Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

SOME IMPOSSIBIITY RESULTS IN INTERPROCESS
SYNCHRONIZATION

Y.-K. Tsay May 1992
R. L. Bagrodia CSD-920023

Some Impossibility Results in Interprocess
Synchronization!

Yih-Kuen Tsay
Rajive L. Bagrodia

3531 Boelter Hall
Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024.

Tel: (213) 825-0956

yvihkuen@cs.ucla.edu

bagrodia@cs.ucla.edu

Abstract. In this paper we construct a formal specification of the problem of synchronizing asyn-
chronous processes under strong fairness. We prove that strong interaction fairness is impossible for

binary (and hence for multiway) interactions and strong process fairness is impossible for multiway

interactions.

!This research was partially supported by NSF under grant ASC9157610 and by ONR under grant N00014-51-J-
1605. This paper is a revision of an earlier UCLA Technical Report CSD-830059 with the same title.

1 Introduction

The problem of synchronizing asynchronous processes in a distributed environment was introduced
in the context of the rendezvous construct proposed for CSP [Hoa78]. A rendezvous represents
synchronous communication between two processes in which the sender (receiver) process must
wait until the receiver (sender) process is ready to receive (send) the message, A process may be
ready to rendezvous with a number of other processes but may participate in at most one rendezvous
at a time. This form of communication is referred to as a binary interaction. Other researchers
have suggested an extension to binary interaction — multiway interaction [FHT86, Cha87, BKS8S,
Fra89]. A multiway interaction essentially allows a rendezvous to occur among an arbitrary (though
usually predetermined) number of processes.

A large number of algorithms have been devised to implement binary and multiway interactions
(BS83, Sis84, Ram87b, Bag89b, Ram87a, CM88, Bag89a). Three primary classes of properties are
associated with such algorithms: safety, liveness, and fairness. Although most existing algorithms
satisfy the safety and liveness properties, few implement fairness.

In this paper we formally specify the problem of implementing interactions in a general model.
We counsider two fairness notions: Strong Interaction Fairness (SIF), which requires that if an
interaction is enabled infinitely often it be started infinitely often and Strong Process Fairness
(SPF), which requires that if a process is ready to participate in some enabled interaction infinitely
often it do so infinitely often. We prove that, in general, SIF is impossible for binary (and hence for
multiway) interactions and SPF is impossible for multiway interactions. Although the impossibility
results are proven in a message-passing model of distributed system, the results hold in any model
where (a) each process autonomously decides when and if it is willing to participate in some
interaction and (b) the model assumes low atomicity, i.e. in one atomic step a process cannot both
change its local state and inform other processes of the change.

In [Fra86] Francez gives an extensive overview of fairness notions and demonstrates the effects
of some of them on program correctness. [AFKS88] proposes criteria for determining the appro-
priateness of fairness notions in distributed languages, They conclude that, under the suggested
criteria, none of the common forms of fairness (including SPF and SIF) are appropriate for mul-
tiway interactions and only SPF is appropriate for binary interactions. Our impossibility results
corroborate their conclusions; in another paper (BT90], we give an efficient algorithm for binary
interactions with SPF. From an implementation perspective, Dijkstra [Dij88] contends that fairness
is a void obligation for language implementors in that it is impossible to detect if the obligation
has been fulfilled. The results of this paper show that under the assumptions of our model, some

fairness notions for interprocess synchronization are, in fact, impossible to implement.

The rest of the paper is organized as follows: Section 2 describes the interaction problem and
informally presents the impossibility results. Sections 35 establish the necessary framework and
give a formal proof of the impossibility results. These sections may be omitted by readers who are
less interested in the proof procedure. The last section examines the assumptions in the interaction

problem, their possible alternatives, and related issues.

2 Informal Approach

We informally define the interaction problem and sketch the impossibility results, focusing on
the crucial assumptions of the problem and their consequence to the results. All technical terms
(italic-typed in their first appearances in this section) will be made formal and precise in subsequent

sections.

2.1 The Problem

Consider a set of processes and a set of interactions defined among the processes. Each interaction
is a nonempty subset of processes representing some synchronization activity of its members. A
process can be in active or idle state. An active process may autonomously become idle and wait to
participate in some interaction. (Note that in general it is impossible to determine a priori when,
or if, an active process will become idle.) An interaction is enabled if all of its members are idle; it
is disabled otherwise. A process is said to be committed if some interaction of which it is a member
is started; an idle process may become active only if it is committed. A started interaction will
eventually be terminated.

It is required to augment each process with a scheduler to select interactions for execution such
that the following safety and liveness properties are satisfied: (a) Only enabled interactions can be
started.? (b) A process can participate in at most one interaction at a time. Two interactions are
said to be conflicting if they have at least one member in common. This property says that once
an interaction is started, no other conflicting interactions may be started until the interaction is
terminated. (c) If an interaction is enabled, then either the interaction or some other conflicting
interaction will eventually be started.

This problem is referred to as the multiway interaction problem; if each interaction has exactly
two members, the problem is referred to as the binary interaction problem. The processes in an

instance of the problem, together with their schedulers will be referred to as a program.

'An interaction must be enabled at the time when it is started. However, an interaction that has been started
may subsequently become disabled when some of its members become active. A process that becomes idle while some
interaction of which it is a member has been started is considered to be participating in the started interaction.

2.2 Fairness Notions

Aside from the basic properties required by the interaction problem, it is natural to ask whether
stronger properties can be satisfied. The problem description in the preceding section allows a run
of a program, where an interaction Iis enabled infinitely many times but is never started because
some member of I always chooses to participate in a conflicting interaction.

We thus consider two stronger properties: Strong Interaction Fairness (SIF) and Strong Process
Fairness (SPF). SIF requires that if an interaction is enabled infinitely often it be started infinitely
often; and SPF requires that if a process is ready to participate in some enabled interaction infinitely
often it do so infinitely often. Notice that SIF subsumes SPF; a program that violates SPF cannot
satisfy SIF.

2.3 Impossibility Results

We show that, in general, SIF is impossible for the binary interaction problem and hence for
the multiway interaction problem. The impossibility of SPF for multiway interactions follows
immediately from the preceding result.

In the description of the interaction problem, we have made three assumptions which are crucial
to the impossibility results: (i) An active process may or may not become idle. (ii) If an active
process becomes idle, it does so autonomously. (ili) The state transition of a process is not im-
mediately observable by other processes or their schedulers. Modifications to the assumptions and
their effect on the impossibility results are examined in Section 6.

Consider an instance of the binary interaction problem with three processes i, , and k and
three interactions {47}, {j,k}, and {k,i}. The schedulers are referred to as schedulers 1, j, and
k, respectively. In accordance with assumptions (i) and (ii), we further assume that the three
processes have the following property: (iv) It is always possible for an active process to remain
active or autonomously become idle. We shall construct a run of the program where interaction {k,1}
becomes enabled infinitely often but is never started.

The construction is developed around the following key observations: First, if some interaction
Iis enabled, the schedulers cannot indefinitely postpone the execution of I while waiting for other
interactions to become enabled; otherwise, if other interactions never become enabled as allowed by
assumption (iv), property (c) in Section 2.1 will be violated. This observation will be established
formally by Lemma 3 in Section 5. Secondly, when the schedulers decide to start some interac-
tion 7, it is possible that a conflicting interaction K becomes enabled before [is started. However,
assumption (iii) implies that in general it is impossible for the schedulers to detect that K is enabled
before Iis started. This will be established formally in Theorem 1 in Section 5.

In some run of the program, the following scenario may occur repeate&ly: Initially, all pro-
cesses are active and no interaction is started. Processes i and 7 8o from active to idle, while
process k remains active. To satisfy property (c), schedulers 1 and j decide to start interaction {i.5}.
Meanwhile, process k becomes idle right before interaction {ij} is actually started thus causing
interactions {j,k} and {k,i} to also become enabled together with interaction {ij}. After partic-
ipating in interaction {ij}, process j becomes idle again causing {j,k} to become enabled, while
process i remains active. Schedulers 7 and k then start interaction {j,k}. Subsequently, processes J
and k again become active and interaction {j,k} is terminated. Now, all processes are active and
no interaction is started; and the above scenario is repeated,

To see that SPF is impossible for multiway interactions, we add process I to the previous instance
and change interaction {k,i} into {£,4{}. In a run of the new program, assume process [becomes
idle. Processes i, j, and k behave exactly the same as above. It follows that process !is ready to
participate in interaction {%,i,0} infinitely often but never does so.

In the remainder of the paper, we define a computational model, construct a formal specification

of the interaction problem with strong fairness, and derive the impossibility results.

3 Model and Definitions
3.1 Program and Computation '

A program consists of a set of variables and a set of (state transition) rules. Each variable may
assume values in some domain, a subset of which is specified as possible initial values of the variable.
Every program includes an auxiliary variable called label, which may assume the name of a rule
or an initial value null. The state of a program is the tuple of values assumed by the program
variables, including label; an initial state is a state satisfying the specification of initial values of
the program variables. Each rule is specified by a unique non-null tag, called its name, a predicate
on program states, called its guard, and a sequence of assignment statements, called its body. A
rule is enabled at a program state if the state satisfies its guard; otherwise it is disabled.

A computation (or run) of a program starts from any initial state and goes on forever., In
each step of the computation, a rule is selected nondeterministically for execution and the value
of label is updated with the name of the selected rule. If the selected rule is enabled, its body is
executed; nothing else happens otherwise. The execution of a (enabled or disabled) rule results in
a deterministic state transition of the program. Thus, each computation uniquely determines an
infinite sequence of program states. To exclude computations where a continuously enabled rule

is indefinitely ignored, we postulate a fair selection criterion: each rule of the program is selected

infinitely many times (regardless of whether or not the rule is enabled} in a computation.?

We introduce some notations:

s{or &', s, 31, ... etc.) denotes a prograimn state,

z denotes the i-th clement of sequence 2. We assume the elements of a sequence are numbered
from 0.

z' denates the suffix of sequence Z starting from the i-th element, i.e. iTif 1 Tippe o

{8,z) denotes the sequence of states determined by the execution of sequence of rules z starting
from state s.

(8.z) denotes the last state in (s,z), assuming z is finite.

zy denotes the concatenation of sequences z and Yy, assuming z is finite. From the definition of
the computational model, it follows that (s, zy) = ((s,2),y).

z < y denotes that sequence z is a prefix of sequence y.

Initpy denotes the predicate that specifies the initial states of a program D.

Rule(D) denotes the set of rules of D.

Rule*(D)={a|Vr,k:r € Rule(D)Ak20:(Fi:i>k:aq; =)} is the set of all infinite
sequences of rules of D such that each rule is selected infinitely many times.

Pref(D) = {z | 3a : a € Rule™(D) :: £ < a} is the set of all prefixes of sequences in Rule*(D).

Comp(D) = {¢ | 38,0 : (s = Initp) A a € Rule’(D) :: 0 = (s,a)} is the set of all possible
computations of D.

Comp*(D) = {0 | 3z :: zo0 € Comp(D)} is the suffix closure of Comp(D).

Branch(s) = {0 | ¢ € Comp™(D) A go = s} is the set of all possible “futures” of the state s.

Note that each possible future of a program state is a sequence of states.

3.2 Temporal Logic

Our logic is a variation of the branching time logic in [ES89). We do not distinguish between
state formulae and path formulae, but simply refer to them as temporal formulae. We use 0,0, ¢
instead of the more standard X,G,F. Quantifiers are introduced to abbreviate the conjunction or
disjunction of a number of temporal formulae with similar pattern.

We directly define the semantics of our logical language with respect to a program D; its syntax
is implicitly defined by these semantic definitions. Suppose a,b,c are predicates on program states
and p,g are temporal formulae. ¢ is an infinite sequence in Comp”(D); recall that ' denotes its

suffix ¢,0i110i43 - In the following definitions, the logical operators —, A, and V and quantifiers

*The fair selection criterion only requires that each rule be selected infinitely often. In particular, it is possible
that a rule is enabled infinitely often (not continuously) but the body of the rule is never executed, because it may
be selected only when it is disabled.

V and 3, when not occurring as part of a temporal formula, should be interpreted according to their

standard meanings in classical logic.

al|o = aatoy (ais evaluated to true at state o0) (Al)
plo = ~(plo) (A2)
oplo = p|ot (A3)
Oplo = Vi:i>20:u:p|o? (A4.1)
Oplo = 3i:i20up|o' (=-0-pla) (A4.2)
Ap|o = V1 :71 € Branch(og) p | T (A3.1)
Eplo = 3r:1 € Branch(oo) 1p| 7 (= -A-p | o) {A3.2)
pValo = (plo)v(q|o) (A6.1)
pAgle = (playAa(gle) (==(-pVv-q)|a) (A6.2)
p=qlo = (pva)lo (46.3)
peglo =((p=>9gAr(g=p)|e (A6.4)
(a Until b) |0 = Ei:izo::(bla‘)A(Vj:05j<i::a[crj) (A7.1)
(a Unless b)|o = (a= (QavV(a Until b)) | o (A7.2)

(Notice that “(a Unless b) | o” is true if a is is false at o, regardless of the truth value of 5.
This definition, motivated by the “unless” in [CM88], is very useful in specifying safety properties
of a program.)

A quantified temporal formula is interpreted as multiple occurrences of the temporal formula
with the quantified variables replaced by their possible values. “Vz : Q(z) :: p(2)) | o” is evaluated
to true if all occurrences of p(z) with z satisfying @(z) are evaluated to true. An important constraint
on the predicate Q(z) is that its truth value does not depend on program states. For example, z
can be the index of processes and Q(z) asserts that z range over some set of numbers, Similarly,
“(3z : Q(z) :: p(z)) | ¢ is evaluated to true if at least one occurrence of p(z) with z satisfying
Q(z) is evaluated to true. For brevity, temporal formulae will often be written without explicit
quantification; they are assumed to be universally quantified over all values of the free variables.

The properties of a program D are expressed by statements of the form “p in D,” where pis a
temporal formula.

pinD = Vo:0€ Comp™(D)::ple (=VYr:re Comp(D):Op | 7) (P1)

The following are some temporal formulae that are true for any sequence of Comp*(D). Their
validity can easily be verified from the definitions (A1l)}-(A7.2). Notice again that a, b, ¢, and d are
predicates on program states and do not involve temporal operators.

A(p A q) & (Op A DOg) (T1)

(aAAp) & A(aAp) (T2)

(A(p = ¢) A Op) = Og T (T3)
(a Unless (b v c)) = (a Unless b) V (a Unless c) (T4)
(a Unless b) A (c Unless d) = (a A ¢ Unless bv d) : (T3)

3.3 Program Composition and Distributed Programs

Programs can be combined to produce composite programs in a natural way. FEach component
program of a composite program will be referred to as a module. The set of variables (rules) of the
composite program is the union of the sets of variables (rules) of all modules. Variables belonging to
more than one modules are termed shared variables. A constraint on program composition requires
that each shared variable be initialized “consistently” by ail sharing modules. A program composed
of modules Fand G is denoted by F]G. Note that Fand G may themselves be composite programs.
In a computation of F|G, each rule of For G must be selected infinitely often. A computation of
F is no longer a computation of F[G, cince the rules of G are not selected; analogously for G. For
clarity, the state of a module in a composite program will be referred to as the local state of the
module.

We consider programs where program modules are functionally divided into two categories:
processes which do significant computations and channels #hich simply relay messages. Distinct
processes have disjoint sets of variables and so do distinct channels; variables may be shared only
between a process and a channel. A sender process may send a message to a receiver process by
depositing the message in a message queue shared by the sender and a channel; the changel then
delivers the message by removing the message and depositing it in another message queue shared by
the channel and the receiver process. (Note that the notions of process and channel are relative to
a program. A module in a process, which shares variables with other modules in the same process,
is not a process of the entire program; analogously for modules in a channel.)

Programs composed in the above manner are called distributed programs. A distributed program

models a distributed system with message passing,

4 Multiway and Binary Interaction Problems

Let USER refer to a distributed program which contains a set of asynchronous processes and the
channels that relay messages among the processes and OS refer to the distributed scheduler that
implements synchronizations among the asynchronous processes in USER. The composite program
USER] OS is referred to as P.

A process in USER with index § is denoted by user;; analogously for OS. Let pi denote

user;fos;; each pi is a process in P. We shall refer to a process in USER as a user, a process in

OS as an os, and a process in P as &.075%"38. An interaction among user;, user;, and usery is
represented by {#,j,k}. T is the set of all int :ractions defined among users; each element of 7 is a
nonempty subset of the process indexes. Two interactions are said to be conflicting if they have at
least one common member. The set of all interactions of which a user (or loosely, a process)is a
member is referred to as the interaction set of the uger (or process).

Each user and the corresponding os share two variables: state and flag. state may assume the
value active or idle. The two states of 3 user (or process) correspond to a user that does not
want to participate in any interaction and a user that is waiting to participate in some interaction.
Interaction [is started if one of its members, say Pi, sets flag; to Iand is terminated if flag is set
back to null for all members of I. We say a process is committed if some interaction in its interaction
set is started. The relationship between a user and its os and that between two processes (each
formed by the composition of a user and its o8) are depicted in Figure 1. As a pair of processes
in P communicate via channels and do not share variables, an update of state; in any computation

step is not observed by any p; (7 # ¢) in the next step, enforcing assumption (iii) in Section 2.3.

! 1 o
| | user; [| user; | |
J 1] L}
flag; state; I ! channel ! flag; state;
| os, [™ os; | !
I 1 1 |
| S 1 bm e e o = I
Di D

Figure 1: Compositions of users and os’s

We introduce some abbreviations for commonly used predicates:

active; = (state; = active), analogously for idle, (d1)
enable’ = (Vi:ieI::idle) (d2)
start! = (3i:icl::flag; = 1) (d3)
commit; = (31:1 € I :: start!) (d4)
E[I,J] = (I#JAINJ#¢), interactions [and J are conflicting (d5)

We use the temporal logic language introduced in Section 3.2 to specify the properties of USER
and P as well as the constraints on 05.3 Again, all temporal formulae are assumed to be universally

quantified over all values of their free variables.

*We omit the exact temporal specification of the initial states as well as the precise specification of other restrictions
(e.g. the restriction on how variables are shared among different modules). Whereas, the omitted specifications can
casily be verified from the program text. Their explicit inclusion would considerably lengthen the problem specification
and the impossibility proofs.

4.1 Specification of USER

This part specifies the behavior of the USER program at its interface with the OS and also specifies
some properties that are guaranteed when USER is composed with the OS.

For each user, the variable state is initialized to active and flag to null. A user may not start
an interaction — (ul). Provided that an os may not terminate an interaction and an os may
not change the state of a user ((ol), (02.1), and (02.2) in Section 4.3), the USER will satisty
the following two properties: An idle user may become active only after some interaction in its

interaction set is started — (u2) and a started interaction will eventually be terminated — (u3).

(flag; = null) A O(label € Rule(USER)) > O(flag, = null) in P (ul)
If OS satisfies (ol), (02.1), and (02.2) in Section 4.3, then
idle; Unless commit; in P (u2)
start! = O-start! in P (u3)

4.2 Specification of P

This part specifies the safety and liveness properties that must be provided by the composition of
USER and OS.

The safety properties require that only enabled interactions can be started — (ppl) and that
conflicting interactions cannot be started simultaneously — (pp2). The liveness property requires

that if an interaction Iis enabled, either I or a conflicting interaction be eventually started — (pp3).

~start! Unless enable’ in P {ppl)
E[I,7] = ~(start! A start’) in P (pp2)
enable! = O(start! v (37 : E[1,J) :: start’!)) in P (pp3)

4.3 Constraints on OS

The only shared variables between user; and os; are state; and flag;. For each os, state is initialized
to active and flag to null (consistent with the initialization in USER). An os may not terminate an

interaction — (ol) and an os may not change the state of a user — (02.1) and (02.2).

(flag; = I) A O(label € Rule(0S5)) = o(flag; = I) in P (ol)
active; A O(label € Rule(0S)) => Oactive; in P (02.1)
idle; A O(label € Rule(0S)) = Oidle; in P (02.2)

(The assumptions (i) and (ii) in Section 2.3 are enforced by (02.1) and (02.2).)

4.4 Remark

The specification in Section 4.1-4.3 is intended to be a general abstraction of the problem of
implementing nondeterministic synchronous communications among asynchronous processes in a
distributed system. In particular, no restriction regarding the number of processes or what inter-
actions are defined is given. Possible state transitions of a Process are also omitted; for example,
a process that never becomes idle and a process that will always eventually become idle will both
satisfy the specification.

A number of algorithms for the interaction problem as specified have been suggested [CMS8,
Bag89a). This indicates that the specification is “consistent,” or more precisely, for any USER
(satisfying the specification of USER) there exists an OS (satisfying the constraints on OS) such

that their composition satisfies the specification of P.

4.5 Additional Properties: Fairness

We formally specify the two fairness properties introduced in Sections 1 and 2: SIF and SPF.
SIF = OCenable! = OO start!
SPF = QOready; = OO(31: i € I :: start!), where ready; = (3J:4 € J :: enable’)
It can be shown that “SPF in P”, or simply as SPF, subsumes (pp3).

5 Impossibility Results

Given an additional property ¢, a USER is said to be ¢-comnpatible if there exists an OS such
that their composition satisfies the specification of P and also the additional property ¢; otherwise
the USER is ¢-incompatible. We prove that a USER is ¢~incompatible by showing that, for any
OS such that the composition of USER and OS satisfies the specification of P, Comp*(P) always
contains some sequence violating ¢. We shall use this approach to prove that there are SIF-
incompatible instances for the binary interaction problem and there are SPF-incompatible instances
for the multiway interaction problem. As a consequence, SIF is in general impossible for binary or
multiway interactions and SPF is in general impossible for multiway interactions.

We start with some general properties of distributed programs.

5.1 Characteristics of Distributed Programs

Consider a distributed program D. Let Q be the composition of some modules in D and @ be the
composition of some other modules such that Q and Q do not share any variables. s{Q)] denotes the
projection of program state son @, i.e. the local state of Q at s. The following two lemmas describe

conditions under which the projections of (possibly different) states of D on @ are equivalent.

10

These results capture the ideas behind fusion of computations in [CM86], which is one of the basic

techniques in our impossibility proofs and in others, e.g. [FLP85].

Lemma 1 If the local states of Q corresponding to two program states 3 and s' are the same, the
ezecution of a sequence of rules in @ starting respectively from s and s' will also result in identical

local states of Q. In other words, if (3[Q) = $'[Q)) A z € Pref(Q), then (8,2)[Q] = (s, 2)[Q).

Proof. According to our model, the execution of a rule of a program results in a deterministic
state transition of the program. Starting from the same state, a program will reach a unique state
after the execution of the same sequence of rules. Since @ is also a program, the lemma follows.

End of Proof.

Lemma 2 The ezecution of a sequence of rules in Q has no effect on the local state of Q. In other

words, if (s[Q] = s'[Q]) A v € Pref(TQ), then s[Q] = (¢, 2)[Q)].

Proof. From the assumption, Q and @ do not share any variables. Also, by the definition of
program, rules in @ may only reference variables in Q and cannot change the value of any variable

in Q. The lemma follows immediately. End of Proof.

Lemma 2 has the following application: According to the problem specification, any pair of
processes in P communicate via channels and do not share variables. The execution of a rule or a
sequence of rules in p; will not change the values of the variables in any p; (7 # 1); an update of
state; in any step is not observed by any p; (j # i) in the immedjately following step. In general,
the preceding applies to the composition of some users and os’s and the composition of some other

users and os’s, as these two compositions do not share any variables.

5.2 Impossibility Proofs

In the following proofs, we consider BTN, a collection of instances of the binary interaction problem
in which USER has three processes user;, user;, and usery and I = {IJ,K}, where I = {i,j}, J
= {5,}}, and K = {k,i}.

Besides (ul)—(u3), the three processes also satisfy the following properties: A user becomes
idle due to the execution of a sequence of rules belonging to the same user — (u4) and, if the OS

satisfies its constraints, it is always possible that an active user never becomes idle — (us).

active; = EQidle; in user;, analogously for user; and usery. {ud)
If OS satisfies (ol), (02.1), and (02.2), then
active; = EQactive; in P, analogously for user; and user;. (u3)

11

The following lemma formally establishes the first key observation in Section 2.3, i.e. if some
interaction [is enabled, the schedulers cannot indefinitely postpone the execution of 7 while waiting

for other interactions to become enabled.

Lemma 3 For any instance in BIN, if interaction I is enabled, pr is active (s0, interactions J
and K are disabled), and no interaction is started at some state, then there erists a possible future

of the state in which interaction I is started and Pr remains active until I is started. In other words:

(enable! AactiverA-startt) = E((enable! Aactiver A—startt Unless start) AO start! Yin P,

where start* denotes (start! v start? v start¥).

Proof. Assuming the contrary, we shall demonstrate a possible future of a state satisfying (enable! A
activer A —startt) such that interaction I remains enabled but neither I, J, nor K will be started,
violating (pp3).
3o : 0 € Comp*(P) :: (enable’ A active, A —startT)A
A-((enable! A activey A —startt Unless start!) A Ostart!) | o
y from the contrary assumption and definitions (P1), {A5.2), and {A6.3).
Fix the above o.
V7 i1 € Branch(oo) :: (enable’ A active; A —start™)A
—({enable! A activey A ~start* Unless start’) A Ostart!) | 7
, from the above, (T2), and (A5.1). (1)
V7 : T € Branch(oo) :: enable’ A active A -start |
, from the above. (2)
V7 : T € Branch(ag) :: ~(enable! A activeg A ~start* Unless start!) v O-start! | 7
y from (1), (A4.2), and (A6.2). (3)
We deviate to prove the following property:
(enable’ A activey A ~startt Unless start! W
(enable’ A activey A ~start* Unless start’ v startX V idley) in P. (4)
start! Unless start! in P, analogously for J and K.
, from that an interaction is either started or not started.
—start* Unless start* in P.
, (T5) on the above,
activey Unless idle; in P.
, from that a process is either active or idle.
enable’ Unless start+ in P.
, (T5) on (u2).

12

enable! A activeg A -start™ Unless start® v idleg in P.
, (T5) on the above three.
Applying (T4) to the above, we obtain (4).

V7 17 € Branch{og) :: (enable’ A activeg A ~startt Unless start’ v startX v idley) v O-start! | r

, from (3) and (4). _ (5)
37’ : 7' € Branch(og) :: Oactivey | v, or O-idles |
, from (u5) and (A5.2). (6)

Fix the above 7/,
~start? A ~start® A O(-enable’ A -enable®) | 7/
, from the above, (d2), and (2).
O(-start? A -start™) | +/
, from the above, (ppl), and (A7.2).
O(-start? A ~start™ A -idley) |
, from the above and (6).
enable! A O(-start! A —start? A ~startX) | 7.
, from the above, (5), (A7.2), and (2).
The above violates (pp3). End of Proof.

Theorem 1 USERs in BIA are SIF-incompatible. (So, in general, SIF is impossible for the binary

or multiway interaction problem.)

Proof. Starting from a state of P where all processes are active and no interaction is started (initial
states are such states), we are able to construct an infinite sequence of rules a satisfying the fair
selection criterion, i.e. o € Rule*(P), such that interaction K is enabled infinitely often but never
started. Formally, 3¢ : ¢ € Comp™(P) :: (3 : I € T :: OOenable! AT-start! | o). The construction
proceeds in phases, where each phase consists of four stages. During each phase all interactions are
enabled at least once but only Jand J are started. At the end of each phase the program reaches
a state where all processes again become active and no interaction is started. To satisfy the fair
selection criterion, each rule in P is selected at least once in each phase. Figure 2 outlines the
major state transitions in various stages of a phase.

Starting from a state sy where all processes are active and no interaction is started, each phase
proceeds as follows: '

Stage 1: user; and user; become idle (so, interaction Iis enabled), while user; remains active.

Apply (u4) first to user; then to user; (or the other way around) to obtain a sequence z,
consisting of rules of user; and user; such that (idle; A idle;) at (s9,21). From (d2), enable’ at

(%0,21). Those rules of user; and user; not selected can be arranged in arbitrary order to form a

13

e Stage 1 ++ Stage 2 e Stage 3 e Stage 4 -

3o 31 32 33 34
active; enable! enable! enable! active; active; active; active;
active; _ enable’ enable’ active; enable’ enable’ active s
activey, activey enable®™ enable® idley activey
—start* ~gtart™ ~startt start! ~start* —startt start” ~astartt

Figure 2: Major state transitions in a phase

sequence Iz. Let s = ($0,212;). As 2,7, contains rules from ounly user; and user;, due to (ul) and
(u2), no interaction is started hence engble! A -startt at sy; and, since activey at so and z;z; does
not contain any rules in usery, from Lemma 2, we get activey, at s;.

Stage 2: Interaction [is started: usery becomes idle just before Iis started such that I J, and
K are enabled simultaneously. However, it is impossible for the schedulers to determine that J and
K are enabled before Iis started (the second key observation in Section 2.3).

Given (enable! A activer A ~start™) at 3;, from Lemma 3, there exists a sequence y; of rules in P
such that start’ at (s1,y1) and ~start? A —start® at all states in (81, 1). Without loss of generality,
we assume ¥, = yor, where ris a rule of os; or 08;, and -start! at (81,%0), i.e. the execution of r
starts interaction /. From (ppl) and -start! at (81,%0), enable’ at (sy,y0). According to (u4), there
exists a sequence y; of rules in user; such that idley at (s1,y012). (If idle; at some state in {31, 11),
then y; is simply the empty sequence.) Let s;" = (31, yoys). So, (enable! A enable’ A enableX) at
51’. Rule r can be selected for execution at s’

From Lemma 2 (replacing s and s’ in the lemma by (s1,%), @ by os;fos;, Q by osi, and z by
¥2), {81,%0)[08:os;] = ((1,30),52))[08ifos;], i.e. (81,%)[o8i[los;] = 3,'[08;]os;], which is to say that
the transition to idle of user; did not change the local state of os;fos; at (s1,30).

From Lemma 1 (replacing s by (s1,%0), 8’ by 5, Q by os;os;, and z by r),

((s1,%0),7)[o8i[os;] = (8)/,r)[omifos;]. As 4 = yor, we get (31,1)[os;fos;] = (3;",r)[os,]os;].

Since start! at (s1,1), the preceding statement implies start! at (s,’,7). (1)

Also, from Lemma 2, idle; at s’ implies idley at (sy/,r). (2)

The above scenario is depicted in Figure 3, which shows that [is started irrespective of whether
usery is active or idle,

Those rules of P except user; and user;, not selected in the sequence yyyor can form an
arbitrary sequence y3. As y3 does not contain any rules of user; or user;, from Lemma 2 and
(1), start! at all states in (81, 71), which implies —start® at all states in (81", ry3), due to (pp2).
According to (02.2), (u2), and (2), idley at (s,’, rys). Let s, = (s1',ry). So,

(start! A idley) at s,. (3)

14

enable! (A-start!)

activey,
(81, %0)

r N\ L/p)

AN
AN
(81, %07) = (81, 1) N\ (31, %o¥2) = &'
start! enable! (A-start!)
active;, r enable’

enable

(81, %o127) = (81', 1)

qtartr
idley,

Figure 3: The transition to idle of user; (execution of 1) has no effect on starting interaction I
(by the execution of r), as the local state transition of usery is not immediately visible to os;fos;.

Stage 3: user; becomes active and user; becomes idle after a number of state transitions.
Consequently, interaction Jis enabled.

Interaction Iwas started in stage 2 at (s’,r). By virtue of (u2), user; and user; go from idle
to active; by (u4), interaction [is terminated. Similar to Stage 1, apply {(u0.1) to user; such that
user; becomes idle again; however user; remains active. Let z be the corresponding sequence and
33 = (82,2). idle; at s3 and active; at s;. From (3) and Lemma 2, idle; at 33. As z does not involve
rules in o8’s, no more interaction is started. In summary, (enable’ A active,~startt) at s3.

Stage 4: Similar to Stage 2, interaction J is started and, similar to Stage 3, both user; and
user; eventually become active. Let w be the sequence and s4 = (83,w). All processes are active
and no interaction is started at sq.

All interactions are enabled in Stage 2 and interaction J is enabled in Stage 3. Interaction [is
started in stage 2 and interaction Jis started in Stage 4; while interaction K is never started. Repeat
the four stages indefinitely, we obtain an infinite sequence a such that (OOenableX A O-startX) |
(50,). Each rule in P is selected at least once either in Stage 1 or Stage 2, so a € Rule*(P) and
(89, @) € Comp*(P). End of Proof.

Add one process user;, which has properties (ul)-(u5), to each USER in BTN and change K

to {k,i,{}. We obtain a collection MUL of instances of the multiway interaction problem.

Theorem 2 USERs in MUL are SPF-incompatible. (So, in general, SPF is tmpossible for the

15

multiway interaction problem.)

Proof. At some point of computation, assume that pr becomes idle, while other processes remain
active. Since py may participate only in interaction K, in order to satisfy SPF, interaction K should
be started infinitely often if it is enabled infinitely often. Ignore p; altogether and treat this problem
as implementing SIF for the equivalent binary interaction problem. The conclusion follows from

Theorem 1. End of Proof.

6 Discussion
6.1 Identifying SIF/SPF-incompatible Problem Instances

Two factors determine whether a problem instance is SIF and/or SPF-incompatible: (a) the number
of processes and the interactions defined among the processes and (b) the properties exhibited by
the users in addition to (ul)-(u3).

For a given instance of the birary (or multiway) interaction problem, we view the set of processes
and the set of interactions as an undirected graph (or hypergraph), called its interaction graph. A
node in the interaction graph represents a process and an edge represents an interaction among
the processes represented by the nodes incident to the edge. Problem instances in BIA and MUL

have interaction graphs as shown in Figures 4 (a) and (b) respectively, where we identify ;' with 7

(a) Binary (b) Multiway

Figure 4: “Minimal” Interaction Graphs, where j and 7’ may be identical

Assume that j and j’ in Figures 4 (a) and (b) are distinct processes and that the interaction
graphs represent problem instances in BIA” and MUL, respectively. Also assume that all users
satisfy (ul)-(u5). Let J' denote interaction {j’,k}. Lemma 3 and Theorems 1 and 2 still hold
with BTN, MUL', and J' replacing BIN, MUL, and J, respectively. In fact, not every user
needs to satisfy (u5). The proofs in Section 5.2 still work if only user; and user; are assumed
to satisfy (u5). The interaction graph in Figure 4 (a) is “minimal” in the sense that an instance
of the problem with a simpler interaction graph (with fewer processes or interactions) cannot be

SIF-incompatible; analogously for Figure 4 (b).

16

There is a straightforward generalization of the preceding observation: Any problem instance
with interaction graph reducible to Figure 4 (a) is SIF-incompatible and one reducible to Figure 4 (b)
is SPF-incompatible provided that at least user; and usery satisfy (u5). (A graph is said to be
reducible to another graph if the former graph is a result of removing some of the nodes or edges
from the latter graph.)

We consider the impact of weakening user properties on the impossibility results: Assume that
either user; or user; satisfies {u5) but which of them does is not known. Lemma 3 still holds
and, as a consequence, Theorems 1 and 2 will also hold. However, the proof of Lemma 3 would
involve game-playing arguments that assume an adversary rather than straightforward arguments
based on the computational model and the temporal logic. It is also possible to assume a weaker
property than (u5) for user; and user,; in particular, it may be the case that a user is gnaranteed
to make only a finite number of transitions from active to idle. We believe that Theorems 1 and
2 are still true, though Lemma 3 is no longer true and the proofs of the theorems are no longer
valid. However, the temporal formulation used in this paper is inadequate for developing a precise

specification of the weaker assumption as well as the required proofs,

6.2 Basic Assumptions Revisited

We restate the basic assumptions of the problem and show that they are motivated by practical

considerations. Other related issues are also discussed.

Assumptions:

(a) It is impossible to determine a priori whether an arbitrary process will make a transition from

active to idle.

(b) The scheduler cannot control the actions of an active process. In particular, the scheduler

cannot control when an active process becomes idle.

(c) The transition from active to idle of a process is not immediately observable by other processes
or their schedulers.

The validity of assumption (a) can be proven by arguments similar to those used to demonstrate
the undecidibility of the halting problem. For a set of processes with restricted behavior wherein
it is possible to assume that every active process will eventually become idle, SIF can easily be
guaranteed. Assume that some total order is assigned to the set of interactions. Given that at
any point of a computation each active process will eventually become idle, every interaction must
eventually become enabled. A scheduler may then simply choose each interaction in turn and wait

until it is enabled (note that conflicting interactions that are simultaneously enabled will not be

17

executed, thus implying that the complexity of such algorithms be determined by the average time
each process remains in the active state).

Contrary to assumption (b), it is possible to assume a more powerful scheduler which is respon-
sible for scheduling both local and communication actions of a process. This would imply that the
transition of a process from active to idle can also be controlled by the scheduler and indirectly by
other processes in the system, thus violating the autonomy of a process in executing a local action.
Such a scheduler can prevent a process from executing its active to idle transition, thus allowing it
to control which interactions are enabled, In the extreme case, such a scheduler can always ensure
that conflicting interactions are never enabled simultaneously and thus guarantee SIF in a straight-
forward manner. However, such a powerful scheduler is just an artifact that defines away the real
problem. Furthermore, postulating such a powerful scheduler, in effect, implies that a scheduler
has an instantaneous “global snapshot” about which interactions are enabled, a requirement that
is met by very few real-life systems.

Assumption (c) is a consequence of unbounded communication delays in asynchronous systems.
Moreover, SIF is impossible even if a known upper bound (other than zero) is assumed for com-
munication delays. If the active to idle transition of a process is immediately observable by other
processes in the system, SIF can be guaranteed, as once again, the scheduler has an instantaneous
global snapshot of the enabled interactions.

‘Under the three assumptions, the impossibility results hold even in a model which allows more
than one atomic actions (or rules) to be executed in each computation step {i.e. an overlapping
model) in contrast to the interleaving model assumed in this paper. Also, it should be clear that any
fairness property stronger than SPF will be impossible for multiway interactions and any fairness
property stronger than SIF will be impossible for binary interactions. For example, a fairness
property, which requires that two interactions which are enabled equally many times be started
equally many times, is impossible for binary (and hence multiway) interactions. Interested readers
are referred to [Fra86, AFK8S8) for stronger variations of SIF and SPF.

Acknowledgment

We are grateful to the referees for their detailed comments on earlier versions of the paper, which

improved the paper significantly.

References

[AFK88] K. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed pro-
gramming. Distributed Computing, 2(4):226-241, 1988,

18

[Bag89a]

[Bag89b]

[BKS88]

[BS83]

[BT90]

[Cha87]

[CMs6)

[CM8S]

[Dij88]

[ES89]

[FHTS6]

[FLP85]

[Frage6)

R.L. Bagrodia. Process synchronization: Design and performance evaluation of dis.
tributed algorithms. IEEE Transactions on Software Engineering, pages 1053-1065,
September 1989.

R.L. Bagrodia. Synchronization of asynchronous processes in CSP. ACM Transactions

on Programming Languages and Systems, 11(4):585-597, October 1989,

R.J. Back and R. Kurki-Suonio. Distributed cooperation with action sytstems. ACM
Transactions on Programming Languages and Systems, 10(4):513-554, October 1988,

G. Buckley and A. Silberschatz. An effective implementation of the generalized input-
output construct of CSP. ACM Transactions on Programming Languages and Systems,
5(2):223-235, April 1983.

R.L. Bagrodia and Y.-K. Tsay. An efficient algorithm for fair interprocess synchroniza-
tion. Technical Report CSD-900021, Computer Science Department, UCLA, 1990.

A, Charlesworth. The multiway rendezvous. ACM Transactions on Programming Lan-
guages and Systems, 9(3):350-366, July 1987.

K.M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52,
19886.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

E.W. Dijkstra. Position paper on “fairness”. ACM SIGSOFT, 13(2):18-20, April 1988.

E.A. Emerson and J. Srinivasan. Branching time temporal logic. In J.W. de Bakker,
W.P. de Roever, and Rozenberg G., editors, LNCS 35{: Linear Time, Branching Time
and Partial Order in Logic and Models for Concurrency, pages 123-172. Springer-Verlag,
1989.

N. Francez, B. Hailpern, and G. Taubenfeld. Script: A communpication abstraction
mechanism. Science of Computer Programming, 6(1):35-88, January 1986.

M.J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of ACM, 32(2):374-382, April 1985.

N. Francez. Fairness. Springer-Verlag, 1986.

19

[Fra89]

[HoaT§]

[Ram87a]

[Ram87b]

[Sis84]

N. Francez. Cooperating proofs for distributed programs with multiparty interactions.

Information Processing Letters, 32(5):235-242, September 1989.

C.A.R. Hoare,. Communicating sequential processes. CACM, 21(8):666-677. August
1978.

S. Ramesh. A new and efficient implementation of multiprocess synchronization. LNCS

259: PARLE Parallel Architecture and Languages Europe, pages 387-401, June 1987.

S. Ramesh. A new implementation of CSP with output guards. In Proceedings of the

7th International Conference on Distributed Computing Systems, pages 266-273, 1987.

A.P. Sistla. Distributed algorithms for ensuring fair interprocess communication. In Pro-
ceedings of the Third Annual ACM Symposium on Principles of Distributed Computing,
pages 266-277, 1984,

20

