:W¥,
V3 of (R:Z):X)

:- aq(W,Y), graise(V2,V1,V3),.
geachable(V1 of R:W, V2 of (Y:Z):X,
V3 of (R:2):X)

:- eq(W,Y), graise(V1,V2,V3).

% b. M rule.
% a -> b/(b/a).
% Lower case : X/Y ; Y/(Y/N).

mable{V1i of X:Y, V2 of W, V3 of X:(Y:¥W)) :-
\+ eq{(W,Y),mraise(V2,V1,Vv3).
mable{V1i of W, V2 of X:Y, V3 of X:(Y:¥)) :-
\+ oq(W,Y),mraise(V1,V2,V3).
% Upper case : (X/W)/Y ; (X/{X/¥)).
mable(Vi of {(X:U):Y, V2 of W, V3 of X : Y)
= \+ eq(V,Y), eq(U,¥),
mraise2(V2,V1,V3).
mable(V1l of W, V2 of (X:U):Y, Vi of X : Y)
- \+ eq(W,Y), eq(U,W),
mraise2(V1,v2,V3).

% Lexical Category Assignment.

lea({l, D).

lea(xixs], [YlYsl) :-
dict(X,Y), lca(Xs,Ys).

% dictionary :

% for phrase : john walks.
dict(john, john of n}.

dict{(walks, fun(X, walks(X)) of t:n).

% for phrase : everyone loves someocne.
dict(everyone,fun(X, all(X)) of s:fvp).
dict(loves,fun{X, love(X)) of fvp:np).
dict(someone,fun(F,F:somebody) of s:(s:ap)).

% Underlying equational theory for

% defining matching. Currently, it’s just
% first order unification.

eq(¥X,X).

% Supporting Lambda Calculus routines.
apply(fun(X,F),D,F) :- eq(X,D).

compose{fun(X,F), fun(Y,G), fun(Y,F)) :-
eq(X,6).

% M rules : first raise W to fun(Z,Z:¥)},
% and then compose with fun(Y,XY) using
% the above rule compose/3.



mraise(W,fun(Y,X), fun(2,X)) :-

m

%
%
pA
pA
%
%

eq(Y,Z:W).
raise2(W, fun(Y, fun(U,X)), fun(Y, X)) :-
eq(U,W).

G rules : This is tricky in terms of
parameter passing by lambda variables.
Improper substitution by the use of
logical variables is carefully coded to
deal with type varibles and renamed
substitution.

graise(fun(Y,X), fun(¥,fun(Z,F)),

g

fun(W,fun(Z,iF))) :- eq(Y,F),XF = X.

imple_graise{fun(R,W), fun(YZ, %),

fun(R,fun(Z,AW))) :- eq(W,YZ), IW = X.

A.3 With Parse Tree

Version 3 :
Undirectional + FA + FC + M + G,
together with only parse structure
along with the parsing processing.

:- op(400, xfy, :’).
:— op(B00, xfy, ‘of’).

%
1

c
o

[

C

Main program.
ambek{(Lexicon, Final) :-
lca{Lexicon, Clist),
calculus(Clist,Final).

alculus([X],[X]1).
alculus{[X,Y|Xs],Z) :-
1c(X,Y.XY),!,
calculus{ {XYiXs],Z).
alculus([X,Y|Xs], [Z]) :-
calculus({Y|Xs],[YXs]),
1c(X,YXs,2), !,
alculus([X,Y|Xs]1,2) :-
geachable(X,Y,XY),!,
calculus{[XYIXs],Z).

calculus([X,Y|Xs],Z) :-

%
1

1

mable(X,Y,XY),!,
calculus([XY|Xs],Z).

Function Application
c{Vl of F:X,V2 of Y, V3 of F) :-
eq{X,Y), apply{(Vi,v2,V3).
c(Vl of X, V2 of F:Y, V3 of F) :-
eq(X,Y), apply(V2,v1,v3).
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% Functional Composition

1c(V1l of F:X, V2 of Y : Z, V3 of F:Z) :-
eq(X,Y),compose(V1,V2,V3).

1c(V1 of Y:Z, V2 of F : X, V3 of F:Z) :-
eq(X,Y),compose(V¥2,V1,V3}.

% Type Raising
% a. Geach Rule
% a/b -> (a/ec)/(b/c).
% Lower middle case.
geachable(V1 of X:(Y:Z), V2 of W:R,
V3 of X:(R:Z))
;- oq(W,Y), simple_graise(V2,V1,V¥8).
geachable(Vl of W:R, V2 of X:(Y:2Z),
V3 of X:(R:Z))
:- eq(W,Y),simple_graise(V1,V2,V3).
% Upper middle case.
geachable{Vl of (Y¥:2):X, V2 of R:W,
V3 of (R:Z2):X)
:- aq(W,Y), graise(V2,V1,V3).
geachable(V1 of R:W, V2 of (Y:Z):X,
V3 of (R:Z):X)
:- eq(W,Y), graise(V1,vV2,v3).

% b. M rule.
% a -> b/(b/a).
mable(Vl of X:Y, V2 of W, V3 of X:(Y:¥W)) :-
\+ eq(W,Y),mraise(V2,V1,V3).
mable(V1l of W, V2 of X:Y, V3 of X:(Y:W)) :-
\+ eq(W,Y),mraise(V1,V2,V3).
mable(V1l of (X:U):Y, V2 of W, V3 of X : Y)
1= \+ eq(¥,Y), eq(U,¥},
mraise2(V2,Vi,V3).
of W, V2 of (X:U):Y, V3 of X:Y)
1= \+ eq(W,Y), eq(U,¥w),
mraisze2{V1{,V2,V3).

mable(Vi

% Lexical Category Assignment.

lca([], ).

lca([XIXs], [YIYs]) :-
dict(X,Y), lca(Xs,Ys).

% dictionary :

% for phrase : john walks.
dict(john, john of n).
dict(walks, walks of t:n).

% for phrase : everyone loves someone.
dict{everyone,everycne of a:fvp).
dict(loves,loves of fvp:np).

dict (somecne,someone of s:(s:np)).



% Underlying eqguational theory for

% defining matching. Currently, it’s just
% first order unification.

eq(X,X).

% Parse Tree Construction Routines.
apply(F,D,beta(F,D}).

compose(F,G, comp(F,G)).

% M rules : Two Cases.
nraise(W,X, msubcomp(W,X)).

mraise2(W,X, msubcomp(W,X)).

% G rules : Two Cases.
graise(YX, WZF, glsubcomp(YX,WZF}).

simple_graise(RW, ZYX, g2subcomp(ZYX,RW)).
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A.4 Sample Run Sessions
A.4.1 TFor Version 1 : Pure Calculus

[maui,2/1] prolog

SICStus 0.7 No.1: Fri Oct 25 09:12:35 PDT 1991
{consulting /u/gs4/sthuang/proleg.ini...}
{/u/gs4/sthuang/prolog.ini consulted, 20 msec 356 bytes}
| 7= [1eil.

{consulting /amnt/hilo/gs4/sthuang/thesis/paper_TR/Examples/lcl.pl...

{/amnt/hilo/gs4/sthuang/thesis/paper TR/Examples/lcl.pl consulted,
230 msec 9078 bytes}

yes
| ?- lambek[(Ieveryone, loves, someonse], X).

X =[] 7 ;

no
| ?- lambek([everyone,someone,loves], i).

X=1[s] 7 ;

no
| 7= lambek([loves,someone,everyonel],X).

X¥=1[s]7;

no
| ?- lambek([loves,everyone,someonel),X).

Xx=10[0s]7;

no
| ?- lambek{{someone,everyone,loves],X).

X=1[s] 7:

no
| 7- lambek([someone,loves,everyonel ,X).

X=1[s] 7 ;

no
{| ?- lambek([a,cake,which,i,believe,that,she,atel ,X).

X=1I[npl 7 ;
X = [n:(({(((s:np):sa):s:fvp):fvp:sl):sl:s):s:fvp):fvp:npl 7 ;
no

?- "D
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{ End of SICStus execution, user time 0.410 }

A.4.2 For Version 2 : With A-Term as Meaning Component

{mauni,2/2] proleg

SICStus 0.7 No.1: Fri Oct 25 09:12:35 PDT 1991
{consulting /u/gs4/sthuang/prolog.ini...}
{/u/gs4/sthuang/prolog.ini consulted, 20 msec 356 bytes}
| 7= [lc2].

{consulting /amnt/hilo/gs4/sthuang/thesis/paper_TR/Examples/lc2.pl..

{/amnt/hilo/gs4/sthuang/thesis/paper_TR/Examples/1c2.pl consulted,
350 msec 10798 bytes}

yes
| 7- lambek([john,walks],X).

¥ = [walks(john)of t] 7 ;

no
| ?- lambek([everyone,loves,someone] ,i).

X = [fun(_178,al1(love(_178))) :somebody of s] ? ;

no
| 7- lambek{[everyone,someons,loves], ).

¥ = [fun(_256,al11(fun{_206,love(_206))):somebodylof s8] ? ;

no
| 7= lambek([loves,everyone,someone] ,X).

X = [fun(_154,2a11(love(_154))):somebody of s] ? ;

no
| ?- lambek([loves,someone,everyone] ,X).

X = [fun(_276,2l11(fun{_1i54,love(_154))):somebody)of s] 7 ;

no
| 7- lambek({[someone,loves,everyonel], i).

¥ = [fun(_182,al11(love{_182))):somebody of 8] 7 ;

ne
| ?- lambek{[someone,everyone,loves],X).

X = [fun(_206,all(love(_208))) :somebody of s] ? ;
no

| - -D
{ End of SICStus execution, user time 0.530 }
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A.4.3 For Version 3 : With Parse Tree

[maui,2/3] prolog

SICStus 0.7 No.1: Fri Oct 25 09:12:35 PDT 1991
{consulting /u/gs4/sthuang/prolog.ini...}
{/u/gs4/sthuang/prolog.ini consulted, 20 msec 356 bytes}
| 7- [1e3].

{consulting /amnt/hilo/gs4/sthuang/thesis/paper_TR/Examples/lc3.pl...

{/amnt/hilo/gs4/sthuang/thesis/paper_TR/Examples/lc3.pl consulted,
280 msec 10288 bytes}

yes
| ?- lambek([john,walks],X).

X = [beta(walks,john)ef t] 7 ;

no
| ?- lambek{[everyone,loves,someone],X).

X = [beta(someone,comp(everyone,loves))of s] 7 ;

no
| 7~ lambek([everyone,someone,loves],X).

X = [beta(g2subcomp(someone,everyone),loves)of s] 7 ;

no
| ?7- lambek{[loves,someone,everyone] ,X).

X = [beta(g2subcomp(someone,everyone),lovesjof sl ? ;

ne
| ?7- lambek([someone,loves,everyone] ,i).

X = [beta{someone,comp(everyone,loves))of s] 7 ;

no
| 7- lambek{[someone,everyone,loves],X).

X = [beta(someone,comp(everyone,loves))of s] 7 ;

no
[ 7- lambek([loves,everyone,someonel ,X).

X = [beta(someone,comp(everyone,loves))of s8] 7 ;

no
| ?- lambek([john,walks],X).

X = [beta(walks,john)of t] 7 ;

no
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| ?- lambek([walks,john],X).
X = [beta(walks,john)of t] ? ;
no

i 7~ D
{ End of SICStus execution, user time 0.600 }
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