Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

BEST-FIRST MINIMAX SEARCH: INITIAL RESULTS

R. Korf January 1992
CSD-920021

Best-First Minimax Search:
Initial Results

Richard E. Korf*

Computer Science Department
University of California, Los Angeles
Los Angeles, Ca. 90024
(213)206-5383

korf@cs.ucla.edu

January 14, 1992

Ahbstract

We present a new selective minimax search algorithm for two-
player games. The basic idea is to always explore further the move
that appears best so far. We describe an implementation of this al-
gorithm that reduces its space complexity from exponential to linear,
at the cost of a small constant in time complexity. On a synthetic
game, our algorithm outperforms classical alpha-beta minimax search
in decision quality for the same number of node generations.

Function: Problem Solving

*This research was supported by an NSF Presidential Young Investigator Award, No.
IRI-8552925, and a grant from Rockwell International, Thanks to Valerie Aylett for draw-
ing the graphs and figures,

1 Introduction and Overview

The best chess machines, such as Deep-Thought[1], generate tens of millions
of board positions for each move, while their human opponents generate at
most tens of positions per move. Since human players often examine deeper
lines of play than the machine, they must be much more selective in their
choice of positions to search. The value of selective search in two-player
games was first recognized by Shannon|2).

In spite of this, however, there has been relatively little progress in dis-
covering useful selective search algorithms. Most of the work in two-player
games has focussed on techniques that make the same decisions as a full-
width, fixed-depth minimax search, but do it more efficiently. The most
important of these techniques is alpha-beta pruning[3}, which can almost
double the achievable search horizon in practice.

In contrast, the only selective searches we are aware of are the B* algorithm[4],
conspiracy search[5], min/max approximation[6], meta-greedy search[7], and
singular extensions[8]. All of these algorithms, except for singular extensions,
suffer from exponential memory requirements, making them impractical for
large searches. Furthermore, most of them have large time overheads per
node expansion. In addition, B* and meta-greedy search require more infor-
mation about a position than just a static evaluation.

Singular extensions is the only selective search algorithm to be success-
fully incorporated into a high-performance program, the DeepThought ma-
chine. The basic idea of singular extensions is that if the best position at the
search horizon is significantly better than its alternatives, then explore that
position one ply deeper, and recursively apply the same rule at the next level
as well. This work can be viewed as carrying this idea even further.

In the following section we describe a new selective search algorithm,
called best-first minimax search. The algorithm requires no information other
than a static evaluation function. In section 3 we describe an implementation
of the algorithm that reduces its space complexity from exponential to linear
in the search depth. In section 4 we present experimental results compar-
ing its decision quality to alpha-beta minimax search on a synthetic game.
Finally we present our preliminary conclusions in section 3.

2 Best-First Minimax Search

The basic idea of best-first minimax search is to always explore further the
move that appears best so far. Given any partially expanded game tree,
with static evaluations of the frontier nodes, we can compute the values of
all interior nodes, including the root, using the minimax rule. Namely, the
value of an interior MAX node is the maximum of the values of its children,
and similarly the value of an interior MIN node is the minimum of the values
of its children. The value of the root is the same as the value of at least
one frontier node, and is based on that node. We call such a frontier node a
minimaz node, of which there may be more than one. The best-first minimax
algorithm always expands next a minimax node on the frontier of the current
search tree,

Consider the example in figure 1, where square nodes represent MAX’s
moves and circular nodes represent MIN’s moves. Figure 1A shows the situ-
ation after the root node has been expanded. The values of the children are
their static evaluations, and the value of the root is 11, the maximum of its
children’s values. This means that the right child is the minimax node, and
is expanded next, resulting in the situation in figure 1B. The new frontier
nodes are statically evaluated at 9 and 5, and hence the value of their MIN
parent changes from its static value of 11 to 5, the minimum of its children’s
values. This changes the value of the root to 7, the value of its left child.
Thus the left move now appears more promising, the left child of the root
is the new minimax node, and this node is expanded next, resulting in the
situation in figure 1C. The value of the left child of the root changes from its
static value of 7 to the minimum of its children’s values, 3, and the value of
the root changes to the maximum of its children’s values, 5. At this point,
attention shifts back to the right move, and the rightmost grandchild of the
root is expanded next, as shown in figure 1D, followed by the situation in
Figure 1E. In general, best-first minimax will generate an unbalanced tree,
exploring certain lines more deeply than others. Whenever some terminating
condition is satisfied, the move leading to the current minimax node is made.

The most straightforward implementation of this algorithm is to maintain
the current search tree in memory. When a minimax node is expanded, its
children are evaluated, and the algorithm moves up the tree updating the
values of its ancestors, until it either reaches the root, or a node whose value
doesn’t change. It then moves down the tree to a maximum-valued child of

3

Figure 1: Best-First Minimax Search

a MAX node, or a minimum-valued child of a MIN node, until it reaches a
new minimax node to expand next. The most significant drawback of this
naive implementation, however, is that it requires memory that is exponential
in the tree depth to store all the nodes, making it severely space-bound in
practice.

3 Recursive Best-First Minimax Search

Recursive Best-First Minimax Search (RBFMS) is an implementation of best-
first minimax search that runs in space linear in the maximum search depth,
but expands new nodes in the same order as the naive implementation. The
algorithm is a generalization of Recursive-Best First Search (RBFS)[10, 9],
a linear-space best-first algorithm designed for single-agent problems, where
the value of a node is always the minimum of the value of its children. Figure
2 shows the step-by-step behavior of RBFMS on the example of figure 1.
Associated with each node on the path from the root to the minimax
node, called the principal variation, is a lower bound called alpha and an
upper bound called beta. The node in question will remain on the princi-
pal variation as long as its backed-up minimax value remains within these
bounds. The root is bounded by —oo and oo, since it is always on the prin-
cipal variation. Figure 2A shows the situation after the root is expanded,

4

0 dhdb

with the right child on the principal variation. It will remain on the prin-
ciple variation as long as its minimax value is greater than or equal to the
maximum value of its brothers (7), as indicated by the bounds on the right
child. Thus, the right child is expanded next, resulting in the situation in
figure 2B.

At this point, the value of the right child becomes the minimum of the
values of its children (9 and 5), and since 5 is less than the lower alpha bound
of 7, the right child of the root is no longer on the principal variation, and
the left child of the root is the new minimax node. In order to save space,
the algorithm returns to the root from the right child, automatically freeing
the space for the children of the right child, and storing with the right child
its minimax value of 5, resulting in the situation in figure 2C.

The left child of the root will now remain on the principal variation as
long as its value is greater than or equal to 5, the largest value among its
brothers. It is expanded, resulting in the situation in figure 2D. Its new value
is the minimum of its children’s values (13 and 3), and since 3 is less than the
lower alpha bound of 5, the left child is no longer on the principal variation,
and the right child becomes the new minimax node. Again to save memory,
the algorithm returns to the root node, and stores the new minimax value of
3 with the left child, resulting in the situation in figure 2E. Now, the right
child of the root will remain on the principal variation as long as its minimax
value is greater than 3, the value of its best brother, and would be expanded
next. The reader is encouraged to follow the rest of the example in the figure.
The reason for the empty nodes in the figure is that for efficiency, the values
of interior nodes on the principal variation are not updated until necessary.

The simplest version of RBFMS, corresponding to simple recursive best-
first search (SRBFS)[10, 9], consists of two entirely symmetric functions,
one for MAX and one for MIN. Each purely recursive function takes three
arguments, a node, a lower bound called alpha, and an upper bound called
beta. Together they perform a best-first minimax search of the subtree below
the node, as long as its minimax value remains within the alpha and beta
bounds. Once it exceeds the bounds, the function returns the new minimax
value of the node. At any given point, the recursion stack contains the current
principal variation, plus the immediate brothers of all nodes on this path.
As a result, its space complexity is O(bd), where b is the branching factor of
the tree, and d is the maximum search depth. The cost of this reduction in
memory from exponential to linear is that some nodes are expanded more

5

_.ms

h

_°°<

O

C
{ oo —oo ¢
>
G
< oo ~oo ¢

S

(@]
I~
éf

She SR TR

IS¢

12

o

Figure 2: Recursive Best-First Minimax Search

3¢

§™o
S0

—oo £ < oo
@{33 G o

2

K

~

iz

than once. As we will see in the following section, this time overhead was a
small constant factor in our experiments.

This simple version of the algorithm is less efficient than it can be, how-
ever. In particular, if the minimax value stored with a node is different than
its static evaluation, then it must have been expanded before, and the stored
value is the maximum of its children’s last values if it is a MAX node, and
the minimum of its children’s last values if it is a MIN node. Thus, if the
static values of any of the children of such a MAX node are greater than their
parent’s value, then they inherit their parent’s value, since they must have
been expanded before and their parent’s value is a more accurate estimate
of their minimax value than their static value. Similarly, if the static values
of any of the children of such a MIN node are less than their parent’s value,
then they inherit their parent’s value, since they must have been expanded
before and their parent’s value is a more accurate estimate of their minimax
value than their static value. This refinement of the basic algorithm requires
an additional parameter that is the stored minimax value of the parent node,
but improves the efficiency of the algorithm. Below we give a pseudo-code
description of the full recursive best-first minimax algorithm.

BFMAX (Node, Value, Alpha, Beta)

expand (Node)

FOR each Child[i]l of Node,
IF Value <> Static(Node), M[i] := min(Value, Static(Child[i]))
ELSE M[i] := Static(Child[i])

sort Child[i] and M[i] in decreasing order of M[i]

IF only one child, M{2] := -infinity

WHILE alpha <= M[1] <= beta
M[1] := BFMIN(Child[1], M[1], max(alpha, M[2]), beta)
insert Child[1] and M{1] in sorted order

return M[1]

BFMIN (Node, Value, Alpha, Beta)

expand (Node)

FOR each Child{i] of Node,
IF Value <> Static(Node), M[i] := max(Value, Static(Child[i]))
ELSE M[i] := Static(Child[il)

sort Child[i] and M[i] in increasing order of M[i]

IF only one child, M[2] := infinity

WHILE alpha <= M[1] <= beta
M[1] := BFMAX(Child[1], M[1], alpha, min(beta, M[2]))
insert Child[1] and M[1] in sorted order

return M[1]

4 Experimental Results

The real test of a selective search algorithm is how well it plays. Since the
standard algorithm is full-width fixed-depth minimax search with alpha-beta
pruning, we compared the performance of best-first minimax search to alpha-
beta. The obvious approach is to implement both algorithms for a standard
game, such as chess, and play them against each other, giving each the same
amount of computation per move, to see which algorithm wins the most
games. We did not adopt this approach for several reasons. One is that any
such an experiment would involve a large number of additional parameters,
any one of which could have a large impact on the results. For example,
a particular evaluation function must be chosen, some sort of quiescence
search must be added to both algorithms, etc. The overriding consideration,
however, was that we wanted an experiment that was simple enough that
its results could be easily reproduced by other investigators, and hence lay
a foundation for a scientific study of selective search in two-player games.
Given all the necessary components of a performance chess program, and
the fact that the most important ones like the evaluation function are often
secret, experiments done with such programs are generally not reproducible
by other researchers.

Instead, we chose a very simple synthetic game, originally called an N-
game after its inventor[11]. We are given a uniform tree with branching factor
b and depth d, and each edge of the tree is assigned a cost independently cho-
sen from an identical distribution function. The static value of a node is the
sum of the edge costs from the root to the node. In order not to favor either
MAX or MIN, the distribution is chosen to be symmetric around zero, and in
order to avoid ties among node values, the range of the distribution is chosen
as large as possible. In our experiments, we used a uniform distribution from
~215 to 2%, Figure 3 shows a sample tree where the edge cost distribution
is from -9 to 9.

-5 -17
0 -9 -9 3 -3 6 7 2
OO DOENC ’ °

Figure 3: Sample Game Tree with B=2, D=3, and edge costs from [-9,9]

In order to compare the two different algorithms on an identical set of
game trees, the entire trees must be stored in memory. A uniform tree of
branching factor b is easily stored in an array A where the children of A[i] are
located at A[bi+1], A[bi+2] ... A[bi+b]. We ran various branching factors
from 2 through 10, inclusive, plus 20 and 40. For a given branching factor,
the maximum depth was determined by the largest game tree we could store
on a workstation with eight megabytes of memory. The maximum depths
ranged from 20 on a binary tree to 4 on a tree with branching factor 40. In
order to reduce the effects of the random number generator, we generated
10,000 different game trees of each size, and averaged the results.

To judge performance, we looked at decision quality, or the percentage of
time that an algorithm made the correct first move in the game. A correct
first move is defined as the one that would be made by a minimax search of the
entire tree. To evaluate decision quality as a function of search effort, we ran
alpha-beta to different search horizons, up to but not including the terminal
depth d, and recorded the numbers of nodes generated and the percentage of
correct first moves made. Finding a corresponding stopping criteria for best-
first minimax search is not so obvious. We chose as a stopping condition
the first time that the algorithm chose to expand a node at a particular
depth, and ran the algorithm to successively greater stopping depths, from
1 through d inclusive.

The number of nodes generated by alpha-beta is greatly effected by the
order in which nodes are searched. The simplest way to achieve good node
ordering is that instead of generating and searching the children of a node
one at a time (depth-first generation}, we generate all the children of a node
(depth-first expansion), statically evaluate each one, and then search the
children of a MAX node in decreasing order of their static values, and the
children of a MIN node in increasing order of their static values. Thus,
our version of alpha-beta generates all children of a node if it generates any
child. While at the search horizon it would be more efficient for alpha-beta
to generate the children one at a time, the same optimization can be applied
to best-first minimax search as well, with similar results. Since this would
complicate both algorithms without significantly effecting the results, both
algorithms were run using depth-first expansion.

Figure 4 shows the results for trees with branching factors 2, 3, 4, 10, and
40. Each set of lines starting from a common point corresponds to a different
branching factor. The horizontal axis is the number of nodes generated on
a logarithmic scale, and the vertical axis is the percentage of time that the
first move selected by each algorithm was correct. The solid line shows the
performance of full-width, fixed-depth search with alpha-beta pruning, and
the broken lines show the performance of best-first minimax search.

The fine broken line reflects the number of nodes that would be gen-
erated by the simple, exponential memory version of the algorithm, which
generates each node at most once, while the coarse broken line shows the
nodes generated by the linear-space version of the algorithm, including all
node regenerations. Both algorithims male the same decisions. In fact, since
recursive best-first search can determine when a node is being generated for
the first time, as opposed to when it is being regenerated, thus both sets
of data were collected by running RBFMS. The difference in node genera-
tions between these two lines represents tlie node regeneration overhead of
RBFMS. This overhead is about 25% for b = 2, drops to 18% for b = 10,
10% for b = 20, and only 5% for b = 40.

The reason that the best-first minimax curves don’t go out as far as the
alpha-beta curves is that the best-first algorithm terminates when a terminal
node is chosen for expansion, and this requires fewer node generations than
a complete alpha-beta search to the level just above the terminal nodes.

The data show that as the search horizon increases, increasing the number
of node generations, the decision quality of both algorithms improves, as

10

0000t

I

$1030%,]

Suigouesq juslohLg 10§ pojelouds) SApoN sa A[end) uosa(aIngi g

Xewiuiw 1s41)

XEWIUIW 1S4l

-1§2qQ aAa|sIndal _ _ _ _ _ -1saq ajduns ejaq-eydie . _.___
pajelaual sapou
000t 001 01t

1
t+

——

0%

09

0L

1}

06

SaAOW 1294100 juddiad

expected. Alpha-beta smoothly improves its decision quality, but the best-
first minimax curves exhibit a staircase phenomenon, where increasing the
search depth from an odd level to an even level doesn’t increase decision
quality nearly as much as going from an even level to an odd level.

With a branching factor of 2, alpha-beta outperforms best-first minimax
search, at least beyond a given amount of computation. With & = 3, the
results are mixed. For larger branching factors, however, best-first minimax
consistently outperforms alpha-beta, especially if we run best-first minimax
only to odd depths. Furthermore, the difference seems to increase with in-
creasing branching factor. The lines for the branching factors not shown,
5,6,7,8,9, and 20, look similar to the lines for 4 and 10.

For this simple game, the constant factor overhead per node expansion
is 27% greater for RBFMS than for alpha-beta. This is due to the fact
that generating and evaluating a node is very cheap in this trivial game, and
hence the difference in the bookkeeping functions between the two algorithms
becomes significant. In a real game such as chess, node generation and
evaluation will predominate, and the two algorithms will run at almost the
same speed per node generation.

5 Conclusions

We have presented a very simple best-first minimax search algorithm. It
always expands next the frontier node that appears best so far. We showed
how to reduce the space complexity of the algorithm from exponential to
linear in the search depth, at a cost of a small constant in nodes generated.
In experiments on a simple synthetic game, with branching factors greater
than 3, best-first minimax made better decisions than alpha-beta, for a given
number of node generations. We believe that this represents a promising new
selective search algorithm for two-player games, and the next step is to test
it on a real game such as chess or Othello.

12

References

[1]

2]

(3]

[4]

[5]

(6]

7

8]

[9]
[10}

[11]

Hsu, F.-H., T. Anantharaman, M. Campbell, and A. Nowatzyk, A
grandmaster chess machine, Scientific American, Vol. 263, No. 4, Oct,
1990, pp. 44-50.

Shannon, C.E., Programming a computer for playing chess, Philosophi-
cal Magazine, Vol. 41, 1950, pp. 256-275.

Knuth, D.E., and R.E. Moore, An analysis of Alpha-Beta pruning, Ar-
tificial Intelligence, Vol. 6, No. 4, 1975, pp. 293-326.

Berliner, H.J., The B* tree search algorithm: a best-first proof proce-
dure, Artificial Intelligence, Vol. 12, 1979, pp. 23-40.

McAllester, D.A., Conspiracy numbers for min-max search, Artificial
Intelligence, Vol. 35, No. 3, 1988, pp. 287-310.

Rivest, R.L., Game tree searching by min/max approximation, Artificial
Intelligence, Vol. 34, No. 1, 1986, pp. 77-96.

Russell, S., and E. Wefald, On optimal game-tree search using rational
meta-reasoning, Proceedings of the Eleventh International Conference
on Artificial Intelligence (IJCAI-89), Detroit, Michigan, August, 1989,
pp- 334-340.

Anantharaman, T., M.S. Campbell, and F.-H. Hsu, Singular extensions:
Adding selectivity to brute-force searching, Ariificial Intelligence, Vol.
43, No. 1, April, 1990, pp. 99-109.

Korf, R.E., Linear-space best-first search, submitted to Artificial Intel-
ligence, August 1991.

Korf, R.E., Linear-space best-first search: Summary of results, submit-
ted to AAAI-92, San Jose, Ca., July, 1992.

Nau, D.S., An investigation of the causes of pathology in games, Artifi-
cial Intelligence, Vol. 19, 1982, pp. 257-278.

13

