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Abstract

A simple technique for using theorem continuation functions interactively with HOL’s sub-
goal package is presented. An interesting aspect of the technique is that it hinges on the
availability of assignable variables in ML.

1 An Example

An important notion in tactic-based theorem proving in HOL [1, 2] is that of theorem continuations®.

A theorem continuation is an ML function of type thm -> tactic (abbreviated as thm_tactic),
which transforms a theorem into a tactic for continuing the proof (hence the name). A simple
example of theorem continuations is:?

#let ttac : thm_tactic = I
# \t . let (1,r) = CONJ_PAIR t in

¥ CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 1] ;:

ttac = - : thm_tactic

Theorem continuation ttac splits the input theorem t (which is assumed to be conjunctive) into its
left conjunct 1 and right conjunct r using CONJ_PAIR, then reduces the goal (which is also assumed
to be conjunctive) into two subgoals corresponding to its two conjuncts using CONJ_TAC, and finally
solves the left (right} subgoal with theorem r (1} using ACCEPT_TAC. Schematically, ttac can be
depicted thus:

*Supported by IBM Graduate Fellowship.

!There is a resemblance hetween theorem continuations in HOL and continuations in Denotational Semantics,
but the reader need not know the latter in order to nnderstand the former or the technique presented in this note.

HOL sessions are displayed in rectangular windows, each of which is labelled by a sequence number shown at
the upper-right corner. Side-effects produced in lower-numbered windows persist into higher-numbered ones until the
number is reset to 1, which marks the beginning of a new session.



EEEE S ST S ST oS SSS=S=EE=SSsSos== ttac (I— 1 /\ r)

An important method of using theorem continuations is to use them as arguments of theorem
continuation functions, an example of which is:

#DISCH_THEN ;; 2]
- : (thm_tactic -> tactic)

When applied to an implicative goal, DISCH_THEN removes the antecedent from the goal, creates
a theorem by assuming the antecedent, produces a tactic by applying its first argument (which is
a theorem continuation) to the theorem, and reduces the succedent of the original goal using the
resulting tactic. Schematically, if

====zz===z=z== DISCH_THEN ttac

(read: to prove t ==> u. it suffices to prove v). The following session shows how DISCH_THEN and
ttac work together:

#g "a /AN b ==>Db /\ a" ;; [ 3]
"a /\ b ==> b /\ a"

() : woid

#expand (DISCH_THEN ttac) ;;
OK. .

goal proved

I-a /\b==>b /\ a

Previous subprootf:
goal proved
() : void

Notice how closely the pattern of inference effected by (DISCH_THEN ttac) corresponds to the
intuitive argument one uses to prove a /\ b ==> b /\ a. Indeed, if we substitute the definition
of ttac for ttac, we get:

DISCH_THEN \ t .
let (1,r) = CONJ_PAIR t in
CONJ_TAC THENL
[ ACCEPT_TAC r ;
ACCEPT_TAC 1 ]

which can be read line-for-line as expressing the following informal proofofa /A b ==> b /\ a:



¢ Assume the antecedent t = a /\ b is true.

1. Hence both 1 = aand r = b are true.
2. To prove b /\ a, it suffices to prove both b and a.

(a) Assumption r proves b.
(b) Assumption 1 proves a.

All built-in theorem continuation functions in HOL88 (wviz., those ML functions with names ending
with ‘_THEN’, ‘_THENL' or *_THEN2") afford equally intuitive and natural interpretations.

2 The Technique

In the above example the goal 7- a /\ b ==> b /\ ais so simple that it is trivial to figure out
what the theorem continuation ttac should be, once the meaning of DISCH_.THEN is understood.
But what if the goal is more complex?

Customarily, a tactic for solving a complex goal is constructed by interactively building and
traversing the proof tree using HOL's subgoal package {1, 3}. It is crucial to be able to perform the
proof search interactively, for theorem proving is computationally too hard to be fully automated,
and to have a tool like the subgoal package to do all the bookkeeping, for it is too tedious and
error-prone for a human to keep track of all the details. But can we construct complex theorem
continuations, not just tactics, interactively using the subgoal package?

A theorem continuation ttac is an ML function of type thm -> tactic. Obviously, without
knowing the value of its theorem argument {call it t), ttac (more precisely, the part of ttac that
has been constructed) cannot be interactively tested. The problem is: How does the user generate
the correct value of t during an interactive sesston?

When a theorem continuation ttac is used as an argument of a theorem continuation function
tcl, ttac’s input theorem t is produced by tel either from the goal to be proved via the inverse
of an introduction rule (e.g., when tcl is DISCH_THEN), or from an already generated theorem
via an elimination rule (e.g., when tcl is CHOOSE_THEN; see the example in Section 3), or from
a combination of both. It is possible, in principle at least, to generate the correct value of t by
mimicking tcl manually. But this approach is as tedious and error-prone as doing interactive proofs
manually without the benefit of the subgoal package. The contribution of this note is to present a
technique for overcoming this difficulty.

The basic idea behind the technique is very simple: Have ttac assign the value of its theorem
argument to an assignable variable which is nof local to, and hence can be accessed from outside,
ttac.

#letref t = ARB_THM ;; % Initialize t to some arbitrary theorem % 1
t = |— $..—. = $=

#let ttac : thm_tactic = ( \t’ . ¢t := t’ ; ALL_TAC ) ;;
ttac = -~ : thm_tactic

It is essential that t he an assignable variable, since non-assignable variables (i.e., those variables
declared with let instead of letref) cannot be re-assigned a new value. Let us examine the
behavior of ttac by re-doing the previous example:



#g "a /A b ==>b /\ a" ;; 2
"a /\ b ==>Db /\ a"

() : woid

#expandf (DISCH_THEN ttac) ;;

OK..

llb /\ all
() : void
#t

a/Abl-a/\b

Thus the theorem that DISCH_THEN feeds ttac with has been ‘captured’ and stored in t, which can
be accessed globally. The proof can now be finished as in the previous example:

#let (1,r) = CONJ_PAIR t :; | 3
l1=a/\b|-a
r=a/\Abl-b

#expandf (CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 1]) ;;
OK..
goal proved
I-b /\ a
l-a/\A\b==>b/\a

Previous subproof:
goal proved
() : void

Notice that we must use expandf instead of expand in the last step:

#backup () ;; .
b /\

() : void

#expand (CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 1]) ;;
OK..
evaluation failed Invalid tactic

The reason why expand fails is that since we have used DISCH.THEN, the last goal has no assumption
at all. But theorems 1 and r both have the assumption a /\ b, which causes the validity check
of expand to fail. Since our technique results in a proof style which is often incompatible with the
default validity check of expand, we will in the sequel use expandf exclusively during interactive
construction of theorem continuations and adopt the following abbreviation:

#let f = expandf ;; | i
f = - : {(tactic -> void)

But we will continue to use expand when a single, final tactic for solving the top-level goal has
been constructed.



The basic technique demonstrated above can be refined. The assignable variable to which ttac
assigns the value of its theorem argument does not have to be global. It is sufficient to have a local
(hence anonymous) assignable variable to hold the ‘captured’ theorem, which is then returned as a
function value. Furthermore, instead of writing a special piece of code for (the initial skeleton of)
each theorem continuation that we might want to plug into DISCH_THEN, we can define a uniform
transformation for all theorem continuation functions of type thm_tactic -> tactic. The prefix
‘f_" (obviously) arises from our abbreviating expandf as f.

#let f_ttac.tac (ttac_tac : thm_tactic -> tactic) : void -> thm = 2]
# letref th = ARB_THM in

# let ttac : thm_tactic = ( \ th* . th := th’ ; ALL_TAC ) in
# (N () .t (ttac_tac ttac) ; th )

#;5

f_ttac_tac = - : ({thm_tactic -> tactic) -> void -> thm)

#let £_DISCH_THEN = f_ttac_tac DISCH_THEN ;;
f_DISCH_THEN = - : (void -> thm)

Now we can have an interactive proof which is almost identical to the previous one:

#g "a /\ b ==> b /\ a" ;; ER
"a /\ b ==>0b /\ a"

() : void

#let t = f_DISCH_THEN () ;;
0X..
ub /\ a."

t=a/\Abl-a/\b

#let (1,r) = CONJ_PAIR t ;;
l1=a/\bl-a
r=a/\bl-b

#f (CONJ_TAC THENL [ACCEPT_TAC r; ACCEPT_TAC 131) ;;
OK..
goal proved
[-b/\ a
I-a/Ab=>b/\a

Previous subproof:
goal proved
() : void

3 Another Example

The theorem continuation function
CHOOSE_THEN : thm_tactic -> thm -> tactic

can be described schematically as follows. If



==z====== ttac (tix’/x} |- tlx'/x])

- v
then
- u
=====z== CHOOSE_THEN ttac (|- ?x.t)
- v

where x’ is a variant of x chosen not to be free in the assumption list of the goal. In other
words, CHODSE_THEN uses an existentially quantified theorem by instantiating it to a particular but
arhitrary witness. Analogous to f_ttac_tac and £_DISCH_THEN, we can define:

#let f_ttac_ttac (ttac_ttac : thm_tactic -> thm -> tactic) : void -> thm -> thm = | 4 |
# letref th = ARB_THM in

# let ttac : thm_tactic = ( \ th’ . th := th® ; ALL_TAC ) in

# (N Ot . f (ttac_ttac ttac t) ; th )

#;,

f_ttac_ttac = - : (thm_tactical -> void -> thm -> thm)

#let f_CHOOSE_THEN = f_ttac_ttac CHOOSE_THEN ;;
f_CHOOSE_THEN = ~ : (void -> thm -> thm)

In the following we suppress the printing of the assumption lists of theorems, since they can be
very long:

#top_print print_thm ;; L5 ]
- : (thm -> void)

Now consider the goal:

#g "(?n1. fn. n >= nl ==> P1 n) /\ (?n2. 'n. n >= n2 ==> P2 n} ==> L 6
# (7n3. ‘n. n > n3 ==> P1 n /\ P2 n)"
#;;

"(?n1. 'n. n > nl ==> P1 n) /\ (?n2. !'n. n »>= n2 ==> P2 n) ==>
(*™n3. 'n. n >= n3 ==> P1 n /\ P2 n)"

() : wvoia

Since the goal is implicative, the ohvious thing to do is to strip and assume the antecedent:

#let p = Z_DISCH_THEN () ;; L7 ]
OK. .
"?n3. !n. n >= n3 ==> P1 n /\ P2 n"

p=. |- (1. 'n. n > n1 ==> Pt n) /\ (?n2. 'n. n >= n2 ==> P2 n)
#let (p1,p2) = CONJ_PAIR p ;

I
Pl = . |- ?nl. In. n >=nil ==> Pl n
P2 = . |= n2. 'n. n >= n2 ==> P2 n

Now we have two existentially quantified theorems p1 and p2. The next thing to do is to use them
by means of CHOOSE.THEN:



#let pl’ = f_CHOOSE_THEN () Pl ;; ] 8
OK..
"?n3., 'm. n >= n3 ==> P11 n /\ P2 n"

pt’ = . |- 'm, n>= nl ==>Pin
#let p2’ = f_CHOOSE_THEN () p2 ;;
0K. .

*?n3. !n. n >= n3 ==> P1 n /\ P2 n"

p2' = . |- !'n. n > n2 ==> P2 n

At this stage we are ready to solve the existential goal. A suitable witness for n3 is n1 + n2:

#f (EXISTS_TAC "nl + n2"y ;. L9
oK. .
"In, n > {(n1 + n2) ==> P1n /\ P2 n"

() : void

#f (GEN_TAC) ;;

OK..

"n >= (n1 + n2) ==> P1 n /\ P2 n"
() : void

#let q = f_DISCH_THEN () ;;

OK..
"P1 n /\ P2 n"

g=.Il-n> (n1 + n2)

Suppose the following theorems have already been proved:

#(th1,th2) ;; [0
(- 'n1 n2 n. n »>= (n1 + n2) ==> n >= ni,

{= tn1 n2 n. n >= (1 + n2) ==>n >= n2)

(thm # thm)

Then some forward reasoning would generate suitable theorems to finish the proof:

#let q1 = itlist MATCH WP [pl’; thi] q [ 11 ]
#and g2 = itlist MATCH_MP [p2’; th2] q ;;

gl= .. [-P1n

g2= .. |-PF2n




#f (ACCEPT_TAC
0K. .
goal proved
|- P1 n /\
|- n >= (nl
|~ In. n »=
|- 7n3.
|- 7n3.
1- ?n3.
[~ (?n1.
(?n3.

(CONJ q1 q2)) ;;

P2 n
+ n2)
(n1 +
n, n »>=

==> Pl n /\ P2 n

n2) ==>Pin /AN P2n
n3 ==>P1n/\NP2n
In. n > n3 ==>P1ln/\NP2n
In. n > n3 ==> Pin/\P2n
In. n >= ni ==> P1 n) /\ (7"n2.
in. n >> n3 ==> P1 n /\ P2 n)

Previous subproof:
goal proved
() : wvoid

n. n >= n2 ==> P2 n) ==>

[17]

Finally, we can condense the whole proof session into
test:

one single tactic, which we use expand to

#g "(?n1. !n. n >= n1 ==> P1 n) /\ ("n2. !n. n >=

# ("n3. 'n. n >= n3 ==> Pl n /\ P2 n)"

#;;

“(?ni. !n. n >= nl ==> P1 n) /\ (™n2. in. n >= n2
(*n3. 'n. n > n3 ==> Pl n /\ P2 n)"

() : wvoid

#expand (

# DISCH_THEN \ p .

#  let (p1,p2) = CONJ_PAIR p

# in

#  CHOOSE_THEN ( \ p1’

# CHOOSE_THEN ( \ p2’

# EXISTS_TAC "nl1 + n2" THEN

# GEN_TAC THEN

# DISCH_THEN \ q .

# let q1 = itlist MATCH_MP [p1'; thi] q

# and g2 = itlist MATCH_MP [p2'; th2] q

# in

# ACCEPT_TAC (CONJ q1 g2)

# ) p2

# ) p1

#) 5,

0K..

goal proved
I- (?n1.
(?n3.

nil ==> P1i n)} /\ (?n2.
n3 ==> P1 n /\ P2 n)

n, n >=
'n. n >=

Previous subproof:
goal proved
0

: void

In. n >= n2 ==> P2 n) ==>

n2 ==> P2 n) ==>

BER

==> P2 n) ==>




4 The Code

Analogous to f_ttac_tac and f_ttac_ttac, we can define a uniform transformation for each type
of built-in theorem continuation functions in HOLSS.
only during interactive construction of theorem continuation arguments of theorem continuation
functions. Once a proof is completed, the record of interaction can be packaged into a single tactic
containing no ‘f_..." functions, as demonstrated in the previous example. Also notice that our
technique applies, mutatis mutandis, to other LCF-style systems, such as Cambridge LCF (3], as

well.

let £ = expandf ;;

let f_ttac_.tac (ttac_tac :

: void -> thm =
letref th = ARB_THM

in
let ttac : thm_tactic = ( \
in

. £ (ttac_tac ttac) ;

(NO

let f_DISCH_THEN

and f_INDUCT_THEN (th :
and f_RES_THEN

and f_STRIP_GDAL_THEN
and f_SUBGOAL_THEN (t :

1

let f_ttac_ttac (ttac_ttac :

term)

: void -> thm -> thm =

letref th = ARB_THM
in
let ttac :
in

thm_tactic

let
and

f_ALL_THEN
f_ANTE_RES_THEN
f_CHOOSE_THEN
f_CONJUNCTS_THEN
f_DISJ_CASES_THER
f_FREEZE_THEN
f_IMP_RES_THEN
f_NO_THEN
f_STRIP_THM_THEN

and
and
and
and
and
and
and
and
and

= ( \ th?’

term)

th’

1

i1

[}

f_X_CASES_THEN (x11: term list list)
f_X_CHOOSE_THEN (x :

. th :=

th )

f_ttac_tac
f_ttac_tac
f_ttac_tac
f_ttac_tac
f_ttac_tac

thm_tactic ->

. th :=

(N (Ot . f (ttac_ttac ttac t) ; th )

it

th'

th?

thm_tactic -> tactic)

DISCH_THEN

Notice that these definitions are needed

: ALL_TAC )

(INDUCT_THEN th}

RES_THEN

STRIP_GOAL_THEN
(SUBGDAL_THEN t)

thm -> tactic)

f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac
f_ttac_ttac

; ALL_TAC )

ALL_THEN
ANTE_RES_THEN
CHOOSE_THEN

CONJUNCTS_THEN
DISJ_CASES_THEN
FREEZE_THEN

IMP_RES_THEN
NO_THEN

STRIP_THM_THEN
(X_CASES_THEN x11)
(X_CHOOSE_THEN x)



let f_ttac_ftac (ttac_ftac : thm_tactic -> term -> tactic)
: void -> term —-> thm =
letref th = ARB_THM
in
let ttac : thm_tactic = ( \ th* . th := th’ ; ALL_TAC )
in
(N (O x . f (ttac_ftac ttac x) ; th )

L

let f_FILTER_DISCH_THEN
and f_FILTER_STRIP_THEN

f_ttac_ftac FILTER_DISCH_THEN
f_ttac_ftac FILTER_STRIP_THEN

1

let f_ttac_ttac_ttac (ttac_ttac_ttac : thm_tactic -> thm_tactic ~> thm -> tactic)
: void -> veid -> thm -> (thm # thm) =

letref thl = ARB_THM and th2 = ARB_THM

in

let ttacti : thm_tactic
and ttac? : thm_tactic
in

(N O Ot . f (ttac_ttac_ttac ttacl ttac2 t) ; (thi,th2) )

( \ th1l® . thil :
{ \ th2’ . th2 :

thil' ; ALL_TAC )}
th2’ ; ALL_TAC )

it
u

L)

let £f_CONJUNCTS_THEN2 = f_ttac_ttac_ttac CONJUNCTS_THEN2
and f_DISJ_CASES_THEN2 = f_ttac_ttac_ttac DISJ_CASES_THEN2

L]

let f_ttacl_ttac (ttacl_ttac : thm_tactic list -> thm -> tactic)
: void list -> thm -> thm list =
letref thl = [ ] : thm list
in
let ttacl : int -> thm_tactic list =
letrec ttacl’ {m : int) =
if (m = 0) then [ ]
else ( \ th’ . thl := thl @ [th’] ; ALL_TAC }.{ttacl’ (m - 1))
in
{\Nn. thl := [ ] ; ttacl’ n)
in
(\Nvlt . f (ttacl_ttac (ttacl (lenmgth v1}) t) ; thl )

let f£_CASES_THENL f_ttacl_ttac CASES_THENL
and £f_DISJ_CASES_THENL f_ttacl_ttac DISJ_CASES_THENL
and f_X_CASES_THENL (x11l: term list list) = f_ttacl_ttac (X_CASES_THENL x11)
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