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Bop is a portable extension of Edinburgh-style Prolog environments, that integrates term rewrit-
ing with Prolog. Bop rests on a kind of conditional rewrite rules, that supports various term rewrit-
ing styles. The default rewriting mechanism is nondeterministic and lazy. It offers the following:

control over the compilation of rewrite rules, permitting user-defined pattern matching and/or
type checking,

a rule compiler that produces fairly efficient Prolog code by avoiding redundant computation
and exploiting features of modern Prolog systems such as clause indexing and delay primitives.

ability to produce compiled rule output as a Prolog file that can subsequently be used inde-
pendently in other applications.

a full debugger/tracer with spypoint management for rewrite rules.
a sizeable library of standard programs.

a collection of demonstration programs, with a modest demo interaction shell encouraging
exploration.

a system written almost entirely in Prolog, intended to be portable across Edinburgh Prolog
platforms. Bop has been run successfully on the C-Prolog, SICStus, and Quintus Prolog
systems.

Bop was developed particularly in order to support research on stream processing and constraint
processing, but it should also be of help in the exploration of other paradigmatic extensions of
logic programming. This manual overviews the system and describes the primitives available,
emphasizing its application to stream processing problems.
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Chapter 1

Overview of Bop

Bop is an extension of Prolog that permits the user to write logic programs including rewrite rules.
These rules all have the form

LHS => RHS :- Condition.

Here Conditionis a logical condition that determines whether the rewrite rule should be used. Such
rules are usually called conditional rewrite rules. There has been a great interest in conditional
rewrite rules since the mid-1980’s, since they combine many interesting paradigms in an apparently
natural way. Among other things, it has been argued that the rules add the flavor of functional
programming to logic programming, and encourage new styles of programming.

1.1

The Essence of Bop

Bop integrates conditional rewrite rules with Prolog, in a fairly thorough way, so the result is more
coherent than a jumble of features or loosely-tled subsystems. In addition, Bop is intended as a
portable and practical extension of Prolog, usable by Prolog programmers.

Bop offers the following:

generalized conditional rewrite rules, and a nondeterministic, lazy term rewriting system.
This system is flexible and accomodates various term rewriting styles, including complete
term rewriting (Knuth-Bendix-like systems and systems with term orderings) and regular
term rewriting (Huet-like confluent systems, lambda calculus, combinatory logic, systems
with constructors).

control over the compilation of rewrite rules, permitting user-defined pattern matching (out-
ermost or innermost matching, syntactic or semantic unification, etc. — matching may be
performed in any way the user desires, on an argument-by-argument basis) and/or type
checking.

a rule compiler that produces fairly efficient Prolog code, avoiding redundant computation
and exploiting features of modern Prolog systems such as clause indexing and delay primitives,

ability to produce compiled rule output as a Prolog file that can subsequently be used inde-
pendently in other applications.

a full debugger/tracer with spypoint management for rewrite rules.

a sizeable library of commonly used functions.

7



8 CHAPTER 1. OVERVIEW OF BOP

¢ a collection of demo programs, with a modest demo interaction shell encouraging exploration.

¢ asystem written almost entirely in Prolog and Bop, intended to be portable across Edinburgh
Prolog platforms.!

Many systems have been proposed that integrate functional and logic programming. These
systems usually begin by extending unification to include some kind of equality theory, often an
equality theory implemented by term rewriting. Although it is very elegant and powerful, one
problem with this approach is that it is usually too inefficient to be useful in practice. Another
problem is that the proposals here have not been carried through to complete implementations,
and they are not used.

Bop tries to provide a term rewriting capability in Prolog, a capability that is general and robust
enough that it can be used in many applications (including the integration of logic and functional
programming). In the same way that Definite Clause Grammars have been useful in grammar
processing, serving as a mapping from grammar syntax to logic programs, Bop will hopefully be
useful in term rewriting, serving as a mapping from Bop rules to logic programs. In order to be
practical, Bop’s rewriting scheme has been made very flexible, and can emulate diverse rewriting
styles. Furthermore, instead of extending the unifier in all cases to include an equational theory,
it relies on Prolog’s syntactic unification where possible, and relies on extended unification only
where required by the user (through the syntax of Bop rules).

Bop was developed particularly in order to support research on term rewriting, stream process-
ing, and constraint processing. It rests on ideas that cut across all of these applications, which are
strong enough to stand on their own. Hopefully Bop will also be of help in the exploration of other
paradigmatic extensions of logic programming.

1.2 Programming in Bop

Bop rules take either of the forms

LHS => RHS.
LHS => RHS :- PrologGoal,

In these forms, LHS and RHS are Prolog terms that meet certain restrictions.

1.2.1 Completion Rules

A completion is a term that rewrites to itself. Examples of completions in Bop are [J and [_1_.].
Completions are defined by completion rules, which look as follows:

N => [.
(HIT1 => [HIT].

] => 0.
s(X) => s(X).

X => X :- number(X).

In a completion rule, LHS and RHS are identical.

! As of this writing, Bop has been run successfully on the C-Prolog, SICStus, and Quintus Prolog systems.
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1.2.2 Ordering Rules

Ordering rules state evaluation relationships between terms. Examples of Bop ordering rules are
as follows:

append([1,L) > L.
append([HIT],L) => [Hlappend(T,L)].

Bop rules satisfy the following restriction:
If LHS is f(t1,...,1t.), then each t; is either a variable, or a completion.
Thus in the rules for append, the only arguments are the variable L or the completions [J and
[HIT].
1.2.3 Bop Programs

A Bop program is a collection of Bop rules. Bop programs are easily developed in a recursive, func-
tional style. For example, the following is a simple program for computing Ackermann’s function:

0 => 0,
s(X) => s(X).

ack(0, 0) => g{0).

ack(0, s(N)) > s(s(M)).

ack(a(M), 0) > ack(M, s(0)).
ack(s(M), s(N)) => ack(M, ack(s(M),N)).

The first two rules define natural number values (in successor notation) as completions, and the
remaining rules define Ackermann’s function recursively. Had we wished to dispense with the
successor notation and use Prolog integer arithmetic in its place, we could have written:

X => X :- integer(X), X »>= 0.

ack{(0, 0) => 1.

ack{(0, N) => N1 := N>=1, N1 is N+1.
ack(M1, 0) => ack(M, 1) := M is M1-1.

ack(M1i, Ni) > ack(M, ack(M1,N}) :- M is Mi-1, N is Ni-1.

With this program we find that ack(2,1) evaluates to 5. ack(2,2) to 7, ack(3,1) to 13, and so
forth.

1.3 How Bop Works

Consider the following two rules, defining how lists are appended:

append({],L} > L.
append([HITI,L) => [Hlappend(T,L)].

These rules are very much like the usual Prolog clauses, and are executable specifications of how
one appends two lists.

Bop rules are compiled to Prolog clauses. The compilation process is straightforward. TFor
example, the two rules above are translated into something functionally equivalent to the following
Prolog code:
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append(A,L) =>> B :- A =>> [], L =>> B.
append(4,L) =>> B :~ A =>> [HIT], [Hlappend(T,L)] =>> B.

Here the operator =>> is something like the transitive closure of => and can be read as ‘evaluates
to’. The predicate =>> can be used anywhere in a Prolog program in order to evaluate a functional
expression, such as append([1] ,append([2],[1)).

The =>> rules above show how Bop integrates the benefits of a functional style with the ben-
efits offered by logic programming and Prolog. For example, the Bop rules can operate non-
deterministically, just like their Prolog append counterparts. Many ad hoc function- or rewrite
rule-based systems have been proposed to incorporate backtracking, but Bop accomplishes this
capability as a natural and immediate consequence of its integration with Prolog.

Bop implements lazy evaluation. With the rules above, the goal

?- append([1,2,31,[4,5,61) =>> X.
yields the result
X = [ilappend([2,3],[4,5,61)].

That is, in one =>> step, only the head of the resulting appended list is computed. The tail
append([2,3],[4,5,6]) is called a suspension - it is a suspended computation that can be evalu-
ated later if this is necessary. Demand-driven computation like this is referred to as lazy evalnation
or delayed evaluation, and is quite useful in applications such as stream processing [1].

The cautious reader will have noticed that, in order for the =>> predicate above to work as we
are claiming, we must add two clauses:

Q1 =>> [1.
X1yl =>> [xIY].

These are the clauses produced by the Bop completion rules for [J and [X|Y]. Here both [] and

[X1Y] serve as constructors; they are used to construct ‘values’ or ‘data structures’ (in this case

streams). A program that defines completions only in order to build data structures is said to follow

the constructor discipline {22]. Bop completion rules are almost always used to define constructors,

but can be combined with ordering rules (violating the constructor discipline) if this is desired.
Bop rules blend with Prolog through the conditions in the rules. Thus in the Bop rule

X[Xs] + [YIYs]l] => [ZIXs+Ys] :- Z is X+Y.

the condition Z is X+Y is treated by the Bop system as being a guard for the rule, and the resulting
code produced is equivalent to

[X1Xs] + [YIYs] =>> A :- Z is X+Y, [Z{Xs+¥s] =>> A.
By combining rewriting and Prolog computations judiciously, users can obtain programming power
not available from Prolog or rewriting alone.
1.4 Format of Bop Source Files

Bop source files are designated by filenames of the form
basefilename . bop

where basefilename is arbitrary. These files are text files containing any of the following:
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1. Bop rules
2. Directives
3. Prolog clauses

As mentioned above, Bop rules can have any of the following forms:
LHS => RHS.
LHS => RHS :- Prolog(oal.
A directive has the format
:= PrologGoal.
where PrologGoal is a Prolog command. Directives are typically used to indicate
1. goals to be executed, or
2. additional files to be consulted.

These actions are performed immediately, at consult time. Directives that provide metadata are
implemented as system predicates that have side effects. For example, the directive

:- bop_consult([myrules, library(math)l).

tells Bop to perform a Bop consult of the two files myrules.bop and math.bop (the latter of which
should be found by searching through all the directories L currently defined by the Prolog goal
library_directory(L) as in SICStus and Quintus Prolog.)

Note: The directive

:- bop_ensure_consulted(File) .

should often be used in the place of the usual consult primitive to indicate that a consult of File
is wanted, provided that it has not already been consulted. Note also that Bop’s consult is very
different than Prolog’s consult. If a Prolog consult is needed, use

t~ consult(Files),

Finally, any Prolog clause can appear in a Bop file.

For example, below is a valid Bop file for finding areas of convex polygons. The program works
by first triangulating the polygon as shown in Figure 1. For example the polygon given by the
stream of points

[(050)1(1*4)7(516)1(65 3)1(41 _1)]

corresponds to the set of triangles

{ ((0,0),(1,4),(5,6)), ((0,0),(5,6),(6,3)), ((0,0),(6,3),(4,~1)) }

having respective areas?

{7.0.10.5,9.0 }

and a total area of 26.5.

2The Heron formula for the area of a triangle whose sides have respective lengths a, b, ¢ is given by

Vs(s — a)(s — b)(s — ¢}

where s = (a + b+ ¢)/2.
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(5:6)

(1,4)
(6,3)

(4!_1)

Figure 1.1: Triangulation of a Convex Polygon

:- [library(numbers)]}. % numbers are completions
:- [library(math_pl)]. % include Prolog sqrt() function
- [library(agg.stat)]. % include sum() aggregate function

total _area(Polygon) => sum(areas{triangles(Polygon))).

sample_polygon => [ (0,0), (1,4), (5,6), (6,3), (4,-1) ].

> [7.
> trianglesi(S,PQ).

triangles([])
triangles{[P0O|S])

trianglesi([],.) => [J].
trianglesi([P1|S],P0) => triangles2(S,P0,P1).

triangles2([],_,.) = [.
triangles2([P2(S],PO,P1) => [tri(PO,P1,P2)|triangles2(S,P0,P2)].

areas([]) => [].
areas([tri(PO,P1,P2)|8]) => [Alareas(S)] :- heron_area(PO,P1,P2,A).

heron_area(P0,P1,P2,Area) :-~
distance(P0,P1,4),
distance(P1,P2,B),
distance(P2,P0,C),
S is (A+B+C)/2,
AreaSq is S*(S-A)}*(S-B)*(5-C),
sqrt(AreaSq,Area).

distance((X1,Y1),(X2,Y2),Distance) :-

DistanceSq is (X1-X2)*(X1-X2) + (Y1-Y2)*(Y1-Y2),
sqrt(DistanceSq,Distance).

The triangles function translates a stream of points into a stream of triples of points as desired.
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1.5 Basic Use of the Bop System

The Bop directory has a number of subdirectories of interest:

/demos/ Demos of the Bop system

/1ib/ Library files with useful rules

/doc/ Directory containing this documentation

/sda/ Material from Parker’s ‘Stream Data Analysis’ paper [24]

In particular, however, in the Bop directory there is a Prolog saved program named bop containing

the entire executable Bop system.
Assuming the rules for the polygon problem shown above are in the file polygon.bop, we could
execute Bop as {ollows:

unix % bop
Bop versiom 0.2, Copyright (C) 1990, 1991, 1992 D. Stott Parker

Bop comes with ABSOLUTELY NO WARRANTY; for details type ’'bop_no_warranty.’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ’bop_copying.' for details.

For an introductory demo, type ‘bop_demo.’

| 7- bop.consult(polygon).

{Bop consult: file polygon.bop...}

{Bop consult: file /bop/lib/numbers.bop...}
{/bop/Llib/numbers.bop: consult complete, 20 msec 980 bytes}
{Bop consult: file /bop/lib/math_pl.pl...}
{/bop/lib/math_pl.pl: consult complete, 600 msec 19260 bytes}
{Bop consult: file /bop/lib/agg_stat.bop...}
{/bop/lib/agg_stat.bop: consult complete, 630 msec 31310 bytes}
{polygon.bop: consult complete, 1549 msec 63526 bytes}

yes
| ?- sample_polygon =>> P,

P = [{0,0),(1,4),(5,6),(6,3),(4,-1)] ¢

yes
b ?7- total_area(sample_polygon) =>> 4.

A = 26.50000000000002 7

yes
} 7- stream( triangles(sample_polygon) } =>> S,

8 = [tri((0,0),(1,4),(5,68)),tri((0,0),(5,6),(6,3)),tri((0,0),(6,3),(4,-1))] ?

yes
| 7- bop_fulltrace( triangles{sample_polygen) ).
-> triangles(sample_polygon)

-> triangles([{0,0),{(%,4),{(5,6),(6,3),(4,-1}1)
-> triangles([(0,0),(1,4),(5,6),(6,3),(4,-1)1)
-> trianglesi([(1,4),(5,6),(6,3),(4,-1)1,(0,0))
-» triangles1([{1,4),(5,6),(6,3),(4,-1)],(0,0))
-> triangles2([(5,6),(8,3),(4,-1)1,(0,0),(1,4))
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4 triangles2([(5,6),(6,3),(4.‘1)3 ,(0:0) D(1)4))
-> [tri((0,0),(1,4),(5,6)) |triangles2([(8,3),(4,-1)1,(0,0),(5,86))]

yes
| 7- "D
unix ¥%

The various capabilities shown in this interaction will be discussed in detail later.



Chapter 2

Examples of Bop Programming

To illustrate the potential of Bop, we begin with some example programs. These programs are all
available online, and can be used with the Bop demo system.

2.1 The Bop Demo System

To encourage exploration, Bop comes with a built-in ‘demo’ system. This system allows one to
run one or more simple demonstration programs from a library that has grown over time. Once
inside Bop, any of the currently available demos can be loaded and run by issuing the Prolog goal
?- bop_demo. as fellows:

unix % bop

Bop version 0.2, Copyright (C) 1990, 1991 D. Stott Parker

Bop comes with ABSOLUTELY NO WARRANTY; for details type ’'bop_no_warranty.’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ’bop_copying.’ for details.

For an introductory demo, type ’bop_demo.’

| ?~ bop.demo.

Available Bop demos:

Csp - runnable version of Hoare's CSP specification language
e - Compute e to any precision, in any radix

fib - Fibonacci numbers

fringe - Lazy comparison of trees

genes - Simple DNA parsing

grammays - Narrowing Grammar demos

groups - Group expression simplification (Knuth-Bendix)

hamming - Stream of Hamming numbers

hull - Convex hull optimization

inverses - simple two-variable constraints, via function inversion
lottery - Stream database searches on lottery data

lucid - Implementation of the Lucid stream processing language
matrices - Lazy sparse linear algebra, with matrices as quadtrees
oof - Object-Oriented Functional programming

peano - Peanc arithmetic

primes - Stream of primes via sieves

15
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queens - N-queens solution for any N

roman - Accept or generate valid roman numerals
series - Power series manipulation

slowsort - Slow-sorting via test—and-generate
takeuchi - Takeuchi’s doubly-recursive function

Please enter zelection: e.
{Bop consult: file /r/miscl/prolog/bop/demos/e.bop...}
{/r/misc1/prolog/bop/demos/e.bop: consult complete, 410 msec 17860 bytes}

[}

Y e ———————— e — o e e e e e e e
% e. Compute e to arbitrary precision, in any radix

% break. Break to Prolog.

% exit. Exit from running demo.

% halt. Halt demo (and Prolog).

Y o —

Enter selection: e.

Computes e = 2/1! + 1/21 + 1/3! + ... Dby representing its fractional
part as a stream of coefficients of 1/il:

0 1 1 1
(6-2) = e b e ko o b
1! 2! 3! 4!

We repeatedly multiply this fractional part by the radix (10, say),
and simplify the result so all coefficients ci are between 0 and i,
The resulting coefficient of 1! is then the next digit of e.

For radix 10 and 40 digits (fraction precision),
e = 2.7182818284590452353602874713526624977572

Enter desired radix: 10.

Enter desired number of digits: 60.
2.7182818284590452353602874713626862497757247093695950574068967
total CPU time 7470 msec

run this demo again? (y/n) n

run some other demo? (y/n) n

load some other demo? (y/n) n

yes
| - °D
unix %

The examples below show a number of programs accessible through this demo system. Although
this manual should illustrate the scope of Bop applications, there is no substitute for hands-on
experience, so feel encouraged to run Bop and experiment.

2.2 Stream Processing

Today many applications deal with large quantities of data that take the form of a stream — an
ordered sequence of data items. Streams arise in many ways: text files, genetic sequences, sound
tracks, geological strata from drill holes, videotape, event histories, and on-line data.
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The established stream processing paradigm consists in using transducers (functional transfor-
mations) to operate on streams. Under this approach databases are treated as streams, and queries
or data analyzers are compositions of transducers that transform input data streams to output
streams as needed.

Tor example, we can define a transducer named diffs that accepts a stream of numbers as

input, and yields a stream of pairwise differences of these numbers as output. The program could
be written as follows:

diffs([]) => [J.
diffs([X|Xs]) => pairwise_diffs(¥s,X).

pairwise_diffs([],_) => [].
pairwise_diffs([XIXs],PrevX) => [DeltaX|pairwise_diffs(Xs,X)]
:= DeltaX is (X-Previ).

With this program, we could make the following evaluations:

diffs([1,4,9,16,25]) evaluates to  [3,5,7,9]
diffs(diffe([1,4,9,16,25])) evaluates to [2,2,2].

As mentioned earlier, the evaluation operator in Bop is =>>. This is a binary infix Prolog
operator. Also, evaluation is lazy by default. If we load the program for diffs into Bop, then we
could get the following Prolog interaction:

| - diff=([1,4,9,16,25]) =>> X.
X = [3lpairwise_diffs([9,18,25],4)] 7

yes
| 7- pairwise_diffs([9,16,26],4) =>> Y,

Y = [Blpairwise_diffs([16,25],9)] ¢

yes
| 7-

Recursive evaluation of pairwise_diffs([9,16,25],4) will ultimately yield [5,7,9].

Although the streams in this example are short, they could be infinitely long. For example,
if we used diffs to compute the second-by-second changes in the NYSE price of IBM stock, we
would obtain a stream with no imminent end. Many examples below manipulate infinite streams,
and it is useful to have a primitive for printing these streams, or for printing part of these streams.
Two useful primitives will be the following:

stream([]) => [I.

stream([X|P]) => [XIS] :- (stream(P) =>> 8).
print_stream({[])} => [].

print_stream([X[P]) => [XIS] :- writeq(X), write(’.?), nl,

(print_stream(P) =>> 5).

Here stream is an eager primitive that repeatedly evaluates its argument, as long as it successfully
evaluates to a stream. Note that print_streamis almost identical to stream, but has the side-effect
of printing. Finally, we can get only the first n items in a stream by defining a new primitive:
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first(N,_) = [ = N=<0, !.
first{_,[1) => [J -0,
first(N,[XI8]) =» [Xlfirst(N1,35)] :- N1 is N-1.

This primitive copies items X off its input to its output as long as its counter N remains positive.
These primitives can be used together, so for example evaluating

print_stream( first(2,diffs([1,4,9,16,251)) )

will print 3 and 6.
With Bop, we can develop both conventional stream processing applications like this, as well
as sophisticated unconventional applications, A number of demos are included that show how.

2.2.1 Primes

A Bop program is a collection of Bop rules. The Bop program below computes primes by Eratos-
thenes’ method of sieves, using the dataflow expression of the problem apparently first proposed
by Mcllroy [17] and subsequently popularized by Kahn and MacQueen [14].

primes => sieve(intfrom(2}).

(Nlintfrom(N1)] :- N1 is N+1.

L]
v

intfrom{})

sieve([P|S]) [Plsieve(filter(P,s))].

il
v

filter(P,[XI8]) => if divides(P,X) then Ffilter(P,S) else [Xifilter(P,S)].
divides(P,X) => true = (X mod P) =:= 0.
divides(P,X) => false :— (X mod P) =\= 0.

This program defines the stream of primes to be the result of sieving out multiples of primes from
[2,3,4,5,...],i.e., the integers starting from 2. The initial value P in this stream is taken to be
a prime by sieve, is placed in the output stream, and only non-multiples of P are passed from the
input to the output. With this program, the primes demo produces this output, by printing the
value of first(N,primes):

Enter desired number of primes: i15.
(2,3 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4T ].
total CPU time 140 msec

We can capture the execution of this program by writing a small program to print out the stream
of primes produced, along with the suspensions of the stream.

i 7- consnlt(user),
| showStream(X) :- X =»> [HIT], write(H-T}, nl, showStream(T).

} {user consulted, 10 msec 486 bytes}

yes
| 7- showStream{primes).

2-sieve(filter(2,intfrom(3)})

3-sieve(filter(3,filter(2,intfrom{4)))})
S-sieve(filter(5,filter(3,filter(2,intfrom(6)))))
7-sieve(filter(7,filter(5,filter(3,filter(2,intfrom(8))))))
11-sieve(filter{1i,filter(7,filter(5,filter(3,filter(2,intfrom(12)})))))
13-sieve(filter(13,filter(11,filter(7,filter(5,filter(3,filtex{2,intfrom{14))))3)))
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Some people are disappointed by the definition of £ilter above, preferring the following defi-
nition in Prolog:

filter(P,[X[S]) => <filter(P,S) = 0 is X mod P, !,
filter(P,[XI5]) => ([X|filter(P,s)].

This equivalent definition is perfectly acceptable with Bop, and operates more efficiently.

2.2.2 Hamming’s Problem

Hamming numbers are integers expressible as 2:375% for 7, j,k > 0. They can be defined recursively
as a stream with the following program:

hamming => [ 1 | mult235(hamming) ].

mult235(S) => sorted_merge( stream _mult(S,2),
sorted_merge( stream_mult(5,3),
stream_mult(S,5) ) ).

sorted_merge([XIS],[YIT]) => [Xlsorted_merge(s,T)] - X=Y.
sorted_merge([X|s1,[YIT]) => [X|sorted_merge(S,[YITI}] :- X<Y.
sorted_merge([XI8],[YIT]}) => [Ylsorted_merge([XIS],T)] :- X>Y.
stream_mult([X[|S],N) => [XN|stream_mult(S,N)] i~ XN is IsN.

With this definition, we can run the hamming demo to get the following value for first(N,hamming)
with N=20:

Enter desired number of values: 20.

[1, 2, 3 4,5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36 1.
total CPU time 350 msec

2.2.3 Fibonacci Numbers
Fibonacci numbers can be defined in Lucid-like style with the following program:

fib => [1,1|fib+next(fib)}].
next([_is8]) => s.

(1 + [3 => []J.
fXI1Xxs] + [YIYs] > [XYIXs+Ys] :- XY is X+Y.

The £ib demo allows us to print the first n Fibonacci numbers with the following interaction.

Enter how many Fibonacci numbers you wish: 15.
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 ].
total CPU time 1709 msec

2.2.4 Formal Power Series

The program described here was inspired by the extremely enjoyable paper [18]. Formal power series
can be implemented as streams. Power series here are implemented as streams of numbers; the
numbers are the coefficients of the power series. For example, the stream [1,0,3,0,0, —1] denotes

(1 + 3z% — z3). Also, (] represents 0.
We can define arithmetic operators +, -, %, ~ for power series with rules like the following:
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1+s => 3,

[Alas] + [] => [Alas].

[Alas] + [BIBs] => [AB|As+Bs] :— AB is A+B.

0-s => [0] - s.

[Alas]) - [1 => [Alas].

[Alas] - [BIBs] => [ABR|As-Bs] :- AB is A-B.

0+ _ = [J.

_* ] = [1.

[AlAs] * [BIBs] => [ABJ([Al*Bs + As*[B] + [0lAs*Bs])] :- AB is A%B.
| => [1] - N =0,

Al | => 3 - N =1,

S" X => S°N1 # S"N2  :~ integer(N), ¥ > 2, N1 is N//2, N2 is N-Ni,

This is enough to implement basic power series arithmetic! Expressions using these four operators
can be evaluated incrementally using these definitions. Running the series demo shows this:

Please enter a power series expression.

Expression: [1,0,-3]"2 + [1,1]*[-1,6,1].
Enter desired length of series: 10.
Power Series: [ 0, 5, 1, 1, 91].

total CPU time 59 msec

The demo evaluates first(10, [1,0,-3]1"2+[1,1]1%[-1,6,1] ) to get the result shown.

These basic definitions can be extended in many ways., With only a little refinement, to deal
with special situations such as when 4 is 0 or 1, this implementation becomes fairly efficient. Also,
we can add surprisingly concise definitions for various power series operators as in [18].

Reciprocals

The reciprocal R = 1/P of the power series P = 14+ 2 is R = 1 —z+ 2?2 —-23... = 1 — zR.
Similarly, the reciprocal R = 1/P of P = 1 + 2@} will therefore be B = 1 — zQR. Thus, we can
get a surprisingly compact definition for reciprocals:

1

reciprocal([1]4s]) => [1|-As * reciprocal([1|4s])] HE S
reciprocal ([Al4s]) => [Ainvl-As * [Ainv] * reciprocal([AlAs])] :- Ainv is 1/A.

With this definition, we can compute reciprocals lazily. For example, to find the power series for
1/(1 — 2z}, we can evaluate the expression reciprocal([1,-2]):

Expression: reciprocal([1,-2]).

Enter desired length of series: 15,

Power Series:

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 ].
total CPU time 259 msec

Derivatives and Integrals

Integrals and derivatives are simply 1 ‘shifts” of power series and multiplication by corresponding
{actors of { or 1/i.
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derivative([]) > .
derivative([{_18]) => pairwise_products(S,ints(1)).

integral(s) => [0|pairwise_ratios(S,ints(1))].
integral(C,S) => [C|pairwise_ratios(S,ints(1))].
ints(N) => [N|ints(N1)] := N1 is N+1.

With these definitions, we can find the integral of 1/(1 + 2*) (the arctangent series) by evaluating
the expression integral(reciprocal([1,0,1])):

Expression: integral(reciprocal([1,0,1])).
Enter desired length of series: 15.
Power Series:
[0, 1.0, 0.0, -0.3333333333333332, 0.0,
0.2, 0.0, -0.1428571428571428, 0.0, O.1111111111111111,
0.0, -0.,08090909090908092, 0.0, 0.07692307692307689, 0.0 ].
total CPU time 150 msac

Reversions

The reversion of a power series satisfies reversion(P) = Q if and only if P(Q) = id; i.e., reversion
gives the formal inverse of a power series. For example, reversion{tan) = arctan.

Using an analysis similar to that for reciprocals above, the reversion of a power series whose
constant coefficients are zero can be computed with the following definition:

reversion([0]8]) => [O{R] :-
S =>> [AlAs],
bopDiv(1.0,A,Ainv),
R = [Ainv]((-R"2 * [Ainv] * compose(As,[0|R])))].

For example, the reversion of (a:+2a:3) is found by evaluating the expression reversion([0,1,0,2]):

Expression: reversion({0,1,0,2]).

Enter desired length of series: 10.

Power Series:

(o, 1.0, -0.0, -2.0, -0.0, 12.0, -0.0, -96.0, -0.0, 880.0 ].
total CPU time 8720 msec

Note that the term R constructed by this program is circular! Nevertheless, the program still works.
If use of circular terms causes concern, a definition like that for reciprocal can be used instead.

Transcendental Functions

Self-reference also makes its presence felt in transcendental functions. Power series are easily defined
for standard transcendental functions. such as exp. loglp, sin, cos, tan, sinh, cosh, tanh, arcsin,
arccos, arclan using identities from analysis. For example, the power series for the exponential
function can be defined using integration and self-reference as follows:

% Exponentials of power series

%

% Uses McIlroy’s trick:

% exp(P(x)) = int (d/dx exp(P(x))) dx = int (exp(P(x))*P’(x)) dx
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exp([]) => [1].
exp([0lAs])} => integral(l, (exp([0las])*derivative([0lAs])) ) :- 1.
exp([AlAs]) => [ExpAl * exp([0lAs]) i~ bopExp(A,ExpA}.

The series demo allows inspection of the definitions for these functions:
Please select a function and its definition and power series will be printed.

Function: exp.

Definition: exp => exp(id)

Enter desired length of series: 10.

Power Series:

[ 1, 1.0, 0.5, 0.1666666666666666, 0.04166666666666666,
0.008333333333333331, 0.001388888888888889, 0.0001984126984126983,
2.48015873015872%9e-5, 2.755673192239858%e-6 ].

total CPU time 210 msec

2.2.5 Stream Databases

Since the late 1970’s, conventional wisdom regarding databases has been that typically databases
should be modeled as sets of data items. However, the generality of this approach is limited.

It is not hard to see that often databases can be modeled more exactly as streams of tuples
[24]. Bulk stream data arise in many important forms, including text files, sound tracks, event
histories, genetic sequences, and so on. Data with any significant temporal component can usually
be viewed as a stream. There is a serious need for a new approach in stream data processing.
Today’s database systems are not able to manage this data.

Database Processing as Stream Processing

An approach that is possible with Bop is to develop database systems using the established paradigm
of stream processing, in which transducers {functional transformations) operate on streams. Under
this approach databases are treated as streams, and queries or data analyzers are compositions of
transducers that transform input data streams to output streams as needed.

With Bop, we can define many of the standard database query operators, such as select:

select([],_,_) => .
select([XI|S],Pattern,Test) => select(S,Pattern,Test) :- \+ (X=Pattern,Test), !.
select{[X|S],Pattern,Test) => [X|select(S,Pattern,Test)].

Very much like the sieve transducer, select removes elements X that fail to satisfy a given Test
(Prolog goal), where variables in the test are bound by matching the input against a provided
Pattern.

Let us use this transducer in a time series example. Assume the file demos/njlottery.pl
contains time series data on the New Jersey lottery in the following format:

% Year Number Payoff

lot( 1975, 810, 190 ).
lot( 1975, 156, 120.5 ).
lot( 1975, 140, 285.5 ).
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This data gives ordered New Jersey lottery results for three years (1975, 1976, 1980), along with
the payoff in dollars. In this game one picks three digits between 0 and 9, and wins the payoff if
the digits match those chosen by the state. The payoffs are determined by the number of winners,
and look pretty modest for the risk involved. We can see how large the payoffs actually got by
using the select transducer. With the query

select(file_terms(’demos/njlottery.pl’),
lot(_Year,_Winner,Payoff),
Payoff > 600 )

the lottery demo yields the following:

10t (1975,499,869.5).
1ot (1975,20,668.5).
1ot (1975,77,640) .
1ot (1975,767,756) .
10t (1975,919,637) .
lot(1976,6,710).

1ot (1976,966,720.5).
lot(1980,778,621).

Thus in the three years of daily lottery games in New Jersey for which we have data, only eight
games paid more than $600. New Jersey is disappointing in many ways.

The SVP Database Model

It is actually possible to combine set and stream processing in a single model; in particular, the
SVP model [25] shows this successfully. With SVP, collections of data (sets or streams) are modeled
as binary trees, thus generalizing on both set indexing schemes and list or stream structure at the
same time.

For example, the polygon example presented in the introduction can be rewritten in Bop for
SVP collections. Here ‘{}’ represents the empty collection, ‘{X}’ represents the collection with one
element X, ‘<>’ is the cons-like binary tree constructor (an infix operator) used for collections, so
({1F<>{2})<>({3}<>{4}) is a balanced collection, and {1}<>{({2}<> ({3} <> ({a}<>{[1}))) is a

(nil-terminated, list-like) stream. The following program now implements the polygon example:

total_area(Polygon} => sum{areas(triangles(Polygon))).

triangles(S) => trianglesi(S,tri(_,_,_)}).

triangles1({},_) => {}.
trianglesi({P},Q) => output_triangle(¥Q) :- next_triangle({P},Q,NQ).
trianglesi(S1<>S2,Q) => trianglesi(S1,Q) <> trianglesi(S2,NQ)

i~ next_triangle(S1,03,NQ).

ontput_triangle{(Q) => {Q} :- complete_triangle(Q), !.
output_triangle(.) => {}.

complete_triangle(tri(PQ,P1,P2)) :- nonvar(P0), nonvar(P1), nonvar(P2).
next_triangle({P},tri(P0,_ ,P2),tri(P0,P2,P)) :- nonvar(P2), !.

next_triangle({P},tri(Po,P1,_ ),tri(PO,P1,P)) :- nonvar(P1), !.
next_triangle({P},tri(PO,_ ,_ ),tri(P0,P,_)) :- nonvar(P0), !
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next_triangle({P},tri(_ ,_ ,_ ),tri(P,_,_)).

areas ({}) => {0}.

areas({tri(P0,P1,P2)}) => {A} :- heron_area(P0,P1,P2,A).
areas(S1<>52) => areas(S1) <> areas(S2)}.

This SVP program and many others can be run with the svp demo.

2.3 Pattern Matching and Grammars

It is certainly not news that rewrite rules can be used to represent grammars. However, extremely
powerful attribute-grammar-like programs can be written in Bop, programs that are more expressive
than Definite Clause Grammars or other logic grammars.

2.3.1 Narrowing Grammar

Bop generalizes a rewriting system called Narrowing Grammar developed earlier by Chau and
Parker [5]. The concepts of Narrowing Grammar are reviewed later in this manual, but they can
be summarized here with a few examples.

Bop can be used as a grammatical formalism. The rules

(Xx+) => X,
(X+) => X, (X+)
a ., w => L.

(CxiL1] , L2) => [X[I(L1 , L2)].

define regular expression closure (‘Kleene +7) and concatenation. With these rules, we can generate
regular expressions: the expression [al, ([b,b]l+) will evaluate to [a,b,b], [a,b,b,b,b], etc. The
arguments of the operators ‘+’ and *,’ can be any expression, so we can build arbitrary regular
expressions with these.

This is only the beginning: we can define any parameterized algebra of patterns we like. For
example, we can define the number pattern to produce a given number N of instances of a given
pattern P.

number (P,N) => number(P,N,0).
number (P,N,N) => [].
number (P,N,M) => P,number(P,N,Mi) :- succ(M1i,M).

For example, the expression number (( [bump]+, [turnl),2) has the following execution with this
graminar:
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number ( ( [bump]+, [turnl),2)
number { { [bumpl+, [turnl),2,0)

({bumpl+, [turnl), number(([bumpl+, [turnl),2,1)
((bump], [turn]), number(([bumpl+, [turnl),2,1)
[bump! ({1, Cturn} )], number({[bumpl+, [turnl),2,1)

[bump |
[bump |
[bump |
[bump |
[bump |
[bump |
[bump|
[bump |

{bump|

(0], [turnl), number(([bumpl+, [turn]),2,1))]
([turn], number{([bumpl+, [turn]),2,1))]
[turnl ([, number(([bumpl+, [turnl),2,1))]]
[turn| number (([bumpl+, [turnl]),2,1)]]

Cturn! (([bumpl+, [turnl}, number{([bump]+, [turnl),2,2))]]
{turn| (([bumpl, [turnl), pumber ((Lbumpl+, (turn]),2,2))]]
[turn| [bumpl (({1,[turnl),number(([bumpl+, [turnl),2,2))11]1]
[turn| [bump| [turn| number({[bumpl+, [turnl),2,2)111]

[turn| [bump| [turnl [1111]

The examples above show generation of languages from patterns. In fact, the same programs
can be used to match very complex patterns. For example, we can define the grammar

d,s
(xipl ,

)

= [1.

= [_] ...1].
=> 8§,

=> [XI(P,8)].

before(P,Q) = ...,P, ..., Q, ...

and then use it to match temporal patterns in an input stream, in which one pattern is constrained
to appear before another. With little effort we can extend the vocabulary here to describe other

patterns of interest.

One concern here is how we can define two patterns that overlap. In Bop there one can do this
with pattern coroutining. This allows us to match two patterns simultaneously. For example, with

the grammar

v/ 0
[xipl // [XIsl

= [.
> [XI(P//3)].

partial_order_1 =>
before([eil, [e2]) // before([el]l, [e3])
// before([e3],[e5]) // before([e3], [e4])
// vefore(le2],[e6]) // before([es], [e6])
// before([ed],[e6]).

the pattern partial_order_1 will match any of the following event streams:

[el, e2, &3, o4, &5, e6]
[el, e2, &3, o5, o4, e6]
[el, e3, e2, o4, eb, e8]
[e1l, e3, e2, e5, e4, ebf]
[el, e3, ed4, o2, e5, eb]
[el, e3, e5, o2, e4, ef]
fel, e3, e4, o5, a2, e8]
[el, e3, &5, e4, 2, e6].
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2.3.2 Hoare’'s CSP

Hoare describes a trace-theoretic approach to specifying concurrent software in his book on Com-
municating Sequential Processes [11]. The CSP vocabulary chosen by Hoare can be translated to
Bop almost symbol-for-symbol. For example, below are some sample definitions.

% Concatenation of traces: S followed by T
-t =>T.
[xIs1-T => [XI(s"1)].

% Repetition of traces: S repeated N times
S#¥N => [] :- N =<0, !,
S#*N => S”(S#*N1) :- N1 is ¥-1.

% Restriction of traces: § restricted to (a set) A

[1 restricted_to _ => [].

[X|8] restricted_to & => (S restricted_to A) := \+ member(X,A), !.
[X]S} restricted_to A => [X|(S restricted_to A)].

% Prefixes of traces: S is a prefix of T
(03 =< [1) => true,

(00 =< [_t.1) => true.

([_1_] =< [O) => false.

([x!8] =< [YIT]) => false = X\==Y.
([x18] =< LYIT]) => (8 =< T) :- X==Y,

% Similarity of traces: S is like T with up to N symbols removed
is_like([},[]J,N) => true.

is_like([2,[X18],N) => true :- #[XIS] =>> L, L =< N.
is_like([J,[X|8],N) => false :- #[XIS] =>> L, L > N.
is_like([xIs]1,[YIT},N) => is_like(S,T,N) :- X == Y.
is_like(EXIS1,[YIT],N) => is_like([XIS],T,N1) :- X \== Y, K1 is N-1,

% Subsequences of traces: S is a subtrace of T
[0 in [1 => true.

3 in [L1.] => true.

{-1_] in [ => false.

[XIs] in [YIT] => S in T :- X == Y.

[XI8] in [YIT] => [XIS] in T :- X \== Y.

% Trace summary: the count of a symbol B in S

symbol_count{{],_) => 0.

symbol_count{[X|S],B) => N1 :- X==B, symbol_count(S,B) => N, N1 is N+1,
symbol_count({X[8],B) => ¥ :- X\==B, aymbol_count(S,B) => N.

Hoare also defines modest machines for processing traces. For example, here are some simple
machines from pp.30-31:

% A machine which offers a choice of two combinations of change for Ep

chbe => inbp ~> ( outip -> ocutlp -> outip -> out2p —> chbc
| out2p -> outip -> out2p -> chbc }.

% A more complicated vending machine, which offers a choice of coins
A and a choice of food and change

vme => (in2p -> (large -> vmc
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|small -> outip -> vmc)
finip -> (small -> vmc
[inlp -> (large -> vmc
[inlp -> stop))).

% A copying process

copybit => mu X.{(in_0 ~> out_0 -> X
lin_1 -> out_1 -> X).

The csp demo can be used to get all possible short traces of a particular machine’s execution:

Enter one of chBc, wvmct, vmc, vmcred, vms2, copybit: vme.
Enter length of traces to be generated: 3.
Resulting tree of traces:
in2p
large
in2p
large
small
inip
small
inilp
small
outip
in2p
inip
inlp
small
in2p
large
small
inlp
small
inlp
inlp
large
in2p
inlp
inlp

total CPU time 49 msec

We are not aware of another implementation of CSP of this kind.

2.4 Search

Search is a fruitful application area for laziness: many search spaces permit the search frontier to
be expanded incrementally, using arbitrary search criteria (heuristic best-first expansion, branch-
and-bound, etc.). This is particularly easy to see when the search space consists of streams.

2.4.1 Permutations and Slowsort

Using the rules
perm([1) => [J.
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perm([XIL]) => insert(X,perm(L)).

insert(X,L) => [X]|L].
insert(X,[YIL]) => [Ylinsert(X,L)].

we can generate all permutations of a list of length N, by exhaustively backtracking through them.
For example:

Enter size of list to be permuted: 3.
[1,2,3]

[1,3,2]

[2,1,3]

[2,3,1]

[3,1,2]

[3,2,1]

total CPU time 50 msec

Using this nondeterministic function, slowsort can be defined via generate-and-test:

slowsort(L) => sorted( perm(L) ).

sorted([]) => [].
sorted([XIL]) => preceded_by(L,X).

preceded_by([],X) => [X].
preceded _by([YIL],X) => [Xl|preceded_by(L,¥)}] :- X =< Y.

Note that this algorithm coroutines testing (sorted) with generation (perm), in a pipeline. This
coroutining prunes away many unsuccessful generations at an early point, and achieves faster
execution on the average than a brute force search:

List: [6,1,5,4,2,3].
Resulting list is: [1,2,3,4,5,6]
total CPU time 110 msec

Nevertheless, the execution is still very slow for large lists, so the program still richly merits the
name ‘slowsort’.

2.4.2 N Queens

The n-queens problem asks to find configurations of a n x n-chessboard in which n» queens are
placed in such a way that no queen ‘attacks’ any of the others. The problem was studied by Gauss,
among others. The following is a Bop program for finding solutions of the problem, again using a
generate-and-test approach:

queens(L) => safe(perm(L)).

safe([]) => [1.
safe([IiL]) => [Ilsafe(nodiagonal(L,I,1))].

nodiagonal([I,_,_) = 0.
nodiagonal([J|L],I,D) => [Jlnodiagonal(L,I,D1}] :- \+ diagonal(I,J,D), Di is D+1.

diagonal(I,J,D) =D is I-J.
diagenal(I,J,D) :-~ D is J-I.
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With the list L=[1,2,...,N], where N is the size of the chessboard, the program will find all
non-attacking configurations of the queens.

[2,4,6,1,3,5]
[3,6,2,5,1,4]
[4,1,5,2,6,3]
[6,3,1,6,4,2]

total CPU time 1050 msec

2.4.3 General Search Strategies

The simple examples above show that search can be implemented as a lazy traversal of a space
of possibilities. More generally, any search strategy can be programmed if we come up with an
explicit representation for the search space, and implement operators to perform the traversal.

Permutations

We can model search spaces as streams of alternatives, which are search spaces that are expanded
by one step. This is the basis for Paulson’s interesting treatment in [26). For example, the space
of permutations of [1,2,3] could be expanded breadth-first in the following way. We begin ini-
tially with the empty permutation [J, then repeatedly expand each lists in the current space by
prepending it with all possible values that will still give us a permuted sublist of [1,2,3]:

1

[ (11, (2, (3] 1]

[ [2,1], (3,11, (1,21, [3,2], (1,31, 2,31 ]

[ [3,2,11, [2,3,1], [3,1,2], [1,3,2], [2,1,3], [1,2,3] ]

Search strategies can be written as higher-order functions on search spaces. These strategies
take an several arguments:

1. The search space remaining to be expanded. Initially, the search space is [[1], consisting
of a single empty partial permutation, and at any point subsequently it will be a stream of
partial permutations. These partial permutations are placed on the output when they are
‘full’, i.e., they contain all N values.

2. The mapping that obtains the descendants of the current search space node. For example,
with permutations the mapping finding descendants of a partial permutation L of the integers
between 1 and N is

nextvalue(N,L) => XL :- findall([XIL], (between(X,1,N),\+member(X,L)), XL).

between(L,L,L) :- .
between(I,L,U) :- M is (L+U)//2, between(I,L,M).
between(I,L,U) :- M is 1+{L+U)//2, between(I,M,U).

3. The predicate that determines whether input values should be passed the output. Here the
predicate that determines whether permutations are ‘full’ (complete, of length n) is easily

defined:
isfull(N,Qs) => false :=~ \+ length(Qs,N), !.
isfull(_,_) => trus.

We can now implement breadth-first and depth-first search as follows:
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dts([3,_,.) => [1.
dfs([XiXs],Desc,Pred) => if (Pred@X)
then [X|dfs(append{DescX,Xs),Desc,Pred)]
else dfs(append(DescX,¥s),Desc,Pred)
:— Desc@X =>> DescX.

bfs([1,_,_) => {].
bfs([X1Xs],Desc,Pred) => if (Predd@X)
then [X|bfs{append(¥%s,DescX),Desc,Pred)]
else bfs(append{(Xs,DescX),Desc,Pred)
:— Desc@®X =>> DascX.

These definitions are almost transparent. The idea is that depth-first search places the descen-
dants of the current search space node at the beginning of the remaining space to be searched, while
breadth-first search places them at the end. At each step we find the descendants Desc@X on the
current node X, and depending on the value of the predicate Pred@X either include or omit X from
the output. With these definitions, both expressions

dfs( [[13, nextvalue(3), isfull(3) )
bfs{ [[11, nextvalue(3), isfull(3) )

yield the stream of permutations
{ 03,2,1]1, [2,3,11, [3,1,2], [1,3,2], [2,1,3], {1,2,311].

Note that these permutations are obtained last-digit-first, so the earliest permutations have last
digit 1, and so forth.

This example shows the use of function application operator ‘@’. Since we want ‘curried’ ex-
pressions like nextvalue(3) and isfull(3) to be values until they are applied to some list, we
must include definitions like the following:

nextvalue(N) => nextvalue(N).

isfull(N) => isfull(N).

Through all this, we see that we can define search strategies as higher-order functions on search
spaces. We can also go one step further and extend them to functions on individual search space

nodes:

depth_first(Desc,Pred) => depth_first(Desc,Pred).
depth_first(Desc,Pred,X) => dfs([X],Desc,Pred).

breadth_first(Desc,Pred) => breadth_first(Desc,Pred).
breadth_first{Desc,Pred,X) => bfs([%X],Desc,Pred).

dfs_perms{N) => depth_first(nextvalue(N),isfull(¥),[]1).
bfs_perms(N) => breadth_first{nextvalue(N),isfull(N),[]).

With these definitions, dfs_perms(3) and bfs_perms(3) both evaluate to the same stream
given above.

Palindromes

A palindrome is a word that equals its own reverse. We can set up a search for palindromes by
incrementally generating words as described above, where descendants are incremental extensions
of their parents, and the predicate used determines whether the word involved is a palindrome.
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dfs_words => names((depth_first(words_ending _with,is_palindrome) @ [J])).
bfs_words => names((breadth_first(words_ending_ with,is_palindrome} ¢ [1)).

words_ending_with(L) => [ [0°A|L}, [0’BIL], [0’cIL] J.
words_ending_with => words_ending with.

is_palindrome(L) => false :- \+ (reverse(L) =>> L), !.
is_palindrome(_) => true.
is_palindrome => is_palindrome.

names([]1) => [].
names{[LILs]) => [Nlnames(Ls)] :- name(¥,L).

With this program we get the following output:

| 7- print_stream(first(20,dfs_words)) =>> _
"

TAAY,

*AAAC .

TAAALAC

TAAAAA’.

TAAAAALC .

YAAAAAAA’ .

TAAAAAAAAC.
"AAARARARAA’ .
*AAAAAAAAAR’ .
YAAAAAAAAAAAN’ .
PARARAAAAAAALAA? .
"AARAAAARRAARAA® .
"AAAAAAAAARARAA’.
PAAAAAAAAARAAAAL’ .
PAAAAAAAAAABRAAAAAY,
AAAAAAAAAAAAAARALY.
TAARAAAAAAAAAAAAAALN
AAAAAAAAAAARAAARAAR’ .

yes
| ?- print_stream(firat(20,bfs_words)) =>> _
13

A,

B,

'c?,

*AAC .

'BB’.

ccr.,

"hAA° .

TABA?.

PACA?Y .

BAB?.

'BBB’.

‘BCB*.

'CAC?.

'CBC?.

1CCCr.

'AAARY .
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'ABBA’ .
YACCA’ .
'BAAB’ .

yes

Depth-First Iterative Deepening Search

Following Paulson, we can extend the search strategies above to include such things as depth-first
iterative-deepening (DI'ID) search. This repeatedly applies depth-first search up to a given depth
bound K, which is incremented over time. Since DFID search is extremely slow when the increment

chosen is small (in particular, when this increment is 1), the program here supports an arbitrary
depth increment.

dfid(Desc,Pred) => dfid{(Desc,Pred).
dfid(Desc,Pred,X) => dfid(1,Desc,Pred, X).

dfid{DepthIncrement,Desc,Pred) => dfid(DepthIncrement,Desc,Pred).
dfid{DepthIncrement ,Desc,Pred,X) => deepen(0,DepthIncrement,Desc,Pred,X).

deepen(K,D,Desc,Pred,X) => dfs(K,D,Desc,Pred,X,deepen{KD,D,Dasc,Pred,X))
:= KD is K+D.

dfs(K,D,Desc,Pred) => dfs(K,D,Desc,Pred).
dfs(K,D,Desc,Pred,X) => dfs(K,D,Desc,Pred,X).

dfs(K,_,_,Pred,X,sF) => if(Pred®X, [X|SF], SF) :(-K =0, ¢,
dfs(K,D,Desc,Pred,X,SF) => foldright (dfs(K1,D,Desc,Pred),DesceX,SF) :- K1 is K-1.

foldright(_,[],8F) => SF := 1,
foldright (Op, [X|Xs],SF) => 0p@X@foldright(Op,Xs,SF).

dfid_words => names{dfid(words_ending _with,is_palindrome,[])}.
With this definition, we obtain the following result:

| ?- print_stream(first(20,dfid_words)) =>»> _
"

'A’.
‘B’.
cr.
*AR’ .
*BB’.
e,
*AAAC.
*ABAY .
TACA’ .
'BAB’.
*BBB’.
*BCB’.
YCAC’.
'CBC’.
'cce’ .,
TAAALT.
'ABBA’.
*ACCA’ .
'BAAB’.
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N Queens With Arbitrary Search Strategy

Earlier we implemented the n-queens problem with depth-first search. Here, we can implement it
using various strategies:

queens(N) => depth_first(nextqueen(N),isfull(KN), [1).

dfid_queens(D,N) => dfid(D,nextqueen{¥N),isfull(N), [1).

nextqueen(¥,Qs) => NQs
:— findall{{NewQ|Qs], (between(NewQ,1,N),safequeen(Qs,New])),NGQs).

nextqueen{N) => nextqueen{(N).
safequeen(Qs,NewQ) :- \+ member(NewQ,Qs), \+ diag(1,¥ewQ,Qs).

diag(I,NewQ,[QI_]) :- I is NewQ-q.
diag(I,NewQ,[Ql_3}) :- I is Q-NewQ.
diag(I,NewQ,[_1Qs]) :~ It ie I+1, diag(I1,NewQ,Qs).

The results here are like those before:

| 7- print_stream(first{(10,queens(8))) =>> _
4,2,7,3,6,8,5,1].

yes

| 7- print_stream(first{(10,dfid_queens(4,8))) =>>
(4,2,7,3,6,8,5,1].

(5,2, ,8,6,11.

11].

> H) ? L] » 1

3 3 » » ] ¥

[ B o Mo
B oW W

2,4,7,3,8
5,2,8,6,4,7
6,4,2,8,5,7
»7,1,3,8,6,4
,6,8,3,1,7,5
6,8,1,4,7,5,2].
3,8,4,7,1,6
7,4,1,3,8,6
1,56,8,6,3,7

w

» ¥ » L ?

» ¥ 3 ] L] >

» E ? ? Hd E)

L L B B
L) |

o
-

Ll r Ed * »

yes
| 7- print_stream{queens(8)) =>> _.
[5,3,1,8,4,2].
(4,1,5,2,6,3].
[3,6,2,5,1,4].
[2,4,8,1,3,5].

yes
| 7~ print_stream(dfid_gueens(3,6)) =>> _.
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[5,3,1,6,4,2].
[4,1,5,2,6,31.
[3,6,2,5,1,4].
[2,4,6,1,3,5].
~C

Prolog interruption (h for help)? a

{ Execution aborted }
| 2-

The second query uses DFID search with a depth increment of 4. Of course, the searches here
are slower than for the n-queens program developed earlier since the search strategy is implemented
interpretively, and the search space is materialized in list structures rather than visited via back-
tracking. One also learns a fact about DFID search that is not often discussed: it is not easy
to recognize when DFID search should halt! The point is that general search strategies can be
programmed and used easily. Actually, a further point is that ML code is easily stolen using Bop.

2.5 Metaprogramming

As the previous example shows, it is possible to specify control of complex search processes straight-
forwardly with Bop. More generally, Bop is a fine system for developing interpreters. In fact, Bop
has been intentionally developed with metaprogramming in mind.

2.5.1 A General Prolog Interpreter

Meta-circular interpreters for all of Prolog are ugly. This is primarily due to the inadequacy of
the clause predicate and difficulty of interpreting unprincipled uses of the cut primitive. One
surprising aspect of Bop is that, if cuts are restricted to principled uses with the conditional rules,
then it becomes possible to write simple Bop/Prolog meta-interpreters, such as the following;:

prove(G) =>  true := builtin{(@), !, call(G).
prove(G) => prove(B) :- (G=>B).

prove(\+ G) s> true := \+ (prove(G) =>> true).
prove((a,B)) => prove{(B) :- prove(4) =>> true.
prove((A->B)) => prove{B) :- prove(4) =>> true.
prove((A->B;.)) => prove(B) :- prove(d) =>> true,
prove{{_->_;C)} => prove(().

prove({4;_)) => prove(A).

prove({(_;B)) => prove(B).

Note that the second line uses the => predicate where Prolog interpreters would normally use
clause/2! Since the conditions in Bop rules can include cuts, then as long as the conditions amount
to preconditions specifying when a Bop rule can be selected, the interpreter here handles full Prolog.

For example, the program

fib(¥,1) => true :— N=<1, !,
fib(N,F) => <£ib(N1,F1), fib(N2,F2), F is F14F2 :- N>1i, N1 is N-1, N2 is N-2.

uses the rule conditions only as guards on rules. This can be thought of as augmenting the indexing
provided by Prolog in clause selection. This program uses cuts only for these preconditions, and in
such a situation, the interpreter above is meta-circular! It interprets cuts properly.

|7- prove(£ib{14,X)) =>> Y.

X = 610,
Y true 7 ;



2.5, METAPROGRAMMING 35

|?- prove(prove(£ib{(14,X}}) =>> Y.

X = 810,
Y = true 7 ;
no

[7-

The advantages of rewriting become apparent when we consider more sophisticated programs.
Although the program above takes time exponential in n to complete, we can bring the time down
to finear in n by adding one additional rule:

(£ib(N1,F1), fib(N2,F2), Add) => ((fib(N1i,F2), More), Add)
= (£ib(N1,F1) => fib{(N2,F2), More).

This rule is very subtle! It recognizes that evaluation of £ib(N,F) causes evaluation of £ib(N1,F1)
and £ib(N2,F2), and that evaluation of £ib(N1,F1) will cause fib(N2,F2) to be evalnated again
redundantly. The rule merely consolidates the two fib(N2,F2) subgoals. The result is a huge
decrease in complexity.

2.5.2 Constraint-Processing Metainterpreters

We can extend the interpreter above to take an environment argument E, in which we can save
arbitrary constraints. Execution of a ‘constraint’ causes this environment to be updated, and
bindings generated in the course of normal execution should cause this environment to be updated
as well. For example, we can implement a Prolog system with the freeze primitive. Recall
freeze(X,G) delays execution of the Prolog goal G until the term X becomes nonvariable. This
delayed execution can be implemented in Bop as follows:

solve(d) => solve(g,[]).

solve(G, E) => E - builtin(G), ', <all(G).
solve(G, E) => solve(B,E1) :- (G=>B), thaw(E,E1).
solve(\+ G, E) => E - \+ (830lve(G,E) =>> _).
solve((A,B), E} => solve(B,E1) :- solve(4,E) =>> El.
solve((A->B), E) => solve(B,E1) :- solve(A,E) =>> El.

solve((A->B;_), E) => solve(B,El) :
solve((_->_;C), E) => solve(C,E).
solve((A;_ ), E) => solve(A,E).
solve((_;B), E) => solve(B,E).
solve(freeze(X,G),E) => E1
solve(freeze(_,G),E) => solve(G,E).

solve{A,E) =>> E1.

var(X), !, insert{(freeze(X,G),E,El).

thaw([1,[]).

thaw([FG|EO], [FGIE]) :- FG=freeze(X,_), var(X), !, thaw(E0,E).
thaw([FGIE0Q] ,E) 1— FG=freeze(_,G), !, solve(G,EQ) =>> E1, thaw(E1,E).
thaw([G{E0],[GIE]) :- thaw(EO,E).

insert(G,E,[GIE]).

With this interpreter we can write many constraint processing programs. For example, the classic
SEND+MORE=MONEY demo is provided. It is ecasily arrives at a solution quickly, using a rule
like dif _numbers(X,Y) => freeze(X, freeze(Y, X \==Y)).
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Chapter 3

Bop and Rewriting

The rewriting field is large, and at first it is difficult to get a grasp on its development. Rewrite
rules have been used as formula simplifiers in automated deduction systems for over twenty five
years [3, 12].

Extensions of Prolog to include term rewriting, equational logic, or functional logic programming
typically either introduce a more general equality relation as an additional predicate, or extend the
unifier from the usual syntactic unification procedure to solve some more general equational theory.
In both cases the equality theory is usually ‘directed’ —i.e., the equations are used only one way, in
which more complex expressions are equated to simpler expressions — giving an equational system
which can be viewed as an evaluator. Bop follows the first approach; the compendium [15] gives
an good survey of current work on extended unifiers.

Bop rests on conditional term rewriting. Its implementation, with completion rules and ordering
rules, and other features such as the schema directive, supports various kinds of term rewriting.
Specifically, Bop supports complete term rewriting (Knuth-Bendix-like systems and systems with
term orderings) and regular ferm rewriting (IHuet-like confluent systems, lambda calculus, com-
binatory logic, systems with constructors). We show examples of these kinds of term rewriting
below.

3.1 Conditional Term Rewriting and Bop

Conditional rewrite rules arise naturally from equational logic, or the combination of logic and
functions. For example, consider the rule

for all real X, power(X,0) = 1if X # 0

which asserts that the arithmetic expression power(X,0) can be simplified to 0 as long as X is
NONZETO.

In the past decade these rules have attracted increasing amounts of attention at international
conferences and workshops on rewriting systems, automated deduction, and programming lan-
guages. One reason for interest in them is that they offer an elegant way to integrate rewriting,
functional programming, and logic programming. Conditional rewrite rules have been featured
recently by a number of proposed programming systems, including RITE [8, 13], SLOG (9], and
K-LEAF [16]. See also [2, 6] for surveys of integrations of functional and logic programming.

Bop in particular is the successor of a number of rewrite rule systems developed at UCLA,
particularly F* and Log(}') [20, 21], Narrowing Grammar [4], and FLOP [23]. These UCLA systems
were all initially inspired by the work of Sanjai Narain, beginning in 1984 with his paper on
implementing lazy evaluation in Prolog [19]. Bop is a second-generation system, extending these
earlier systems with several years’ of experience and further study of rewriting.

37
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3.2 Narrowing and Conditional Narrowing

In the context of combining rewriting with logic programming, one frequently hears the term
narrowing. The predicate =>> implements a kind of narrowing in Bop. In order to avoid confusion,
we review here what narrowing is, and what conditional narrowing is.

Narrowing is a mechanism for rewriting a term, in which the term is unified with the head of
rule whenever the rule is applied (or more precisely, attempted to be applied, since the unfication
can fail). Narrowing was considered by Slagle, Lankford, Fay, and Hullot in the mid-1970’s, and
conditional rules were investigated by Brand and Lankford slightly later, but the combination of
narrowing, conditional rewrite rules, logic programming, and functional programming has been
studied only recently.

An excellent tutorial on narrowing can be found in [28]. We can define narrowing formally in
the following way. Let p, ¢ be terms where p is not a variable, and let s be a nonvariable subterm of
p {which we write p = r[s]). If there exists a rule LHS => RHS (which we assume has no variables
in common with p), for which there is a most general unifier # of LHS and s, and ¢ = (r[RHS])#
(the result of replacing s by RHS and applying the substitution @), then we say p narrows to q.

A narrowing is then a sequence of terms

h = p2 = ... =& Pn

such that p; narrows to p;4q1 for 1 <i<n— 1.
Let us cement our understanding of narrowing with an example. If we are given a set of rules
such as

0+X = X.
s(Y) + Z => s(Y+2).

then a narrowing of the term s(0)+s{0) is:

s{0)+s(0)

! s(¥)+Z => s(Y+Z) {Y « 0, Z « s(0) }
5{0+s(0))
! O+X => X {X%X «— s(0) }

The result of the narrowing is the term s(s(0})}. The rules used in the narrowing are shown in
the center, and the bindings generated are shown on the right in this diagram.

The narrowing just shown is actually a reduction, since the terms rewritten at each step are
ground terms (closed terms, terms without variables). Narrowing permits the rewriting of terms
with variables. For example, one narrowing of the term s{M)+s(0) is:

s(M)+s(0)

! s(Y)+Z => s(Y+2Z) {Y «~ M, Z « s(0) }
s(M+s(0))
1 0+X => X {M~0,X— s(0)}

Furthermore, with the term s(M)+N, we have multiple (nondeterministic) narrowings. Two nar-
rowings are:
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s(M)+N
s(Y)+Z => s(Y+Z) {Y — M, Z «~ N }
s (M+N)
0+X => X {M~0, XN}

s{M)+N

s(Y)+Z => s(¥Y+Z) {Y < M, Z — N}
s(M+N

s(Y)+Z => g(Y+Z) { M «— s(Y), Z — N}
s(s(Y+N)

0+X => X {Y~0,X <N}

®
— — — ~| — —
=
St
~ ~
p—_

s(s(N)

The example above describes narrowing for rules without conditions. For conditional rewrite
rules such as

LHS => RHS :~ Condition

narrowing is quite similar, but first performs unification with LHS and then checks the logical
Condition. For example, the term power(3,0) can be narrowed using the rule

power(X,0) => 1 :- 4if(X,0).

by first unifying X with 3, checking that 3 is different from 0, and producing the result 1. Thus we
have a narrowing

power(3,0) — i

of one step. More generally, the narrowing could have multiple steps. For example, using also the
rule

power(1,E) => 1,
we get the two-step conditional narrowing

power(power(3,0),6) — power(1,5) — 1.

3.3 Narrowing vs. Reduction

It is important to be aware of the difference between narrowing and reduction, which until the
1980’s provided the standard operational semantics of rewriting systems, With reduction, ground
terms (terms having no variables) are rewritten to ground terms; and also, in a rule (LHS => RHS),
one typically must guarantee that every variable in RHS also appears in LHS. With narrowing, by
contrast, arbitrary first-order terms are rewritten to first-order terms, and fewer restrictions are
made on LHS and RHS Furthermore, a narrowing produces bindings # that, in a Prolog system,
can affect the term p; initially submitted for rewriting.

The distinction between reduction and narrowing is significant, as some computations are pos-
sible with narrowing that are not with reduction. The ability to obtain bindings is powerful. For
example, with the rule
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1l
v

power(X,0) 1 :- 4dif(X,0).

there is a narrowing
power{2,P) — 1

that results in the binding P = 0, telling us that (2F) simplifies to 1 provided that P is 0. However,
there is no such reduction, since power(2,P) is not a ground term.

Today a number of popular functional programming languages, notably ML and Miranda, use
a rewrite rule-oriented syntax. However, these languages do not yet offer what is provided by Bop:

1. These functional languages use reduction, not narrowing,.

2. These languages rest on rewrite rules, not conditional rewrite rules. As a consequence, they
are obliged to provide if-then-else constructs that obscure the readability of the rules. Fur-
thermore, they lose the power of the relational style, which allows non-procedural statement of
descriptions (conditions), in a way approximating natural language — the basis of the success
of database query languages.

3. These languages offer modularization mechanisms that are more aimed at software engineering
{specifically encapsulation, data hiding, and strong typing) than at flexibility and exploration
of context paradigms in data access. Although these mechanisms can be added to almost
any language, their addition typically causes concessions in flexibility that we do not want to
make yet. Many people do not seem to have grasped that the main strength of Prolog is the
great expressivenessit provides with reasonable performance. Bop is a further step along the
line of expressive, reasonable performance languages.

3.4 Complete Term Rewriting

In complete term rewriting, term rewrite rules are applicable at any position within a term. They
are to be applied in arbitrary order until no rule is applicable; ‘completeness’ of a set of rules
guarantees that the result of this rewriting is the same, regardless of the selection of rules or the
order in which they were appplied.

Below we show the classic group expression simplification rules of Knuth-Bendix. These rules are
confluent, and are suflicient for simplifying any expression involving group multiplication, inverses,
and identities.

:= op(250,yf,inverse).

1 inverse => 1.

X inverse inverse => X.

X inverse * ( X * ¥ } => Y.

{ X % Y ) inverse => Y inverse * X inverse.

1 %X => X.

X inverse * X => 1.

X %1 => X.

X * X inverse => i.

X * ( X inverse * Y ) => Y.

(X *Y) *x2Z => X *x {¥Y*xZ).

(X=*Y) = (X *xY). % completion
X inverse =>» X inverse. % completion
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For example, the term
p * (p inverse) * (q * r) inverse * (q * r) * s
is rewritten to s as follows (recall * is left associative):

(((p * p inverse) * (q * r)inverse) * (q * 1)) * s
((1 * (q * r)inverse) * (q * 1)) * 8

({1 * (r inverse * q inverse)) * (q * r)) * s

((r inverse * q inverse) * (q * r)) * s

(r inverse * (q inverse * (q * r))) * s

{r inverse * ) * s

1 % 3

s

With Bop, the final two completion rules handle the situation where none of the other rules is still
applicable, These rules are highly nondeterminate, but because of the way search is performed
(applying any possible rule before resorting to the completion rule), the first completion obtained
by the rules will be the Knuth-Bendix normal form.

3.5 Regular Term Rewriting

The SKI-calculus of combinatory logic is probably the prime example of what are called applicative
term rewrifing systems, term rewriting systems with a special binary application operator. The
SKl-calculus can be implemented in Bop as follows: !

is=>»i.

i(X) => X.

k => k.

k(X) => k(X).
k(X,Y) => X,
8 => 8.

s{X) = s(X).
2(X,Y) => s(X,Y).
8(X,Y,Z) => (XeZ) e (Yaz).

In this implementation, Bop fixed-point rules are used to implement normal forms. All normal
form terms (terms that cannot be evaluated further) are defined to be fixed points. Bop evaluation
of these terms leaves them unchanged. Subsequent evaluation will result, however, if these terms
are applied to arguments.

Note that F @ X is function application, applying the function F to the argument X. Evaluation of this causes
evaluation of the term F{X), constructed from F and X using Prolog’s metalogical term-building primitives, where
arguments are appended at the right. For example. when evaluating k @ 1 Bop evaluates k(1), and when evaluating
k(1) & 2 Bop evaluates k(1,2).
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Chapter 4

Formal Syntax and Semantics of Bop

The previous sections have given a high-level view of programming in Bop. In this section we

show that Bop rules can be thought of as implementing well-known equational, term rewriting

or functional programming concepts. Understanding the semantics of Bop programs from these

perspectives permits reasoning about Bop programs, and clarifies strengths and weaknesses of Bop.
The semantics of Bop can be presented in several natural ways:

e Bop rules are equations, and the semantics of Bop programs are those of equational logic;

¢ Bop rules are inequalities that define a partial order => on terms, and the semantics of Bop
programs are those of inequational logic;

¢ Bop rules define a binary relation => of Bop-narrowing on terms, and programmers can use
this relation and its composition closure =>>. The composition closure is the least solution of
the fixed-point equation

=>> = (=>o0=>)

where o denotes composition of relations. In other words, if we think of => as a mapping,
then =>> is the fixed-point iteration of =>.

¢ Bop rules are function definitions, and programmers can use both the definition relation =>
and the functional evaluation relation =>>, which evaluates a functional expression to ‘normal
form’ (a term all of whose subterms are completions).

e Bop syntax is just a convenient shorthand for first-order logic, and any Bop rule can be
converted directly to a Horn clause. The semantics of a Bop program are those of the
corresponding logic program,

Thus one can view a Bop program in several very different. but ultimately equivalent, ways. That
Bop unifies these diverse semantics is a strength; it unifies aspects of logic programming, functional
programming, term rewriting, and iteration in a simple way. We will show later that further
interpretations can be given to Bop rules, including viewing them as grammar rules and as a
limited kind of object-oriented method definitions.

4.1 The Syntax of Bop Rules

Bop rules take the form

LHS => RHS :- Condition.
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where LIS and RHS are first-order terms, and Condition is a Prolog goal; this Condition can be
omitted. The syntax of Bop rules is restricted in one important way: all nonvariable arguments in
LHS must be completions.

We will assume here without loss of generality that all Bop rules are ltnear, i.e., no variable can
appear more than once in LHS. There is no loss of generality here since a nonlinear rule like

£GAXLYL,X)) => g(X) - q(X,2).
can be converted to the equivalent Iinear rule
£f(V1,h(V2,Y,V3)) => g(X) :- V1 =>> X, V2 =>> X, V3 => X, q(X,2).

where V1, V2, and V3 are newly-introduced variables. These two rules are equivalent in the sense
that equalities implicit in the LHS of the first rule are made explicit in the condition of the second.
Since the semantics of equality among duplicate LJ/S variables can vary, the assumption of linear
rules is made here for clarity. Bop actually does permit nonlinear rules like the one shown above,
interpreting them as a shorthand for the corresponding linear rule. However, for this section we
will assume that Bop rules are always linear.

Every Bop rule must necessarily be one of the following two kinds:

1. Completion rules
A Bop rule in which LHS and RHS are identical is a completion rule.

In all term rewriting systems, the process of rewriting will terminate on some terms. In the
literature these terms are variously referred to as ‘normal forms’, ‘constructor terms’, ‘values’,
and so forth. Bop terms that rewrite to themselves (i.e., terrns on which rewriting has no
effect, or are fixed-points under rewriting} are called completions.

Completions are declared with completion rules. Examples of predefined completions in Bop
are: true, false, [], [_1.]. These are defined by the following completion rules:

true => <true.
false => falsa.
O = [J.

HIT? => [HIT].

Conditional completion rules are also permissible. For example, the following rule declares
all numbers to be completions:

X => X := number{X).

This rule does not declare variables to be completions. Variables do not rewrite to themselves
with this rule — at least not with the definition expected here for number(X). As the rule is
written, only numbers are declared to he completions.

In principle, all terms could be declared to be completions in Bop with the reflexive rule
X => X.

However, doing this is not a good idea because it would make most programs highly nondeter-
minate. With this rule every term rewrites to itself, and with any other rules Bop will produce
a large number of results (completions, ‘normal forms’) for most terms being rewritten.

Many term rewriting systems follow the convention that rewriting terminates when no appli-
cable rule can be found. In Bop, a different convention is followed:
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(a) In Bop, rewriting fails when no applicable rule can be found.

(b) In Bop, rewriting terminates (succeeds, reaches a fixed point) when a completion tule
can be applied.

This convention fits the Prolog control model and more generally the logic programming
proof search model. Also, it permits interesting variations on term rewriting system control
schemes.

2. Ordering rules

Rules that are not completions are called Bop ordering rules. Various examples of ordering
rules are as follows:

if(true,X,_) => X.
if(false,_,Y) => Y.

lazy_and(X,Y} => if(X,Y,false).
lazy_or(X,¥) => if(X,true,Y).

not{X) => if(¥,false,true).

power(0,E) => 0 :- dif(E,Q).

power(1,E) => 1.

power(X,0) => 1 :- dif(X,0).

power(X,E) => Y :~ number(X), integer(E), E>=1, pow(X,E,Y).
append([],L) = L

append([X|L1],L2) => [).llappend(Li,Lz)}.

int_between(L,L) => L.

int_between(L,U) => int_between(L,M) :- M is (U+L)//2.
int_between{(L,U) => int_between(M,U) :- M is 1+(U+L)//2.
ints(N) => [Nlints(N1)] :- N1 is N+1.

These rules illustrate how ordinary term rewriting rules (if, lazy_and, lazy_or, not), con-
ditional rewriting rules (power), nondeterministic rules (when its arguments are unbound
append also may succeed in more than one way, and int_between succeeds in more than one
way when its first argument is less than its second) and rules generating infinite structures
(ints) can be written in Bop.

4.2 Equational Semantics of Bop

Each Bop rule can be viewed as equations between terms, and can be interpreted in the man-
nter typical for equational logic programs, logic programs in which the equality predicate figures

prominently (and is often the only predicate).
In first-order logic, the axioms of equality can be presented as follows:

Reflexivity aziom
Ye z==x.
Symmelry ariom

VaVy 2=y — y==z.
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Transttivily aziom

YeVyWe 2=z — 2=y, y=z.

Incremental funclion substitutivity azioms

For each n-ary function symbol f, and for each i, 1 < i < n:

Ver.. VeuVu fley, .z, oza) = flen, oo W, ) — 2= Wi

Predicate substitutivily arioms

For all n-ary predicate symbols p;

Va:l"'vxﬂVyl"'Vyﬂ p(‘rl!"'ﬁmﬂ) — p(yla'“ayﬂ)’ L1 =, ---2» Tn = ¥Yn-

The first-order theory generated by these axioms is called Eq.
We can define the semantics of Bop in terms of equational logic by considering tules to be

conditional equations. The rule

LHS => RHS :- q.

can be considered to be the conditional equation

LHS = RHS ~ 4.

This relationship with equational logic immediately gives a semantics for Bop: the semantics for
logic programs with the equality relation. Essentially all that is needed to make a set of Bop
conditional equations like this into a full logic program is to augment them with the axioms of
equality.

In fact, Bop does not use all of the axioms of equality. Its default equality theory is intentionally

not complete:

¢ Bop’s equality theory omits the symmetry axiom. This omission is typical of computational

implementations of equality, especially equality theories that implement functions, since func-
tion definitions are ‘directed’ equations.

Bop’s equality theory omits the reflexivity axiom. In its place, all useful instances of the
reflexivity axiom must be provided by completion rules.

Bop’s equality theory can omit some function substitutivity axioms. Specifically, for a given
function symbol f of arity n, if there is no Bop ordering rule for f whose LHS has a completion
appearing in the i-th argument position, then the i-th substitutivity axiom for f

f(mla'-wm‘ia-"amn)=f($11-"1yi1-"1$n) = =Y

is omitted. We say that f is lazy in its ¢-th argument in this case. For example, in Bop the
‘cons’ function symbol [_1_] is defined by default only by the completion rule shown above,
s0 it is lazy in both its arguments. Similarly since if is defired by the ordering rules

if(true,X,.) = X,
if{falses,_,Y) => VY.

H

it is lazy in its second and third arguments, and the corresponding function substitutivity
axioms are omitted.
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The result is that Bop’s equality theory is always a fragment Eq¢' C FEg. The precise fragment is
determined by the rules provided as input. Completion rules determine what fragment of reflexivity
is available, and ordering rules determine what fragment of substitutivity is available. The full
equality theory (even the symmetry axiom, in fact) can be made available if desired, but is omitted
by default.

We can formalize the compilation of Bop rules in terms of the equality theory E¢’. Compilation
can be performed by partially evaluating Bop rules with the equality axioms shown above. We can
think of the equality theory Eq’ as an interpreter for Bop rules, and the effect of this interpreter
can be incorporated into the compiled Bop rules by using partial evaluation.

First, the compilation algorithm leaves each completion rule

LHS =LHS «— g¢

undisturbed. Second, ordering rules (which we assume here are linear) undergo two transformations:

1. Resolution with transitivity
The equation
LHS= RHS ~ ¢

is resolved with the middle literal in the transitivity rule
r=2z — I = 'y, Y=z

to yield the consequence
LHS=2z «— g, RHS= 2.

Bearing the left-to-right computation rule of Prolog in mind, it is significant here that the
equation RHS = z is placed rightmost in the clause.

2. Resolution with incremental function substitutivity
The equation is resolved against the incremental substitutivity axioms for each argument in
which a non-variable term appears. If the equation is

f(t1,...,tx)=2 <« ¢, RHS=2
we resolve with the final literal of transitivity to get
r=2z «— z=f(t1,...,t,), ¢, RHS= 2.

If ¢; is not a variable in position ¢, we resolve the second literal with the i-th incremental
substitutivity axiom

f(xla"'swin""}wn):f(wla"'syis"'swn) = i =

to obtain

oo ticg, Tistigty .o ontn) =2 — z;=1;, q, RHS = 2.
We repeat this for each nonvariable argument #q,..., ¢, and in the end obtain the following
clause:

fly,..ap)=2 — & =tiy, ooy Tip, = tiyny ¢ RHS = 2.

Again, bearing the computation rule of Prolog in mind, it is significant that the subgoals
x;, = t;, are included in left-to-right order, and appear before the subgoals ¢, RHS = =.

This compilation process guarantees various important properties:
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1. If Bop’s fragment of equality is E¢’, and the Bop program is BP, the result of compilation is
a logic program LP such that

E¢ U BP + LP.

Every clause produced using this two-step transformation will be a consequence of the original
rules and the equality axioms. We have used only resolution with equality axioms in producing
the new rules.

2. The converse is not true, since the equality axioms are not inferrable from the compiled
axioms. However we do have a useful approximation of the converse:

LP U {z=2+~} + BP

That is, every original Bop equation is a consequence of the compilation and reflexivity.
Specifically, resolving away the subgoals z; = t;,, and RHS = z against the reflexivity axiom
z = g « ultimately transforms any clause in LP to its original form LHS = RHS « ¢
in BP. Thus, with reflexivity, the compiled equations are eguivalent to the original Bop
equations.

3. The compiled equations can be treated as a specialized equality theory in their own right.
That is, we can consider the compiled clauses as the definition of the equality relation ‘=’
removing the original axioms of equality.

¥

Under certain conditions the models of the compiled equations are the same as the models of
the original equations and axioms of equality.

4. Using SLD-resolution with the Prolog selection rule, the compiled equations implement lazy
narrowing, in which the leftmost outermost redex is always selected. Laziness stems not only
from the redex selection, but also from the partial use of incremental substitutivity, which
avoids use of the equality relation for arguments that were variable in the original Bop rule.

5. Bop’s two varieties of rules (completion and ordering rules) permits various programming
schemes:

e If a function symbol appearing as the LIS of a completion rule does not appear as the
LHS of any ordering rule, the symbol effectively implements a constructor [22]. Rewriting
of any constructor term terminates immediately.

e If a function symbol appearing as the LHS of a completion rule does also appear as
the LHS of a ordering rule, the symbol effectively implements a rewriting termination
scheme. When the completion rule appears before the ordering rule, we get a lazy
rewriting scheme again — but in this case provides another kind of laziness, in which the
completion rule is chosen first if possible. On the other hand, when the ordering rule
appears before the completion rule, we get a scheme that attempts to use transitivity
first, and reflexivity afterwards if transitivity fails.

4.3 Partial Ordering Semantics of Bop

We can adapt the semantics of Bop for equational logic to work for partial orders as well.
The standard axioms of partial orders in first-order logic are as follows:

¢ Reflexivily ariom

Ve 2Cz.
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e Antisymmeiry aziom
Va¥y z=y — zCy yCr
o Transitivily aziom

VeVyvz zCz — zCy yC=z

o Function monotonicity arioms
For all n-ary function symbols f, if f is (£4,Cp)-monotone in its i-th argument (1 < 7 < n), then

Vﬂ?l---V-’BnVyi f(mls---szia-'wzn) EB f(mlw--,yh--wfn) — I EA Y.

Predicate monotonicily azioms
For all n-ary predicate symbols p, if p is C 4-monotone in its i-th argument (1 < ¢ < n), then

Yoy, VeV pler, ..,z ,20) = pley, .. ¥, .., 20), 2 Ca Wi

In much the same way we developed equational semantics for Bop above, we can develop an
inequational semantics. There are two differences.

First, the symmetry axiom is no longer available with inequational semantics. However, this is
not only not a problem, it is an advantage. The ‘directed’ or ‘oriented’ view of equality discards
syminetry anyway. The antisymmetry axiom merely asserts that when two terms z and y are less
than or equal to each other, they are equal. This can be viewed either as a constraint on sets of Bop
rules {there are no ‘loops’; equality is interpreted as syntactic identity) or as a (partial) definition
of equality relation. Both make sense here, but we prefer the former, which views antisymmetry as
a constraint on Bop rules that prevents infinite loops.

Second, monotonicity axioms have replaced the substitutivity axioms. This is both interesting
and appropriate: a function or predicate may or may not be monotone in any given argument, and
the ordering € 4 can vary from argument to argument. In short, the inequality theory used for each
argument can vary. This is actually useful in programming, and is implemented by the schema
directive in Bop. Just as omission of a substitutivity axiom yielded laziness in the equational
semantics, omission of a monotonicity axiom will have the same effect here.

4.4 Narrowing Semantics of Bop

Bop provides a restricted kind of narrowing, which (for lack of a better term) we will call Bop-
narrowing. The binary relation => defined by Bop rules leads to a one-step narrowing on terms,
and the evaluation relation =>> is the multi-step narrowing relation obtained by composing Bop-
narrowing steps until reaching a completion. Intuitively, this composition closure will be the least
solution of the fixed-point equation

=> = (=>o0=>>)

where o denotes composition of relations. Let us explain more precisely how.
Bop-narrowing extends the NU-narrowing of [4, 5]. We say that p narrows to ¢ in one Bop-
narrowing step (with unifier 8) if either:

1. there exists a rule
LHS => RHS :- Condition

(where Condition can be trivial) for which p and LHS unify, and the goal
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= unify(p, LHS), Condition

succeeds! with unifier 8, so that ¢ = RHS#; or

2. o there exists a rule LHS => RHS :- Condition for which

P = f(sl'r"-13n)
LHS = f(ty,... t)

but the goal :- unify(p, LHS), Condition does not succeed;

¢ for some i, s; narrows to s, in one Bop-narrowing step with unifier 4, and:

18, ..., 808, 8, 8,40, ...,8.8) = q.

A Bop-narrowing is a narrowing
P1y P2y -4y Pn

where, for each i, p; narrows to p;1; in a Bop-step. We call this ¢ Bop-narrowing to a completion
if py, is a completion and p,.y is not.

This definition of Bop-narrowing gives an operational semantics for Bop rules. In a Bop-
narrowing step starting at p, we either unify p with the head of some rule, or else try to reduce the
distance between p and the head of some rule by recursively performing a Bop-step on one of p’s
arguments. In other words: outermost narrowing of the term p is performed if possible, and if not,
then an inner subterm is narrowed.

The Bop rule

f(tls“'st'n.) => RHS « q

i1s translated to the clause
flT1, . o,20) =>> 2« oy =5 by, ...,z = t,, q, RHS =>> 2

where 43,...,%y are the indices of nonvariable terms in ¢;,...,1;. We can prove that, with this
translation, the predicate =>> i1s Bop-narrowing to a completion. The goal

— f(s1,...,8,) =>> ¢

succeeds with substitution & iff there is a Bop-narrowing from f{s;,...,8,) to g8, and ¢6 is a
completion. The proof is a simple adaptation of that in [5].

The definition above does not specify how inner redex selection works, i.e., which argument s, is
selected in a Bop-narrowing step. As shown in [4] the freedom to select any argument is important in
guaranteeing completeness. In the Prolog implementation of Bop, however, a left-to-right argument
selection strategy is used. From left-to-right, arguments are unified if this is possible, and if not
Bop-narrowing is applied to them. This left-to-right selection is implemented by the translation
just shown.

Recapitulating, then, if we think of the => predicate as defining one-step Bop-narrowings (this
is not accurate, but intuitive), then the =>> predicate defines multi-step Bop-narrowings to a
completion. In this way, we can justify the earlier description of =>> as the ‘composition closure’
of =>.

IThe predicate unify can be defined by the clause unify(X,X).
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4.5 Coercions: the Intuitive Operational Semantics of Bop

Having described Bop’s semantics in several formal ways, let us point out another, less formal, way
of capturing the semantics that captures how it is often used in practice.

We mentioned earlier that completions in Bop are often used as constructors, to define values
or data structures. When Bop programs follow this constructor discipline [22], they are intuitively
understood as manipulating two kinds of terms: evaluated terms (constructors) and unevaluated
terms (terms that are not guaranteed to be evaluated). Basically, this means that for each value
type T' we define (via constructors), there are two types: T, and evaluates_to(T). For example,
the stream type is defined via the constructors [J and [_|_], and the first argument of the append
function must be of type evaluates.to( stream).

Programming this way is quite natural. One thinks of unification as a time for performing
coercions from type evaluates_to(T) to type T', for each argument that has a defined pattern. Thus
we extend unification to a ‘unification with coercion’ that evaluates input terms if this is explicitly
requested by the rule.

Coercion semantics can be reconciled with the other semantics given earlier. For example, with
equational semantics we can view the directed equality relation as a coercion.

The concept of coercions can be extended further, and include non-constructor completions.
Consider the following mixture of completion rules and ordering rules:

square(L) => square(L).

square(L) => rhombic(L,L}.

square(L) => rectangle(L,L).

rhombic{B,H) => rhombic(B,H).

rhombic{B,H) => parallelogram(B,H} :- H =< B.
rectangle(B,H) => ractangle(B,H).
rectangle(B,H) => parallelogram(B,H).

parallelogram(B,H) => parallelogram(B,H).

Here square(L) is a completion, but not a constructor, as it also evaluates to parallelogram(L,L).
These rules define a type hierarchy of parallelograms. With it, the term square(7) defines a value
that can also be coerced to the other values rhombic(7,7), rectangle(7,7),parallelogram(7,7).
Potentially then, coercion semantics can implement certain kinds of inheritance, as well as other
modes of programming we can devise using mixtures of completion and orderin rules,
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Chapter 5

Compilation of Bop Programs

In this section we describe how Bop programs are translated to Prolog. The basic translation is
very easy to understand. For the sake of performance, however, several optimizations transform
the basic compiled program into a program that reflects partial evaluation and exploits Prolog
indexing.

In addition to the basic compilation of Bop rules, a variety of user-selectable options are available
for the Bop-to-Prolog translation. These options are provided in the form of directives. Compilation
of Bop rules, like that for Prolog rules, proceeds in several steps:

1. obtaining a term from the input file
2. term expansion (macro expansion)
3. directive processing (if any)
4. basic translation and optimization.
The following directives can be included in Bop source files in order to obtain special compilations:

:~ schema(F/N,Schema).
:- memo F/N.

Currently these directives must appear before all rules involving the function. If they are encoun-
tered afterwards, their effect is unpredictable.

5.1 Basic Compilation

Bop programs can incorporate arbitrary Prolog constructs in their conditions. In order to reason
about these programs, an operational semantics for Bop in terms of Prolog is needed. This is easily
provided since the compilation mapping from Bop to Prolog is straightforward.

Any Bop ordering rule

£(t1,...,t,) => g :- q.
can be compiled to the clause
£(Xy,.... %) =Y = X, = t,, ..., X = t, q, g =>> V.

where t;,, ..., t;,, are the nonvariable terms among the argument terms ty, ..., ty, and Xi,,...,X;,
are corresponding newly-introduced variables.
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5.2 Optimization
Some optimizations are applied to the logic program resulting from the basic compilation above.
A program such as

append([],L)
append([H{T],L)

> L.
> [Hlappend(T,L)].

is first compiled to the form suggested above:

append(A,L) =>> B :- A =>» [], L =>> B.
append(4,L) =>> B :- A =>> [HIT], [H|append(T,L)] =>> B.

The first optimization is to factor common goals from the clauses. For example, the goal A =>> .,
can be factored, yielding the following:

append(A,L) =>>B :- A =>> Al, append_1(A1,L,B).
append_1([], L,Y) :- L => Y,
append_1([X|T],L,Y) :- [Xlappend(T,L}] =>> Y.

Where the compilation described earlier is a kind of unfolding, the technique used here is a kind of
folding. This compilation improvement is important, because otherwise equality goals are spawned
for the same argument multiple times (like the first argument to append here). This quickly becomes
intolerable in a practical system.

The compilation produces code that tries to minimize redundant evaluations. That is, the
compiled code tries to evaluate terms only once. All rules are translated the same way, using a
simple left-to-right decision tree on the evaluated values of the arguments. The resulting behavior
will be determinate or not depending on argument instantiation patterns.

For example, the rules

£(C, [ => g({1,0).
£(C,[AIL]) => h(g(a,C),L).

are translated to:

(£CX,Y) =>>» 2Z) - !, £.1(X,Y,2).

£_1(X,Y,2) :~ (Y =>> T), £.2(X,T,Z).
£.2(c, 01,2 := (g(01,c) =>> 2).
£.2(C, [A1L],2) :- (h(g(4,C),L) =>> Z).

and if the second argument is bound these rules will be determinate. The (non-determinate) rules

£(01,D) => g(0J,D).
£(C,[AIL]) => h(g(a,C),L).
£C0,00) = £([1,01).
f((BIL],[]) => £(B,L).

are translated to:
(£(X,Y) =5>2) :- ', £_1(X,Y.2).

£_1(X,Y,2) :- (X =>> 8), £.2(8,Y,2).
£_2([1,D,2) :- (g([1,D) =>> 2.
f_2(X,Y,Z) := (Y =>>T), f_3(X,T,Z).
£_3(¢,[AlLY,Z) :- (h(g(A,C),L) =»> Z).
£.3(0,0.,£C0,0N.
£f_3({BIL],[1.,2Z) :~ (£(B,L) =>> Z}.
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Note that the third rule is a completion rule. Completion rules are always translated to Prolog
clauses with no subgoals except the condition originally attached to the rule.

It is clear from this translation that each argument is evaluated at most once. Also, arguments
are evaluated as needed by rules top-to-bottom, left-to-right. Furthermore, reduction of all of the
needed arguments occurs before actual unification with the rule head.

5.3 Treating the Compilation of Laziness with Care

Earlier we considered a small program for computing Ackermann’s function:

0 => 0.
s(X) = s(X).

ack(0, 0) => =2(0).
ack(0, N) => s(N).
ack(a(M), 0) => ack(M, a(0)).

ack(s(M), s(N)) => ack(M, ack(s(M),N)).
This program works very well. With it, we get the following listing and execution:

| 7- bop_listing(ack).
ack(0,0)=>s(0).

ack{0,A)=>s(A).
ack{s(A),0)=>ack(A,s(0)).
ack(s(4),s(B))=>ack(4,ack(s(4),B)).

ack(A4,B)=>>C:-1,ack_1(A,B,C).
ack_1(A,B,C):=-A=>>D,B=>>E,ack_2(D,E,C).
ack_2(0,0,4):-s(0)=>>4,
ack_2(0,4,B):-s(A)=>>B.
ack_2(s(A),0,B):-ack(4,s(0))=>>B.
ack_2(s(A),s(B),C):-ack(A,ack(s(4),B))=>>C.

yes
| 7- ack( s(s(0)), s8(0) ) =>> X.

X = s8(s(s(s(s(O))))) 7

yes

There is an important point about the way it is written: the first rule forces both arguments to
ack to be evaluated, so neither argument is lazy. Thus we always get call by value evaluation of
ack expressions.

Now, suppose that we had written this function slightly differently, noticing that the first two
rules can be consolidated into a single rule:

lack(0o, M) => s{N).
lack(s(M), O) > lack(M, s(0)).
lack(s(M), s(N)) => 1lack(M, lack(s(M),N)).

This program is lazy in the second argument for the first rule; lack is not equivalent to ack! Note
that is compilation is quite different, and its execution is different as well:
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| ?- bop.listing(lack).
lack(0,4)=>s(A).
lack(s(4),0)=>lack(A,s(0))}.
lack(s(A),s(B))=>lack(A,lack(s(4),B)).

lack(A,B)=>>C:-!',lack_1(A,B,C).
lack_1(A,B,C):-A=>>D,lack_2(D,B,C).
lack_2(0,4,B):-s(A)=>>B.
lack_2(A,B,C):-B=>>D,lack_3(4,D,C).
lack_3(s(A),0,B):-lack(Aa,s(0))=>>B.
lack_3(s(4),s{B),C):-lack(A,lack(s(A),B))=>>C.

yeos
| 7= lack{ s{(s(0)), s(0) ) =>> X.

X = 8(lack(s(0),lack(s(0),0))) 7

yes

The laziness of the first rule manifests itself in the solution X, whose subterms are not completions
and will require further evaluation to obtain the value s(s(s(2(s(0))))). The solution X is
perfectly ‘correct’, but is lazy.

Lazy evaluation is specified implicitly in Bop, by the appearance of variable arguments in rules.
Be careful with functions like lack that are lazy in an argument in the first rules, but not in
later ones. At times these functions provide precisely what is wanted. In stream computations for
example, laziness is beneficial, and a function £ defined by rules like

£([,s) =>
£([X1Xs], 1D =>
f([X1Xe],[YIY8]) =>

provides the laziness we want. At other times laziness is not really wanted, and it must be avoided.

Bop extends Prolog unification in a straightforward, predictable way. One look at the LHSs of a
collection of rules gives a clear understanding of which arguments are evaluated, the order in which
they are evaluated, and what their values are expected to be. Multiple reductions of a particular
argument are never performed. This approach is somewhat ‘operational’: ordering of rules and of
arguments can aflect performance. The same is true of Prolog, however! Since Bop is intended as
a practical extension of Prolog for the present, the operational predictabilty of Bop should be seen
as a strength, and not a weakness. Bop has both a formal semantics and a practical operational
semantics that integrates smoothly with Prolog.

Bop provides a variety of explicit ways to force eagerness in what would otherwise be a lazy
computation. For example, the primitive stream(E) eagerly evaluates E into a Prolog list. A
similar ‘eager consumer’ primitive can be written for each data structure of interest. Also, the
second version of ack above can be forced to evaluate both arguments with the schema directive:

;- schema ack( eager(=>>), eager(=>>) ).

ack(0, N) => 8{N).

ack(s(M), 0) > ack(M, s(0)).

ack(s(M), s(N)) => ack(M, ack(s(M},N)).
With this directive, the program behaves like the first version, using call by value. We explain this
directive now.
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5.4 Function Schemas: the schema directive

Schemas have been included in this version of Bop in order to facilitate the writing of certain kinds
of rules, and to encourage experimentation on argument conversion schemes. The many approaches
to conditional rewriting that have been proposed [7] suggest that no single compilation scheme will
be sufficient. The schema directive is used to declare how the arguments of a function are to be
treated. With it one can not only specify the type of an argument, but also how the argument
should be converted from its input type to another type for use within the function. Effectively,
the schema directive allows the programmer to modify the compilation of each rule, adding type
conversion and/or type checking goals for arguments as needed.
Schema declarations can take either of the following forms:

1= schema Function(ArgTypel,...,ArgTypeN).
:- schema Function(ArgTypel,...,ArgTypeN) => ResultType.

These schema directives may appear anywhere in the program, but govern only those rules that
appear after the directive,

Schema argument type declarations relate the types of the actual arguments passed to the func-
tion with the ‘formal arguments’ introduced and used in the rule. In other words, the ArgType
definitions specify binary relationships between actual and formal arguments. In Bop, these defi-
nitions can be specified as follows:

ArgType — Conversion
ArgType — lazy( Conversion )
ArgType — eager( Conversion )

ResultType — Conversion

Conversion — TypeConversionRelation
Conversion — TypeConversionRelation( TypeCheckRelation )

TypeConversionRelation — (name of any Prolog predicate of arity 2)

TypeCheckRelation — (name of any Prolog predicate of arity 1)

Any Prolog predicate here should be side-effect free, so that multiple invocations all have the
same effect. Otherwise the predicates are unrestricted, however, and can backtrack or perform
meta-logical tests of their arguments.

In Bop, arguments can be either eager or lnzy. The default is lazy, and the following declarations
are equivalent:

Conversion
lazy( Conversion )

An eager argument undergoes type conversion before any subsequent rule is applied. A lazy argu-
ment does not undergo type conversion uatil it is needed.
In Bop, type conversion for an argument is said to be ‘needed’ in two situations:

1. An argument needs type conversion if it appears with a nonvariable value in the head of a
rule:

if(true,S5,_) => 5.



58 CHAPTER 5. COMPILATION OF BOP PROGRAMS

In this rule, the first argument must undergo type conversion, since it appears with the atomic
value true. The second and third arguments need not undergo type conversion, however, since
they appear as variables.

2. An argument needs type conversion if it is unified with (any subterm of) another argument:
np(N,P,P) => propernoun(N).

In this rule, the second and third arguments must undergo type conversion, and the resulting
two values are to unify.

In Bop, actual arguments X passed to the function defined by the schema stands in the Type-
ConversionRelation relation to the corresponding formal argument Y used by the function. In
other words, after the schema

:- schema FunciionName( TypeConversionRelation ).

appears, the rule
FunctionName(X) => FunctionBody(X).

where X needs type conversion behaves equivalently to the rule
FunctionName(X) => FunctionBody(Y) :- TypeConversionRelation(X,Y).

(The compiler generates code such that the type conversion between X and Y is done only once,
and not in each rule.) Also, after the schema

:= schemaFunctionName( TypeConversionRelation( TypeCheckRelation) ).
appears, the rule

FunctionName(X) => FunctionBody(X).
where X needs type conversion behaves equivalently to the rule

FunctionName(X)} => FunctionBody({Y) :— TypeConversionRelation(X,Y), TypeCheck-
Relation(Y).

Effectively, the schema directive allows the programmer to modify the compilation of each rule.
The default ArgType used in the absence of any schema directive is =>>. (or lazy(=>>) ~ which
is equivalent). This indicates that the predicate =>> is to be used to convert the input argument
to a fixed point term. No type checking of the resulting term is performed.
Commonly used type relations are as follows:

TypeConversionRelation — =
TypeConversionRelation — =>>

TypeCheckRelation — var
Type CheckRelation — nonvar
Type CheckRelation — atonm
TypeCheckRelation — atomic
TypeCheckRelation — number
TypeCheckRelation — integer
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The = conversion relation leaves an argument undisturbed, simply unifying the actual argument X
with the formal argument Y.

Some examples of ArgType definitions:

:- s8chema np( =, =, = ).

:- schema if( eager(=>>), lazy(=>>), lazy(=>>) ).

:- schema anOrdinaryTwoArgumentBopFunction( =>>, =>> }.
:= schema vector_sum( stream, stream ).

:- schema sentenceParser( (=), =(parse_tree), stream ).
:— schema employee_id( =(person), =(atom), =>>(salary) ).
:- schema integral( =>>, =>>, rewriting_join ).

:= schema server( message_queue_input(nonempty_queue) ).

stream(X,Y) :- stream(X) =>> Y.
parse_tree{ tree(_,_) ).

person(X) :- X is_a person.
gsalary(X) :- number(X), © < X, X < 200000.

rewriting_join(X,Y) - X =>> V, Y =>> V.

The schema directive can be justified in terms of the inequational semantics and coercion
semantics given earlier. The directive specifies how arguments to functions are to be interpreted.
With inequality semantics, the directive specifies how the function is monotone. With coercion
semantics, it specifies how arguments are coerced.

The schema directive also permits Bop to support various sophisticated kinds of rewriting. In
addition to the coercions shown above, we could use AC-unification and A-unification, or whatever
else is needed. These unification methods are very expensive, and wholesale replacement of the
Prolog unifier by them is almost always a very bad idea as far as performance is concerned. The
schema directive allows expensive unifiers (or equational theories) to be used where, and only where,
they are needed.

5.5 Memoized Functions: the memo directive
Functions can be requested to be ‘memoed™
;= memo F/N.
‘Memoization’ is an old Al programming technique in which
¢ values of a function are saved in a lookup table when they are produced;

¢ all evaluations of the function are preceded by a search through the lookup table, which avoids
the evaluation if the function value is found.

In other words, memo functions pay the price of maintaining a stored table of previous computa-
tions, under the expectation that some future computations will be avoided and that the savings
will justify this effort.

In Bop, memo functions are currently implemented with the Prolog internal database (record)
mechanism. See the file 21ib/ctrl_memo.bop for complete details.
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Chapter 6

Contexts, Fops, and Bop Term
Expansion

We mentioned earlier that Bop offers the ability to define rules that apply in a given context
{module, situation, world, etc.). These rules have the form:

Context: LHS => RHS :- Condition,
where Context may be any term. The meaning of this rule is that the contextual expression
Context : LHS

is rewritten to RIS provided that Condition holds, just as the usual semantics of these rules
would suggest. For example, the following rules can be entered:

)

reg_polygon(N,L) : area > A :- reg_polygon_area(N,L,A).
reg.polygon(N,L) : perimeter => P ;- P is NxL.
reg.polygon(N,L} : deacription > [a.regular_polygon].

6.1 Fops

We will call the Context in the example above a fop. It can be thought of as a function, a binary
relation, an object (in the object-oriented programming sense), a module, and as other things as
well. The Bop compiler produces relatively efficient code for fop rules, and this enables a variety
of programming styles: modular, object-oriented, and so forth.

The *:’ operator behaves like functional application. The rules shown above apply the definition
of reg_polygon to an argument (area, etc.). The operator *:’ is left associative by default - so
p:q:r:s represents ({(p:q):r):s).

Both arguments of ‘:7 are evaluated, so completion rules are needed before the rules above will
operate properly. We can get a working program with the following:

area => area.

perimeter => perimeter.
description => description.
equilateral(L) => reg_polygon(3,L).
squara(L) => reg._polygon(4,L).
pentagon(L) => reg_polygon(5,L).

reg_polygon(N,L) => reg_polygon(N,L).
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The final four rules define regular polygons of various types. This gives an inheritance mechanism,
so for example we will get the following interaction:

| 7~ pentagon(3) : perimeter =>> X.

X =15
yes

Another example shows how fops can be used to replace the functional application operator ‘@’.
Earlier we defined the SKI calculus using ‘Q” in the following way:

i=>i.

i(X) =>» X.

k => k.

k(X) => k(X).
k(X,Y) => X.
5 => s5.
s8(X) => s(X).

3(X.,Y) => s(X,Y).
s(X,Y,Z) => (XeZ) @ (Yez).

Intuitively, we should be able to translate this to use ‘:’ as follows:

i:X = X,
KX) : ¥ =» X.
8(X,Y) + Z => (X:Z) : (Y:Z).

However, the arguments of ‘:* are evaluated, just as are the arguments of ‘@’. So, we must again
provide the completion rules that make the SKI combinators themselves evaluable:

=> i,
i X => X.
k = k.
kX => k(X).
k(X) = k(X).
k(X) @ _ => X,
8 => 8.
s : X => =s(X).
s(X) > a(X).
s(X) : Y > s(X,Y).
s(X,Y) => s(X,Y).

s(X,Y) : Z = (X:Z) : (Y:Z).

6.2 Bop Term Expansion

Contexts, fops, and the ‘:’ operator, are implemented in Bop by exploiting term expansion. Many
useful features, like the memo feature, can be implemented with term expansion, and very general
macro expansion features can be built with it as well.
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6.2.1 Operation of Term Expansion

Bop’s term expansion capability is like that of Prolog, but has some important differences.

After Bop reads a term X while performing a bop_consult or bop_compile, it first invokes
bop_expand_term(X,Y) to obtain the term Y that ultitnately will be compiled and asserted. The
predicate bop_expand_term(X,Y) performs several kinds of term expansion in series:

1. bop_term_expansion(X,%1)
user-defined Bop term expansion;

2. contextExpansion(Xi,X2)
expansion of context statements, as explained below;

3. expand_term(X2,Y)
standard Prolog/user term expansion.

There are two very important caveats concerning bop_expand_term: First, it always succeeds at
least once, but it can succeed more than once via backtracking. (This differs from expand_term/2in
Prolog, which succeeds exactly once.) When it succeeds more than once, one input term expands to
multiple terms for assertion. This feature might be used in many ways, but is used in particular for
handling the treatment of Bop context statements, which expand into a sequence of index traversal
clauses.

Second, the user-defined predicate bop_term_expansion/2 should have no side effects. It is
always run twice on each input because of the first requirement, that bop_expand_term always
succeed at least once. Thus side-effects can, and probably will, have undesired results.

6.2.2 Expansion of Context Statements

Term expansion performs contert expansion, which we can explain with a few examples as follows.
Given a statement

(r{X,V) : Z = t(X,Y,Z) :- ©)
Bop produces the expansion

r(A,B):E => 'r:’(E,A,B).
e (Z,X,Y) => t(X,Y,Z) :- C.

The statement
(r(X,Y) : s(U,v) => t(X,Y,U,V) :- C)
is expanded to

r{A,B):E => ’r:’(E,A,B).
‘ro(s(U,M) XYY => t(X,Y,U,V) :- C.

Finally, the statement
(r(X,Y) : ¢t => t :=- C)
in which t is nonvariable is expanded to the single Bop rule

r(A,B):t => r{a,B):t :- C,
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6.2.3 Expansion of Frames

Bop provides a simple extension of the context/fop mechanism called the frame, which permits
grouping of statements with a factored context or fop. A frame has the form:

Fop : A
Bop rule ,

L]

Bop rule ,
}.

For example, the rules for reg_polygon can be factored as follows:

reg_polygon(N,L} : {

area > A - reg_polygon_area(N,L.A).
perimeter =» P :- P is NxL,

description => [a_regular_polygon]

.

Frames are treated simply as factored expansions. Bop expands the frame

r{X,Y): {
(s(U,V) => t(X,Y,U,V) :- C),
(u(P,Y,R) => v(X,P) :- D)

}.

as though the two rules

r(X,Y) : s{U,V) => t(X,Y,U,V) :- C.
r(X,¥Y) : u{(P,Y,R) => v(X,P) :- D.

were input instead.
Frames can be nested as well. Given the nested frame

r(X,¥): {
(u(P,Y,R) => v(X,P) :- D),

s(U,v):{
(q(W) => t(X,Y,U,V,W) :- C),
(p{V) => o(U,X,W) :- E)

}.

Bop behaves as though the following were input:

r{X,Y) : u(p,Y,R) => v(X,P) :- D.

r(A,B) : s(C,D) => ‘'r:s*{c,D,A,B).
'r:s5'{(C,D,A,B) => ’r:s'(C,D,A,B). % '
‘r:g?(U,V,X,Y) : q(W) => £(X,Y,U,V,W) :- C.
‘r:s’ (U,V,X,Y) : p(V) => o(U,X,W) :- E.

Although with each of these expansions it might be reasonable to produce coercion statements
for the fop in question, like

r(A,B) => r(A,B).
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[

where r/2 is the fop name as above, Bop does not do this currently. The ‘:* operator evaluates
both its arguments, and without coercions like this will fail. However, as indicated above some
applications like inheritance make it desirable for the fop to be evaluated without necessarily being
a completion.
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Chapter 7

Bop System Predicates

The Bop system provides a number of Prolog predicates for managing and executing Bop rules.
These predicates are of the following kinds:

¢ File consultation/compilation

¢ Function definitions and listing
¢ Bop initialization

¢ Execution tracing

e Stream output

In addition to these predicates, Bop permits a number of transducers that are commonly used.
These are stored in the library subdirectory, and are not described here (yet).

7.1 File Consultation and Compilation

Bop imitates Prolog with basic consult-like primitives that read in ‘Bop files’, files containing
directives, Bop rules, and Prolog clauses. Bop rules are translated into Prolog clauses for the
predicate =>>/2, which can be invoked from Prolog with the goal

BopTerm =>> Result.

bop_consult( File)
Consult and translate File.bop into Prolog clauses.

Just as with consult, expand_term is invoked for each term read in. In particular, the
Bop rule translator attempts to apply user definitions of term_expansion before actually

translating a rule.

bop_consult( [ File| Files])
Consult and translate multiple Bop files.

bop_reconsult(File)
Reconsult and translate File.bop, clearing all previous definitions of functions encountered.

bop_reconsult( [ Filel Files])
Reconsult and translate multiple Bop files.

67
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bop_flisting(File)
Send a bop listing (with all pertinent directives) to File.pl. This file can subsequently be
consulted, or compiled with Prolog’s compile or fcompile predicates.

bop_compile( File)
Translate File.bop and then Prolog-compile the result using the Prolog compile predicate.

bop._compile( [File| Files])
Translate multiple Bop files and Prolog-compile the result.

bop_fcompile( File)
Translate and perform a Prolog fcompile, giving File.ql. (SICStus Prolog only.)

7.2 Function Definitions and Listings

bop_listing
Produces a listing of the entire set of defined functions, along with Prolog clauses that have
been bop_consulted.

bop_listing( FunctionName)
Produces a listing for all functions of the indicated name. For example, with the rules for
primes we could do the following;:

| ?- bop_listing(primes).
primes => sieve(intfrom(2)).

primes=>>A:-!,primes_1(4).
primes_1(A):-sieve(intfrom(2))=>>4.

yes

| 7- bop_listing(filter/2).

filter{a,[BIC]) => filter(A,C) :- O ie B mod A, !.
filter(4,[BIC]) => [Blfilter(A,C)].

filter(4,B)=>>C:~! ,filter_1(4,B,C).
filter_1(4,B,C):-B=>>D,filter_2(4,D,C).
filter_2(A,[BJC],D):-0 is B mod A,!,filter(A,C)=>>D.
filter_2(A,[BIC]),D):-[Blfilter(A,C)]=>>D.

yes

Note that the original rules are listed along with their translations.

bop_listing( FunctionName/Arity)
Produces a listing for the function of the indicated name and arity.

current.function( FunctionName, FunctionFunctor)
A table of all defined functions, giving both their name (an atom) and their functor (a term
of the appropriate arity, with unbound arguments).
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function value.goal(FunctionFunctor, Result Value, PrologGoal)
A table of all currently defined defined functions, which can be used to find their value. The
Bop system does not use this table directly, but it is provided for user convenience. For
example, to find the value Y of £([],X,2), we can execute the Prolog goal:

?7- function_value_goal( f([1,X,2), Y, Goal ), call(Goal).
After bop_consulting the rules for primes above, we would obtain the following table:
| ?- listing(function_value_goal).

function_value_goal([], [J, true).
function_value_goal([AIB], [AIB], true).
function_value_goal(true, true, true).
function_value_goal{false, false, true).
function_value_goal{fail, fail, fail).

function_value_goal (primes, A, primes_1(A)).
function_value_goal (intfrom(A), B, intfrom_1(4,B)).
function_value_goal(sieve(A), B, sieve_1(A,B)).
function_value_goal(filter(A,B}, C, filter_1{A,B,C)).

yes
| ?-

Note the first six entries are provided initially, and the last four entries permit us to use the
translated Prolog clauses.

function_completion(BopTerm, PrologGoal)
A table of all currently defined fixed point terms. The Bop system does not use this table
directly, but it is provided for user convenience. Initially, something equivalent to the following
are defined:

| ?- listing{function_completion).

function_completion{[J, true).
function_completion([A|B], true).
function_completion(true, true).
function_completion(false, true).
function_completion(fail, fail).

yes
| 7-

7.3 Bop Initialization
bop.init

Initializes the Bop system. Currently this causes the file /1ib/init.bop to be consulted
(using bop_consult). Among other things, this results in the following rules being entered:
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0 = [J.

MIT] => [HIT].

true => true.

false => false.

fail => fail := fail.

See Section 6 for more details.

bop_reinit
Reinitializes the Bop system.

bop_reinit{ File)
Reinitializes the Bop system using the indicated file instead of the default file init.bop.

bop_reinit( [File| Files])
Reinitializes the Bop system using the indicated files instead of the default file init.bop.

bop_clear
Removes all currently defined Bop rules.

bop_clear( FunctionName/Arity)
Removes all currently defined Bop rules for the function indicated.

bop_clear(Functor)
Removes all currently defined Bop rules for the function indicated.

Bop can be used several ways:
1. As an interactive environment for running/debugging Bop code.
2. As a compiler for Bop files.

Bop’s use as a compiler is illustrated by the following sessions:

% bop
Bop version 0.2

?- bop_consult{[£1,£2]), % Consult ’fi.bop’, ’f2.bop’.
bop_flisting(outi2), % Write result to ‘out12.pl’.
bop_reinit, % Clear and reinitialize Bop.
bop_compile([£3,f4]), ¥ Consult ’£3.bop’, ’f4.bop’,

% write a flisting, execute bop_clear,
% and Prolog-compile the flisting.
save_program(sys34). ) Save the current state in ’sys34’.

The above session first compiles two bop files, printing the resulting compilation to a file, and then
compiles two others after reinitializing. More sophisticated usage might be as follows:

% bop
Bop version 0.2

?- bop_clear, % Clear ALL current Bop informatiom.
consult(’out12.pl’), % Prolog-consult the earlier flisting.
% NOTE: ALWAYS consult flisting files,
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% NEVER bop_consult them:

4 ’out12.pl’ still contains ’=>’ rules,

% 8o bop_consult would compile them!

% ALSO: bop_clear before consulting flistings

, % Do something with the result...

bop_reinit(myinit), % Clear all current Bop information,

% and initialize with ’myinit.bop’

% instead of library(init), the default.
bop_consult(’p.pl’), % Consult ’p.pl’, ALSO keeping track of all

% predicates defined for future flistings.
bop_compile(f5), A Consult ’f5.bop’, make flisting for

4 files myinit,p,f5, then bop_clear and

%4 Prolog-compile the flisting.

% Do something with the result...

Note that bop_flisting(F) writes all the current Bop clauses & directives to ‘F.pl’, which can
be subsequently consulted, compiled, fcompiled, etc. by any Prolog system. Whenever this Prolog
system also has the Bop system loaded, bop_clear should be called before loading ‘F.pl’.

The predicates bop_consult, bop_reconsult, and bop_compile all initially execute

1= bop_ensure_loaded(InitialBopSource).

when they begin, where InitialBopSource is the file or list of files defining the predefined Bop rules
(rules users will not want to type in each time). The default InitialBopSource is 1library(init), a
file containing basic Bop rules for [1, [_|_], etc. Users can override this default with a command
like

:= bop.reinit({myinit, library(math), ’startup.pl’]).

to change InitialBopSource to be the three files myinit.bop, BOP_DIR/1ib/math.bop, startup.pl
then execute bop_clear and bop_init.

7.4 Execution Tracing

Two simple kinds of tracing are provided for Bop rules.

bop_trace(BopTerm)

bop.trace(BopTerm, ResullingValue)
Prints a trace of the recursive evaluations of subterms of BopTerm, optionally returning its
resulting value. The trace is indented according to the recursion level. For example, with the
rules defined earlier for primes, we could obtain the following;:

| ?- bop_trace(primes).

-> primes

-> sieve{intfrom{2))

->  intfrom(2)

-> [2}intfrom(3)]

=» [2]intfrom(3)]

=> [2]intfrom(3)]

-> [2]lsieve(filter(2,intfrom(3)))]
=> [2]sieve(filter(2,intfrom(3)))]
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=> [2|sieve(filter(2,intfrom{3)))]
=> [2|sieve(filter(2,intfrom(3)))]

yes
| 7-

The trace lists both each term that is evaluated (passed as a first argument to =>>/2), and
below this term the ultimate value that the term is evaluated to. Since terms can evaluate to
themselves, mild redundancies can appear in the trace, as this example shows.

Prolog-style Call/Exit/Redo/Fail control over the trace is also provided. In the trace above,
the single arrows (->) indicate a call of =>>, while the double arrows (=>) indicate an exit of
=>>. In general, the following symbol conventions are used:

Symbol Port of =>>/2
-> call
=> axit
<~ redo
<= fail

By using bop_leash (see below), users can control interaction at each of these ports.

bop_fulltrace{BopTerm)
bop_fulltrace(BopTerm, Resulting Value)
Like bop_trace, but repeatedly presents the trace for the entire BopTerm being evaluated.

For example, again with the rules for primes we would obtain:

| ?- bop_fulltrace(primes).

-> primes

-> gieve(intfrem(2))

=> siave([2|intfrom{3}])

-> sieve([2|intfrom(3)])

=> [2lsieve(filter(2,intfrom{3)))]

yes
| 2-

As this example shows, this trace can again be mildly redundant.

bop.spy FunctionName

bop_spy( FunctionName)

bop_spy FunctionName/Arity

bop_spy{ FunctionName/Arity)
Puts a Bop spypoint on the indicated function, or on all functions with the indicated function
name. If a spypoint already exists, this is indicated. The user is subsequently prompted

whenever a function currently with a spypoeint is executed.

bop_nospy FunctionName
bop.nospy{ FunctionName)
bop_nospy FunctionName/Arity
bop_nospy( FunctionName/Arity)
Removes a Bop spypoint on the indicated function, or on all functions with the indicated

function name. If no spypoint exists, this is indicated.
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bop_leash( LeashingMode)
Changes the current leashing mode for tracing. The leashing mode is a list of ports selected
from call, exit, redo, fail, optionally preceded by minus signs (which inhibit prompting
at the port). Initially, the leashing mode is set with

bop_leash([-call,-exit]).

This mode is reflected in the traces shown earlier. In these traces, only call and exit ports
were displayed, and no user interaction was requested when these ports were encountered.

bop_debugging
Lists all current information on Bop leashing, spypoints, etc.

7.5 Bop Flags

Two commands are used to control the setting of flags used by Bop to control interaction with the
user:

bop_flag( Flag, Old)

bop_flag( Flag,Old, New)
The bop_flag predicate is like the prolog_flag predicate provided by some Prolog systems.
Here Flag can be queried, as with the two-argument version of the predicate, or set, as with
the three-argument version. The currently defined flags and their values are listed below:

unknown
Acceptable values: fail, trace (default: trace).
When fail, attempted evaluation of any undefined function simply fails quietly. Oth-
erwise, a warning is printed and the Prolog debugger (trace) is entered.

redefine warnings
Acceptable values: on, off (default: on).
When off, redefinitions of Bop functions and Prolog predicates by consult or reconsult
of several files are dealt with silently. Otherwise, whenever a function F or predicate P
is encountered in a (re)consulted file that was already defined by another file, a warning
is presented to the user, and the redefinition is resolved interactively.
For example, if the files a.bop and b.bop both contain definitions for append/2, we
could get the following interaction:

| 7- bop_consult(a), bop_consult(b).

{Bop consult: file a.bop...}

{a.bop: consult complete, 140 msec 1702 bytes}
{Bop consult: file b.bop...}

The Bop function append/2 is defined by two files.
01ld File: a.bop
New File: b.bop
Do you want the new definition to replace the o0ld? (y/n) n
Do you want the new definition included after the old? (y/n) n
{b.bop: consult complete, 120 msec 552 bytes}

yes
| 7-
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With this interaction we preserve the definition of append in a.bop, but otherwise include
the rules in b.bop.

single var_warnings
Acceptable values: on, off (default: on).
When off, ‘Prolog style check’ violations are ignored. Otherwise, rules having only
one occurrence of any (non-anonymous) variable are displayed along with a warning
message. (The style check is worth keeping enabled, as it catches what is probably the
largest single source of errors in Prolog programming.)

system.notices
Acceptable values: on, off (default: on).
When off, no Bop system notices (messages in curly braces ‘{...}’) are printed.

7.6 Stream Output

Streams have been used so frequently with Bop up to this point that primitives for printing streams
have been included in the system.

print_list{BopTerm)

print.list{BopTerm, FileName)
Assuming that BopTerm evaluates to a stream, this prints its incremental evaluation in
standard Prolog list format. If FileName is included, the output is sent to this file.

For example:

| ?- print_list(append([a,bl,[c,d])).
[a, b, c, d1.

yes
| 7-

This is achieved by repeatedly evaluating to vield a term of the form [H|T], printing H, and
continuing with print_1ist(T). Termination occurs if the result of evaluation is [J. The
evaluation done here is determinate, without backtracking, commiting to the first successful
evaluation at each step, even if the term in question has multiple (nondeterminate) values.

print_stream(BopTerm)

print.stream{ BopTerm, FileName)
Like print_1list, but prints the incremental evaluation of BepTerm as a sequence of Prolog

terms terminated by ‘full stops’. For example:

| 7- print_stream(append([a,b],[c,d])}.
a.

b.

c

d

yes

| 7=

If FileName is included, the output is sent to this file.



Chapter 8

The Bop Library

8.1 Builtin Primitives

In the file 1ib/init.bop are a number of builtin primitives. This file essentially contains a fre-
quently used collection of Bop rules, These rules are (implicitly) loaded by the Bop system, and
in most cases will already be available to you when you begin to execute with Bop. This section
reviews the primitives in this file.

Bop also permits users to override the init.bop file with their own file, so that any initial
definitions can be used. In this way Bop can be tailored to any user’s tastes.

8.1.1 Standard Completion Terms

Initially, the following completions are defined:

0= 0.
[HI1T] => [HIT].

true => true.
false => false.

fail =» fail :- fail.

8.1.2 Undefined Functions

When an undefined function is evaluated, Bop invokes the predicate trap_unknown_function. Its
initial definition is:

trap_unknown_function(F,Value) :-
prolog_flag(unknown,trace),
functor(F,FName,Arity),
\+ current_function{(FName,F),
printNotice([’Warning: The function ’,FName/Arity,’ is undefined.’]),
bopSpyStart (F,Value,FName,Arity,Command),
call(Command) .

Since the initialization file can be modified, this predicate can be changed when necessary.

75
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8.1.3 Control Primitives
Bop provides a basic set of control primitives:

(BopTerm :- PrologGoal)
The :- function evaluates a term after first checking a logical condition. It can be defined
with one Bop rule:

(BopTerm :- ProleogGoal) => BopTerm :- call(PrologGoal).
(BopTerm => Term)

(BopTerm =>> Value)
These functions allow Bop to retain the results of using Bop rules They can be defined as

follows:
(BopTerm => Term) => Tarm :-= (BopTerm => Tarm).
(BopTerm =>> Value) => Value :- (BopTerm =>> Valua).
repeat{BopTerm)

The repeat function simply creates an infinite choice point for a given term:

]

repeat (X) > X.
repeat(X) => repeat(X).

if_then else
Bop has several if-then-else variants. They are easily defined using Bop itself:

if(true,X) = X.
if_then{true,X) =» X.
if(true,X,.) => X.
if(false,_,Y) => Y.
if_then_else(true,X,_)} => X,
if_then_else(false,_,Y) => Y.

Beyond this, Bop permits the user to write if-then-else statements in an Algol-like syntax by
exploiting the Prolog operator feature. In other words, the following are equivalent:

if(Test,Expri,Expr2)
if Test then Exprl else Expr2

This is implemented in the following way:
:- op(900,fy, (if)).
:- op(801,xfy, (then)).
:- op(900,yfx, (else)).

if(B) => if(B).
else(T,E) => else(T,E).
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if B then T else E => if_then_else(B,T,E) :- !,
if B then T =>» if_then(B,T).

Unfortunately, parentheses must be used to enforce precedence for these operators, since
nested if-then-else statements will not parse properly otherwise. This is an inherent weakness
of Prolog’s operator precedence parsing.

8.1.4 Functional Application/Higher-order Mappings

Function @ BopTerm
The @ operator applies a Bop function to an argument. It is typically applied with lambda
terms, which are defined using the ‘\” operator; for example, X\sqrt(X) is the Bop repre-
sentation of Az .sqrt(z). The operation of ‘@ is not sophisticated {or very efficient), being
defined as follows:

:= op{(800,yfx,(@)).
:= op(700,xfy,(\)).

(X\F) => (X\F).

{(X\FX) @ X0 =» FX0 :— 1, betaSubstitution(X,FX,X0,FX0).
F @ X0 => FXI0 := F =.. L, append(L,[X0],LX0), FX0 =.. LXO.

8.1.5 Basic Stream Operators

The initialization file includes a few essential operators on streams.

member(.5)
Yields (nondeterministically, via backtracking, the members of stream S.

append(S51,52)
The stream concatentation of S1 and §2. This primitive works like the usual append predi-
cate, but for streams.

reverse(S)
The reverse of the stream S.

first(N,S)
The initial substream of N elements of §. If S is shorter than N, then the result is §.

stream(5)
The entire stream vielded by S, generated eagerly. This function is used often! It is also used
often in conjuction with first, so for example

stream(first(10,primes))

yields the list of the first 10 prime numbers eagerly, with no suspension.

print_stream(.S)
The entire stream yielded by S, generated eagerly, with the side-effect of printing to the

current output in a ‘stream’ (readable file) format. For example:
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?- print_stream(append([a,bl,[c,d])) =>> _.

|
a.
b.
c
d

yes
| ?-

print1ist{S)
The entire stream yielded by S5, generated eagerly, with the side-effect of printing to the
current output, with a list format. For example:

| ?- print_list(append([a,b],[c,d])) =>> _
La, b, ¢, d1].

yes
I ?-
8.1.6 Dirty Things

Bop also provides the following control primitives, which cannot be defined with ordinary Bop
rules. They should be avoided, and resorted to only when necessary.

quote(BopTerm)

=(BopTerm)
These two functions are identical in behavior, and subvert the Bop convention that all results
be completions. The quote function can be defined:

quote(BopTerm) =>> BopTerm.

Often quote(T) can be avoided simply by using a bona fide completion (like [T]) to inhibit
evaluation.

'(BopTerm)
The ! function simply cuts after evaluating its argument:

! (BopTerm) =>> Value :- BopTerm =>> Value, !.

postcondition( BopTerm, PrologGoal)
The postcondition function checks PrologGoal after evaluating Bop Term:

postcondition(BopTerm,PrologGoal} => Value :-
BopTerm =>> Value, call(PrologGoal).

8.2 The Math Libraries

The Bop library contains the following files:

e math.bop
Bop functions for all basic math operations. These include the constant definitions from

math.h in Un*x:
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e
log?2
logl
1n_2
In_1
pi

pi_o
pi_o
one_
Two_
two_
sqrt
sqrt

=> 2
_a => 1
O_e =>» 0

= 0
0 => 2

=> 3
ver_?2 => 1.
ver_4 = 0
over_pi => 0
over_pi => 0
over_sqrt_pi => 1
2 => 1
_1_over_2 => 0

.7182818284590452354 .
.4426950408889634074 .
.43429448190325182765.
.69314718055994530942.
.30258509289404568402.
.14159265358979323846.
57079632679489661923.
.78539816339744830962.
.31830988618379067154.
.63661977236758134308.
.128379167095661257390.
.41421356237309504880.
.70710678118654752440,

and the standard math library functions:

XY, sqrt(X),

logip(X), Logl0(X), log(X),
exp(X), expm1 (X},

2in(X), cos(X), tan(X),
asin(X), acos(X), atan(X),
s8inh(X), cosh(X}, tanh(X),
floor(X}.

Includes math_pl.pl and math_arith.bop.

¢ math.c

The Prolog foreign functions for the Un*x 1ibm math Lbrary.

¢ math_arith.b

op

Defines the following Bop expressions for Prolog numbers:

_x,

XY, X+Y, X-Y, X/Y.

Includes math_arith_pl.pl and numbers.bop.

e math_arith_p

1.p1

Defines the following Prolog predicates for Prolog numbers:
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bopMinus(X,2), bopMinus(X,Y,Z), bopPlus(X,Y,Z), bopTimes (X,Y,Z), bopDiv(X,Y,Z).

These are all implemented with the Prolog is predicate, but work like constraints: any two
of the three arguments may be defined.

¢ math_pl.pl

Defines the following Prolog predicates:

bopPow(X,Y,XtoY), bopSqrt(X,SqrtX),

bopLoglp(X,LoglpX), bopLogiO(X,Logl0X), bopLog(X,LogX),

bopExp (X ,ExpX), bopExpm1(X,Expm1X),

bopSin(X,SinX), bopCos(X,CosX}, bopTan(X,TanX),
bophAsin(X,AsinX), bopAcos(X,AcosX), bopAtan(X,AtanX),
bopSinh(X,SinhX), bopCosh(X,CoshX), bopTanh (X, TanhX),

bopFloer (X,FloorX),
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This file includes the Prolog foreign function interface for the Un*x 1ibm math library.

e math_sqrt.pl
Defines the predicate sqrt(X,Y) in Prolog, avoiding the loading in of the standard math
library (at a price in performance).

s numbers.bop
Defines Prolog numbers to be completions:

X =» X :- number(X), t.

8.3 Aggregates

8.3.1 agg moments.bop

count_avg(Stream)
Takes a numeric Streamn and yields [Count,Avg].

count_avg variance(Stream)
Takes a numeric Strearn and yields [Count,Avg,Variance].

count.avg_stddev(Stream)
Takes a numeric Stream and yields [Count,Avg,Stddev].

moments1(Stream)
Takes a numeric Stream and yields [moment_values(N,XbarN)].

moments2( Stream)
Takes a numeric Stream and yields [moment_values{N,XbarN,M2)].

moments3(Stream)
Takes a numeric Stream and yields [moment_values{N,XbarN,M2,M3)].

moments4(Stream)
Takes a numeric Stream and yields [moment_values(N,XbarN,M2,M3,M4)].

8.3.2 agg-quantiles.bop

quantiles(S,N)
The ordered stream of N values that would partition the result of sorting the numeric stream
Sinto N equal segments.

median(5)
The true median of the numeric stream S.

approx.median(5)
An approximate median of the random numeric stream S, obtained by an algorithm of Pear]

[27].

approx.quantile(S,Q)
An approximate @-th quantile of the random numeric stream S, obtained by an algorithm of

Pearl [27].
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8.3.3 agg stat.bop

length(S)
The length of stream S.

count(S)
The length of stream 5.

min(.5)
The least item of a numeric stream S.

max(S)

The greatest item of a numeric stream 5.

sum(.5)
The sum of all items in a numeric stream 5.

sumsq(S)
The sum of squares of all items in a numeric stream 5.

aggregate(Op,S)
The numeric result obtained by evaluating the expression that interjects the binary, right-
associative operator Op between all elements of 5.

InfirOp Resulting computation

+ sum of all elements in S

* product of all elements in §
/\ logical and of all elements in §
\/ logical or of all elements in §
count count of all elements in 5

min minimum of all elements in S
max maximum of all elements in §
sum total of all elements in S

avg average of all elements in S
sumsq  sum of squares of all elements in §

8.4 Control Functions

8.4.1 ctrl_backtrack.bop

backtracking(9)
Causes items in stream S to be saved as they are found, using the undo/1 primitive, which
records them on the Prolog trail. Backtracking causes these saved items to be recorded and
reused. Sis not actually allowed to backtrack itself; instead we reuse the first stream that §
yields.

commit_backtracking(S)
Announces that failure after this point should not cause recovery of earlier parts of the stream
whose current tail is S (i.e., that the earlier part of the stream no longer need be saved).
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8.4.2 ctrl_.memo.bop

memo( .S, Id)
The stream 5, recording items as they are obtained. Id is the (atomic) name of the memo
entry for 5. When Id is initially unbound, it is bound with a new memo identifier. When Id
is bound, it is taken to be an existing memo identifier. This function permits backtracking,
as well as multiple accesses of a stream by different threads.

Two Prolog primitives can be used to manage memoization:

current_memo{S,Id) :- stream S has been memo’ed as Id.
clear_memo(Id) :- all memo information for Id is removed.

Note: Since memo stream terms are record’ed currently, they should be ground.

8.5 Filters

8.5.1 filter_indices.bop

select_indices(/ndices,S)
The substream of S determined by the (ordered) stream of offsets Indices. For example, if
Indices is [2,7,18], then the result will be a stream containing the second, seventh, and
eighteenth items in stream S.

8.5.2 filter_random.bop

random_subsequence(S5)
One randomly-selected substream of S.

random_combination(S,M)
One randomly-selected subsequence of 5, of size M.

random partition(S)
One randomly-selected partition [LIR] of §.

random_permutation(s)
One randomly-selected permutation of S.
8.5.3 filter_select.bop

select(S, Pattern, Test)
The substream of S containing those items that both match Pattern and satisfy the Prolog
goal Test.

selectUntil(5, Pattern, Test)
The prefix stream of §'items that either do not match Pattern or do not satisfy the goal Test.
8.5.4 filter_uniq.bop

uniq(.9)
The substream of Sof all items with adjacent duplicates removed. Equivalent tounig(5,all).

uniq(.S, Option)
The substream of S obtained according the value of Option:
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uniq{5,all) the (sub)stream of items with duplicates removed
uniq(S,singles) the stream of items appearing without duplicates
uniq(S,multiples) the stream of items appearing only with duplicates
uniq(5,count_all) the stream of (N-X) pairs; N is count of duplicates

uniq(5,count_singles) the stream of (1-X) pairs where X had no duplicates
unig (S, count_multiples) the stream of (N-X) pairs where X had duplicates

8.6 Enumerators

An enumerator is a function that yields all members of a particular set, one at a time, via back-
tracking.

8.6.1 enum_combinatorial.bop

subsequence(.Stream)

Lazily enumerates all subsequences of Stream. That is, subsequences are produced incremen-
tally.

eager_subsequence(Stream)
Eagerly finds all subsequences of Stream. That is, a complete subsequence is produced each
time.

combination(Stream, Number)
Lazily enumerates all combinations of Number values chosen from Stream. Here Number must
be a nonnegative integer.

eager_combination(Stream, Number)
Eagerly enumerates all subsequences of size Number {rom Stream.

partition(Stream)
Enumerates all possible binary partitions [P1|P2] of Stream, where P1 and P2 are subse-
quences of Stream.

eager partition{Stream)
Like partition, but eager.

permutation(Stream)
Enumerates all possible permutations of Stream.

eager_permutation(Stream)
Like permutation, but eager.

8.6.2 enum_filestream.bop

file_term( Filename)
Enumerates terms read from Filename.

file byte(Filename)
Enumerates bytes read from Filename.

instream_term{ ReadStream)
Enumerates terms read from open Prolog ReadStream.

instream.byte( ReadStream)
Enumerates bytes read from open Prolog ReadStream.
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8.6.3 enum_number.bop
integer between( LowerBound, UpperBound)

Enumerates all integers 7 between LowerBound and UpperBound.
8.6.4 enum_prefix.bop

array_term(Array)
Enumerates entries from (functor) Array.

frontier_term( Term)
Enumerates leaf/external subterms of Term.

8.6.5 enum_window.bop

window(N,S)
Enumerates contiguous substreams (‘windows’) of size N in the stream S.

8.7 Generators

A generator is a function that yields all members of a particular set, one at a time, in a stream.

8.7.1 gen filestream.bop

file.terms(Filename)
Enumerates terms read from Filename.

tile bytes(Filename)
Enumerates bytes read from Filename.

instream_terms( ReadStream)
Enumerates terms read from open Prolog ReadStream.

instream bytes(ReadStream)
Enumerates bytes read from open Prolog ReadStream.

8.7.2 gen.number.bop

constant_stream( ()
The infinite stream [C, C, C, ...}.

constant_stream(C,N)
The stream [C, C, ..., CJof length N.

ramp(M)
The infinite stream [M, M+1, M+2, ...].

ramp(M, N)
The stream (M, M+1, M+2, ..., N].

step(M,K)
The infinite stream [M, M+K, M+2K, ...].
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ramp(M,K,N)
The stream [M, M+K, M+2K, ..., M+nK], where M+nK+K > N. The same stream as would
be generated by “for i = M step K until NV

8.7.3 gen_random.bop

random_unit _reals
Generates random real numbers in the unit interval.

random_unit_reals(Seed], Seed2,Seed?)
Generates random real numbers in the unit interval, using Seed!, Seed?2, Seed3 as initial
random seed values.

random.reals(A4,B)
Generates random reals in the interval [4,B].

random integers(M,N)
Generates random integers in the interval [M,N].

random zero_ones
Generates random 0-1 values.

random booleans
Generates random true-false values.

8.8 Stream Operators

8.8.1 map_project.bop

In the following functions, Index is always a (small) integer, specifving an argument index. Indices
are lists of term argument addresses; each term argument is either an integer (giving an argument
index), or a list of integers (giving a path of argument indices). For example, [2, [1,2,4], 3]
is acceptable as Indices. It selects a list consisting of: the 2nd argument, the 4th argument of the
2nd argument of the 1st argument, the 3rd argument of a given term.

project_arg(S,Index)
The stream of Indez’'th arguments from terms in stream S.

project_key_arg(S,Indez)
The stream of {(Arg-X) pairs from items X in S, where Argis the Indez’th argument of X.

project_args(S,Indices)
The stream of indexed arguments from terms in S.

project key_args(S,Indices)
The stream of (Key-X) pairs from items X in S, where Key is the list of arguments of X given
by Indices.

8.8.2 ops_compare.bop

compare( X, Y)
The result C from among <, =, > obtained by the Prolog goal compare(C, X, ¥).

stream_compare(S,T)
The stream of pairwise compare results applied to terms from the streams S and 7.
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8.8.3 ops_join.bop

keysorted natural_join(S,T)
The join of the streams obtained by keysorting 5 and T.

keysorted_equijoin(S,T)
The equijoin of the streams obtained by keysorting $ and T.

equijoin_on key_arg(S,Sindez, T, TInder)
The keysorted equijoin of S and 7, where equality is tested by comparing subterms at position
SInder of terms in S with subterms at position TInder of terms in T.

equijoin_on key_args(S,Sindices, T, T'Indices)
The keysorted equijoin of S and T, where equality is tested by comparing the list of subterms
at positions STndices of terms in S with the list of subterms at positions TIndices of terms in
T.

8.8.4 ops_sets.bop

sortedunion(S,T)
The stream resulting from collectively merging the streams for 5 and T, which should be
already sorted. Duplicates are omitted from the result.

sorted_intersection(S,T)
The stream resulting from selectively merging the streams for § and T. which should be
already sorted. Duplicates are omitted from the result.

sorted_difference(S,T)
The stream of terms in stream S that do not appear in stream T, where both streams should
be sorted.

union(S, T)
The stream sorted_union{sort(S,T)).

intersection(S,7")
The stream sorted_intersection(sort(5,T)).

difference(S,T)
The stream sorted_difference(scrt(S,T)).

8.8.5 sorting.bop
sort{S)

The result of sorting stream S. Duplicates are omitted from the result.

keysort(5)
The result of keysorting stream S, which should be a stream of Key-Term pairs. Duplicates
are not omitted from the result.

8.8.6 sorting.ranks.bop

ranks(5)
A stream of indices (a permutation of [1,2,...,N], where N = length(S)), such that the i-th
result item gives the rank of the i-th element of S.



Chapter 9

Narrowing Grammar

Logic programming has led to new insights into parsing. A logic grammar has rules that can be
represented as Horn clauses which can then be executed for either acceptance or generation of the
language specified.

Narrowing Grammar is a new kind of logic grammar that combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and specific logic grammar formalisms such as Definite Clause
Grammar (DCG). A Narrowing Grammar is a finite set of Bop rewrite rules. What differentiates
Narrowing Grammar from Bop is that there is a style, and a predefined set of operators or functions,
with which the rules are written.

Reddy [28] proposed interpreting rewrite rules using narrowing. In narrowing, variables of a
rewritten term can be bound, and therefore narrowing can serve as a basis for extended logic
grammars in the same way that unification has served up to this point.

By virtue of its implementation in Bop, Narrowing Grammar is directly executable, like many
logic grammars, and can be executed both as a generator and as an acceptor. Unlike many logic
grammars, Narrowing Grammar also permits higher-order specification and modular composition,
and provides lazy evaluation by virtue of its rewriting strategy. Lazy evaluation is important in
certain language acceptance situations, such as in coroutined matching of multiple patterns against
a stream.

Narrowing Grammar offers the following general capabilities.

¢ Support for complez pattern matching.

¢ Generation/acceptance in the same mechanism.

» Programming/rewriting in the same mechanism.

o Some new perspectives on gramimatical formalisms.

Below, we offer only a brief summary of narrowing grammar; for more information, see [4, 10, 5].
These references rely on NU-narrowing, which is the restriction of Bop-narrowing to the case where
the conditions on rewrite rules are always trivial.

9.1 Examples of Narrowing Grammar

It is perhaps easiest to understand Narrowing Grammar by studying a few examples. In this section
we present examples that illustrate some of the more interesting capabilities.
Al the examples involve a particular kind of Bop definition. The rule

p => [a,b,c].
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defines a pattern (nonterminal symbol) p that generates the stream (terminal string) [a,b,c]. Thus
Bop’s handling of streams permits it to implement grammars easily.

Regular Expression Grammar

In Bop we can quickly develop rules for regular algebra:

O => [].
[HIT] => [H|T].

Yy = X.
X;Y) => Y.

(X+) =» X.
(X+) => X,(X+).

(., => L.
(HIT],L) => [HI(T,L)].

Here ¢,’ is an operator that implements concatenation {append) of patterns. If pattern p generates
[a,b,c], and pattern q generates [d,e], then the pattern p,q generates [a,b,c,d,s].

To understand pattern generation more deeply, consider only the rules for Kleene

‘+” and con-

catenation. With these, we can obtain the following Bop-narrowing:

Rewritlen term

Rule used

([al+, [p])

(([al,[al+), [b])
([al([],[al+)]1, [b]}
[al (C([1, {al+), [b])]
Lal ([al+, [b])]

(al (fa], [b1)]
(a,al([],[p])]

[a,a,b]

(X+) => X,(X+).
({HIT3,L) => [HI(T,L)].
([HIT],L) => [HI(T,L)].
(,L) => L.

(X+) => X.

([HITI,L) => [HI(T,L)].

..y => L.

Narrowing grammar can also be used for pattern recognition (parsing, acceptance), in which
we match a pattern P against a stream S. To accomplish this, we introduce a primitive match(P,3)

that succeeds only when P matches a prefix of S:

match([],8) => S.

match([XIL], {X]18]) => match(L,S).

Thus we use match as a parser, as the following narrowing shows:
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match( ([al+,(b]), [a,a,b] )

match( (([a],[al+),[b]), [2,a,b] )
match( ([a|([],[a]+)],[b]), [a,a,b] )
match( [al(([},[a]+),[b]1)], [2,a,b] )
match( (([1,{al+),[b]), [a,b] )
match( ([al+,[bl), [a,b] )

match( ([al,[b]), [a,b] )

match( [al([],[p]1)]1, [a,b] }

match( (01,[%]1), [B] >

match( [b], [b] )

match( {1, [0 )

il

Higher-Order Patterns

Narrowing grammar has several very novel features. One is the ability to pass patterns as arguments

to other patterns, allowing us effectively to implement higher-order patterns. For example, if we
define

number (P ,N) => number(P,N,0).
number (P,N,N) => [J.
number(P,N,M) => P,number(P,N,M1) :- succ(Mi,M).

then number(P,N) is a pattern that will generate (or match) a stream of N consecutive copies of P.
For example, we can use it to generate a stream with the following narrowing:

number {([al+, [b]),2)
number{{[al+, [b]),2,0)

(fal+,[b]), number(([al+,[b]),2,1)
([al,[b]), number{(([al+,[bl),2,1)
[al{[],[b])], number(([al+,[b]),2,1)
lal (({3,[b]), number((L{al+,[r1),2,1))]
[al ([bl, number(([al+,[b]),2,1))]

[al [b| ([], number(([al+,[b]),2,1))]1]
[ai [b| number{{[al+,[bl},2,1}]1]

[al [b} (([al+,([®]), number(([al+,[b]),2,2))]]
fal [bl (([al,[»]), number((f{aJ+,[b]),2,2))]]

[al [bl [al (([],[b]),number{([al+,[b]),2,2)>111]
[al [b} [al [b} number(([aJ+,[®]1),2,2)]111]

lal [bl C[al [bi [1111]

Coroutined Pattern Matching

Another interesting feature of Narrowing grammar is its ability to implement coroutined pattern
matching. Many logic grammars are also not lazy, yet lazy evaluation can be very important in
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parsing. It allows coroutined recognition of multiple patterns against a stream. Bop permits the
integration of lazy evaluation with logic grammars, and to our knowledge this is new.
With the definition of the // operator

([XI1xs] // [XIYs]) => [XIXs//Y¥s].
(Q /7 D = (1.

we coroutine two patterns. The compound pattern (P // Q) simultaneously matches or generates
P and Q. The operator // yields the stream pattern [X]|(Xs//Y¥s)] when its two argument patterns
narrow, respectively, to [X1Xs] and [X|Ys]. The effect is ‘coroutined’ narrowing of the two argu-
ment patterns, since the arguments are recursively constrained to natrrow to streams whose heads
match. Ultimately // constrains both argument patterns to narrow to the same stream.

For example, consider the grammar:

s_abc => ab_c f/ a_bc.

ab_c => pair([al,[bl), [cI*.
a_bc => [al*, pair([a]l,[bl).

pair(X,Y) => [].
pair(X,Y) => X, pair(X,Y), Y.

This grammar imposes simultaneous {parallel) context-free constraints (¢”b"c* and a*b"c™) on the
streams generated or matched by the pattern s_abe. It thus produces the stream of values a™d%c".
That is, it relies on the fact that

{a™b™" |n 20} = {a™"c*|n >0} n {a*bc" | n > 0}.

There is much more to say about Narrowing Grammar. For a formal treatment and further
examples, see [4, 10, 5].
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