Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

TEMPORAL REASONING: A CONSTRAINT-BASED
APPROACH

I. Meiri January 1992
CSD-920019

Temporal Reasoning:
A Constraint-Based Approach

Itay Meiri
January 1992

Technical Report R-173
Cognitive Systems Laboratory
Department of Computer Science
University of California
Los Angeles, CA 90024

This report reproduces a dissertation submitted to UCLA in partial satisfaction
of the requirements for the degree of Doctor of Philosophy in Computer Science.
This work was supported in part by grants from the Air Force Office of Scientific
Research, AFOSR 900136, and the National Science Foundation, IRI 8815522.

(© Copyright by
Itay Meiri
1992

ABSTRACT

This thesis introduces a new approach to temporal reasoning which increases
both the expressive power and the flexibility of handling temporal information.
It also offers a unifying conceptualization of existing approaches and invites the

importation of solution techniques from several disciplines.

Temporal reasoning is viewed as a constraint satisfaction problem in which
variables are forced to comply with a set of constraints. The variables are tem-
poral objects such as intervals (representing time periods during which events
occur or propositions hold) and time points (representing beginnings and ends of
intervals), and the constraints specify the relative location of these objects along
the time line. Unlike existing approaches, our proposal permits the processing of
both qualitative and quantitative constraints.

First, a model called temporal constraint networks is introduced, which fa-
cilitates the processing of quantitative information such as duration and timing
of events. In this model, variables represent time points, and the constraints
refer to absolute timing or time differences between events. Second, a framework
called general temporal networks is developed, combining quantitative informa-
tion about duration and timing with qualitative relations about precedence and
occurrences of events. This framework offers the unique flexibility of treating both
points and intervals as the primitive objects in the language, thereby generalizing
and unifying the temporal-constraint-networks model and common approaches to
temporal reasoning such as Allen’s interval algebra and Vilain and Kautz’s point
algebra.

We present constraint-based algorithms for performing the following reasoning
tasks: finding all feasible times that a given event can occur, finding all possible
relationships between two given events, and generating one or more scenarios con-
sistent with the information provided. Several new classes of tractable temporal
problems are identified and characterized, involving special formats of qualitative
and quantitative expressions. Such problems can be solved in polynomial time
using local relaxation algorithms.

1

To my parents Haim and Shoshana Meiri

i

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors Rina Dechter and Judea
Pear] for teaching me all aspects of good research. Rina introduced me to con-
straint processing, interested me in temporal constraints, and has been a constant
source of fresh ideas. Judea inspired me (and everybody else around) in produc-
ing quality research. He always showed interest in my work and spent many hours
teaching me how to present my ideas more clearly. Rina and Judea gave me the
freedom to pursue my own areas of interest while helping me in every possible
way—both academically and non-academically. For their excellent guidance and
for their encouragement throughout my years at UCLA, I will forever be grateful.

I also wish to acknowledge the other members of my committee—Stott Parker,
James MacQueen, Edward Keenan, and, especially, Rich Korf—for their valuable
comments. Thanks also go to Michelle Bonnice for editing on the final draft. I
have benefited from discussions with researchers outside UCLA; in particular, I
wish to thank Henry Kautz, Peter Ladkin, and Peter Van Beek.

Special thanks go to my colleagues at the Cognitive Systems Laboratory, who
have made my experience at UCLA enjoyable. In particular, I thank Rachel
Ben-Eliyahu for being good company and the first to support me in every major
decision I have made and for always offering help and good advice; Dan Geiger
for encouraging me during my first years at UCLA and for long discussions on
the nature of science; and my officemate, Moisés Goldszmidt, for putting up with
me all these years, for sharing the ups and downs of graduate school, and for

many productive and unproductive discussions.

Most importantly, I would like to thank my family: Dafna for being my
roommate and family away from home; Orna for her unconditional support and
care; and, especially, my parents Haim and Shoshana, who always valued the
education of their children above everything, for having confidence in my abilities
and for giving me the encouragement and support necessary for me to pursue my
own goals. I would not be where I am today without them.

iv

TABLE OF CONTENTS

1 Imtroduction, 1
1.1 Constraint Satisfaction Problems 3
1.2 Temporal Reasoning as a Constraint Satisfaction Problem 4
1.3 Contributions and Outline of the Thesis, 5

2 Qualitative Networks 9
2.1 Allen’s Interval Algebra 9
2.2 Path Consistency in Interval Algebra Networks. 14
2.3 Vilain and Kautz’s Point Algebra 17

3 Metric Networks 21
3.1 The Temporal Constraint Satisfaction Problem Model 22
3.2 The Simple Temporal Problem 27
3.3 The General Temporal Constraint Satisfaction Problem 34
3.4 Path Consistency Algorithms 39
3.5 Network-Based Algorithms 49
3.6 Relations to Other Formalisms 55

4 General Networks: Combining Qualitative and Quantitative

Constraints 57
4.1 The Representation Language 58

4.1.1 Qualitative Constraints, 58

4.1.2 Quantitative Constraints 60
4.1.3 Relationships Between Qualitative and Quantitative

Comstraints 63

4.2 General Temporal Constraint Networks 65

4.3 The Hierarchy of Qualitative Networks 68

4.4 Augmented Qualitative Networks 70

4.4.1 Arc and Path Consistency 72

4.4.2 The Precedence Graph 74

44.3 Augmented Convex Point Algebra Networks 80

4.4.4 Augmented Point Algebra Networks 87

4.5 Solving General Networks 95
4.6 Relations to Other Formalisms. 100

5 Conclusions 101
A Proofs 105
References 115

vi

LisT orF FIGURES

2.1 The basic relations between a pair of intervals.
2.2 The disjointness relationship.
2.3 The constraint graph of Example 2.1
2.4 A consistent scenario of Example 2.1
2.5 The minimal network of Example 2.1

2.6 Composition of basic relations.

3.1 A constraint graph representing Example3.1.
3.2 Operations on constraints: (a) intersection, (b) composition.

3.3 A distance graph representing a portion of Example 3.1
3.4 Floyd-Warshall’s algorithm.
3.5 A backtracking algorithm.
3.6 PC-1—a path consistency algorithm.
3.7 A nondistributivenetwork. 0 L.
3.8 PC-2—a more efficient path consistency algorithm.
3.9 DPC—an algorithm enforcing directional path consistency.

3.10 A directional path-consistent network of Example 3.1

4.1 The basic relations between a point P and an interval I.
4.2 The constraint graph of Example 1.1
4.3 Afeasiblescenario.
4.4 A CPA npetwork over multiple-intervals domains.

4.5 An arc- and path-consistent form of the network in Figure 4.4 .

4.6 An augmented PAnpetwork.,
4.7 AC-3—an arc consistency algorithm.
4.8 DAC-—a directional arc consistency algorithm.

4.9 PC-2—a path consistency algorithm.
4.10 The precedence graph of the network in Figure 4.4

vii

4.11
4.12
4.13
4£.14

4.15
4.16
4.17
4.18
4.19
4.20

4.21

4.22
4.23
4.24
4.25

The reduced network of the network in Figure 4.4 78
The reduced network of the network in Figure 4.5. 80
An arc-consistent CPA network over discrete domains. 81

Solve-Acyclic-CPA—an algorithm for constructing a solution to an

arc-consistent acyclic CPA network over multiple-intervals domains. 83

2DAC-—an arc-consistency algorithm for acyclic CPA networks. . . 84
A directional arc-consistent form of the network in Figure 4.11 . . 85
An arc-consistent CPA network. 85
An arc-consistent PA network over single-interval domains. 87
The restricted network of the network in Figure 4.18 89
Solve-Acyclic-PA—an algorithm for constructing a solution to an

arc-consistent acyclic PA network over almost-single-interval do-

MaNS. . . . o . ot e e 91

4DAC—an arc consistency algorithm for acyclic PA networks over

almost-single-interval domains. 91
A PA network over single-interval domains. 92
A singleton labeling of the constraint graph of Figure 4.2. 06
The STP network of the singleton labeling of Figure 4.23 96
A path-consistent singleton labeling. 99

viii

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

5.2

LisT oF TABLES

The basic relations between a pair of intervals and their inverses.. 9
Composition in the interval algebra. 16
The point algebra elements. 17
Composition in the point algebra. 18
Lengths of shortest paths in the distance graph of Figure 3.3. . . 33
The minimal network corresponding to Figure 3.3 33
The minimal network of Example 3.1 36
The minimal network of Example 3.13 43

The basic relations between a point P and an interval I = [I-,T+]. 59

A full transitivity table. L 60
Composition of PP and Plrelations. 61
Composition of PI and IP relations. 61
Composition of IP and Pl relations. 61
Composition of PI and Il relations. 62
The QUAN translation. 64
The minimal network of Example 1.1 67

Complexity of deciding consistency in augmented qualitative net-
works. 103

Complexity of computing the minimal domains in tractable aug-
mented qualitative networks. 103

1x

For every thing its time
And a time for every purpose
Under the heaven.

—-King Solomon: Ecclesiastes, 3, 1

CHAPTER 1

Introduction

Representing and reasoning about time plays an important role in artificial intel-
ligence (AI). Almost any area within AI-—common-sense reasoning [31, 57], natu-
ral language understanding (3, 33|, plan recognition[60], scheduling[55], planning
[47, 70, 14, 16], and qualitative reasoning [74], to name a few—involves some sort
of reasoning about time. Philosophers, psychologists, linguists, and, of course,
computer scientists have struggled for many years with the difficulties inherent
in representing time. Several theories and formalisms have been proposed, yet
many questions remain unsolved: Is time discrete or continuous? Should we use
a linear or a branching time model? Are the primitive temporal objects points
or intervals?! All these dilemmas seem to indicate that as long as the nature
of time is not fully understood, we cannot devise a general system for reasoning

about time.

Nevertheless, some compromise must be made if, for practical reasons, one
decides to reason about time. Instead of pursuing a general theory of time,
this thesis offers a formalism for temporal reasoning that can be incorporated
into current problem-solving programs. The idea, which can be traced back to
Kahn and Gorry [33] and Allen [2], is to build a system that will handle only
the temporal reasoning tasks of a problem solver. It will have no understanding,
whatsoever, of the domain in question; this knowledge will be handled exclusively
by the problem solver. The temporal reasoning system will be responsible only for
the temporal aspects involved in the problem solving. It will be provided with
a set of temporal statements expressed in some predetermined language and,
based on this input, will deduce new temporal statements and answer a variety
of queries concerning the input statements. Designing such a system requires a
simplistic, in a sense, representation of time, thus avoiding most of the dilemmas

mentioned above.

!See Shoham’s book [57] and Dean’s article [15] for an Al perspective and VanBenthem’s
book [69] for a philosophical perspective on these issues.

We envision a temporal reasoning system to consist of a temporal knowledge
base, a routine to check its consistency, a query-answering mechanism. and an
inference mechanism capable of discovering new information. The primitive en-
tities in the knowledge base are propositions, such as “I was driving a car” or
“the book was lying on the table,” with which we mentally associate temporal
intervals; each interval represents the time period during which the corresponding
proposition holds. For example, the first proposition may be embedded in the
sentence “l was driving a car last night” and the second in “The book was on the
table when I left the room.” The temporal information might be relative (e.g.,
“P occurred before Q") or metric (e.g., “P had started at least 3 hours before Q
was terminated”). To express less specific information, disjunctive sentences may
also be needed (e.g., “You can come in before or after lunch hour”). We also allow
references to absolute time (e.g., 4:00 p.m.) and to the duration of propositions
(e.g., “P lasted at least two hours”). Given temporal information of this kind,
we wish to derive answers to queries such as “Is it possible that a proposition P
holds at time t?”, “What are the possible times at which a proposition P holds?”,
and “What are the possible temporal relationships between two propositions P
and Q77

As an example, consider a typical temporal reasoning problem. We are given
the following information,

Example 1.1 John and Fred work for a company that has both local and main
offices in Los Angeles. They usually work at the local office, in which case it takes
John less than 20 minutes and Fred 15-20 minutes to get to work. Twice a week
John works at the main office, in which case his commute to work takes at least
60 minutes. Today John left home between 7:05-7:10 a.m., and Fred arrived at
work between 7:50-7:55 a.m. We also know that Fred and John met at a traffic
light on their way to work.

We wish to represent and reason about such knowledge. We wish to answer
queries such as “Is the information in this story consistent?”, “Who was the first
to arrive at work?”, and “What are the possible times at which John arrived at
work?”.

Several formalisms for expressing and reasoning about temporal knowledge
of this kind have been proposed, most notably Allen’s interval algebra [2], Vi-
lain and Kautz’s point algebra [72], linear inequalities [46, 64], and Dean and

McDermott’s time map {17, 15]. Only two formalisms—Allen’s interval algebra
[2] and Vilain and Kautz’s point algebra [72]—were mathematically formulated
and were described in sufficient detail to allow rigorous mathematical analysis
of the computational complexity involved. These two formalisms view temporal
reasoning as a constraint satisfaction problem (CSP).

We first describe the basics of constraint processing and then show how tem-

poral reasoning can be expressed as a CSP.

1.1 Constraint Satisfaction Problems

Constraint specification is a convenient form for expressing knowledge in a declar-
ative way; more precisely, in terms of a set of constraints on some entities. It
allows the user to focus on local relationships among entities in the domain,
without specifying the actual representation of the constraints and the method
for their satisfaction. Let us briefly review the basic concepts from the CSP

literature.?

For simplicity we shall consider the case of binary constraints. A binary CSP
involves a set of variables {Xj,...,X,} representing entities in the domain at
hand and a set of constraints on pairs of variables. The domain of a variable X,
denoted by D;, defines the set of values X; may assume. A binary constraint Ci;
on variables X; and X, is a relation, namely a subset of the Cartesian product of
their domains (i.e., Ci; C D; x D;) that specifies the permitted pairs of values for
X; and X;. A constraint can be specified extensionally, as a list of all allowed (or
disallowed) pairs, or intensionally, for example X; < X; or X; + X; = 3. Clearly,
whenever the domains are infinite, only the latter representation can be used.
A tuple that satisfies all the constraints is called a solution. The problem is

consistent if it has a solution.

To demonstrate these concepts, let us examine two classical CSPs.

Example 1.2 The n-queens problem. The task is to place n queens on an
n X n chess board such that no two queens can attack each other (i.e., they are
not on the same row, column, or diagonal). We create n variables Xj,..., X,,

where variable X; represents the queen in row : (note that each queen must be

*For a more detailed description of CSPs, see the survey articles by Mackworth [44] and
Dechter [19].

placed in a different row). The value assigned to a variable X; stands for the
column number of the queen in row :. Thus, the domain D; is finite, consisting
of the values {1,...,n}. A constraint C;;, between variables X; and X;, forbids
illegal board configurations, in which the queens in rows i and j attack each
other. For example, the constraint between the queens in rows 1 and 2 (specified
by a list of permitted pairs) is

Ciz = {(x,v)[1 L u,v <n,ju—v|>1}.

Each pair (u,v) € Ciy refers to a board configuration in which queen 1 and
queen 2 are located at squares (1,u) and (2, v), respectively. It can be easily seen
that for n = 2 or n = 3 the problem is inconsistent. For n = 4 the problem
becomes consistent: the tuple X = (2,4,1,3) is one solution. O

Example 1.3 The k-colorability problem. The task is to color the vertices of
a given graph G = (V, E) using k colors, such that no two adjacent vertices are
assigned the same color. Let |V| = n. We create n variables X;, ..., X,, where
variable X; represents node i. Each domain consists of the values {1, ..., k},
representing the k colors. With each edge (i,7) € E we associate a constraint Cij
that forbids an assignment of identical colors to nodes ¢ and j. Such a constraint
can be represented, intensionally, as the # relation or, extensionally, by a list
of allowed (or disallowed) tuples. If we choose an allowed tuples representation,

then all constraints are specified as

Cij = {(u,v)|1 € u,v < k,u # v).

Extensive research has been carried out on solving constraint satisfaction
problems [50, 43, 28, 25, 26, 32, 52, 21, 22, 18]. Although the bulk of these
works has focused on discrete and finite domains, many of the solution tech-
niques can be applied successfully to the temporal domain, as will be shown in
the sequel.

1.2 Temporal Reasoning as a Constraint Satisfaction
Problem

How can temporal reasoning be viewed as a CSP? First, we need to identify
the entities in our temporal domain. We shall consider two types of temporal

objects: points and intervals. Intervals correspond to time periods during which
events occur or propositions hold, and points represent beginning and ending
points of some events, as well as neutral points of time. These objects will be the
variables in our CSP. Temporal statements will be treated as constraints on the
location of these objects along the time line. There are two types of constraints:
qualitative and quantitative. Qualitative constraints specify the relative position
of paired objects, and gquantitative constraints place absolute bounds or restrict
the temporal distance between points.

Illustration Let us formulate Example 1.1 as a CSP. We have two meaningful
events: “John was going to work”™ and “Fred was going to work.” These events are
associated with intervals J = [P, P3| and F = [P;, Py), respectively. The extreme
points of these intervals, Py, ..., Py, represent the times at which Fred and John
left home and arrived at work. We also introduce a neutral point P, to represent
the “beginning of time” in our story. One possible choice for P, is 7:00 a.m. The
variables in our CSP will be the intervals J and F and the points FPo,..., Py
The fact that John and Fred met at a traffic light is translated into a qualitative
constraint that forces intervals J and F to overlap. The information on Fred’s
commuting time translates into a quantitative constraint that restricts the length
of interval F, namely the distance between P; and P,. O

Allen’s interval algebra [2] and Vilain and Kautz’s point algebra {72] can
be regarded as qualitative constraint-based approaches to temporal reasoning,
as their representation languages allow only qualitative statements. In Allen’s
algebra, the temporal objects are intervals, and constraints are specified by the
relative location of paired intervals. For example, we can specify that intervals J
and J intersect, that they are disjoint, or that I occurred before J. In Vilain and
Kautz’s point algebra, on the other hand, the temporal objects are points, and
constraints are specified by the relative location of paired points. For example,
P occurred at the same time as @ or P and @ did not occur at the same time,
where P and @ are time points.

1.3 Contributions and QOutline of the Thesis

The existing formalisms for temporal reasoning—Allen’s interval algebra and Vi-
lain and Kautz’s point algebra—{facilitate reasoning about qualitative relations,

but they cannot handle many forms of quantitative knowledge. This thesis in-

troduces a new approach to temporal reasoning which increases both the expres-
sive power and the flexibility of handling temporal information. The approach
comprises two new formalisms. The first, called temporal constraint satisfaction
problem (TCSP), provides a framework for dealing with quantitative information.
such as duration and timing of events. The second, general temporal networks,
subsumes the interval algebra, the point algebra, and the TCSP model, thus
providing a general unified framework for temporal reasoning that is capable of
handling both qualitative and quantitative information.

For each of these formalisms, we present algorithms for performing these rea-
soning tasks: finding all feasible times that a given event can occur, finding all
possible relationships between two given events, and generating one or more sce-

narios consistent with the information provided.

The proposed formalisms use the constraint satisfaction paradigm, thus en-
couraging the transference of algorithms and theoretical results developed for
general CSPs to the temporal domain. Specifically,

1. Reasoning tasks can be solved by decomposition into singleton labelings,
each solvable in polynomial time. This decomposition scheme can be im-
proved by traditional constraint satisfaction techniques such as variants of

backtrack search.

2. The input can be effectively encoded in a minimal network representation,

which provides answers to many queries.

3. Local consistency algorithms, such as arc consistency and path consistency,
can be used in preprocessing the input network to improve search efficiency

or in computing an approximation to the minimal network.

4. Although most temporal reasoning tasks are, in general, intractable, by
using constraint satisfaction techniques, we were able to identify several
classes of tractable problems that are solvable in polynomial time.

Chapter 2 reviews the qualitative approaches to temporal reasoning—Allen’s
interval algebra and Vilain and Kautz’s point algebra.

Chapter 3 presents the TCSP model (also called metric networks in the se-
quel), which provides a framework for processing quantitative, metric constraints.
In this framework, variables represent time points, and temporal information is

represented by a set of unary and binary constraints. Unary constraints place ab-
solute bounds on points, whereas binary constraints restrict the temporal distance

between points. Each constraint is specified by a set of permitted intervals.

We distinguish between simple temporal problems (STPs) and general tem-
poral problems, the former admitting at most one interval constraint on any pair
of time points. We show that the STP, which subsumes the major part of Vi-
lain and Kautz’s point ebra, can be solved in polynomial time. For general
TCSPs, we present a «..omposition scheme that performs the three reasoning
tasks considered and introduce a variety of techniques for improving its efficiency.
We also study the applicability of path consistency algorithms in preprocessing of
temporal problems, demonstrate the termination of these algorithms, and bound

their complexities,

None of the formalisms described so far can handle all forms of temporal
knowledge. The qualitative approaches, Allen’s interval algebra and Vilain and
Kautz’s point algebra, have difficulties in representing and reasoning about met-
ric, numerical information, while the quantitative approach discussed in Chap-
ter 3 exhibits limited expressiveness when it comes to qualitative information.
Chapter 4 offers a solution to this problem: a general, constraint-based compu-
tational model for temporal reasoning, called general temporal networks, that
is capable of handling both qualitative and quantitative information. In this
model, variables represent both points and intervals (as opposed to the previous
formalisms, where one has to commit to a single type of ob ject), and constraints
may be either metric (between points) or qualitative, disjunctive relations (be-
tween temporal objects). The unique feature of this framework is that it allows
the representation and processing of all types of qualitative constraints consid-
ered in the literature to date, as well as the new, metric constraints of the TCSP

formalism.

To solve reasoning tasks in this model, we use constraint satisfaction tech-
niques, such as decomposition into singleton labelings and path consistency.
We also identify two new classes of tractable problems involving both quali-
tative and quantitative constraints. The first comprises augmented gqualitative
networks—composed of qualitative constraints between points and quantitative
domain constraints—which can be solved using arc and path consistency. The
second class comprises networks for which path consistency algorithms are exact.

Chapter 5 provides surnmary and concluding remarks, as well as directions

for future research.

CHAPTER 2

Qualitative Networks

2.1 Allen’s Interval Algebra

Allen [2] formulated temporal knowledge in terms of qualitative statements re-
garding the relative locations of paired intervals. Consider a pair of intervals I
and J. There are seven possible relations that can hold between them: before,
meets, overlaps, starts, during, finishes, and equal, as depicted in Figure 2.1.
Each one of these relations is associated with an inverse relation: for example,
the inverse of the relation before is the relation after, because I before J is equiv-
alent to J after I. The inverse relations are shown in Table 2.1. Overall, we have
13 possible basic relations that can exist between a pair of intervals; they will be

represented by the set {b,m,0,s,d, f, bi,mi, 01, 51, di, fi,=}.

A subset of basic relations corresponds to an ambiguous, disjunctive relation-
ship between intervals. If the relative location of intervals I and J is specified
by a relation set {ry,...,r¢} (written as I {r,...,7x} J), then the following
disjunction holds:

(Iry J)V---v(Ir J).

Relation Symbol Inverse
I before J b bi
I meets J m mi
I overlaps J o ot
I starts J 38 st
I during J d di
I finishes J f fi
I equal J = =

Table 2.1: The basic relations between a pair of intervals and their inverses.

I before J |—I_‘

I meets J I—I—{

I overlaps J I—I-—I
| J |
1 !
I starts J I—I—{
J |
r —
I during J }_;_'
I J |
| L
I finishes J I——I—i
— S
I equal J 1

Figure 2.1: The basic relations between a pair of intervals.

For example, the relationship I {s, s, d, di, f, fi, 0,0i, =} J expresses the fact that
intervals I and J are not disjoint. It excludes the basic relations, before, after,
meets, and met by, between I and J (see Figure 2.2), thus forbidding basic
relations whereby I and J are disjoint.

Allen suggested using an interval algebra (IA) to represent and reason about
temporal knowledge. The elements of the algebra are all 2! subsets of the basic
relations {b,m,s,d, f,o,bi,mi, si,di, fi,oi,=}. On these elements, two binary
operations, intersection and composition (to be described later in this section),
are defined. To represent a given body of knowledge in the IA formalism, we
simply translate the temporal statements into IA relationships between event
intervals.

Example 2.1 (Allen [2]) We are given the following information:

John was not in the room when I touched the switch to turn on the

10

Figure 2.2: The disjointness relationship.

light, but John was in the room later when the light went out.

Let § be the time of touching the switch, L be the time the light was on, and
R be the time that John was in the room. The above information is translated
into a set of IA relations between S, L, and R:

1. S overlaps or meets L:
S {o,m} L.

2. S is before, meets, is met by, or after R:

S {b,m,mi,a} R.
3. L overlaps, starts, or is during R:
S {o,s,d} R,
O

Having represented the given knowledge within the IA framework, we are now
interested in solving several reasoning tasks:

1. Determine whether the given information is consistent, namely, whether
it 1s possible to arrange the intervals along the time line according to the

given information.

2. If the information is consistent, find one or some arrangements of the in-
tervals along the time line, each corresponding to a possible scenario, that
is consistent with the given information.

3. Determine for a given basic relation r and a given pair of intervals I and J ,

whether there exists a consistent scenario in which the relationship between
I and Jis r.

11

{6, m,mi, a}

Figure 2.3: The constraint graph of Example 2.1.
4. Find all the possible relations between a given pair of intervals I and J.

Temporal knowledge specified in Allen’s IA can be expressed naturally as
a CSP. An interval algebra network (IA network) involves a set of variables
{X1,...,X,}, where each variable represents a temporal interval. The domain of
each wvariable is the set of ordered pairs of real numbers (i.e.,
D; = {(a,b)|a,b € R,a < b}), representing the beginning and ending points of
the corresponding interval. Constraints are given as IA elements.

An [A network is associated with a constraint graph, where node s represents
variable X; and an edge between nodes i and J represents a direct constraint
Ci; between variables X; and X;. Each edge is labeled by the corresponding [A
relation set. The lack of an edge between nodes i and j stands for a universal
constraint, denoted by ?, which allows all basic relations. The constraint graph
representing Example 2.1 is depicted in Figure 2.3,

Asin general CSPs, a tuple that satisfies all the constraints is called a solution.
In TA networks, each solution corresponds to a feasible scenario. We say that
the network is consistent if it has a solution. One solution to the network of
Figure 2.3 is {§ = (1,2),L =(2,3), R = (2,4)}, which represents the scenario
shown in Figure 2.4.

We define a partial order C among IA constraints. A constraint C" is tighter
than constraint C” (or conversely C” is more relazed than C'), denoted by
C’'C C" if C' C C” when viewing IA relations as sets. This partial order can
be extended to networks having the same variable set. A network N’ is tighter
than network N”, if the partial order C is satisfied for all the corresponding

12

A
L
b
R
i i
t i I } }
1 2 3 4 5

Figure 2.4: A consistent scenario of Example 2.1.

constraints.

Two networks are equivalent if they possess the same solution set. A net-
work may have many equivalent representations; in particular, there is a unique
equivalent network M, which is minimal with respect to C, called the minimal

network.

We may define the minimal network in an equivalent, somewhat more nat-
ural way. Consider an arbitrary constraint C;;, specified by an IA relation set
{ris...,m}. Now consider the set of all solutions, that is, the set of all possible
scenarios. We shall say that a basic relation r (1 <1< k) is a consistent label of
an edge ¢ — j if there exists a scenario in which the relationship between intervals
Xi and Xj is r;. The minimal label (or minimal constraint) of an edge i — j is
the set of all its consistent labels. The minimal network is the (unique) network
labeled by the minimal labels of all edges. The minimal network of Example 2.1
is shown in Figure 2.5. It can easily be verified that all its labels are consistent.

The minimal network provides a more explicit representation of the given

knowledge and, therefore, it is useful in answering many types of queries.

Using the CSP terminology, the interesting reasoning tasks for IA networks
are deciding consistency, finding one or more solutions, computing the minimal
labels, and computing the full minimal network. It turns out that all these tasks
are intractable; even the simplest task of deciding consistency is NP-complete
[72]. Thus, it is unlikely that we can find polynomial-time algorithms for their

solution. As a result, we settle for exponential, exhaustive search algorithms such

13

{6, m}

Figure 2.5: The minimal network of Example 2.1.

as backtracking (for example, the algorithm given in [65]).

Another approach is to use approximation algorithms such as path consistency
(to be discussed in the next section), which run in polynomial time. These
algorithms improve the representation of the network by removing basic relations,
which are not contained in minimal labels, from some edges. In some cases, as
we shall see later, they may compute the minimal labels of some edges or even
the full minimal network.

2.2 Path Consistency in Interval Algebra Networks

The notion of local consistency [50, 43, 25] plays an important role in constraint
processing. The idea is to consider small subnetworks and to make them locally
consistent by ignoring the rest of the network. We say that a network is k-
consistent if any consistent assignment of values to any subset S of k—1 variables
(i.e., an assignment that satisfies all the constraints applicable to §) is extensible
to any variable X € 5 (i.e., the extended assignment satisfies all the constraints
applicable to § U X) [25]. Enforcing k-comsistency improves the representation
of the network, and for small ks it is usually worthwhile, since its complexity is
bounded by O(nF).

Arn important special case is $-consistency, also known as path consistency
[50, 43]. In this chapter, we shall use an equivalent, more convenient definition
of path consistency. This definition uses two binary operations on constraints:

intersection and composition.

14

I overlaps J I |

I starts J

I during J } |

Figure 2.6: Composition of basic relations.

The intersection of two IA relations R’ and R”, denoted by R' & R”, is the
set-theoretic intersection R’ N R”.

The composition of two IA relations, R’ between intervals I and K and R”
between intervals X and J, is a new relation between intervals I and J , induced
by R’ and R”. The composition of two basic relations v and 7" is defined by a
transitivity table[2], a portion of which is shown in Table 2.2.! For example, the
basic relations I meets K and K is during J induce a new (composite) relation
on I and J : I overlaps, is during, or starts J, depending on the location of J’s
starting point (see Figure 2.6). It follows that the entry for m ® d in the tran-
sitivity table is the set {o0,d,s}. The composition of two composite relations R’
and R”, denoted by R’ ® R, is the composition of the constituent basic relations,
narnely

ReR'={r'®r"|r'eR,r" € R").

Definition 2.2 We say that a given network is path consistent if for every three
variables ¢, 7, k,
Ci; C Cu ® Cy;.

Any network can be converted into an equivalent path-consistent form by
repeatedly applying the relaxation operation

Ci; — Ci; ® Cit ® Cyj (2.1)

!The full table can be found in Allen’s paper (2].

15

b|s d o m
b|bib|bomds b b
s |[b|s d bom b
d|b|d d bomds| b
o|b]lo ods bom b
m|b | m ods b b

Table 2.2: Composition in the interval algebra.

until either a fixed point is reached or some constraint becomes empty, indicating

inconsistency. Using this method, path consistency can be achieved in O(n3)
time [2, 72].

Illustration Consider the network of Figure 2.3. Let us enforce path consistency
by repeatedly applying Equation (2.1).

e Step 1: Apply
Csp — Csp ® Csp ® Cpp.

Composing the constraints Csz, and Cr g induces a new constraint between
S5 and R:
Csp = {0,m} @ {0,5,d} = {b,0,m,d, s}.

Then, intersecting Cgp with the original constraint Cgsgp = {b,m, mi,a}
yields a new constraint between S and R:

CSR — {b, m}

e Step 2: Apply
Crr— Crp® Crs ® Csp.

This results in a new constraint between L and R:
CrLr + {o,s}.

e Step 3: Further applications of Equation (2.1} will not change the network;
thus, we have reached a fixed point.

16

relation | symbol
0)
{<} <
{=} =
{>} >
{<.=} <
{>= >
{<,>} #
{<,=,>} ?

Table 2.3: The point algebra elements.

The resulting network is the minimal network representation (Figure 2.5). It can
be verified that this network is indeed path consistent.? O

In some cases, path-consistency enforcing algorithms (or path consistency, for
short) are ezact, that is, they compute the minimal network (e.g., Example 2.1).
In general, however, path consistency is not guaranteed to compute the minimal
network or even to detect inconsistency (a counterexample is given in [72]). Much
work has been done on characterizing special cases for which local consistency
algorithms are exact. In the next section, we present some classes of IA networks
for which 3- or 4-consistency indeed computes the minimal network.

2.3 Vilain and Kautz’s Point Algebra

Because of the computational limitations of the IA, Vilain and Kautz [72] sug-
gested an alternative model, a point algebra (PA), in which the information is
expressed by means of constraints on points. There are three possible basic re-
lations that can hold between a pair of points P and Q: P < Q, P = @, and
P > @. The elements of the PA are, therefore, all 22 subsets of the basic relations
{<,=,>}. Sometimes it will be more convenient to use the shorthand notation
shown in Table 2.3.

A point algebra network (PA network) involves a set of variables {X3,..., X, },
where each variable represents a time point. The domain of each variable is the

21t can easily be shown that the minimal network is always path consistent.

17

I
A%

A
SIA LA A
A
-

Table 2.4: Composition in the point algebra.

set of real numbers R, standing for the set of times the variable may assume. The

constraints are given as PA elements.

Most of the IA terminology (consistency, minimal network, path consistency,
etc.) can be used in the same manner for the PA. The only difference is in the
definition of the composition operation, which is now defined by the transitivity
table of Figure 2.4 [72].

To represent knowledge in the PA, we translate the input statements into PA
relationships between points. The points may be the starting and ending points
of event intervals or some neutral points of time.

Example 2.3 Suppose we are given the following relationship between intervals
I and J:

I{s,d,f,=}J, (2.2)

namely, I starts, is during, finishes, or is equal to J. Let A and B be the starting
and ending points, respectively, of interval I (i.e., I = [4, B]), and C and D be
the starting and ending points, respectively, of interval J (i.e., J = [C, D]). The
relationship in Equation (2.2) can be expressed by the PA relations

A<B,C<D, A<D A>C,B<D, B>C. (2.3)

Note that < and > are shorthand notation for the PA elements {<,=} and
{>,=}, respectively. It can be verified that Equation (2.3) is equivalent to Equa-
tion {2.2). O

In general, any PA network can be expressed as an IA network. The opposite
is not true-—the PA can handle only a subset of the IA networks; there are
problems that can be expressed by binary relations between intervals but not by
binary relations between points.

18

Example 2.4 (Vilain and Kautz [72]) Consider the IA relation
I {ba} J, (2.4)

namely I is before or after J, where intervals I and J are given by I = [A, B]
and J = [C, D]. This relationship cannot be encoded by binary PA relations on

points; it requires the 4-ary constraint
(B<C)V(D < A).

Since the PA is limited to binary constraints, the IA network of Equation (2.4)
cannot be represented as a PA network. O

The limited expressiveness of the PA is compensated for by its tractability.
It turns out that most reasoning tasks for problems expressed in the PA can be

solved in polynomial time, using 3- and 4-consistency.

The consistency of a PA network can be decided using path consistency. A
given PA network is consistent if and only if after executing path consistency
the resulting network is nonempty (Ladkin and Maddux [39]; see also Chapter 4
below). Thus, deciding the consistency of a PA network is O(n?®). A faster, O(n?)
algorithm for deciding consistency and for finding a consistent scenario is given
in [68].

Path consistency can also be used in computing the minimal network. Con-
sider a subset of PA networks, called convez PA (CPA} networks. In these net-
works, the constraints are taken from the set {<,<,=,>,>}; namely, the #
relation is excluded. It can be shown ([66]; see also Chapter 3 below), that path
consistency is exact for CPA networks. Thus, computing the minimal network of
a CPA network is O(n?). Path consistency is not exact, however, in the full PA
(where the # relation is allowed). In order to compute the minimal network for
a PA network, we need to enforce 4-consistency [66], which requires time O(n*).

These results were used to identify tractable classes of IA networks. As we
have seen before, some IA relations can be expressed by a conjunction of binary
PA relations. Let IAp, be the set of all these relations.® Similarly, let IAcpy
be the set of all IA relations that can be expressed by a conjunction of binary
CPA relations. An IA network whose constraints are IAps or IAcp, relations

3A complete list of these relations is given in [67] and [39].

19

will be called an JApy network or an IAcps network, respectively. According
to the previous results, it is clear that these classes of networks are tractable.
To solve such a network, we simply translate it into an equivalent point network
(in O(n?) time), solve the resulting PA (or CPA) network, and then, if necessary
(for example when the task is to compute the minimal network), translate the

resulting network back into interval representation (again in time O(n?)).

An alternative, sometimes more efficient way is to execute the appropriate
local consistency algorithm, 3- or 4-consistency, on the interval network itself.
In particular, 3-consistency computes the minimal network when applied to an
IAgpa network, and 4-consistency computes the minimal representation of an
IAp4 network {67].

Although it may seem that IAp, and IAcpa networks are only of theoretical
importance, it turns out that many Al applications that employ Allen’s formalism
in representing temporal knowledge, use essentially only IAp4 relations. Exam-
ples can be found in natural language understanding applications [5, 59], medical
expert systems [30], medical diagnosis systems [34], and in qualitative reasoning
[51].

Current research on qualitative temporal networks focuses mainly on identi-
fying additional tractable subsets of Allen’s [A. For example, using results from
graph theory, another tractable class was recently reported in [29]. It is desirable
to find tractable classes with powerful expressiveness; in particular, classes that
subsume the PA. A negative result on the prospects of finding such classes is
given in Chapter 4. We define a class of networks, called interval-point algebra
(IPA) networks, where the constraints are relations between points and intervals.
We will show (Theorem 4.3) that even this restricted subset, which subsumes the
PA, 1s intractable.

Finally, it should be noted that in using the IA or the PA, one is committed
to a single type of objects: intervals or points. In many cases, however, users may
need the flexibility of expressing knowledge using both types of objects. Vilain
[71] presented an hybrid system that consists of both points and intervals. Allen
and Hayes [4] have also noted that a theory that can accommodate both types of
objects is needed. This issue will be treated more formally in Chapter 4, where
we develop a general qualitative algebra that allows references to both points and
intervals, including relations between points and intervals; this algebra can be
seen as a generalization of both the IA and the PA.

20

CHAPTER 3

Metric Networks

One of the requirements of a temporal reasoning system is the ability to deal with
metric information. For instance, in Example 1.1 we need to express information
on duration of events (“Fred’s commuting time”) or timing of events (“The time
John left home™). Unfortunately, the IA and the PA do not offer a convenient
mechanism for dealing with such knowledge.

Some suggestions about representing quantitative knowledge have been made.
Dean and McDermott [17] introduced a time management system that can handle
some quantitative information. This system was not formulated mathematically,
however. Malik and Binford [46] and Valdés-Pérez [64] suggested that quanti-
tative knowledge be represented as a set of constraints on the temporal distance
between time points. If X; and X; are two time points, a constraint on their
temporal distance would be of the form

Xj - Xi -<-. c, (31)

which gives rise to a set of linear inequalities. Malik and Binford suggested using
the simplex algorithm to test the satisfiability of these inequalities.

In this chapter we shall follow Malik and Binford and Valdés-Pérez and present
a formal, constraint-based model that facilitates the processing of such temporal-
distance constraints. We consider time points as the variables we wish to con-
strain, where a time point may be a beginning or an ending point of some event,
as well as a neutral point of time. We will use a form of temporal-distance con-
straints which is more general than Equation (3.1), because it allows disjunctive
statements. To solve reasoning tasks in this model, we shall use constraint sat-
isfaction techniques instead of using the (exponential) simplex algorithm. We
discuss three reasoning tasks: finding all feasible times that a given event can
occur, finding all possible relationships between two given events, and generating
one or more scenarios consistent with the information provided.

Consider the following example.

21

Example 3.1 John goes to work either by car (80-40 minutes) or by bus {at least
60 minutes). Fred goes to work either by car (20-80 minutes) or in a carpool (40-
50 minutes). Today John left home between 7:10 and 7:20 a.m., and Fred arrived
at work between 8:00 and 8:10 a.m. We also know that John arrived at work
about 10-20 minutes after Fred left home.

We wish to answer queries such as “Is the information in the story consis-
tent?”, “Is it possible that John took the bus and Fred used the carpool?”, and
“What are the possible times at which Fred left home?”.

Let P, be the proposition “John was going to work” and P, the proposition
“Fred was going to work.” P, and P; are associated with intervals [X1, X;] and
[X3, X4], respectively, where X, represents the time John left home, while X
represents the time Fred arrived at work. Several quantitative constraints are
given in the story. From the fact that it takes John either 30-40 minutes or more
than 60 minutes to get to work, the temporal distance between X, and X, is
constrained by

30X, — X, <40 or X; — X, > 60.

Similar constraints apply to X; — X3 and X, — X;. Choosing Xp = 7:00 a.m.,
the fact that John left home between 7:10 and 7:20 a.m. imposes the constraint

10 € X, — Xp £20.

The constraint on X; — X, assumes a similar form.

The rest of this chapter is organized as follows. In Section 3.1, we present
the TCSP model—a formal computational model that facilitates the representa-
tion and processing of quantitative, metric constraints. Section 3.2 deals with a
restricted, simpler TCSP (called STP), solvable in polynomial time. Sections 3.3—
3.5 offer some techniques for solving the general TCSP: decomposition into sev-
eral STPs, approximation schemes, and network-based approaches. Section 3.6
relates the TCSP model to Allen’s IA and to Vilain and Kautz’s PA.

3.1 The Temporal Constraint Satisfaction Problem
Model

The definitions needed for describing a TCSP follow closely those developed
for the general CSP (Montanari [50]). A TCSP involves a set of variables

22

{X1,..., X} having continuous domains; each variable represents a time point.

Each constraint is represented by a set of intervals!

(I, ..., It} = {{ar, bi), . . [ax, Be)}.

A unary constraint T; restricts the domain of variable X; to the given set of

intervals; namely, it represents the disjunction
(e S Xi<bh) V- Vi <X < by).

A binary constraint T}, constrains the permissible values for the distance X = X
it represents the disjunction

((11SJXJ'—X,'Sbl)V---V(akSXj—X,'Sbk).

We assume that constraints are always given in a canonical form in which all

intervals are pairwise disjoint.

A network of binary constraints (a binary TCSP) consists of a set of variables
{X1,...,X.} and a set of unary and binary constraints. Such a network can
be represented by a directed constraint graph, where nodes represent variables
and an edge ¢ — j indicates that a constraint T}; is specified; it is labeled by
the interval set. Each input constraint T}; implies an equivalent constraint T};;
however, usually only one of these will be shown in the constraint graph. A
special time point, Xo, is introduced to represent the “beginning of the world.”
All times are relative to Xy, thus we may treat each unary constraint T} as a
binary constraint Tj; (having the same interval representation). For simplicity
we assume Xp = 0. The constraint graph of Example 3.1 is given in Figure 3.1.

A tuple X =(zy,...,z,) is called a solution if the assignment
{Xi =x1,...,X, = z,} satisfies all the constraints. A value v is a feasible value
for variable X if there exists a solution in which X; = v. The set of all feasible
values of a variable is called the minimal domain. The network is consistent if

at least one solution exists.

We define three binary operations on constraints—union, intersection, and

composition—respecting their usual set-theoretic definitions.

! For simplicity we assume closed intervals; however, the same treatment applies to open and
semi-open intervals.

23

[30,40]

Figure 3.1: A constraint graph representing Example 3.1.

Definition 3.2 Let T' = {I,,...,I;} and S = {J;,...,J} be constraints, that
1s, sets of intervals of a real variable ¢ (t corresponds to X ; — X, in the case these

are binary constraints).

1. The union of T and S, denoted by T U S, admits only values that are

allowed by either T or S, namely,

TUuS={h,....I,J,...,Jm}.

. The intersection of T and S, denoted by T & S, admits only values that
are allowed by both T" and §, namely,

T®S={K,...,K.},
where K = I; N J; for some 7 and j. Note that n <!+ m.

. The composition of T and S, denoted by T ® S, admits only values r for
which there exist t € T and s € §, such that ¢ + 3 = r, namely,

T®5={K1,...,Kn},

where Ky = [a+¢,b+ d] for some I; =[a,b] and J; = [c,d]. Note that
n<!lxm.

A pictorial illustration of the intersection and composition operations is given

in Figure 3.2. Note that for some of these operations the resulting interval rep-

resentation is not in canonical form. For instance, the composition operation

24

S
1 3 7
THS — 3t mLﬁGenﬂeaeae—H—
(a)
-1 0 2 4
T 300000 30868800800 ———————————|
0 1 4
S 200000 —————%—+——+—+————
T®S

Figure 3.2: Operations on constraints: (a) intersection, (b) composition.

results in four intervals; however, due to overlap, only three of them appear
in the canonical form. These three operations parallel the usual operations of
union, intersection, and composition in general constraint networks [50]. In par-
ticular, when T and S represent binary constraints on the differences X ; — Xiand
Xk — Xj, respectively, T ® S admits only pairs of values (z;, z¢) for which there
exists a value z; such that (2, x;) is permitted by T and (z;, z;) is permitted by

S.

These operations are extended to operations on networks in the usual way.
Given networks T and S on the same set of variables, we define

(T'U S8)i; =Ti; U Sy,

and
(T8 =T D Sy,
where ¢ and j range over all pairs of variables.

A partial order among constraints can be defined as follows. A binary con-

25

straint T is tighter than S, denoted by T C S, if every pair of values allowed by
T 1s also allowed by S; namely, for every interval I € T there exists an interval
J € § such that J C J. The tightest constraint is the empty constraint, ¢ (if the
network contains an empty constraint, then it is trivially inconsistent). The most
relaxed constraint is the universal constraint, (—o0,c0). Edges corresponding to

universal constraints are usually omitted from the constraint graph.

A partial order among binary constraint networks having the same set of vari-
ables can be defined as follows. A network T is tighter than network S. denoted
T C S, if the partial order C is satisfied for all the corresponding constraints:
namely, for all pairs 1, j, T;; C S;;. Two networks are equivalent if they represent
the same solution set. A network may have many equivalent representations; in
particular, there is one equivalent network that is minimal with respect to C,
called the minimal network (note that the minimal network is unique because
equivalent networks are closed under intersection). The arc constraints specified

by the minimal network are called the minimal constraints.

A network is decomposable? [50] if every locally consistent assignment? to any
set of variables S can be extended to a solution. The importance of decompos-
ability lies in facilitating the construction of a solution by a backtrack-free search
[26].

Given a constraint network, the first interesting problem is to determine its
consistency. If the network is consistent, we may wish to find some specific
solutions, each representing a possible scenario, or to answer queries concerning

the set of all solutions. The interesting queries are:

1. What are the possible times at which X; could occur? (asking for the
minimal domain of Xj).

2. What are all the possible relationships between X; and X;? (asking for the
minimal constraint between X; and X ;).

Computing the full minimal network would provide answers to all such queries.
The rest of this chapter presents several techniques for solving these tasks.

*In {50] decomposability is defined for minimal networks only.

3An assignment of values to a set of variables S is locally consistent if it satisfies the
constraints applicable to S, that is, those involving only variables in § (including the unary
constraints).

26

3.2 The Simple Temporal Problem

A TCSP 1in which all constraints specify a single interval is called a simple tem-
poral problem (STP). In such a network, each edge i — j is labeled by an interval

[ai;, bi;] that represents the constraint
a; < X; — Xi < by (3.2)
Alternatively, the constraint can be expressed as a pair of inequalities:
X; — X < by, (3.3)

and

X,' — Xj S —Gyy. (34)
Thus, solving an STP amounts to solving a set of linear inequalities on the X;’s.

The problem of solving a system of linear inequalities is well known in the
operations research literature. It can be solved by the (exponential) simplex
method {11] or by Khachiyan’s algorithm [36], which is rather complicated in
practice. Fortunately, the special class of linear inequalities characterizing the
STP admits a simpler solution; the inequalities are given a convenient graph
representation, to which a shortest paths algorithm can be applied [8, 58, 41, 42].
In the AI literature, a data structure, similar to this graph representation, called
a tuime map, was introduced by Dean and McDermott [17] to facilitate planning,
but 1t was not formulated mathematically.

Formally, we associate an STP with a directed edge-weighted graph
Gq = (V, Ey), called a distance graph (to be distinguished from the constraint
graph). It has the same node set as G, and each edge : — j € E; is labeled by
a weight a;; representing the linear inequality X; — X; < a;;. In Example 3.1, if
we assume that John used a car and Fred used a carpool, we get an STP having

T2 = {[30140]} and T34 = {[40!50]}1

and the distance graph depicted in Figure 3.3.

FEach path from i to j in Gq4, 1o =1,71,...,% = j, induces the following con-
straint on the distance X; — X;:

k
XJ' - X,' S Za.-j_h,-j. (35)

=1

27

Figure 3.3: A distance graph representing a portion of Example 3.1.

If there is more than one path from ¢ to j, then it can be verified easily that the
intersection of all the induced path constraints yields

X; - Xi < dyj;, (3.6)

where d;; is the length of the shortest path from i to j. Based on this observation,
the following condition for the consistency of an STP can be established.

Theorem 3.3 (Shostak [58], Liac and Wong [42], Leiserson and Saxe [41]) A
gwen STP T is consistent if and only if its distance graph Gy has no negative

cycles.

Proof Suppose there is a negative cycle C consisting of nodes
i1, -+, = 1;. Summing the inequalities along C yields

X.‘l -)(,'1 < 1,

which cannot be satisfied.

Conversely, if there is no negative cycle in G4, then the shortest
path between each pair of nodes is well defined. For any pair of nodes
¢ and j, the shortest paths satisfy dy; < do; + a,j; thus,

doj — doi < ayj.

Hence, the tuple (do, ..., dos) is a solution of the given STP. O

28

Corollary 3.4 Let Gg be the distance graph of a consistent STP. Two consistent

scenarios are given by

Sl = (dl:lla'-'adorl)!
S'Z = (_dl[h R _dHO)a

which assign to each wariable its latest and earliest possible times, respectively.

Proof The proof of Theorem 3.3 shows that 5, is a solution. To show
that 5; is a solution, note that for all 7 and j,

dio < ai; + djo,

or
(=djo) — (—dio) < aij,

vielding S, as a solution. O

From the above discussion, it follows that a given STP can be effectively
specified by a complete directed graph, called a d-graph, where each edge i — ;
is labeled by the shortest path length d;; in Gg; the d-graph corresponds to a
more explicit representation of our STP (see Equations (3.5) and (3.6)).

Theorem 3.5 (decomposability) Any consistent STP is decomposable rela-

tive to the constraints in its d-graph.

Proof It suffices to show that any instantiation of a subset S of k
variables (1 < k < n) that satisfies all the shortest path constraints
applicable to S is extensible to any other variable. This will be shown
by induction on || = k.

For k = 1, S consists of a single variable X; instantiated to z;. We
will show that for any other variable X; we can find an assignment
X; = v that satisfies the shortest path constraints between them. The

value v must satisfy
- dj,‘ S v— T S d,-j. (3.7)
Since all cycles in the distance graph are nonnegative, we have

dji +di; >0,

29

and hence there exists a value v satisfying Equation (3.7).

Assume that the theorem holds for | S| = ¥ — 1; we must show that
it holds for |S] = k. Without loss of generality, let § = {X{,..., X}},
and let {X; = #;|1 < ¢ < k} be an assignment that satisfies the short-
est path constraints among the variables in S. Let Xi,1 € 5. We
need to find a value Xjy; = v that satisfies the shortest path con-
straints between Xy, and all variables in S. In other words, v must
satisfy

v—; < digy,

;i — v < digri,

for=1,...,k, or
v S min{z; + digq|1 <@ <k},

v 2> max{®; — dr1,|1 < i < k).

Suppose the minimum is attained at ¢y and the maximum at j,. Thus,
v must satisfy

Tjo — dtrjo S v <y, + d (3.8)

0.k+1 °

Since z;, and z;, satisfy the constraint between them, we have
Tjo — Tip < diodo-

This, together with di; j, < dig k1 + drar 4y, yields

Tjo — dk+1,jo <z, + dio.k+1-

Therefore, there exists a value v that satisfies the condition of Equa-
tion (3.8). O

The importance of Theorem 3.5 lies in providing an efficient algorithm for

assembling a solution to a given STP: we simply assign to each variable any value
that satisfies the d-graph constraints relative to previous assignments (starting
with Xo = 0). Decomposability guarantees that such a value can always be found,
regardless of the order of assignment. A second by-product of decomposability is

that the domains characterized by the d-graph are minimal.

Corollary 3.6 Let Gq be the distance graph of a consistent STP. The set of

feasible values for variable X; is [—dy, doi].

30

Proof According to Theorem 3.5, the assignment X = 0 can be ex-
tended by assigning any value v satisfying v € [—dio., do;] to X;. This
assignment, in turn, can be extended to a full solution. Thus, v is a

feasible value, O

We have noted that the d-graph represents a tighter, yet equivalent network of
the original STP. From Theorem 3.5 we can now conclude that this new network

1s the minimal network.

Corollary 3.7 Given a consistent STP T, the equivalent STP M, defined by
Viaja M!'J' = {[—dj,', dl'j]}s
s the minimal network representation of T.

Proof We will show that M is the minimal network by showing
that it cannot be tightened any more; in other words, starting with
the assignment X, = 0, for any d € [—dj;, di;] there exists a solution

X = (Zo,...,zn) in which 2; — @; = d. There are two cases depending
on d.
Case 1:

d < do; — dos. (3.9)

According to Corollary 3.6, X; = dy, is a feasible value. Clearly,
doi + d > do; — dji,

and since
dji < djo + dos,

we get
doi + d > —djo.

Together with Equation (3.9) we have
—djo < do; +d < do;.

Therefore, the assignment X; = do; + d satisfies the unary domain
constraints on variable X;, and

{Xo =0,X; = doi, X; = do; +d}

31

satisfies the constraints applicable to { X, X;, X;}. By Theorem 3.5
this partial assignment can be extended to a solution.
Case 2:

d > dy; — do,. (3.10)

According to Corollary 3.6, X; = dy; is a feasible value. Clearly,
do; — d 2> doj — d;,
and since
di; < dio + doy,

we get
doj — d > —dso.

Together with Equation (3.10) we have
—dip < doj — d < dy;.

Therefore, the assignment X; = doj — d satisfies the unary domain

constraints on variable X, and
{Xo=0,X; = do; — d, X; = dp;}

satisfies the constraints applicable to {Xo, X;, X,}. By Theorem 3.5
this partial assignment can be extended to a solution. O

Illustration Consider the distance graph of Figure 3.3. Since there are no nega-
tive cycles, the corresponding STP is consistent. The shortest path distances, d;;,
are shown in Table 3.1. The minimal domains are 10 < X; < 20,40 < X; <50,
20 < X3 < 30, and 60 < X4 < 70. In particular, one special solution is the tuple
(do1, . ..,dos), namely the assignment

{Xl = 20,X2 = 50,X3 = 30,X4 = 70},

which selects for each variable its latest possible time. According to this solution,
John left home at 7:10 a.m. and arrived at work at 7:50 a.m., while Fred left
home at 7:30 a.m. and arrived at work at 8:10 a.m. The minimal network is
given in Table 3.2. Notice that the minimal network is symmetric in the sense
that if T;; = {[a, 8]} then T}; = {[—b, —a]}. An alternate scenario, in which John

32

Table 3.1: Lengths of shortest paths in the distance graph of Figure 3.3.

0 1 2 3 | 4
0| 0 [20|50 |30 |70
1|-10| 0 | 40 | 20 | 60
2|-40(-30(0 |-10|30
3(-20|-10 20 30
4(-60|-50|-201-401 0

0 1 2 3 4
o [0 (10,20] | [40,50] | [20,30} | [66,70]
1[[20-10] | (0] | [30,40] | [10,20] | [50,60]
2 | [-50,-40] | [-40,-30] | [0] | [-20,-10] | [20,30]
3 | [-30,-20] | [-20,-10) | [10,20] [0] | [40,50]
4 | [-70,-60] | [-60,-50} | [-30,-20] | [-50,-40] | [0]

Table 3.2: The minimal network corresponding to Figure 3.3.

used a bus and Fred used a carpool (i.e., Ty2 = {[60,00)} and T34 = {[40,50]}),

results in a negative cycle and is therefore inconsistent. O

The d-graph of an STP can be constructed by applying Floyd-Warshall’s All-
Pairs-Shortest-Paths algorithm [53] to the distance graph (see Figure 3.4). The
algorithm runs in time O(n®) and detects negative cycles simply by examining
the sign of the diagonal elements d;;. It constitutes, therefore, a polynomial time
algorithm for determining the consistency of an STP and for computing both the
minimal domains and the minimal network. Once the d-graph is available, as-
sembling a solution requires only O(n?) time, because each successive assignment
needs to be checked against previous assignments and is guaranteed to remain
unaltered. Thus, finding a solution can be achieved in O(n?) time.

33

Algorithm All-Pairs-Shortest-Paths

.fori:=1tondod; 0
) fori,j:=1tond0d;j<—a,-j
.for k:=1tondo
for:,j:=1tondo

d,‘j — min{d,-j,d;k =+ dkj}

AT R S LS B

Figure 3.4: Floyd-Warshall’s algorithm.

3.3 The General Temporal Constraint Satisfaction
Problem

Having solved the STP, we now return to the general problem in which edges may

be labeled by several intervals. Davis [13] showed that determining consistency
for a general TCSP is NP-hard.

Theorem 3.8 (Davis [13]) (i) Deciding consistency for a TCSP is NP-hard. (ii)
Deciding consistency for a TCSP with no more than two intervals per edge is
NP-hard.

Proof (i) Reduction from 3-coloring. Let G = (V, E) be a graph to
be colored. We construct a TCSP T in the following way. For each
node V;, we introduce a variable X; and a unary constraint on Xj;

Xs' € {[l]a[2]1[3]}1 (3'11)

where [1], [2], and [3] stand for the three admissible colors. With each
edge (7, j) € E we associate a binary constraint

X = Xi e {{-2], (1], 1], [2]}- (3.12)

Equation (3.12) restricts X; and X; to different colors. Hence, T is
consistent if and only if G is 3-colorable.

34

(¢4) Again, reduction from 3-coloring. We construct a TCSP T
as follows. For each node 1}, we introduce two variables X/ and X/
having domains
Xi e {{1},[2,3]},
X! e {[1,2}, 3]},

and restrict X and X to being equal:
X! = XV

This forces X] and X! to assume integer values, as in Equation (3.11).
To restrict the colors of nodes V; and V; to different colors, the fol-

lowing binary constraints are introduced:
X; - X: € {[_211 ['"'11 2]}1

X;’ - X: € {["21 _1]5 [15 2]}1
X; - X! € {[-2,1], [2]).

T is consistent if and only if the graph is 3-colorable. O

A straightforward way of solving the general TCSP is to decompose it into
several STPs, solve each one of them, and then combine the results. Given a
binary TCSP T, we define a labeling of T as a selection of one interval from
each constraint. Each labeling defines an STP graph whose edges are labeled
by the selected intervals. We can solve any of the TCSP tasks by considering
all its STPs. Specifically, the original network is consistent if and only if there
is a labeling whose associated STP is consistent. Any solution of T is also a
solution of one of its STPs and vice versa. Also, the minimal network of T can
be computed from the minimal networks associated with its individual STPs, as

stated in the following theorem.

Theorem 3.9 The minimal network M of a given TCSP T satisfies

M =M,
!

where M, is the minimal network of the STP defined by labeling I, and the union
18 over all the possible labelings.

35

0 1 2 3 4
[40,60]
o| [o0] (10,20] | [70] | [20,50] | [60,70]
130,40] | [10,30]
t|}-20-10]| o] [60] [40] | [40,60]
-70] [-60]
2 | [-60,-40) | [-40,-30] | [0] | [-20,-10] | [0,30]
[-40] [20,30]
3 | [-50,-20] | [-30,-10} { [10,20] | [0] | [40,50]
(-50,-40)
4 | [-70,-60] | [-60,-40] | [-30,0] | [-30,-20] | [0]

Table 3.3: The minimal network of Example 3.1.

Proof We first note that the solution set of T is identical to the union
of the solution sets of its labelings. Hence, UM is equivalent to 7'.
M is by definition the tightest of all networks equivalent to T, and
therefore M C U M;. Now suppose that M is strictly tighter than
U M;. Then, there exist a pair of variables ¢ and j, a labeling s, and
a value d, such that d € (M,);; but d € M;;. Let z and y be values
of the variables ¢ and j, respectively, such that y — r = d. According
to the minimality of M,, this partial assignment can be extended to
a solution of s, which is also a solution of T'; hence d € M,;, yielding
a contradiction. Therefore, UM; C M. D

Illustration The minimal network of Example 3.1 is shown in Table 3.3. In this

case, only three of the four possible labelings contribute to the minimal network.
(]

The complexity of solving a general TCSP by generating all the labelings
and solving them independently is O(r3k®), where & is the maximum number of
intervals labeling an edge and e is the number of edges.

This brute-force enumeration process can be pruned significantly by running
a backtracking search on a meta-CSP in which the variables are the TCSP’s edges
and the domains are the possible intervals. The backtracking algorithm assigns
an interval to an edge, as long as the condition of Theorem 3.3 is satisfied; if no

36

such assignment is possible, it backtracks.

Formally, let T be a given TCSP, and let G = (V| E) be its associated con-
straint graph. Let CSP(T) be a discrete CSP with variables X;...., X,,, where
m = |E| and variable X; corresponds to edge e¢; € E. The domain of X; consists
of the intervals I,..., I that label e; in G. The constraints are not given im-
plicitly (as a list of allowed or disallowed combinations); instead, any assignment
{Xi, =L,,... Xi, =1,} is consistent if and only if the corresponding STP is
consistent. Clearly, each solution of CSP(T) corresponds to a consistent label-
ing of G, and thus any algorithm that finds all the solutions of CSP(T) can be
used to solve T. A backtrack algorithm that computes the minimal network of a
TCSP is shown in Figure 3.5. It is defined by two recursive procedures: Forward
and Go-back. The first extends a current partial assignment if possible, and the
second handles dead-end situations. The procedures maintain a list of candidate

intervals C; for each variable X;.

Backtrack is initiated by calling Forward with : = 0, namely, the instantiated
list is empty. The procedure Solve-STP(I;, ..., I,) returns the minimal network
of the STP defined by {I1,...,In}. The procedure Consistent-STP(Iy,..., L, I;)
determines whether the partial STP defined by {I1,...,I;, I;} is consistent; it
can be done either by using an all-pairs-shortest-paths algorithm or an improved
algorithm to be described in Section 3.4. At the beginning of the algorithm
M = @ and, upon termination, M contains the minimal network (if M = @ then
the network is inconsistent). If our task is to find a single solution, then once
we find a consistent labeling we may construct a solution using the technique
described in the previous section.

Although the worst-case complexity of this approach is also O(r3k®)}, it enables
us to utilize enhancement techniques that, in practice, reduce the complexity of
backtrack substantially below its worst case value. Such techniques include back-
jumping [28], variable ordering [26, 56, 20], value ordering [32, 21], and learning
schemes [18]. Moreover, with some investment of storage space, the work done
on any partial instantiation can be utilized toward its extension (without redoing
the problem afresh), and this reduces the time complexity to O(n2k®).

In the following sections we will present alternative approaches for solving the
general TCSP. In particular, Section 3.4 discusses path consistency algorithms
that can be used as either an approximation or a preprocessing step before ap-
plying backtracking. Section 3.5 shows how the topology of the constraint graph

37

Forward(1y,..., I))

1. if : = m then begin

2. M «— MU Solve-STP(I4,...,I.)
3 Go-Back(1y,...,I,)

4. end

5. C;+1 — @

6. for every I; in D;,, do

7. if Consistent-STP(Jy,...,I;,I;) then
8. Civr = Cip U {}

9. if Ci41 # 0 then begin

10. Iy + first element in C,

11. remove [, from C;,

12. Forward(Iy,..., I;, Li41)

13. end

14. else Go-Back(/y,...,I;)

Go-back(1y,..., I;)
. if ¢ = 0 then exit
. if C; # 0 then begin
I; « first element in C;

Forward(Iy,...,I)

. end

1
2
3
4, remove I; from C;
5
6
7. else Go-back(fy,...,I;_1)

Figure 3.5: A backtracking algorithm.

38

can be exploited to yield more efficient algorithms.

3.4 Path Consistency Algorithms

Imposing local consistency among subsets of variables may serve as a preprocess-
ing step to improve backtrack. Local consistency algorithms, especially path con-
sistency, might also serve as a good approximation scheme which often yields the
minimal network. In this section we study the applicability of path consistency

and its weaker version, directional path consistency, in the TCSP framework.

Floyd-Warshall’s algorithm, used for solving the STP, can be considered a
relazation algorithm—in every step of the process the label of an edge is updated
by an amount that depends only on the current labels of adjacent edges. In fact,
there is a rich family of similar algorithms [1, 9, 40, 62, 61, 54|, all based on the
same principle. Montanari [50] was the first to use such an algorithm, called path
consistency, in the context of constraint satisfaction problems. This was further
explored and analyzed by Mackworth [43] and Mackworth and Freuder [45].

Pursuing its traditional role [50, 43], path consistency in the context of a
TCSP is defined as follows.

Definition 3.10 A path through nodes ig,%1,...,%m is path consistent if and
ouly if, for any pair of values vy and vy, such that v,, — vg € T}, ;,,, there exists a
sequence of values vy,...,v,_1 such that

vy — v € T}o,flg'u?_vl € Til,iza'--’vm — Upm-1 € I:

ma1tm "

A network is path consistent if and only if every path is consistent.

Using the operations & and & (denoting intersection and composition), Mon-
tanari’s path consistency algorithm (equivalent to Mackworth’s PC-1 [43]) is
shown in Figure 3.6. The algorithm imposes local consistency among triplets of
variables until a fixed point is reached or until some constraint becomes empty,
indicating an inconsistent network. Clearly, the algorithm computes a network
that is equivalent to the original one. For discrete-domain CSPs, Montanari
showed that the algorithm terminates and that the resulting network is indeed
path consistent. In our case, given that TCSPs are continuous-domain, one can-
not guarantee that the algorithm terminates. It is clear, however, that running

39

Algorithm PC-1

1,

2

3 for k:=1 ton do

4 for :,j :=1 to n do begin

5. T T8 T @ Ty

6 if T;; = 0 then

7 exit (the network is inconsistent)
8. end

9. until S=T

Figure 3.6: PC-1—a path consistency algorithm.

the algorithm indefinitely will result in a limit network. Each step of the algo-
rithm yields a tighter network and, since the network is bounded below by the
minimal network, a limit point is assured. Moreover, analysis shows that for
all practical purposes PC-1 terminates in a finite number of steps. This will be
shown in two parts: first for STPs, then for general TCSPs.

Comparing Figures 3.4 and 3.6, we see that PC-1 is a generalization of the
All-Pairs-Shortest-Paths algorithm. When applied to an STP, the relaxation step
that updates T}; amounts to two local operations of updating the shortest path
length, d;;, in Floyd-Warshall’s algorithm. Therefore:

Theorem 3.11 Applying PC-1 to an STP network is identical to applying Floyd-
Warshall’s algorithm to its distance graph.

An immediate corollary of this theorem is that PC-1 terminates and produces
a path-consistent network (see [12, 43, 50] for additional relationships between
shortest paths algorithms and path consistency).

Regarding general TCSPs, two questions must be addressed: does PC-1 ter-
minate and compute a path-consistent network, and is the resulting network
minimal. We will next show that the answer to the first question is affirmative
while the answer to the second is negative.

40

It is simple to show that PC-1 terminates for integral TCSPs, in which the
extreme points of all intervals are integers. This is so because each intersection
operation at Step 5 must tighten a constraint by an integral amount. For noninte-
gral TCSPs, the same argument holds if the extreme points are rational numbers
(these will be called rational TCSPs); we simply multiply all quantities by the
greatest common divisor of the extreme points. This was shown more formally
by Ladkin [38]. Thus, since all practical problems are expressible by rational
numbers, PC-1 can be regarded as terminating. Once termination has been as-
certained, the path consistency of the resulting network can be established by
straightforward application of Montanari’s proof [50]; the continuous nature of

temporal domains plays no role. In summary,
Theorem 3.12 Algorithm PC-1 computes a path-consistent network.

Having established that PC-1 terminates and computes a path-consistent net-
work, we next ask whether the resulting network is minimal. Montanari showed
that when the constraints obey the distributivity property (i.e., that composition
distributes over intersection), any path-consistent network is both minimal and
decomposable. Moreover, in such a case only one application of the main loop
(Steps 1-9} is sufficient for reaching the fixed point. When constraints are defined
by one interval (the STP case), the distributivity property holds and, indeed, for
this case, the path-consistent network is minimal (Corollary 3.7), decomposable
(Theorem 3.5), and requires only one iteration (see Floyd-Warshall’s algorithm).
Unfortunately, distributivity does not hold for multi-interval TCSPs, as can be
seen in the following example.

Example 3.13 Consider the network shown in Figure 3.7 where, for conve-
nience, both directions of each edge are explicitly given. There are two paths from
node 1 to node 3, representing the constraints T3 = {[25,50]} and
S13 = {[0,30],[40,50]} (the latter is obtained by composing Ty, with Tys). Per-
forming intersection first and composition next, we get

Ton ® (T3 @ Si3) =
{10, 1], [10, 20]} @ {[25, 30], [40, 50]} =
{[2s, 31],[35, 70]}.

41

Figure 3.7: A nondistributive network.

Performing composition first and then intersection, results in

(Tor @ T1s3) & (Ton @ Sy3) =
{[0,31], [40, 51], 10, 50], [50, 70]} & {[25, 51), [35, 0]} =
{[25, 70]}.

Clearly, distributivity does not hold. Indeed, if we apply path consistency to
this network then after one iteration we have Tpy = {[25,70]}, whereas in the
minimal network (shown in Table 3.4) M3 = {[25,31],(35,70]}. Interestingly,
another application of the main loop does result in a fixed point which is also the

minimal network (see Section 3.5). O

In general CSPs, it is well known that path consistency may not converge to
the minimal network. The next example (modeled on Montanari [50]) will demon-
strate that this phenomenon persists also in temporal problems; path consistency

does not even detect inconsistency.

Example 3.14 Consider the 3-coloring problem on K, the complete graph of
four nodes. The problem is obviously inconsistent and at the same time path
consistent—every set of three nodes can be 3-colored. Translating this problem
into TCSP notation, as in the proof of Theorem 3.8, yields the desired exam-
ple. The problem consists of four variables Xj,...,X,, each having a domain
{(1],[2], [3]}, connected by six binary constraints

X; = Xi e {[-2].[-1), [1], {21},

42

0 1 2 3
[0,1] [25,31]
] [0] [10,20] | [0,30] | [35,70]
[-20,-10] [25,30]
1| [1,0 [0] [0,10] | [40,50]
[15,20]

2| [-30,0] | [-10,0] [0] [40]

[-70,-35] | [-50,-40] | [-40]
3 | [-31,-25] { {-30,-25] | [-20,-15] (0]

Table 3.4: The minimal network of Example 3.13.

for 4,7 =1,...,4,¢ # j. The resulting network is already path consistent, yet
PC-1 will fail to detect its inconsistency. O

A more efficient path consistency algorithm is the temporal equivalent of
Mackworth’s PC-2 [43], shown in Figure 3.8. The function REVISE((z, k, j)) up-
dates Tj; by considering the length-2 path from i to j through k

Ty — T 0 T @ Ty,

and returns true if T;; has been modified. The function RELATED-PATHS((7, k, 7))
returns the set of length-2 paths that need to be considered if Tj; is changed. The
details of RELATED-PATHS are given in [43].

For discrete CSPs, path consistency can be achieved in time polynomial in n
(the number of variables) and k (the maximum domain size) [45]. We will now
show that the temporal mirror of PC-2 achieves path consistency in O(n3R®),
where R is the range of the network (expressed in terms of the coarsest possible

time units).
Definition 3.15 Let T be an integral TCSP. The range of a constraint
1“!] = {[ala bl]': ey [ans bn]}

is bp — ay. The range of T is the maximum range over all constraints.

For a rational network, the range is defined as the range of the equivalent
integral network, obtained from the input network by multiplying all extreme
points by their greatest common divisor.

43

Algorithm PC-2

Q=G k< 4k #4,5}
while Q # # do begin
select and delete a path (¢, k,) from Q
if REVISE((7,%,7)) then
Q «— Q U RELATED-PATHS((s, &, 5))

L= T N R

end

Figure 3.8: PC-2—a more efficient path consistency algorithm.

Theorem 3.16 Temporal path consistency can be achieved in O(n*R) relazation
steps and O(n®R*) arithmetic operations, where R is the range of the TCSP
expressed in the coarsest possible time units.

Proof Let T be a given TCSP. Without loss of generality, we may
assume that 7" is integral; otherwise, we can simulate the algorithm
on the equivalent integral network. The worst-case running time of
PC-2 occurs when every constraint interval is decreased by only one
time unit each time it is tightened by REVISE. In this case, if R is
the maximum constraint range, each constraint might be updated
O(R) times. Also, in the worst case, when a constraint is modified,
O(n) paths are added to @ (see [43]). Thus, if we use the number
of relaxation steps (calls to REVISE) as the complexity measure then,
since there are O(n?) constraints, the total complexity of PC-2 is
O(n*R). A more realistic measure would be the number of arithmetic
operations. Each relaxation operation, A ® B ® C, where I, m, and
n are the number of intervals in A, B, and C, respectively, involves
O(!I + m x n) arithmetic operations. Thus, since each relaxation step
may involve as many as O(R?) operations, the total time is O(n3R3).
3

For comparison to chronological backtracking, note that R must be at least

as large as k (the number of intervals per constraint). However, if the edges are
labeled by a few intervals, O(k°) may reflect a lower complexity than O(R3).

44

Algorithm DPC

1. for ¥ := n downto 1 by -1 do

2 for all 2, < k such that (i,k),(j,k) € E do begin
3. Ty =T ® T @ Ty

4, E — EuU(ij)

5 if T,; = 0 then

6 exit (the network is inconsistent)

7 end

Figure 3.9: DPC—an algorithm enforcing directional path consistency.

Although path consistency algorithms are not guaranteed to compute the
minimal network, they often provide a practical alternative and a complementary
approach to the decomposition scheme. Moreover, they are readily amenable to
parallel and distributed computation. In preliminary experiments on small ran-
dom problems (each consisting of 5-7 variables), PC-1 always found the minimal
network (Yaara Levi and Margalit Pinkas, personal communication). On the
basis of these experiments, it appears that path consistency will substantially re-
duce the amount of work done by backtracking. To fully assess the benefits of the
path consistency scheme, full-scale experimental studies should be undertaken.

Some problems may benefit from a weaker version of path consistency, called

directional path consistency [21], which can be enforced more efficiently.

Definition 3.17 Let d be an ordering on the variables, and let X; precede X,
in d if and only if ¢ < j. A constraint graph G is directional path consistent with
respect to d if, for every pair of values v; and v; such that v; — v; € T}; and for
every k > 1, j, there exists a value vi such that vy — v; € T and v; — vk € Ti;.

Given a TCSP T, its associated constraint graph G = (V, E), and an ordering
d, directional path consistency can be achieved by algorithm DPC, shown in
Figure 3.9, which is the temporal counterpart of the algorithm given in [21].

DPC is similar to PC-1, but unlike PC-1 it is a single pass algorithm. Note
also that in Step 4, the set of edges F is increased dynamically by the relaxation

45

operation of Step 3. The network defined by the final set of edges is called the
induced graph.

If one of the constraints becomes empty (at Step 5) then the original network
must have been inconsistent. However, as in the case of nontemporal CSPs, we
are not guaranteed that the algorithm will always detect an inconsistency if one

exists. Next we show that such a guarantee can be assured for STPs.

Definition 3.18 Let T be a TCSP. A cycle 4p,...,ix = ig is called walid if and
only if
0 G :riu,ﬁ ® Tt ® Tl';,_l,l'k'

Lemma 3.19 A given STP T is consistent if and only if all the cycles in its

constraint graph are valid.

Proof If the network is consistent then all the cycles are valid, since if
there was an invalid cycle C, iy, ..., % = ig, then the path constraint
along C would yield

X — Xi, # 0,

reflecting inconsistency.

Conversely, assume that all the cycles are valid. We will show
that the network is consistent. According to Theorem 3.3 we need to
show only that there is no negative cycle in the corresponding distance
graph. Suppose there was such a negative cycle C consisting of nodes

10 - -+, 2k = 1o and edge weights ap1,a1,2,...,8k-14 = ax—1,0. Since C
is negative, we have
k
D ai,i; <0, (3.13)
=1

Moreover, from Equations (3.2) through (3.4) we obtain
- a.-j,,-j_l S a.-j_h,-j (3.14)

for j = 1,...,k. Thus, combining Equations (3.13) and (3.14) yields

k k
0¢ [} @iz Z @i;yi5)-
=1 j=1

46

At the same time, applying the composition along C gives

k k
Tin,fl @@ Tik-a.ik = [Z TR Z aii—l’ijl’
J=1

s=1

thus rendering C invalid—a contradiction. O

Theorem 3.20 Given an STP T, algorithm DPC halts at Step 5 if and only if

the network is inconsistent.

Proof The only if part is trivial; we will show the if part. Suppose
the network is inconsistent; then, according to Lemma 3.19, there
exists an nvalid cycle C. Let the nodes of C be the set {iy,...,#},
and order it along d, namely, :; will be processed after ¢, whenever
j < k. We next prove the following lemma.

Lemma 3.21 For all j,0 < j < k — 3, when node tx_; is about to be processed
(Step 1), there exists an invalid cycle C;, consisting of nodes {i1,...,ix_j}.

Proof By induction on j. The lemma holds for ; = 0 because the
cycle Cy = C was assumed to be invalid in the original network, and
DPC can only render counstraints tighter. Thus, Cy must remain in-
valid when node ¢; is processed.

Assume the lemma holds for j — 1,7 > 0. By the induction hy-
pothesis, when node i;_;4, was about to be processed, there was an
invalid cycle Cy_;;1 consisting of nodes {s1,...,%—j41}. Let s and r
be the neighbors of ¢4,y in Ci_jy1, and let P,, be the path from r
to s in Cy_;41. When node 7x_;y, is processed, the constraint T, is
tightened, and the newly created cycle is

Cr—j =(s,7)UP,,.

The constraint along Cy_; is tighter than the constraint along Cy_;4;,
and thus Ci_; is invalid. Between the time that ix_;4; is processed
until the time ix_; is processed, DPC further tightens the constraints
along Ci_;. Thus, the cycle remains invalid while ¢;_; is being pro-
cessed. O

47

According to Lemma 3.21, when node 73 is about to be processed,
there exists an invalid cycle Cj3, consisting of nodes 1y, i,, and 3. Let
T iy = {{a, 0]}, Tiy i, = {[c,d]}, and T;,; = {[e, f]}. At Step 3 the
constraint T ;, is updated such that

T i, = {[max{—f,a + ¢}, min{—e, b + d}]}.

Since Cj is invalid, 0 € [a+c+e,b+d+ f]. fa+c+e >0, then
a+c>—e, and T; ;, = 0. Otherwise, b+d+ f<0or b+d< ~f,
and thus T} ;, = 0. Hence, at Step 5 the algorithm must halt. O

It 1s well known that for general CSPs, directional path consistency can be
achieved more efficiently than full path consistency [21]; instead of O(n®) time,
DPC runs in O(nW*(d)?) time, where W*(d) is the maximum number of parents
that a node possesses in the induced graph. To assess the savings in the context of
temporal problems, recall that each relaxation step involves O(R?) arithmetic op-
erations, thus yielding a worst case bound of O(nW*(d)? R?) operations. Another
upper bound emerges from the fact that with every node processed the number
of intervals recorded may increase by a factor not greater than k, thus giving a
total of at most O(k") intervals and arithmetic operations in any relaxation step.
Hence, the upper bound is O(nW*(d)%k").

For STPs, each relaxation step involves a constant number of arithmetic op-
erations, and thus consistency for STPs can be determined in O(rnW*(d)?) time,
in contrast with the O(n®) time needed for full path consistency. W*(d) could
be substantially lower than n and can be found in time O(|V| + |E|) prior to the
actual processing [10, 63, 7].

Note that directional path consistency is weaker, generally speaking, than
tull path consistency and, hence, might lead to a higher number of dead ends
for backtrack. However, the use of directional path consistency yields more dra-
matic savings if it is embedded within backtracking as the consistency checking
routine Consistent-STP (Figure 3.5). Instead of checking consistency by the O(n?)
Floyd-Warshall algorithm, using DPC will reduce the search effort of backtrack
by a factor of roughly (n/W*(d)?). In the next section, we characterize a class
of problems that gain fuller benefit from the efficiency of directional path consis-
tency.

48

3.5 Network-Based Algorithms

So far we have presented techniques for processing networks of a general structure.
The topology of the constraint graph did not play any role in the choice of so-
lution technique. However, considering the toj.wlogical features of the constraint
network may guide us, as they do for nontemporal CSPs, in selecting efficient so-
lution methods that have lower worst-case complexity than naive backtracking.

We first consider the task of finding a single solution to TCSPs. The infinite
domains associated with temporal problems prevent us from searching exhaus-
tively through the space of possible scenarios. Instead, we must seek ways of
constructing a solution in a guided manner. If the network is decomposable
(such as in the case of STPs), a solution can be assembled incrementally, without
backtracking, under any ordering we choose. If the network is not decomposable,
the feasibility of achieving a backtrack-free solution relies on the topology of the
constraint graph. Freuder {26] and Dechter and Pearl [21] have identified suf-
ficient conditions for a network to yield a backtrack-free solution, invoking the
notion of higher-order consistency. To demonstrate, we will focus on a class of
networks that admit a particularly efficient method when applied to temporal
problems. This class is called series-parallel networks and is equivalent to the
regular width 2 networks of [21].

Definition 3.22 A network is said to be series-parallel with respect to a pair
of nodes ¢ and j if it can be reduced to the edge (i, ;) by repeated application
of the following reduction operation: select a node of degree 2 or less, remove it
from the network, and connect its neighbors (unless they are connected already).
If the network is series-parallel with respect to any pair of nodes, it is called a
series-parallel network.

Testing whether a network is series-parallel requires O(|V|) time and, as a
by-product, the testing algorithm produces an ordering d for which W*(d) = 2
corresponding to an admissible sequence of reduction operations {6, 73]. It can
be shown [21] that enforcing directional path consistency, in an ordering op-
posite to d, renders such networks backtrack-free and computes the minimal
constraint between the first two nodes in d. If the network is inconsistent, some
constraint will become empty; otherwise, a consistent solution can be constructed
in a backtrack-free fashion. Since W*(d) = 2, DPC runs in O(nK) time, where K

49

[20,70]

[20,30]
[40,50]

Figure 3.10: A directional path-consistent network of Example 3.1.

is the maximum number of intervals labeling any edge in the induced graph. The
solution-construction phase requires an additional O(nK) arithmetic operations.

Montanari [50] showed that full path consistency computes the minimal con-
straints on every pair of nodes, relative to which the network is series-parallel. In
this respect, running full path consistency can be viewed as running DPC along
several orderings in parallel, thereby giving any pair of nodes a chance of being
the first.

DNlustration Consider the network of Example 3.1. The network is obviously
series-parallel, since it admits any sequence of reduction operations. Applying
DPC in the ordering d = (0,1, 2,3, 4) results in the network shown in Figure 3.5.
Since no constraint becomes empty, the network is consistent, and a solution
can be constructed backtrack-free along d. Moreover, since the network is series-
parallel with respect to any pair of nodes, full path consistency computes the full

minimal network (see Section 3.4). O

A generalization of directional path consistency, called adaptive consistency
[21, 22], can render any network backtrack-free by recording higher-order con-
straints on the neighbors of the nodes processed. This method, although it ex-
hibits a low worst-case complexity in general CSPs, turns out to be impractical in
temporal problems, primarily due to difficulties in storing and processing higher-

50

order interval constraints.

Another approach, which exploits the structure of the constraint graph, in-
volves decomposition into nonseparable components. We shall show that this can

facilitate finding both a consistent solution and the minimal network.

Definition 3.23 (Even {24]). A connected graph G = (V, E) is said to have a
separation verter v (sometimes also called an articulation point) if there exist
vertices @ and b, a # v and b # v, such that all the paths connecting a and b pass
through v. In this case we also say that v separates @ from 6. A graph that has
a separation vertex is called separable, and one that has none is called nonsepa-
rable. Let V' C V. The induced subgraph G’ = (V’, E') is called a nonseparable
component if G’ is nonseparable and if for every larger V", V' C V" C V, the
induced subgraph G” = (V" E") is separable.

Definition 3.24 (Even [24]). Let Cy,...,C,, be the nonseparable components
of the connected graph G = (V, E), and let sy,...,s, be its separating vertices.
The superstructure of G, G = (V, E), is defined as follows:

V: {51,...,SP}U{C].7"'!C"‘}’

E = {(si, C;)|s; is a vertex of C; in G}.

It is well known that the superstructure is a tree. The nonseparable compo-
nents and their superstructure can be found in time O(|E|) (see [24]).

Definition 3.25 Let G = (V, E) be a constraint graph of a TCSP T, and let
C = (V', E') be a nonseparable component of G. The minimal network of com-
ponent C, Mc, is the minimal network of the TCSP defined by C.

Theorem 3.26 Let M be the minimal network of a consistent TCSP T, and
let Mc be the minimal network of a nonseparable component C = (V' E’) in the
constraint graph G = (V, E) of T. Then, for alli,j € V', My; = (Mc);;.
Proof Clearly, M;; C (M¢);;. To prove (Mcg)i; C M;;, we show that
every value in (Mg);; also appears in M;;. Let v € (M¢);;. There
exists a labeling L, of C, having minimal network My, , in which
v € (M, }i;. Consider the TCSP defined by G — C = (V,E — E").

51

Since T is consistent, G — C is also consistent, and thus there exists
a consistent labeling Ly of G — C. Consider the labeling I whose
restrictions to C and G — C are L; and L,, respectively. Let T} be
the STP corresponding to L. Ty is consistent; otherwise, according to
Lemma 3.19 it constitutes an invalid cycle. This cycle must be entirely
contained in either C or G — C, thus contradicting the consistency of
either L, or L;. Let My be the minimal network of T;. The distance
graph of T}, shows that (M);; = (M,),;, because the shortest paths
lengths within C are not affected by the edges of G — C. Hence,
v E (ML).'j, thus v € M,;. O

Theorem 3.26 suggests an efficient algorithm for determining consistency and
computing the minimal network of a general network: We first find the nonsep-
arable components Cy,...,Cy,, and then solve each one of them independently.
If all the components are found to be consistent, then the entire network is con-
sistent and the minimal networks of the individual components coincide with the
overall minimal network. If we use backtracking to solve each of the compo-
nents, then the worst time complexity of this method is O(nr®k°), where r and ¢
denote the largest number of nodes and the largest number of edges in any com-
ponent, respectively, and k, as before, denotes the maximum number of intervals
labeling any edge in the graph. When the topology of any component admits a
special, more efficient algorithm, that algorithm can be applied directly to that
component without affecting the solution of the rest of the problem.

We still must find the minimal constraints on pairs that reside in two different
components. This will be determined by Theorem 3.27, after demonstrating how
a solution can be constructed to a given TCSP T. We start by finding a solu-
tion to the nonseparable component Cj that contains node 0. All the separation
vertices that are connected to Cj in the superstructure G are instantiated. Next,
choosing an instantiated separation vertex 7, we find a solution to any nonsepa-
rable component C; that is connected to i in G and whose vertices have not been
instantiated yet. We continue in this fashion until all the variables are instanti-
ated. Since G is a tree, we are guaranteed that once a partial solution of some

component has been established, it does not need to be revised.

Theorem 3.27 Let G = (V, E) be the constraint graph of a given TCSP. Let i
and j be two nodes that reside in different nonseparable components of G, namely

52

t € Ci and j € C;. Let P be the unique path

P:C,'=C¢l,%1,052,32,...,ik,0' ICJ',

TRyl

that connects C; and C; in the superstructure of G. Then,

My =M, @M, ;, ® - QM,_ ; ®M, ;. (3.15)

Proof It suffices to show that
M, @M, (, ®@---QM,_,;, @M, ; C M;.

Let
vEM; M, ,, @ - @M, _ ; M, ;

By definition of the composition operation, there exists a sequence of
values vg, ..., v such that vo € M;;,, v; € M; forj=1,...,k-1,

Vg € Mik,ja and

FESE S

By the minimality of the individual minimal networks, we can con-

struct a solution X = (&1,...,r,) that satisfies
Ty, — T = vy,

T — Ty

J=vj’

forj=1,...,k—1, and

Tj — T, = Yk.
Hence,

Ly —Ii =0,

and thus v € M;;. O

The cost of computing a minimal constraint M;;, using the above method, is
O(k°?), where c is the size of the largest component that resides along the path
connecting C; and Cj, and d is the length of that path. An alternative upper

bound is given by O(k®). Thus, a full recovery of the minimal network costs
6 [1’?,2 kmjn(cn,e)].

53

Nlustration Consider the network of Example 3.13 (Figure 3.7). There are two
nonseparable components: C; = {0,1} and C; = {1,2,3}. Component C, is a
tree and thus already minimal. To compute the minimal network of C,, we can
either apply path consistency (note that C; is series-parallel with respect to any
pair of nodes) or solve the two possible labelings separately. If M is the minimal
network, then, by Theorem 3.26,

Moy = Zoy, M3 = Z13, M3 = Z13, Mys = Zy3, (3.16)

where Z;; are constraints taken from the minimal networks of the components.
The rest of the network can be computed using Equation (3.15):

Mo, = My ® Mo,
Moz = My ® M. (3.17)

Recall that in this example path consistency does compute the minimal net-
work (see Section 3.4). This phenomenon can be explained by Theorems 3.26
and 3.27. We have already noted that path consistency computes the minimal
networks of both components. We now show that, in general, this should suf-
fice for computing the minimal constraints on edges that go across components.
When path consistency terminates, the computed constraints T}; satisfy

To2 € Tor @ Th,
and

Tos C Ton ® Ths.
Together with Equations (3.16) and (3.17), we get

T02 g MDZ&

Toz € Mos.

Since M is minimal, Tp; = My and Tos = Mps; namely, path consistency com-
putes the full minimal network. O

Finally, we note that another network-based approach for solving general
CSPs, the cycle-cutset method [18], cannot be employed beneficially in temporal
problems. The reason is that the backtracking used in the solution of TCSPs
instantiates arcs, rather than variables, and such instantiations do not decompose
the original network.

54

3.6 Relations to Other Formalisms

In this section we relate the TCSP model to two other models of temporal
reasoning—Allen’s IA and Vilain and Kautz’s PA. We show how the constraints
in these representation schemes can be encoded within the TCSP model. To fa-
cilitate such encoding, we allow the interval representation of our constraints to
include open and semi-open intervals, with the obvious effect on the definitions
of the union and intersection operations. Similarly, an interval that results from
a composition operation may be open on one side or on both sides, depending on

the operands. For example,

It is easy to verify that all our theorems still hold with this extended provision.

Any constraint network in Vilain and Kautz’s PA is a special case of a TCSP
lacking metric information. Recall (see Chapter 2), that it can be viewed as a
CSP involving a set of variables {Xj, ..., X,.} and binary constraints of the form
X: R X;, where

Re{<,<,>,2,=,4). (3.18)

Translating a PA network into a TCSP is straightforward. Constraints of
the form X; < X; and X; < X; are expressed by the interval representations
Tij = {(=00,0)} and Ti; = {(—c0,0]}, respectively. The constraint X; = X;
translates into Tj; = {[0]}. The only relation that needs to be represented by
a disjunction is X; # X, translated into Tj; = {(—o0,0), (0, 0)}.

Vilain and Kautz have addressed the tasks of determining consistency and
computing the minimal network for problems expressed in the PA. They suggested

the use of path consistency for computing the minimal network, which turned out
to be insufficient [66].

VanBeek [66] addressed a subset of the PA, called convex point algebra (CPA),
which excludes #. He showed that CPA networks may be solved in time O(n3)
by applying path consistency. This follows immediately from the TCSP repre-
sentation, since every CPA network is equivalent to an STP with edges labeled
by intervals from the set

{(—O0,0),(—O0,0],[O],[0,00),(0,00)}. (3'19)

55

Thus, when the constraints are taken from Equation (3.19), path consistency for
TCSPs coincides with path consistency for CPA networks. Moreover, algorithms
devised for solving STPs’ tasks reduce to equivalent, often simpler algorithms
for solving the same tasks in CPA networks. For example, directional path con-
sistency can determine consistency in CPA networks in O(nW*(d)?) operations,
which amounts to linear time when W*(d) is bounded.

The full PA, including the # relation, translates into TCSPs with disjunc-
tions, for which our general methods can be applied and the special structure
of the constraints exploited. In [39] and [66], it is shown that enforcing 3- and
4-consistency suffices for deciding consistency and for computing the minimal
network, respectively, in PA networks (see Chapter 2). These results take special
advantage of the non-metric nature of the relations in Equation (3.18).

In contrast, IA networks cannot be translated into binary TCSPs. Recall that
an IA network can be viewed as a CSP involving a set of variables X,,..., X,
whose domains are pairs of time points, representing the beginning and ending
times of events intervals. The constraints are IA relations. Unfortunately, the
translation of an IA network into a TCSP introduces nonbinary constraints (see

Example 2.4) that cannot be encoded as a binary TCSP.

Problems involving higher-order constraints can be expressed as disjunctions
of STPs, and solutions can be assembled by taking the union of the individual
solutions. Although the number of such subproblems may be large, advantage
can be taken of the simple procedures available for solving each STP. It seems
likely, however, that unless metric constraints are specified, the representation

suggested in [2] can be handled more conveniently.

56

CHAPTER 4

General Networks: Combining Qualitative and
Quantitative Constraints

In the previous chapters we discussed several constraint-based formalisms for
temporal reasoning: Allen’s interval algebra, Vilain and Kautz’s point algebra,
and metric networks (the TCSP model). In these formalisms, temporal reasoning
tasks are formulated as constraint satisfaction problems, where the variables are
temporal objects such as points and intervals, and temporal statements are viewed
as constraints on the location of these objects along the time line. Unfortunately,
none of these formalisms can conveniently handle all forms of temporal knowledge.
The qualitative approaches, Allen’s interval algebra and Vilain and Kautz’s point
algebra, have difficulties in representing and reasoning about metric, numerical
information, while metric networks exhibit limited expressiveness when it comes
to qualitative information.

In this chapter we offer a general, constraint-based computational model for
temporal reasoning that is capable of handling both qualitative and quantitative
information. In this model, variables represent both points and intervals (as
opposed to existing formalisms, where one has to commit to a single type of
objects), and constraints may be either metric (between points) or qualitative,

disjunctive relations (between temporal objects).

The main contribution of this model lies in providing a formal unifying frame-
work for temporal reasoning, thereby generalizing the interval algebra, point al-
gebra, and metric networks formalisms. This model facilitates the representation
and processing of both all types of qualitative constraints considered in the lit-
erature to date and the metric constraints of Chapter 3.

This chapter is organized as follows. Section 4.1 describes the representation
language and the constraint types under consideration. The definitions of the new
model are given in Section 4.2. Section 4.3 reviews and extends the hierarchy

of qualitative networks. Section 4.4 discusses new tractable classes of problems,

37

called augmented qualitative networks—qualitative networks augmented by quan-
titative domain constraints. Section 4.5 presents two methods for solving general
networks: a decomposition scheme and path consistency, and identifies a class of
networks for which path consistency is exact. Section 4.6 relates our model to

another general approach to temporal reasoning by Kautz and Ladkin [35].

4.1 The Representation Language

In this section we formally define the constraint types considered in our model.

We shall demonstrate the new concepts using Example 1.1 (see Chapter 1).

4.1.1 Qualitative Constraints

A qualitative constraint between two objects O; and O;, each of which may be a

point or an interval, is a disjunction of the form
(O:' ™ Oj)V"'V(O.' L Oj), (4.1)

where each of the r;’s is a basic relation that may exist between the two objects.

There are three types of basic relations.

o Basic Interval-Interval (II} relations that can hold between a pair of inter-
vals [2]—before, meets, starts, during, finishes, overlaps, their inverses, and

the equality relation, a total of 13 relations, denoted by the set
{b,m,s,d, f,o0,bi,mi, si,di, fi,o0i,=}.

¢ Basic Point-Point (PP) relations that can hold between a pair of points
[72], denoted by the set {<,=,>}.

o Basic Point-Interval (PI) relations that can hold between a point and an
interval, and basic Interval-Point (IP) relations that can hold between an

interval and a point. These relations are shown in Figure 4.1 and in Ta-
ble 4.1 (see also [71, 39]).

A subset of basic relations (of the same type) corresponds to an ambiguous,
disjunctive relationship between objects. For example, Equation (4.1) may also
be written as O; {ry,...,r¢} O,; alternatively, we say that the constraint between
O; and O; is the relation set {ry,...,r;}. Consider, for instance, Example 1.1.

38

Po
P before I —

I
P starts I]
Po I
P during 1 —
1 P
P finishes I]
Poe

P after I _

Figure 4.1: The basic relations between a point P and an interval I.

One qualitative constraint given in this example reflects the fact that John and
Fred met at a traffic light. It is expressed by an Il relation specifying that intervals
J and F are not disjoint:

J {s,si,d,di, f, fi,0,0i,=} F.

To facilitate the processing of qualitative constraints, we define a qualitative
algebra(QA), whose elements are all legal constraints (all subsets of basic relations
of the same type)—2'? II relations, 2° PP relations, 2% PI relations, and 2° IP

relations. Two binary operations are defined on these elements: intersection and

Relation Symbol Inverse Relations
on Endpoints

P before I b bi P<I

P starts I 8 §1 P=1I"

P during I d di I"T<P<I*

P finishes I f fi P=Tt

P after I a ai P>t

Table 4.1: The basic relations between a point P and an interval I = [I~, 1]

59

PP PI IP I
PP\ [Tes] [Tn) (0] (0]
P[0 0] [[T
IP | (B [T (0] (9]
| [0 (0] [T [Tra)

Table 4.2: A full transitivity table.

composition. The intersection of two qualitative constraints, R and R”, denoted
by R’ @ R”, is the set-theoretic intersection R’ N R”. The composition of two
constraints, R’ between objects O; and O;, and R” between objects O, and O,
1s a new relation between objects O; and Ok, induced by R’ and R”. Formally,
the composition of R and R", denoted by R’ ® R”, is the composition of the

constituent basic relations, namely,
Rl ® RH — {?"l ® rﬂlrl e R',T‘” e R"}-

Composition of two basic relations, r' and r”, is defined by a transitivity table,
shown in Table 4.2. Six transitivity tables, Ty,..., Ty, Tpa, Tra, are required;
each defines the composition of basic relations of a certain type. For example,
composition of a basic PP relation and a basic PI relation is defined as transitivity
table T1. Two important subsets of QA are Allen’s interval algebra (IA), the
restriction of QA to II relations, and Vilain and Kautz’s point algebra (PA),
its restriction to PP relations. The corresponding transitivity tables are given
in [2] and [72] (see also Chapter 2), and appear in Table 4.2 as T4 and Tpy,
respectively. The rest of the transitivity tables are shown in Tables 4.3-4.6.1
Illegal combinations in Table 4.2 are denoted by 0.

4.1.2 Quantitative Constraints

Quantitative constraints refer to absolute location or the distance between points.
We consider two types of quantitative constraints (those described in Chapter 3):

'In these tables, ? refers to subsets that contain all basic relations: for example, {<,=,>}
for PP relations.

60

T | b s d f
<|b| b |bsd|bsd
=|b s d f
>|?|dfa|dfa a

Ty lai | f {di|si|b
bi<|<li<ix<|?
s [<< | < |=]>
d |[<|<|?7|>]>
fl<i=|>|>]|>
a | ?T]|>|I>|>|>

Table 4.4: Composition of PI and IP relations.

T b s d f a
ai b b bmo [bmo ?
ds ds
fi b m 05 fi |amiol
d = si di
di|bmo| odi ooi= | oidi ! amioi
di i fi sdf si s1 di
sidifi
si |bmo s sl ot d mi a
di fi = f
bi ? amioi|amiot a a
df df

Table 4.5: Composition of IP and PI relations.

61

Tylbla| d |di| o |o [m|mi[fs |si|f|f|=
b|b|?|bs|b{ b ibs|b|bs|b|b|bs|b/ b
d d d
s | b d b d!b f s s d | b |s
d|bla|d |7 |bs|df|b|a|d|df|d|bs]|d

d ¢ a a
a| d |a]| d $ a | d f f
a|? dfia|df| a {df| a {df{ a | a a | a
a

Table 4.6: Composition of PI and II relations.

® A unary constraint, on point P, restricts the location of P, to a given set
of intervals:

(PPeh)v- V(P elL).

e A binary constraint, between points P; and P;, constrains the permissible
values for the distance P; — P::

(P =P € L)V -V (P - P I).

In both cases the constraint is represented by a set of intervals {Iy,..., I;}: each
interval may be open or closed in either side.? For instance, one binary constraint
given in Example 1.1 specifies the duration of interval J (the event “John was
going to work”):

P, — P, € {(0,20), (60, 0)}.

The fact that John left home between 7:05-7:10 a.m. is translated into a unary
constraint on P;: P, € {(5,10)}, or 5 < P; < 10 (note that all times are relative
to Pp, namely, 7:00 a.m.). Sometimes it is easier to treat a unary constraint
on F; as a binary constraint between P, and P;, which has the same interval
representation. For example, the above unary constraint is equivalent to the
binary constraint, P, — Py € {(5,10)}.

2The set {I,...,I+} represents the set of real numbers I; U --- U I;. Throughout this
chapter we shall use the convention whereby a real number v is in {I,. .., It} if and only if
velhUu+ Ul

62

The intersection and composition operations for quantitative constraints as-
sume the following form. Let C’ and C"” be quantitative constraints, represented

by interval sets /" and I”, respectively. Then, their intersection is defined as
C'eC'={z|lzel' zell.
The composition of C’ and C” is defined as
C'RC"={z]3z€l'yel” 2+y==z}
IMustration Let C; = {[1,4),(6,8)} and C, = {(0,1],(3,5),(6,7)}. Then,
C1 & Cr = {[1},(3,4),(6,7]}.
Let C3 = {{1,2],(6,8)} and C4 = {[0,3),(12,15]}. Then,
Cs ® Cy = {[1,5),(6,11),(13,17], (18,23)}.
4.1.3 Relationships Between Qualitative and Quantitative
Constraints

The existence of a constraint of one type sometimes implies the existence of an
implicit constraint of the other type. This can only occur when the constraint
involves two points. Consider a pair of points P; and P;. If a quantitative
constraint, C, between F; and P; is given (by an interval set {I;,...,I;}), then
the implied qualitative constraint, QUAL(C), is defined as follows (see also [35]).

e If0e{N,..., Ik}, then = € QUAL(C).
o If there exists a value v > 0 such that v € {I1,..., Ii}, then < € QUAL(C).

e If there exists a value v < 0 such that v € {I1,..., I}, then > € QUAL(C).

Similarly, if a qualitative constraint, C, between P; and P; is given (by a relation
set R), then the implied quantitative constraint, QUAN(C), is defined as follows.

o If < € R, then (0,00) € QUAN(C).
o If = € R, then [0] € QUAN(C).

o If > € R, then (—00,0) € QUAN(C).

63

QUAN(C)
(0, o0)
[0, 00)

[0]
(—20,0)
(=0,0]

(—o0,0), (0, o0)

(_ooa OO)

INTAG

SNV

Table 4.7: The QUAN translation.

An alternative definition of QUAN is given in Table 4.7.

The intersection and composition operations can be extended to cases where
the operands are constraints of different types. If C’ is a quantitative constraint
and C” is qualitative, then intersection is defined as quantitative intersection:

C'a C"=C'o QUAN(C). (4.2)
Composition, on the other hand, depends on the type of C”.

e If C"is a PP relation, then composition (and consequently the resulting

constraint) is quantitative:
C'®C"=C"®@ QUAN(C™).
o If C” i1s a PI relation, then composition is qualitative:
C'®C"=QUAL{(C)» C".

INustration Let C; = {(0,3)} be a quantitative constraint, C; = {<,=} be a
PP relation, and C3 = {b,d} be a PI relation. Then,

C1®Cz = {(0,3)} @ {[0,00)} = {(0,00)},

and
Ci®@Cs = {<}® {b,d} = {bs,d}.

64

4.2 General Temporal Constraint Networks

We now present a network-based model that facilitates the processing of all con-
straints described in the previous section. The definitions of the new model
follow closely those developed for discrete constraint networks [50] and for metric
networks (Chapter 3).

A general temporal constraint network involves a set of variables {X;,..., X, },
each representing a temporal object {a point or an interval), and a set of unary
and binary constraints. When a variable represents a time point, its domain is
the set of real numbers ®. When a variable represents a temporal interval, its
domain is the set of ordered pairs of real numbers, namely, {(a, b)|a,b € R,a < b}.
Constraints may be quantitative or qualitative, Each qualitative constraint is
represented by a relation set R. Each quantitative constraint is represented by
an interval set I. Constraints between variables representing points are always
maintained in their quantitative form. We also assume that unary quantitative
constraints are represented by equivalent binary constraints, as shown in the
previous section. A set of internal constraints relates each interval I = [I~, [*]
to its endpoints I~ {starts} I and It {finishes} I.

A constraint network is associated with a directed constraint graph, where
nodes represent variables and an arc ¢ — j indicates that a constraint C;;, between
variables X; and X}, is specified. The arc is labeled by an interval set (when the
constraint is quantitative) or by a QA element (when it is qualitative). We
assume that whenever a constraint C; is given, the inverse constraint Cj; 1s also
provided; however, in the constraint graph only one of these will be shown. The
constraint graph of Example 1.1 is shown in Figure 4.2.

A tuple X = (z1,...,2z,) is called a solution if the assignment
{X1 = z1,..., X = z,.} satisfies all the constraints (note that the value assigned
to a variable that represents an interval is a pair of real numbers). It corresponds
to a feastble scenario—an arrangement of the temporal objects along the time line
in a way that is consistent with the given information. The network is consistent
if at least one solution exists. A value v is a feasible value for variable X; if there
exists a solution in which X; = v. The set of all feasible values of a variable is

called its minimal domain.

We define a partial order C among binary constraints of the same type. A
constraint C’ is tighter than constraint C”, denoted by C’' C C”, if every pair

65

(s} 7 {(s0,55))

Figure 4.2: The constraint graph of Example 1.1.

of values allowed by C’ is also allowed by C”. If C’ and C” are qualitative,
represented by relation sets R’ and R”, respectively, then C’ C C” if and only
if ¥ C R". If C'" and C" are quantitative, represented by interval sets I’ and
I", respectively, then C' C C” if and only if for every value v € I', we have
also v € I”. This partial order can be extended to networks in the usual way. A
network N’ is tighter than network N, if the partial order C is satisfied for all the
corresponding constraints. Two networks are equivalent if they possess the same
solution set. A network may have many equivalent representations; in particular,
there is a unique equivalent network M, which is minimal with respect to C,
called the minimal network (the minimal network is unique because equivalent
networks are closed under intersection). The arc constraints specified by M are
called the minimal constraints.

The minimal network is an effective, more explicit encoding of the given knowl-
edge. Consider, for instance, the minimal network of Example 1.1, whose con-
straints are shown in Table 4.8. The minimal constraint between P; and Py
is {(60,00)}, the minimal constraint between P, and P, is {(65,00)}, and the
minimal constraint between P, and P; is {(30,40)}. From this minimal network
representation, we can infer that today John was working in the main office; he
arrived at work after 8:05 a.m., while Fred arrived at work between 7:30-7:40 a.m.
A feasible scenario, which can be easily constructed from the minimal network

representation, is shown in Figure 4.3.

Given a network N, the first interesting task is to determine its consistency.
If the network is consistent, we are interested in other reasoning tasks, such
as computing a solution to N, the minimal domain of a given variable X;, the

66

P, P P, P P, J | F
Py 0] (5, 10) 65,00) | (30,40) (50,55) | b b
P, | (=10, -5) (0] (60,00) | (20,35) (40,50) | s | b
P; | (—o00,—63) | {—o0, —60) fo! (—00,=25) | (—o0,—10) | f | a
Py | (—40,—30) | (~35,—20) | (25, 00) [0] (15,20) 1 d | s
Py | (=55,—50) | (—50,—40) | (10,00) | (=20, —15) (0] d|f
J bi st fi di di = | di
F bi bi al si f d | =
Table 4.8: The minimal network of Example 1.1.
7 , n
P, F P,
P, . °
*
7:30 7:40 7:50 7:55 8:05

7:00 7:05 7:10

l
1 | I T I 1 1

—

Figure 4.3: A feasible scenario.

minimal constraint between a given pair of variables X; and Xj;, and the full
minimal network. The rest of this chapter is concerned with solving these tasks.

Solving any of the above tasks for a general network is difficult. Even the
simplest task, deciding consistency, is NP-hard. This follows trivially from the
fact that deciding consistency for either metric networks or IA networks is NP-
hard (Chapter 3, Vilain and Kautz [72]). Therefore, it is unlikely that there exists
a general polynomial-time algorithm for deciding the consistency of a network,
and consequently for solving the other tasks. Hence, we settle for the following
alternatives. In Sections 4.3 and 4.4 we pursue “islands of tractability” —special
classes of networks that admit polynomial solution. Then, in Section 4.5, we
describe brute-force, exponential techniques that can handle any general network,

and discuss the use of path consistency as an approximation scheme.

67

4.3 The Hierarchy of Qualitative Networks

We wish to find tractable classes of general networks, namely networks containing
both qualitative and quantitative constraints. We shall form such networks by
adding metric constraints to certain classes of qualitative networks. Of course,
in our quest for tractability it would make sense to concentrate only on tractable
qualitative networks. As the first step in this direction, we discuss in this section
the computational complexity of solving qualitative networks. We briefly describe
the qualitative networks hierarchy and then draw the line between tractable and
intractable networks. In Section 4.4 we show how the tractable classes— CPA net-
works and PA networks—can be augmented by various quantitative constraints

to obtain new tractable classes.

Consider a qualitative network G. If all constraints are II relations (namely
TA elements) or PP relations (PA elements), then the network is called an 74
network or a PA network, respectively [67]. If all constraints are PI and IP
relations, then the network is called an Interval-Point Algebra (IPA) network.®
A special case of a PA network, where the relations are convex (taken only from
{<,£,=,2,>}, L.e, excluding #), is called a conver PA (CPA) network.

It can easily be shown that any qualitative network can be represented by an
IA network. On the other hand, some qualitative networks cannot be represented
by a PA network, such as (see [72]) a network consisting of two intervals I and J
and a single constraint between them I {before, after} J. Formally, the following

relationship can be established among qualitative networks.

Proposition 4.1 Let QN be the set of all qualitative networks. Let net(CPA),
net(PA), net(IPA), and net(IA) denote the set of qualitative networks that can
be represented by CPA networks, PA networks, IPA networks, and IA networks,
respectively. Then,

net(CPA) C net(PA) C net(IPA) C net(IA) = QN.

Proof Trivial. O

3We use this name to comply with the names IA and PA, although technically these relations,
together with the intersection and composition operations, do not constitute an algebra, because
they are not closed under composition.

68

Remark 4.2 Clearly, any CPA network is in net(CPA). On the other hand,
net(C PA) contains some qualitative networks that are not CPA networks: for
example, the 1A network I {starts, during, finishes, equal} J. Therefore, the
CPA networks are strictly contained in net(CPA). Similarly, the PA, IPA, and
IA networks are contained in net(PA), net(IPA), and net(IA), respectively. O

By moving up the qualitative networks hierarchy from CPA networks towards
TA networks we gain expressiveness, but at the same time lose tractability. For
example, deciding the consistency of a PA network can be done in time O(n?) 68,
48], but it becomes NP-complete for IA networks {72}, or even for IPA networks,
as stated in the following theorem.

Theorem 4.3 Deciding the consistency of an IPA network is NP-hard.

Proof Reduction from the betweenness problem, which is defined as
follows [27].

Instance: Finite set A, collection C of ordered triplets (a, b, ¢) of distinct
elements from A.

Question: s there a one-to-one function f : 4 — {1,2,...,|A|} such
that for each (a,b,¢) € C, we have either f(a) < f(b) < f(c) or
£(e) < () < fla) ?

Consider an instance of betweenness. We construct an IPA net-
work in the following way. Each element a € A is associated with a
unique point F,. For each triplet (a,b,c) € C, we create an interval
labe, and impose the constraints

P, {starts, finishes} Ipc
P, {starts, finishes} I
Py {during} L.

In addition, we force all points to be distinct. For each pair of elements
(a,b) € A, we create an interval I,;, and impose the constraints

Py {starts, during, finishes} I

P, {before, after} L,

forcing P, # P,. Clearly, this network is consistent if and only if the
answer to the given betweenness problem is YES. O

69

Other reasoning tasks are usually harder than deciding consistency. Thus, it
is unlikely that any task in IPA or IA networks can be solved in polynomial time.
This suggests that the line between tractable and intractable qualitative networks
can be drawn somewhere between PA and IPA networks. Consequently, we shall

focus our search for new tractable classes on extending CPA and PA networks.

4.4 Augmented Qualitative Networks

In this section we consider the simplest type of network having both qualitative
and quantitative constraints, an augmented qualitative network. It is a qualitative
network—a CPA network or a PA network-—augmented by unary constraints on

its domains.

We shall consider CPA and PA networks over three domain classes, each of
importance in temporal reasoning applications:

1. Discrete domains, where each variable may assume only a finite number of
values. For instance, when we settle for crude timing of events, such as the

day or the year in which they occurred.

2. Single-interval domains, where we have only an upper and/or a lower bound
on the timing of events. We shall also consider almost-single-interval do-
masns, where each domain consists of a single interval, from which a finite

set of values, called holes, may be excluded.

3. Multiple-intervals domains. This case subsumes the two previous cases.*

Illustration A CPA network over multiple-intervals domains is depicted in Fig-
ure 4.4, where each variable is labeled by its domain intervals. Note that in this
example, as well as throughout the rest of this section, we express the domain

constraints as unary constraints. O
Let us consider in detail the representation of the domains.

When the domains are discrete, a domain D; of a variable X; consists of a set
of up to k values {vi,..., v}, where v; < -+ < v. It is represented as an array

4Note that a discrete domain {vi,..., v} is essentially a multiple-intervals domain
{[’Ul, ’U1], caey [Uk, TJ]:]}.

70

(0,2)

Figure 4.4: A CPA network over multiple-intervals domains.

of size k sorted in an ascending order. We also maintain two pointers, Inf and
Sup, to inf(D;) = v; and sup(D;) = v, respectively.

When the domains are continuous, namely they consist of multiple intervals
(or as a special case consist of a single interval or an almost-single interval), then
a domain D; is given by an interval set I = {Iy,...,I;}, where I; = {a;, b}
The symbols { and } reflect the fact that each interval may be open or closed
in either side. The domain D; will be represented by the points ay, b, ..., ak, b,
which are called the extreme points of D;. These extreme points are maintained
in an array of size 2k. In an accompanied array we maintain an indicator as
to whether each extreme point is in the domain (i.e., whether the corresponding
interval is open or closed). An interval I; can be regarded as a set of real numbers,
and thus its extreme points can be referred to as ¢, = inf(J;) and b = sup([;).
Similarly, an interval set I = {I,..., I} can be regarded as a set of real numbers
consisting of the values in I; U---U I;. Thus, we have inf(D;) = inf([;) = a, and
sup(D;) = sup(Ji) = bx. As with discrete domains, we shall keep two pointers,
inf and Sup, to inf(D;) = vy and sup(D;) = v, respectively.

We shall use three parameters in analyzing the computational complexity
of algorithms: n—the number of nodes in the network, e—the number of arcs,
and k—the maximum domain size, that is, the number of values in a domain
(for discrete domains) or the number of intervals per domain (for continuous
domains).

In the rest of this section we show that for augmented CPA networks and for
some augmented PA networks, all interesting tasks can be solved in polynomial
time using local consistency algorithms such as arc consistency (AC) and path
consistency (PC).

71

Figure 4.5: An arc- and path-consistent form of the network in Figure 4.4.

4.4.1 Arc and Path Consistency

Let us review the definitions of arc and path consistency [43, 50].

Definition 4.4 Anarc: — j is arc consistent if and only if for any value z € I,
there is a value y € D; such that the pair (z,y) satisfies the constraint C;;. A

network G is arc consistent if all its arcs are consistent.

Definition 4.5 A path Pfromitoj,t9 =1 — 1 — -+ = i, = j, is path consis-
tent if the direct constraint C;; is tighter than the composition of the constraints
along P, namely

Cij CCiiy @ - @Ci_,im-

A network G is path consistent if all its paths are consistent.

Ilustration Figure 4.5 shows an equivalent, arc- and path-consistent form of
the network in Figure 4.4. O

Note that our definition of path consistency is slightly different than the orig-
inal definition [43], since it disregards domain constraints. The following example

illustrates the difference between the two definitions.

Example 4.6 Consider the network in Figure 4.6. The network is path consis-
tent according to Definition 4.5, since the underlying qualitative network is path
consistent. However, it is not path consistent according to the common defini-
tion (namely, 3-consistency), because the instantiation A = 1, B = 1 cannot be
extended to C. O

72

n (©)

#

1 (4) (B) [

Figure 4.6: An augmented PA network.

Algorithm AC-3

Q — {i — jli— j € E}
while Q # 0 do
select and delete any arc £k — m from Q
if REVISE((k,m)) then
@Q—QuU{i{tokli—keEi#m}

A i

end

Figure 4.7: AC-3—an arc consistency algorithm.

The most common arc consistency algorithm that converts a network into an
equivalent arc-consistent form is algorithm AC-3 [43], shown in Figure 4.7. AC-3
repeatedly applies the function REVISE((¢, 7)), which makes arc ¢ — j consistent,
until a fixed point, at which all arcs are consistent, is reached. The function RE-
VISE restricts the domain D; using quantitative operations on

constraints®:
D, —D;® DJ' & QUAN(C_,’.'). (4.3)
It returns true if the domain D; is changed.

In some cases we shall use a weaker version of arc consistency, called directional

are consistency [21].

INote that Equation (4.3) is the temporal equivalent of Mackworth’s REVISE, when the later
is expressed using intersection and composition of discrete constraints: D; — D; & D; ® Cj;.

73

Algorithm DAC

1. for : := n» downto 1 do

2. for each arc ; —i,j <1 do
3. X + REVISE((7,7))
4. end

Figure 4.8: DAC—a directional arc consistency algorithm.

Definition 4.7 (Dechter and Pearl [21]) Let G be a constraint network. Let d
be an ordering of the nodes, namely, i < j if and only if ¢ precedes j in d. We say
that G is directional arc consistent if all arcs directed along d are arc consistent.

Algorithm DAC [21], shown in Figure 4.8, converts a given network into an
equivalent directional-arc-consistent form. Being weaker than full arc consistency,
directional arc consistency can be enforced more efficiently, as we shall see later

in this section.

A network can be converted into an equivalent path-consistent form by ap-
plying any path consistency algorithm to the underlying qualitative network
[43, 72, 67]. Path consistency algorithms impose local consistency among triplets
of variables (7, k, j) by using a relaxation operation:

Cij — Ci; B Cir @ Cj. (4.4)
Relaxation operations are applied until a fixed point is reached, or until some

constraint becomes empty (which indicates an inconsistent network).

We shall use an efficient path consistency algorithm, PC-2 [43], shown in
Figure 4.9. The function REVISE((i, k, 7)) performs the relaxation operation of
Equation (4.4) and returns true if the constraint Cj; is changed. Algorithm PC-2
runs to completion in O(n?) time [45].

4.4.2 The Precedence Graph

Many of the algorithms presented in this section make use of an auxiliary data
structure, called a precedence graph (see also [48, 68]), which displays precedence

74

Algorithm PC-2

1 Q — {(i, k)l < j), (k #14,1)}
2. while @ # 0 do
select and delete any triplet (¢, %, j) from Q
if REVISE((7,k,7)) then
) — Q URELATED-PATHS((i, %, 7))

A

end

Figure 4.9: PC-2—a path consistency algorithm.

Figure 4.10: The precedence graph of the network in Figure 4.4.

relations between variables,

Definition 4.8 Let G = (V, E) be a PA network. The precedence graph of G
is a directed graph G, = (V, E,), which has the same node set as G and whose
edges are oriented in the following way.®

1. If Cjj1s < or < then i — j € E,.

2. If Cijis = then both i — j € E, and j — i € E,,.

Illustration The precedence graph of the network in Figure 4.4 is depicted in
Figure 4.10. O

®Note that # constraints are not reflected in the precedence graph.

75

The following theorem states a necessary and sufficient condition for the con-

sistency of a PA network in terms of its precedence graph.

Theorem 4.9 (Van Beek (68]) Let G be a given PA network, and let G, be its
precedence graph. Then, G s consistent if and only if for any pair of nodes 1,5,
that belong to the same strongly connected component’ in G,, {=} C Cj;.

According to Theorem 4.9 we can decide the consistency of a PA network
by finding the strongly connected components in its precedence graph and then
testing whether all constraints satisfy the condition of Theorem 4.9 [68]. The
complexity of this method is O(e).

When solving augmented qualitative networks, we shall distinguish between
networks having acyclic precedence graphs, called acyclic networks, and cyelic
networks, which contain directed cycles; the former can be solved more efficiently
than the latter. Specifically, in the next sections we shall show that for some
tractable classes, acyclic networks can be solved using arc consistency, while

cyclic networks can be solved using both arc and path consistency.

It turns out that any cyclic network G can be converted, in a quadratic time,
into an equivalent acyclic representation, called a reduced network. The conver-
sion scheme is based on the next lemma, which states an important property of

the strongly connected components in the precedence graph.

Lemma 4.10 Let G = (V, E) be a nonempty path-consistent PA network. Let
G, = (V, E,) be the precedence graph of G. Nodes i and j belong to the same
strongly connected component in G, if and only if Ci; is =.

Proof See Appendix A. O

It follows that, in any solution X = (&1,...,z,) to G, if nodes i and j belong
to the same component in G,, then z; = r;. This suggests that all nodes that
belong to a common component C; can be collapsed into a single representative
node. The domain of this new node will be the intersection of all domains in C;.

This idea is expressed more formally in the following definition.

"Nodes i and j belong to the same strongly connected component if there exist directed paths
from 7 to j and from j to 7.

76

Definition 4.11 Let G = (V, E) be an augmented PA network, having a cons:s-
tent underlying qualitative network. Let G, = (V, E,)) be the precedence graph of

G, and let Cy,...,C,, be the strongly connected components of Gp. The reduced
network of G, G" = (V7,E"), is defined as follows.

e The nodes are the strongly connected components of G,, namely,
V' = {Cy,...,Cn}. The domain of node C; in G", DI, is the intersec-

tion of all domains of nodes in component C;, namely,

D; = @ D;. (4.5)
JEC;
® An edge C; — C; € E” if and only if there exists an edge i — j € E, such
that : € C; and j € C;. The constraint between nodes C; and C; in G",
C7;, is the intersection of all constraints between nodes in C; and nodes in
C;, namely,

C:'j = @ Ch. (4.6)

kGC".leCJ»

Note that the intersection operations in Equations (4.5) and (4.6) may result
in an empty domain or an empty constraint. This may occur only if the input
network G is inconsistent.

Definition 4.11 requires that the underlying qualitative network is consistent.
Thus, before constructing the reduced network, we first need to verify that G
is consistent. This can be done in O(e) time by testing the precedence graph
according to the condition of Theorem 4.9. The construction of G itself is
straightforward and can be accomplished in O(n?k) time. It involves O(n) binary
domain intersections (Equation (4.5)), because each node belongs to exactly one
component, and O(e) constraint intersections (Equation (4.6)), because each arc
in G contributes to exactly one cross-component arc in G*. The cost of a domain
intersection is O(nk). A constraint intersection takes a constant time. Hence,
the total complexity is O(n?k).

The reduced network is an equivalent representation of the input network in
the sense that there exists a one-to-one correspondence between the solution sets:
any solution X" = («],...,z".) to G" corresponds to a solution X = (Z1,.+,Zn)
to G, in which all nodes that belong to a component C; are assigned the value
r}, and vice versa. It also follows that the reduced network is consistent if and
only if the input network is consistent.

77

(2,5]

(0,2)
[3,3]

Figure 4.11: The reduced network of the network in Figure 4.4.

The main importance of the reduced network is that it is an acyclic represen-
tation of the input network. In the sequel, we shall take advantage of this fact
in solving cyclic networks: we shall solve cyclic networks by applying techniques
devised for acyclic networks to their reduced-network representation.

Ilustration Consider the network in Figure 4.4. The strongly connected compo-
nents in its precedence graph (shown in Figure 4.10) are C; = {4, B}, C, = {C},
and C3 = {D}. The reduced network is shown in Figure 4.11, where component
C 1s represented by node 7. One solution of the reduced network is the tuple

(Cl = 1, Cz = 35, C3 = 3)
It corresponds to the solution
(A=1,B=1,C=35D = 3)

of the original network. O

We conclude the discussion of the precedence graph by considering the special

case of arc- and path-consistent networks.
Proposition 4.12 Any nonempty path-consistent PA network is consistent,
Proof By Theorem 4.9 and Lemma 4.10.8 O

Lemma 4.13 Let G = (V, E) be a nonempty path-consistent PA network. Let
Gy = (V, E,) be the precedence graph of G. Let C' and C" (C' # C") be two

S Another proof is given by Ladkin and Maddux in [39]

78

strongly connected components in G,. Ifi—j€E and k> [E, where
1. k€ C'and j,1 € C", then C;; = Cyy.

Proof See Appendix A. O
From Lemma 4.10 we have the following corollary.

Corollary 4.14 Let G be a nonempty arc- and path-consistent augmented PA
network. Let G, be the precedence graph of G. If nodes i and j belong to the

same strongly connected component in Gy, then D; = D;.

Using Lemma 4.12, Lemma 4.13, and Corollary 4.14, we obtain the following

properties of the reduced network of an arc- and path-consistent PA network.

Lemma 4.15 The reduced network of a nonempty arc- and path-consistent aug-
mented PA network is (1) nonempty and (2) arc and path consistent.

Proof From Lemma 4.12, the underlying qualitative network is con-
sistent. From Lemma 4.13 and Corollary 4.14, we have (1) and (2).
0

In addition, when constructing the reduced network of an arc- and path-
consistent network, instead of performing the intersection operations of Equa-
tions (4.5) and (4.6), we may choose any domain D,, j € C;, as the domain D!
(from Corollary 4.14), and we may choose any constraint Cy, k € C;, j € C, as
the constraint CJ; (from Lemma 4.13). Hence, the reduced network of an arc-
and path-consistent network can be constructed in O(e) time.

THustration The reduced-network representation of the network in Figure 4.5
is shown in Figure 4.12. As before, node i represents component C;, where
Ci1 = {A, B}, C; = {C}, and C3 = {D}. Note, for example, that the domain of
C1 is identical to the domains D4 and Dp in the original network. Similarly,
the constraint between C; and Cj is identical to the constraints Cap and Cgp in
the input network. It can be verified that the reduced network is arc and path
consistent. O

79

(2,4)

(0,2)
[3,4)

Figure 4.12: The reduced network of the network in Figure 4.5.
4.4.3 Augmented Convex Point Algebra Networks

This subsection is organized as follows. Section 4.4.3.1 presents a solution tech-
nique for CPA networks over discrete domains. Then, we discuss CPA networks
over multiple-intervals domains: in Section 4.4.3.2 we present solution techniques
for acyclic networks, and in Section 4.4.3.3 we extend those techniques to cyclic
networks.

4.4.3.1 Discrete Domains

The consistency of a CPA network over discrete domains can be decided using

arc consistency.

Theorem 4.16 A nonempty arc-consistent CPA network over discrete domains
is consistent; in particular, the tuple H = (hy,...,h,), where h; is the highest

value in domain D;, is a solution.
Proof See Appendix A. O

Theorem 4.16 provides an effective test for deciding the consistency of a given
CPA network over discrete domains. We simply enforce arc consistency and then
check whether the resulting domains are empty; the input network is consistent if
and only if its arc-consistent form is nonempty, We shall say that arc consistency
decides the consistency of a CPA network over discrete domains.

The fastest known arc-consistency algorithm for discrete domains is algo-
rithm AC-4, which runs in O(ek?) time (Mohr and Henderson [49]). Recently,

80

(1.3} (¢) (B) (1.3}

Figure 4.13: An arc-consistent CPA network over discrete domains.

<

Deville and Van Hentenryck [23] have devised a special-purpose arc-consistency
algorithm. This algorithm runs in O(ek) time for CPA networks over discrete
domains. Hence, the complexity of deciding consistency and of finding a solution

is bounded by O(ek).

When computing the minimal domains, it turns out that arc consistency is

insufficient.

Example 4.17 Consider the network in Figure 4.13. It has two solutions:
A=B=C=1and A= B = C = 3. Clearly, the network is arc consistent; how-
ever, the value A = 2 is not part of any solution. Hence, the domain of 4 is not
minimal. O

In Section 4.4.3.3 we shall show that the minimal domains can be computed
by establishing both arc and path consistency.

4.4.3.2 Maultiple-Intervals Domains—Acyclic Networks

An acyclic CPA network over multiple-intervals domains can be solved by es-
tablishing arc consistency and then instantiating the variables in a backtrack-free
fashion [26] along any topological ordering of the precedence graph.

Lemma 4.18 A nonempty arc-consistent acyclic CPA network over multiple-
intervals domains is backtrack-free along any topological ordering of its precedence
graph.

Proof Let G = (V,E) be an acyclic CPA network over multiple-
intervals domains. Let G, = (V, E,) be the precedence graph of G,

81

and let d be a topological ordering of G,. Suppose the first k variables
along d, X;, ..., X}, were already instantiated to the valies Ui, ..., Uk,
respectively. We have to show that for any other variable X;, i > k,
there exists a value v; € D, such that all constraints Ci(l1<j<k)
are satisfied.

If ¢ is a source in G, (i.e., it has no incoming arcs), then we may
choose any value v; € D;. Since all constraints Cj; are universal, they
are trivially satisfied. If 7 is not a source in G,, then let P be the
parent set of : {namely, all nodes j such that j — i € E,). Consider
an arbitrary constraint Cj;, j € P. Since G, is acyclic, C'ji cannot
be the equality constraint; furthermore, by the construction of Gy,
it must be either < or <. From arc consistency, we can select a
value [; € D; that satisfies Cj;, namely, it is consistent with v;. Let
vi = max{lj|j € P}. Clearly, this value satisfies all the constraints
Cji, 7 € P. Hence, G is backtrack-free along d. O

As an immediate corollary of Lemma 4.18, we have the following theorem,
showing that arc consistency decides the consistency of an acyclic CPA network.

Theorem 4.19 A nonempty arc-consistent acyclic CPA network over multiple-
intervals domains is consistent.

A solution to an arc-consistent acyclic CPA network G can be assembled in
a backtrack-free fashion by algorithm Solve-Acyclic-CPA, shown in Figure 4.14.
Based on the solution technique used in the proof of Lemma 4.18, algorithm
Solve-Acyclic-CPA constructs a solution V = (vy,...,v,) to G by instantiating
the nodes along a topological ordering d of the precedence graph G, = (V, E,).
Algorithm Solve-Acyclic-CPA is O(e): a topological ordering d can be found in
O(e) time, each arc in G, is considered only once (in Steps 4-6), and the time
spent for each arc is constant.

Lemma 4.20 The complezity of algorithm AC-3 for a PA network over maultiple-
intervals domains is O(en?k?).

Proof See Appendix A. O

82

Algorithm Solve-Acyclic-CPA

. forz:=1tondo
v; «— any value v € D,
L2
for each node j such that j - : € E, do
L «— LU {a value in D; which is consistent with v;}
v; — max({vi} U L)
end

e

Figure 4.14: Solve-Acyclic-CPA—an algorithm for constructing a solution to an

arc-consistent acyclic CPA network over multiple-intervals domains.

From Lemma 4.20, deciding consistency and finding a solution to a CPA
network are both O(en®k?). A more efficient approach would be to enforce direc-
tional, instead of full, arc consistency. Since in the proof of Lemma 4.18 we needed
only directional arc consistency, Lemma 4.18 and consequently Theorem 4.19 can

be modified as follows.

Lemma 4.21 Let G be a nonempty acyclic CPA network over multiple-intervals
domains. Let G, be the precedence graph of G. Let d be a topological ordering
of Gp, and let G be directional arc consistent along d. Then, G is backtrack-free
along d.

Theorem 4.22 Let G be a nonempty acyclic CPA network over multiple-inter-
vals domains. Let G, be the precedence graph of G. If G is directional arc
congistent along any topological ordering of G,, then G is consistent.

According to Theorem 4.22, directional arc consistency decides the consis-
tency of an acyclic CPA network. A solution can still be constructed using
algorithm Solve-Acyclic-CPA, because it employs only directional arc consistency.

Lemma 4.23 The complezity of algorithm DAC for an acyclic CPA network over
maultiple-intervals domains is O(elog k).

Proof See Appendix A. O

83

Algorithm 2DAC

d — a topological ordering of G,
run DAC along d

d, «— the reverse of d

run DAC along d,

BN

Figure 4.15: 2DAC—an arc-consistency algorithm for acyclic CPA networks.

We conclude that the complexity of deciding consistency and of finding a
solution to an acyclic CPA network is O(elog k), improving the upper bound of
O(en?k?) obtained by using full arc consistency.

Arc consistency can be also used in computing the minimal domains.

Theorem 4.24 The domains of a nonempty arc-consistent acyclic CPA network

over multiple-intervals domains are minimal,
Proof See Appendix A. O

We have already seen (Lemma 4.20) that arc consistency can be achieved in
O(en®k?) time using algorithm AC-3. For an acyclic network, a tighter upper
bound, O(elog k), can be achieved using algorithm 2DAC, shown in Figure 4.15.
This algorithm performs two directional arc-consistency steps. The first moves
backward, from sinks to the sources, and REVISEs arcs along a topological or-
dering of the precedence graph. The second moves forward, from sources to
sinks, and REVISEs arcs along the reverse ordering. The first directional arc-
consistency step changes only upper bounds of domains, while the second changes
only lower bounds. Thus, upon termination of 2DAC all arcs are consistent, that
is, the resulting network is arc consistent. The running time of algorithm 2DAC
is Ofelog k). We conclude that the minimal domains of an acyclic CPA network
can be computed in O(elog k) time.

Illustration Consider the acyclic network of Figure 4.11. Running DAC along
the ordering d = (1, 3, 2) results in the directional arc-consistent network depicted
in Figure 4.16. Then, running DAC along the reverse ordering d, = (2,3,1) yields
the arc-consistent network of Figure 4.12. O

84

Figure 4.17: An arc-consistent CPA network.

4.4.3.3 Multiple-Intervals Domains—Cyclic Networks

Solving a cyclic CPA network requires more than just enforcing arc consistency.

Arc consistency alone cannot even detect the inconsistency of a network.

Example 4.25 Consider the CPA network in Figure 4.17, where the domains
are {—oc,00). The network is trivially arc consistent; however, it does not have

any solution. O

One solution technique for cyclic networks is to establish both arc and path

consistency.

Theorem 4.26 A nonempty arc- and path-consistent CPA network over multi-

ple-intervals domains is consistent.

Proof Let G be a nonempty arc- and path-consistent CPA network
over multiple-intervals domains. According to Lemma 4.15, the re-

85

duced network G" is both nonempty and arc consistent. By Theo-

rem 4.19, G7 is consistent. Hence, & is consistent., O

Theorem 4.26 provides an effective test for deciding consistency of an aug-
mented CPA network. We establish both arc and path consistency, and then
check whether the domains and constraints are empty. The network is consistent
if and only if all domains and all constraints are nonempty. Similarly, arc and

path consistency can be used in computing the minimal domains.

Theorem 4.27 The domains of a nonempty arc- and path-consistent CPA net-

work over multiple-intervals domains are minimal.

Proof Let G be a nonempty arc- and path-consistent CPA network
over multiple-intervals domains. According to Lemma 4.15, the re-
duced network G is nonempty and arc consistent. By Theorem 4.24,
the domains of G” are minimal. Since, as explained in Section 4.4.2,
there exists a one-to-one correspondence between the solution sets of

G and G", the domains of G are also minimal. O

A solution to a given arc- and path-consistent CPA network G can be found

by first constructing its reduced network G, and then solving G" using algorithm
Solve-Acyclic-CPA.

The complexity of deciding consistency, finding a solution, and computing the
minimal domains depends on the time needed to achieve arc and path consistency.
Since path consistency is performed first, when arc consistency is executed the
number of edges is O(n?). Hence, the complexity of the above reasoning tasks
(using PC-2 and AC-3) is O(n*k?).

An alternative, more efficient approach for solving a cyclic network is to con-
vert it into a reduced-network representation, as explained in Section 4.4.2, and
then solve the reduced network using techniques developed for acyclic networks.
In particular, we can decide the consistency of the reduced network by using direc-
tional arc consistency, find a solution to the input network by applying algorithm
Solve-Acyclic-CPA to the reduced network, and compute the minimal domains by
enforcing full arc consistency on the reduced network. The complexity of all these

tasks is dominated by the time needed to construct the reduced network, namely,
O(n?k).

86

Figure 4.18: An arc-consistent PA network over single-interval domains.

4.4.4 Augmented Point Algebra Networks

When we move up the qualitative networks hierarchy from CPA networks to
PA networks (allowing also the # relation between points), deciding consistency
becomes NP-hard for discrete domains, and consequently for multiple-intervals

domains.

Proposition 4.28 Deciding the consistency of a PA network over discrete do-
mains s NP-hard.

Proof Straightforward reduction from graph coloring. O

We shall now show that when the domains range over single intervals, deciding
consistency and computing the minimal domains remain tractable. Actually, in
the subsequent presentation we shall consider the more general case of almost-
single-interval domains. Each domain D; will consists of a single interval, from
which a finite set of holes H; = {h,,,..., ki } is excluded.

As for CPA networks, we start by concentrating on acyclic networks and
showing that arc consistency can be used in their solution. Recall that an arc-
consistent acyclic CPA network is backtrack-free along any topological ordering of
its precedence graph. Unfortunately, this property does not hold in PA networks.

Example 4.29 Consider the arc-consistent network in Figure 4.18. The prece-
dence graph of this network consists of two arcs: 4 — B and 4 — C. The or-
dering d = (A, B, C) is a topological ordering of the precedence graph; however,
the instantiation A = B = 2 cannot be extended to C. O

87

One way to alleviate this problem is to consider a restricted network, obtained
from the input network by excluding the extreme points from all infinite domains.

Definition 4.30 Let G be a PA network. The restricted network of G, G', is
obtained from G by restricting the domains as follows. If a domain D; contains

more than one value, then the domain of variable X; in G' is

D; = D; — {inf(Dy), sup(D;)}.

An important property of the restricted network is that it remains arc con-

sistent whenever the input network is arc consistent.

Lemma 4.31 The restricted network of an arc-consistent PA network over alm-
ost-single-interval domains is arc consistent.

Proof See Appendix A. O

Although, as shown in Example 4.29, an arc-consistent network is not nec-
essarily backtrack-free, the restricted network can be solved in a backtrack-free
fashion, along any topological ordering of its precedence graph.

Lemma 4.32 Let G be a nonempty arc-consistent acyclic PA network over alm-
ost-single-interval domains. Let G' be the restricted network of G. Then, G' is
backtrack-free along any topological ordering of its precedence graph.

Proof Let G, = (V,E,) be the precedence graph of G’, and let d
be a topological ordering of G,. From Lemma 4.31, since G is arc
consistent, G’ is also arc consistent. Suppose the first k& variables
along d, X),..., Xk, were already instantiated to the values vy, ..., v,
respectively. We have to show that for any other variable X, ¢ > k,
there exists a value v; € D} such that all constraints Cj; (1 < j < k)
are satisfied,

If ¢ is a source in G, (namely, it has no incoming arcs), then we
may choose any value v; € D). Since all constraints Cj;, j < i, are
universal, they are trivially satisfied.

If ¢ is not a source in G,, then we must select a value v; € D!
such that all constraints Cj;, 1 < j < k, are satisfied. If D! consists

88

(12) (C)

< #

(12) (4) (B) (12)

Figure 4.19: The restricted network of the network in Figure 4.18.

of a single value v then, from arc consistency, all these constraints are
satisfied. If D] contains more than one value, then a value v; € D!
that satisfies all constraints Cj;, 1 < j < k, can be found as follows.
Let P be the parent set of ¢ in G, (namely all nodes j such that
J — 1€ E,). Consider an arbitrary constraint Cj, j € P. Since G,
is acyclic, Cj; cannot be the equality constraint; furthermore, by the
construction of Gy, it must be either < or <. From arc consistency
of G', we can select a value [; € D] that is compatible with v;. More-
over, I; can always be selected such that max(H;) < I; < sup(D!).
Let m = max({l;]j € P}). Let N ={v;|j <¢,Cjis #}. Since N
is finite, we can always find a value v; such that v; € [m,sup(D})),
but v; € N. Clearly, v; € D!, and it satisfies all the constraints Cii,
1 €3 £ k. Hence, G’ is backtrack-free along d. O

INustration Consider the network in Figure 4.18. Its restricted network is de-
picted in Figure 4.19. It can be easily verified that the restricted network is

backtrack-free along the orderings d; = (A4, B,C) and d; = (A, C, B). O

As a corollary to Lemma 4.32, we have the following theorem.

Theorem 4.33 A nonempty arc-consistent acyclic PA network over almost-sin-

gle-interval domains is consistent.

In order to make use of Theorem 4.33 and employ an arc consistency algo-

rithm in a procedure for deciding consistency, we still have to show that when the
input domains range over almost-single intervals, they remain so after enforcing

arc consistency. The next lemma shows that when we use an arc consistency al-

89

gorithm based on REVISE operations, the domains of the resulting arc-consistent

network also consist of almost-single intervals.

Lemma 4.34 Let G be a PA network over almost-single-interval domains. Let
G’ be a network produced by applying REVISE to G. Then, G' is also a PA network

over almost-single-interval domains.
Proof See Appendix A. O

According to Theorem 4.33 and Lemma 4.34, AC-3 (or any other REVISE-
based arc-consistency algorithm) determines the consistency of an acyclic PA

network over almost-single-interval domains.

A solution to an arc-consistent acyclic PA network G can be assembled in
a backtrack-free fashion by algorithm Solve-Acyclic-PA, shown in Figure 4.20.
Based on the solution technique used in the proof of Lemma 4.32, algorithm
Solve-Acyclic-PA constructs a solution V = (v1,...,v,) to the restricted network
G’ by instantiating the nodes along a topological ordering d of the precedence
graph G, = (V, E,). Algorithm Solve-Acyclic-PA is O(e): a topological ordering
can be found in O(e) tine, each arc in E is considered at most once (in Steps 7-9
or in Steps 11-13), and for each arc the algorithm spends a constant time.

From Lemma 4.20, the complexity of deciding consistency and of finding a
solution to an acyclic PA network is O(en®k?) for almost-single-interval domains
and O(en?) for single-interval domains.

For the special case of acyclic networks, arc consistency can be achieved even
more efficiently by algorithm 4DAC, shown in Figure 4.21. Given an acyclic PA
network G, 4DAC enforces directional arc consistency four times: twice along a
topological ordering d of the precedence graph G,, and twice along the reverse
ordering d,.

Lemma 4.35 Algorithm 4DAC computes an arc-consistent network.
Proof See Appendix A. O
Lemma 4.35 guarantees that four applications of DAC are sufficient to compute

an arc-consistent network. Example 4.36 shows that we cannot do better than
that—four applications are indeed necessary.

90

Algorithm Solve-Acyclic-PA

1. for::=1tondo

2 if D; consists of a single value v then

3 V; — v

4 else begin

5. v; + a value in D!

6 L1

7 for each j such that j — i € E, do
8 L « L U {a value in Dj that is consistent with v;}
9. v; — max{{v;} U L)

10. Ne—9pd

11. for each j < i such that C;; is # do
12. N — NU{v;}

13. v; « a value in [v;,sup(D})) - N
14, end

15. end

Figure 4.20: Solve-Acyclic-PA—an algorithm for constructing a solution to an

arc-consistent acyclic PA network over almost-single-interval domains.

Algorithm 4DAC

d « a topological ordering of G,
d, «— the reverse of d

run DAC along d

run DAC along d,

run DAC along d

run DAC along d,

S o i

Figure 4.21: 4DAC--an arc consistency algorithm for acyclic PA networks over
almost-single-interval domains.

91

Figure 4.22: A PA network over single-interval domains.

Example 4.36 Counsider the network in Figure 4.22. Let us execute algorithm
4DAC along the ordering d = (A, B, C, D). During the first DAC the domain D,
is reduced to a single value [2]. Consequently, during the second DAC the domain
D¢ is also reduced to [2]. Then, during the third DAC the lower bound of Dg is
changed and Dg becomes (2, 3]|. Finally, in the fourth application of DAC Dp is
changed to (2, 3]. The resulting network is indeed arc consistent. O

The running time of algorithm 4DAC is proportional to that of algorithm DAC
for acyclic PA networks.

Lemma 4.37 The complezity of algorithm DAC for an acyclic PA network over
multiple-intervals domains is O(e(k + n)).

Proof See Appendix A. O

We conclude that the complexity of algorithm 4DAC, and consequently the
complexity of deciding consistency and of finding a solution, is O(e(k + n)) for
almost-single-interval domains and O(en) for single-interval domains.

It should be noted that, unlike CPA networks, PA networks cannot be solved
using directional arc consistency. There are two possible ways to decide con-
sistency in PA networks using directional arc consistency: applying DAC to the
restricted network, or executing DAC on the input network and then restricting
the domains. It can be easily verified that both methods fail to serve as a test
for deciding consistency.

Arc consistency can also be used in computing the minimal domains of acyclic
PA networks. The next theorem shows that arc consistency computes the minimal
domains of the restricted network.

92

Theorem 4.38 Let G be a nonempty arc-consistent acyclic PA network over
almost-gingle-interval domains. Let G' be the restricted network of G. Then, all

domains in G' are minimal,

Arc consistency does not compute the minimal domains of the input network,
however. For example, in the arc-consistent network of Figure 4.18, the value
A = 2 does not participate in any solution and, thus, the domain D4 is not min-
imal. Nevertheless, arc consistency can still be used in computing the minimal
domains. Consider an arc-consistent network G. According to Theorem 4.38, the
domains of its restricted network G’ are minimal. Thus, all single-value domains
are in their minimal form and, for each infinite domain D;, all values in the open
interval (inf(D;), sup(D;)) are in the minimal domain. It remains, for each infinite
domain, to check whether, in the case that inf(D;) € D; or sup(D;) € D;, these
values are also part of the minimal demain. This can be tested by Theorem 4.38.
We set D; « inf(D;) and then test the consistency of this network (by running
arc consistency). If this network is consistent then inf(D;) is in the minimal do-
main. The same test is performed for sup(D;). The complexity of computing the
minimal domains using this method is O(n) times the complexity of determining
consistency, namely, O(en(k + n)) for almost-single-interval domains and O(en?)

for single-interval domains.

IMlustration Consider the network in Figure 4.18. Let us compute the minimal
domain of variable A. Every value in the open interval (1,2) is guaranteed to be
in the minimal domain. We need to check whether 4 = 1 and A4 = 2 are in the
minimal domain. Setting D4 « 1 and running arc consistency yields a nonempty
network; hence, A = 1 is contained in the minimal domain. Setting D4 « 2 and
running arc consistency yields an empty network; hence, A = 2 is not part of the
minimal domain. We conclude that the minimal domain of variable 4 is [1,2). O

Solving cyclic PA networks over almost-single-interval domains can be done in
two ways: by using arc and path consistency or by applying solution techniques
for acyclic networks to the reduced network representation. Let us first consider

the use of arc and path consistency.

Theorem 4.39 A nonempty arc- and path-consistent PA network over almost-
single-interval domains is consistent.

Proof Let G be a nonempty arc- and path-consistent PA network over
almost-single-interval domains. According to Lemma 4.15, the re-

a3

duced network G” is nonempty and arc consistent. By Theorem 4.33,

G" is consistent. Hence, G is consistent. O

Theorem 4¢.39 shows that, as for CPA networks, arc and path consistency
decide consistency in PA networks. A solution to an arc- and path-consistent PA
network G over almost-single-interval domains can be found by first constructing

its reduced network G” and then solving G" using algorithm Solve-Acyclic-PA.

The complexity of deciding consistency and of finding a solution to a PA
network using arc and path consistency is dominated by the time needed to
establish arc consistency. The complexity of these reasoning tasks (using PC-2
and AC-3) is O(n*k?) for almost-single-interval domains and O(n*) for single-

interval domains.

Arc and path consistency can be also used in computing the minimal domains.

Theorem 4.40 Let G be a nonempty arc- and path-consistent PA network over
almost-single-interval domains. Let G' be the reduced network of G. Then, the

domains of G' are minimal.

Proof According to Lemma 4.31 G’ is arc consistent and, from
Lemma 4.15, its reduced network (G')" is nonempty and arc consis-
tent. It can also be easily verified that (G')" is already in its restricted
form. Hence, by Theorem 4.38, the domains of (G')" are minimal.
Since, as explained in Section 4.4.2, there exists a one-to-one corre-
spondence between the solution sets of G’ and (G')", the domains of

G’ are also minimal. O

As in the case of an acyclic network, in order to compute the minimal do-
mains of the input, cyclic network, we still have to test whether for each domain
D; the extreme points are in the minimal domain. This can be done by the same
method described for acyclic networks, that is, by setting D; « inf(D;) and
D; « sup(D;) and then testing consistency (using only arc consistency, since the
network is already path consistent). The complexity of this method is O(n) times
the complexity of arc consistency, namely, O(n®k?) for almost-single-interval do-
mains and O(n®) for single-interval domains.

PA networks can be solved even more efficiently by applying the best algo-
rithms for acyclic networks to the reduced network representation. Recall that

94

constructing the reduced network representation requires O(n?k) time. Therefore,
deciding consistency and finding a solution can be done in time
O(n?k + e(k + n)) = O(n?k + en) for almost-single-interval domains and time
O(en) for single-interval domains, and computing the minimal domains can be
done in time O(n?k+en(k+n)) = O(en(k+n)) for almost-single-interval domains

and time O(en?) for single-interval domains.

4.5 Solving General Networks

In this section we focus on solving general networks. The input network may now
contain all the types of constraints allowed in our language. We first describe
an exponential, brute-force algorithm. Then, we investigate the applicability of

path consistency algorithms.

We return to the network representation described in Section 4.2. Namely,
in contrast with Section 4.4, we now use a binary-constraint representation for
unary constraints, which means that the network now consists solely of binary

constraints.

Let G be a given general network. A basic label of an arc i — j is a selection
of a single interval from the interval set (if C;; is quantitative) or a basic relation
from the QA element (if C; is qualitative). A network whose arcs are labeled
by basic labels of G is called a singleton labeling of G. We may solve G by
generating all its singleton labelings, solving each of them independently, and
then combining the results. Specifically, G is consistent if and only if there exists
a consistent singleton labeling of G; the minimal network can be computed by
taking the union over the minimal networks of all the singleton labelings.

Each qualitative constraint in a singleton labeling can be translated into a
set of up to four linear inequalities on points. These inequalities, in turn, can
be translated into metric constraints using the QUAN translation. It follows that
a singleton labeling is equivalent to an STP network—a metric network whose
constraints are labeled by single intervals. Recall (from Section 3.2) that an
STP network can be solved in O(n®) time. Thus, the overall complexity of this
decomposition scheme is O(n*k®), where n is the number of variables, e is the
number of arcs in the constraint graph, and k is the maximum number of basic
labels per arc.

95

{d}

{(0,20)}

{s}

@

{(0,5)}

Figure 4.24: The STP network of the singleton labeling of Figure 4.23.

Iustration Consider the constraint graph of Figure 4.2. One singleton label-
ing is shown in Figure 4.23. The qualitative constraint J {during} F can be
translated into four linear inequalities on the endpoints of J and F: P, > P,
Py < Py, P,> P, and P; < P;. Using the QUAN translation, these inequal-
ities are translated into the following metric constraints: P, — P3 € {(0,0)},
Py — P € {(0,00)}, P, — Ps € {(0,00)}, and Py — P; € {(0,00)}. The resulting
STP network is shown in Figure 4.24. O

The brute-force enumeration of singleton labelings can be pruned significantly
by running a backtracking algorithm on a meta-CSP in which the variables are
the network arcs and the domains are the possible basic labels. This algorithm

1s similar to the backtracking algorithm for metric networks, described in Sec-

96

tion 3.3. It assigns a basic label to an arc, as long as the corresponding STP

network is consistent; if no such assignment is possible, it backtracks.

Imposing local consistency among subsets of variables may serve as a pre-
processing step to improve backtrack. This strategy has been proven successful
(see [20]), since enforcing local consistency can be achieved in polynomial time,
while it may substantially reduce the number of dead-ends encountered in the
search phase itself. In particular, experimental evaluation shows that enforcing
a low consistency level, such as arc or path consistency, gives the best results
[20]. Following this rationale, we next show that path consistency, which in gen-
eral networks amounts to the least amount of preprocessing,? can be achieved in

polynomial time.

Theorem 4.41 Algorithm PC-2 calls REVISE O(n®R) times, and its timing is
bounded by O(n3R?), where R is the range!® of G.

Proof Let G be a given network. Without loss of generality, we may
assume that G is integral; otherwise, we can simulate the algorithm
on the equivalent integral network. The number of calls to REVISE
is proportional to the total number of triplets on Q throughout the
execution of PC-2. The initial size of @ is O(n®). The worst case
running time of PC-2 occurs when each metric constraint is decreased
by only one unit and each qualitative constraint is decreased by only
one basic relation each time a constraint is tightened by REVISE. In
this case, if R is the range of G, then each metric constraint might be
updated O(R) times and each qualitative constraint may be updated
no more than 13 times. Also, in the worst case, when a constraint
1s modified, O(n) triplets are added to Q [43]. Thus, each constraint
may cause the addition of O(nR) triplets to Q. Hence, since there are
O(n?) constraints, the total number of new entries on Q is O(n®R),
namely, PC-2 performs O(n®*R) calls to REVISE., A call to REVISE
involves intersection and composition. The worst case occurs when

all operands are metric constraints. In this case, the cost of REVISE
is O(R?). Hence, the total timing of PC-2 is O(n®*R?). O

®General networks are trivially arc consistent since unary constraints are represented as
binary constraints.

10See Section 3.4 for the definition of the range of a metric network. The range of a general
network is the range of its quantitative subnetwork.

97

Path consistency can also be regarded as an alternative approach to exhaustive
enumeration, serving as an approximation scheme that often yields the minimal
network. For example, applying path consistency to the network of Figure 4.2
produces the minimal network. Although, in general, a path-consistent network
is not necessarily minimal and may not even be consistent, in some cases path

consistency is guaranteed to determine the consistency of a network.

Proposition 4.42 Let G be a path-consistent network. If the qualitative subnet-
work of G i3 in net(CPA) and the quantitative subnetwork constitutes an STP

network, then G is consistent and its metric constraints are minimal,

Proof Let Gjps be the metric subnetwork of G. Consider a metric
constraint C;;. Let z and y be values, assigned to variables X; and
X, respectively, that satisfy C,;. In Section 3.2 we show that since
Gy is path consistent, this partial assignment can be extended to a
full solution of Gas. Since the qualitative subnetwork is in net(C P A),
this assignment satisfies all qualitative constraints, and hence it is
a solution to G. We conclude that C;; is minimal and that G is
consistent. O

Note that the condition in Proposition 4.42 cannot be weakened to include
networks whose qualitative part is in net(PA) — net(CPA). The reason is that
the networks satisfying the condition of Proposition 4.42 are closed under REVISE,
namely, applying REVISE to any network in this class produces a network that
still belongs to the same class. This is not true when the qualitative subnetwork
is in net(PA) — net(CPA). In this case, REVISE may introduce holes in metric
constraints, yielding a non-STP metric subnetwork.

Unfortunately, even for networks satisfying the condition of Proposition 4.42,
path consistency is not guaranteed to compute the minimal network. According
to Proposition 4.42, path consistency computes the minimal constraints for the
metric part of the network. Yet, it may not reduce some qualitative constraints
to their minimal form.

Example 4.43 Consider the network in Figure 4.25. It consists of two intervals,
I =[A, Bl and J = [C, D], and two metric constraints on their length,

B-Acg {(1,2)}

98

{f} {f}

Figure 4.25: A path-consistent singleton labeling.

and

D —-Ce{(3,4)}.

Note that the constraint between I and J is the universal constraint, permitting
all 13 basic relations. This network is path consistent; however, it can be easily
verified that the basic relation = is not in the minimal constraint between I and
J. O

One way to compute the minimal qualitative constraints is the following. Let
C;; be a qualitative constraint labeled by a relation set R. For each basic relation
r € R we set C;; « r and then test the consistency of the resulting network.
Because the new network still satisfies the condition of Proposition 4.42, path
consistency can be used to decide its consistency. If the new network is consistent,
then r is in the minimal constraint between i and j. Since there are O(n?)
qualitative constraints, each one consisting of no more than 13 basic relations,
the entire minimal network can be computed using O(n?) applications of path

consistency.

For some networks, path consistency is even guaranteed to compute the entire
minimal network.

Proposition 4.44 Any path-consistent singleton labeling is minimal.
Proof We need to show that the qualitative constraints are minimal.
According to Proposition 4.42 the network is consistent. Thus, since

each qualitative constraint consists of a single basic relation, it must
be in its minimal form. O

99

We feel that more classes of temporal problems may be solved by path con-
sistency algorithms. Further investigation may reveal new classes that can be

solved using these algorithms.

4.6 Relations to Other Formalisms

Kautz and Ladkin [35] have introduced an alternative model for temporal rea-
soning. It consists of two components: a metric network and an IA network.
These two networks, however, are not connected via internal constraints; rather,
they are kept separately, and the inter-component relationships are managed by
means of external control. To solve reasoning tasks in this model, Kautz and
Ladkin proposed an algorithm that solves each component independently and
then circulates information between the two parts, using the QUAL and QUAN
translations, until a fixed point is reached. Our model has two advantages over
Kautz and Ladkin’s model:

1. It is conceptually clearer, since all information is stored in a single network
and constraint propagation takes place in the knowledge level itself.

2. It is computationally more efficient, since we are able to provide tighter
bounds for various reasoning tasks. For example, in order to convert a
given network into an equivalent path-consistent form, Kautz and Lad-
kin’s algorithm may require O(n?) information transferences, resulting in
an overall complexity of O(n®R?), compared to O(n®R3) in our model.

100

CHAPTER 5

Conclusions

Existing constraint-based approaches for temporal reasoning—Allen’s interval al-
gebra and Vilain and Kautz’s point algebra—facilitate reasoning about qualita-
tive relations between either points or intervals, but they cannot handle many

forms of quantitative knowledge. This thesis offers two alternative formalisms.

The first formalism, called temporal constraint satisfaction problem (TCSP),
provides a framework for dealing with quantitative information, such as duration
and timing of events. In this framework, variables represent time points, and
temporal information is represented by a set of unary and binary constraints,
each specifying a set of permitted intervals. We present algorithms for performing
the following reasoning tasks: finding all feasible times that a given event can
occur, finding all possible relationships between two given events, and generating

one or more scenarios consistent with the information provided.

We distinguish between simple temporal problems (STPs) and general tem-
poral problems, the former admitting at most one interval constraint on any pair
of time points. We show that the STP can be solved in polynomial time, O(n?),
using the well-known Floyd-Warshall’s all-pairs-shortest-paths algorithm. For
general TCSPs, we present a decomposition scheme that provides answers to the
reasoning tasks considered, but its computational efficiency, in the worst case,
might be limited. The decomposition scheme can be improved by traditional
constraint satisfaction techniques, such as backjumping, learning, various order-
ing schemes, and preprocessing techniques. We study the applicability of path
consistency algorithms as preprocessing of temporal problems, demonstrate their
termination, and bound their complexities; path consistency algorithms seem to
offer a practical compromise in very complex problems. In particular, the more
efficient directional path consistency was shown to retain the essential properties
of full path consistency in determining consistency of STPs and in enhancing
backtrack search of general TCSPs. Among the specialized network-based algo-
rithms, only decomposition into nonseparable components was found applicable

101

to TCSPs. It offers a method for computing the minimal network in time expo-

nential in the largest nonseparable component,

We see the main application of the TCSP framework to be in temporal rea-
soning tasks involving metric information, namely, expressions involving absolute
time differences (e.g., “John came home an hour after Mary”). In this respect, the
expressiveness of the TCSP language supersedes that of Allen’s interval algebra.
However, it is weaker than the interval algebra, being limited to problems involv-
ing constraints on pairs of time points. The TCSP framework includes Vilain
and Kautz’s point algebra as a special case and provides a variety of techniques
and intuitions for solving problems in this domain.

The second formalism presented in this thesis, general temporal networks, is
a general constraint-based model for temporal reasoning that is capable of han-
dling both qualitative and quantitative information. It facilitates the processing
of quantitative constraints on points and all qualitative constraints between tem-
poral objects. The unique feature of this framework is that it allows the repre-
sentation and processing of all types of qualitative constraints considered in the
literature to date, as well as the quantitative constraints of the TCSP model. It
can be seen as a generalization of Allen’s interval algebra, Vilain and Kautz's
point algebra, and the TCSP model.

We utilize constraints satisfaction techniques in solving reasoning tasks in
this model. In particular, general networks can be solved by a backtracking algo-
rithm, or by path consistency, which computes an approximation to the minimal
network.

Using our integrated model we were able to identify new classes of tractable
networks—those networks that can be solved by path consistency algorithms, for
example, singleton labelings.

Other tractable classes were obtained by augmenting tractable qualitative
networks, PA and CPA networks, with various domain constraints. We show that
some of these networks can be solved using arc and path consistency. Tables 5.1
and 5.2 summarize the complexity of determining consistency and computing
the minimal domains in augmented qualitative networks. Each entry gives the
consistency level which can be used to solve the corresponding task (AC, PC, or
both), and the timing of the best algorithm discussed in this thesis.

Future research should enrich the representation language to facilitate model-

102

Discrete | Single interval | Multiple intervals
CPA networks AC AC + PC AC 4+ PC
Olek) O(n?) O(n®k)
PA networks | NP-complete AC + PC NP-complete
O(en)

IPA networks

NP-complete

NP-complete

NP-complete

Table 5.1: Complexity of deciding consistency in augmented qualitative networks.

Discrete | Single interval | Multiple intervals
CPA networks | AC + PC AC 4+ PC AC + PC
O(n*k) O(n?) O(n*k)
PA networks AC + PC
O(en?)

Table 5.2: Complexity of computing the minimal domains in tractable augmented

qualitative networks.

ing of more involved reasoning tasks. In particular, the following constraint types

should be incorporated in a temporal reasoning system,

1. Nonbinary constraints. Consider, for example, the statement “John’s drive
to work is at least 30 minutes longer than Fred’s.” Let J = [A, B] and
F = [C, D] be intervals representing the events “John was going to work”
and “Fred was going to work,” respectively. Then, the above statement is
expressed by the 4-ary constraint:

B-A>D-C+30.
. Logical constraints. For example, statements such as “If John leaves home
before 7:15 a.m., he arrives at work before Fred.” These are essentially

nonbinary constraints, but they may have a special structure (e.g., causal
(horn-type) constraints or a disjunction of binary constraints).

Recurring events. In the formalisms discussed in this thesis, each event is

associated with a single, convex interval. Some events, however, need to

1063

be represented by a set of intervals [37]. For example, when representing
knowledge about last week, the event “John was going to work” is associated
with a set of five intervals corresponding to the subevents: “John was going

to work on Monday,” ... “John was going to work on Fridav.”
) gomng Y

Although some work has been done on these issues (e.g., [37]), most of the inter-
esting problems have yet to be solved.

104

APPENDIX A

Proofs

Proof of Lemma 4.10 The if part is trivial—if C;; is = then, by definition,
both ¢ — j € E, and j — ¢ € E,, and thus ¢ and j belong to the same strongly

connected component.

We now show the only if part. Suppose ¢ and j belong to the same strongly
connected component in G,. Then, there exists a directed path i; = i — i, —
-+ = 1 = j from ¢ to j in G,. By the construction of Gy, all the correspond-
ing constraints in G are either <, <, or =. It can be verified easily that the

composition of these constraints cannot contain >. Thus
Coiin® - @ Ciy_ i, C{<,=}
and, from path consistency,
Cii €CLu® - ®Ci_ i C{<,=}. (A.1)

Similarly, there exists a directed path jy = j — j, = -+ = jy =i from j to i in
Gp. The corresponding constraints in G, in the direction from ¢ to j, are either
>, 2, or =. Thus

Civina @ ®Ch 5 € {>,=}

and, from path consistency,
Ci; € Chi e @ -~ 8 Cpy € {>,=}. (A.2)

From Equations (A.1) and (A.2), Cij C {=}, and since all constraints are
nonempty, C;; must be =. O

Proof of Lemma 4.13 There are three cases:

1. Case 1: 2 = k,j # l. From path consistency, Cy C C;; ® Cji. According to
Lemma 4.10, Cj; is =, thus
Cia C Cy;. (A.3)

105

Similarly, from path consistency, C;; € Cy®C, j According to Lemma 4.10,
Czj 15 =, thus
Ci; € Ca. (A.4)

From Equations (A.3) and (A4), C;; = Cy = C.
2. Case 2: 7 =1,i{+# k. From Case 1, Cji = Cjr = Ci, and thus C;; = C.

3. Case 3: ¢ 3£ k,j # . From previous cases we have Cij =Cy = Cy.

Hence, for all cases C;; = Cy. O

Proof of Theorem 4.16 Let G be a nonempty arc-consistent CPA network
over discrete domains. We shall show that the tuple H = (h;,...,h,) is a solu-
tion. Consider an arbitrary constraint C;, and the values h; and A ; assigned to

variables X; and X, respectively. There are three cases depending on C;;.

1. Cijis =. Then, h; must be equal to h;. Otherwise, suppose h; # h;. With-
out loss of generality, we may assume that h; < h;. From arc consistency,
there exists a value h; € D;. This contradicts the fact that &, is the highest
value in D;. Hence, h; = h;.

2. Cij is < or >. Without loss of generality, we may assume that Ci; 1s <
(otherwise we consider Cj;). Then, from arc consistency, there exists a
value v € D; such that h; < v. By definition, v < h;, and thus h; < h;.

3. Cyj is < or >. Without loss of generality, we may assume that Cj; is <
(otherwise we consider Cj;). Then, from arc consistency, there exists a value
v € D; such that k; < v. By definition, v < h;, and thus h; < h;.

We conclude that the assignment X; = h;, X; = h; satisfies the constraint Cij.
Since all the constraints are satisfied, H is a solution, and thus the network is
consistent. O

The next lemmas are needed in analyzing the complexity of algorithm AC-3
in PA networks. As usual, let n, e, and & be the number of nodes, number of
edges, and the maximum domain size, respectively.

Lemma A.1 During the execution of AC-3 only input eztreme points may occur
in any domain.

106

Proof All operations on domains (Equation (4.3)) involve quantitative composi-

tion of domain intervals with intervals from the set
{(07 OO)., [01 OO), [0]’ (—OO, 0]3 (—OO, 0)}1

and then intersection. It can be easily verified that these operations do not

introduce new extreme points. O
Corollary A.2 The number of intervals per domain is O(nk).

Lemma A.3 The number of calls to REVISE is O(enk).

Proof We follow the analysis of Mackworth and Freuder [45]. The number of
calls to REVISE is identical to the number of iterations of the while loop (Steps 2-
6), that is, the total number of arcs on Q. Initially, there are O(e) arcs on Q. We
observe that when a domain changes, either some extreme points are added or
deleted, or a closed interval becomes open. The worst case occurs when all the
possible changes take place and none of the arcs to be added to Q is already on it.
In this worst case, each call to REVISE either adds or deletes exactly one extreme
point or opens one closed interval. From Lemma A.1, only input extreme points

can occur in any domain; thus, a domain may change O(nk) times.

Entries are made in @ only when a call to REVISE has changed a domain. If
a domain D; has been changed, then in the worst case O(d;) arcs are added to
@, where d; is the degree of node ¢. Hence, the total number of new entries in Q
is: n
3" 0(d;)O(nk) = O(enk).
i=1

Hence, the number of calls to REVISE is O(enk). O

Proof of Lemma 4.20 The cost of REVISE is proportional to the number of
intervals per domain—O(nk) (Corollary A.2). The overall complexity of AC-3 is
the number of calls to REVISE times the cost of REVISE, namely, O(en?k?). O

Proof of Lemma 4.23 Since all constraints are from the set {<, <, >, >}, RE-
VISE can be implemented, using binary search and then updating the pointers Inf
and Sup, in O(log k) time. Since the number of calls to REVISE is proportional
to the number of arcs, the total complexity is O(elog k). O

The next lemma is needed for the proof of Theorem 4.24.

107

Lemma A.4 A nonempty arc-consistent acyclic CPA network G = (V.E) over
multiple-intervals domains is backtrack-free along any reverse topological ordering
of its precedence graph.

Proof Let G = (V, E} be a nonempty arc-consistent acyclic CPA network over
multiple-intervals domains. Let G, = (V, E,) be the precedence graph of G, and
let d be a reverse topological ordering of Gp. Suppose the first k variables along
d, Xi,..., Xy, were already instantiated to the values vy, . .., vk, respectively. We
have to show that for any other variable X;, i > k, there exists a value v € D;
such that all constraints Cj; (1 < 7 < k) are satisfied.

If 7 is a sink in G, (i.e., it has no outgoing arcs), then we may choose any
value v; € D;. Since all constraints Cj: are universal, they are trivially satisfied.
If ¢ is not a source in G, then let S be the successor set of {namely, all nodes
such that ¢ — j € E;). Consider an arbitrary constraint Cj;, j € S. Since Gy is
acyclic, Cj; cannot be the equality constraint; furthermore, by the construction of
Gp, it must be either > or >. From arc consistency, we can select a value l;€ D,
that satisfies C;, namely, is consistent with v;. Let v; = min{! il € S}. Clearly,
this value satisfies all the constraints Cj, 7 € . Hence, G is backtrack-free along
d. O

Proof of Theorem 4.24 Let G = (V, E) be a nonempty arc-consistent acyclic
CPA network over multiple-intervals domains. Let G, = (V, E;) be the prece-
dence graph of G. To show that a domain D, is minimal, we need to show that
every value x € D; is part of a solution X of G.

Let z be an arbitrary value in D;. Let V| be the set of all nodes v € @
such that there exists a path from v to 7 in G,. We construct a solution to G
by instantiating first the nodes in V; and then the rest of the nodes. Consider
G, = (W1, E,), the subgraph induced by V; (containing only arcs connecting nodes
in V1). Let d; be a reverse topological ordering of G;. According to Lemma A 4,
G, is backtrack-free along d,. Hence, we can construct a solution X' to G, by
instantiating X; to # and then instantiating the rest of the variables in V} in a
backtrack-free fashion along d;. Having instantiated the nodes in V;, we can now
extend X’ to a full solution X of G as follows: Let d be a topological ordering
of G' whose restriction to G is the reverse of d;. The nodes in Wi are already
instantiated. According to Lemma 4.18, we can extend X’ to a full solution of G
by instantiating the rest of the nodes, V — V;, backtrack-free along d. Therefore,

108

there exists a solution to &G in which X; = z. O

Proof of Lemma 4.31 Let G = (V, F) be an arc-consistent PA network over
almost-single-interval domains, and let G’ be its restricted network. Suppose G’
1s not arc consistent. Then there exists a pair of variables X; and X;, and a value
z € Dj such that = has no compatible value in D}. On the other hand, since G
1s arc consistent, z must have a compatible value in D,. Thus, D C Dj, that is,
Dj contains more than one value, and z must be compatible with either inf(D))
or sup(D;). There are 4 cases depending on C;;.

1. Ci; is either < or <. If x was compatible with inf(D;) (i.e., z < inf(D;))
then it would also be compatible with another value y € D, contradict-

1

ing our assumption that x has no match in D}. Thus, z is incompati-
ble with inf(D;), and hence it must be compatible with sup(D,), namely,
inf(D;) < z < sup(D;). We distingnish between two cases.

(a) If < sup(D;) then let

= lmax({z, nf(D;)} U H,) + sup(D;)].

Clearly, y € D} and r < y. Hence, z has a match in D’; contradiction.

(b) If z = sup(D;) then, from arc consistency of G, C;; must be <, and we
must also have that = = sup(D;). Thus, by definition of the restricted
network, since sup(D;) € D!, the domain D; consists of a single value,
that is, D; = D} = {z}. Since C;; is <, the constraint Cj; is >, and,
by arc consistency of G, D; = {z}. Thus, D, consists of a single value;
contradiction.

2. C; is either > or >. This case is symmetric to the previous case. If z
was compatible with sup(D;) (i.e., z > sup(D;)), then it would also be
compatible with another value y € D%, contradicting our assumption that
z has no match in D). Thus, 2 is incompatible with sup(D,), and hence
it must be compatible with inf(D;), namely, inf(D;) < z < sup(D;). We
distinguish between two cases.

(a) If z > inf(D;) then let

y = 5lmin{z, sup(D;)} U H;) + inf(D;)].

Clearly, y € D and z > y. Hence, z has a match in D’; contradiction.

109

(b) If z = inf(D;) then, from arc consistency of G, C;; must be >, and we
must also have that r = inf(D;). Thus, by definition of the restricted
network, since inf(D,;) € D!, the domain D; consists of a single value,
that is, D; = D! = {z}. Since C}; is >, the constraint C;i is <, and,
by arc consistency of G, D, = {z}. Thus, D; consists of a single value;
contradiction.

3. If Cy; is = then, from arc consistency of G, D; = D;. Since z is com-
patible with either inf(D;) or sup(D;), we must also have z = inf(D;) or
z = sup(D;). Thus, since either inf(D;) € D! or sup(D;) € D}, by definition
of the restricted network, D; consists of a single value, namely, D, = {z}.

Hence, D; = {z}, namely, it consists of a single value; contradiction.

4. If Ci; 1s # then, since D; contains more than one value, there must be a
value y € D’ such that = # y, contradicting our assumption that z has no
match in D’.

We conclude that £ must have a compatible value in D’; hence, G’ is arc consis-
tent. O

Proof of Lemma 4.34 Consider the operation of REVISE (Equation (4.3)):
D, —D; .DJ' & QUAN(CJ,)
There are three cases depending on C};.

1. If Ci; is a relation from the set {<, <, >, >}, then the composition of D;
with QUAN(C};) yields a single, convex interval. The intersection of a con-
vex interval with an almost-single interval gives an almost-single interval.

2. If Cyj is =, then the domain D; is intersected with the domain D;, yielding
an almost-single-interval domain.

3. If Cy; is #, then there are two cases. If D; contains more than one value,
then D; is not changed. If D; consists of a single value v, then at most

most one new hole, v, may be introduced.

We conclude that a call to REVISE produces a PA network over almost-single-

interval domains. O

110

Proof of Lemma 4.35 Let G be a PA network over almost-single-interval do-
mains. We first observe that the only case where a # constraint C;; may change
a domain Dj; occurs when the domain D; consists of a single value v. In this
case, either a new hole v is introduced in D; or one of its extreme points, mnf(D;)
or sup(D;), is removed and thus a closed-interval domain is opened. All other

constraints are CPA relations that change upper and lower bounds.

Consider the first two applications of DAC (Steps 3 and 4). If we disregard the
constraints, then these two steps mimic algorithm 2DAC, in which the CPA
constraints establish new lower and upper bounds on domains. However, the
existence of the # constraints may remove finite sets of values from some domains,
introducing new holes or deleting extreme points. This forces more applications
of DAC (Steps 5 and 6). It can be verified that, in these later applications, the
CPA constraints may only fix some bounds by removing extreme points from
domains, and the inequality constraints, as before, may remove only finite sets of
values from domains. Thus, in Steps 5 and 6, only a finite set of values may be
removed from each domain. As a result, all domains that will eventually consist
of a single value v are reduced to this value during Steps 3 and 4.

Consider Steps 4 and 5. If a domain D; was reduced to a single value (in Step 3
or Step 4), then during Step 4 all arcs j — i, such that ¢ < j and the constraint
Ci; is #, are made consistent. Then, in Step 5, for each domain D;, which was
reduced to a single value in previous steps, all arcs i — j, such that ¢ < 7 and the
constraint C; is #, are made consistent. Altogether, when Step 5 terminates,
all arcs ¢ — j such that C,; is # are made consistent and, since domains are
monotonically reducing, they remain consistent when 4DAC terminates.

It remains to show that all arcs i — §, such that Ci; is a CPA relation, are
consistent when 4DAC terminates. However, this can be seen from the fact that,
in Steps 5 and Step 6, the corresponding DACs only change upper and lower
bounds, respectively. We therefore conclude that when 4DAC terminates all arcs
are consistent, namely, the network is arc consistent. O

Proof of Lemma 4.37 The cost of REVISE is proportional to the number of
intervals per domain. Initially, the domain size is O(k). A domain D; can change
by an application of Equation (4.3). Note that since the network is acyclic,
C;; cannot be the equality constraint. When C;; is a relation from the set
{<,<,2,>}, the bound on the domain size is not changed. When Ci; is #,
then D; may be changed only when D; contains exactly one value v. In this case,

111

an interval in D; may be split into two new intervals, thus increasing the size
of D; by 1. This situation can occur at most O(n) times (once for every node).
Hence, the number of intervals per domain, and consequently the cost of REVISE,
is O(k + n). Since the number of calls to REVISE is proportional to the number
of arcs, the total complexity is O(e(k + n)). O

The next lemma is needed for the proof of Theorem 4.38.

Lemma A.5 Let G be a nonempty arc-consistent acyclic PA network over al-
most-single-interval domains. Let G' be the restricted network of G. Then, G' is
backtrack-free along any reverse topological ordering of its precedence graph.

Proof Let G, = (V, E,) be the precedence graph of G’, and let d be a reverse
topological ordering of G,. From Lemma 4.31, since G is arc consistent, G’ is also
arc consistent. Suppose the first k variables along d, X, ... + Xk, were already
instantiated to the values vy,..., v, respectively. We have to show that for any
other variable X, 7 > k, there exists a value v; € D! such that all constraints Cji
(1 €5 < k) are satisfied.

If 2 is a sink in G, (i.e., it has no outgoing arcs), then we may choose any
value v; € D!. Since all constraints Cjiy J < %, are universal, they are trivially
satisfied.

If s is not a sink in G, then we must select a value v; € D such that all the
constraints Cj;, 1 < j < k, are satisfied. If D consists of a single value v then,
from arc consistency, all these constraints are satisfied. If D contains more than
one value, then a value v; € D! that satisfies all constraints Cii, 1 <7<k, can
be found as follows. Let S be the successor set of i in G, (namely, all nodes j
such that : — j € F,). Consider an arbitrary constraint Cji,j € 8. Since G, is
acyclic, Cj; cannot be the equality constraint; furthermore, by the construction
of Gp, it must be either > or >. From arc consistency of G', we can select a value
l; € D that is compatible with v;. Moreover, I; can always be selected such that
inf(D;} < I; < min(H;). Let m = min({/;|j € S}). Let N = {vils <t,Cjiis #}.
Since N is finite, we can always find a value v; such that »; € (inf(D?),m], but
v; € N. Clearly, v; € D!, and it satisfies all the constraints Cji, 1 € j < k. Hence,
G’ is backtrack-free along d. O

Proof of Theorem 4.38 Let G, = (V, E,) be the precedence graph of G'. To
show that a domain D] is minimal, we need to show that every value z € D! is
part of a solution X of G'.

112

Let 2 be an arbitrary value in D]. Let V; be the set of all nodes v € G
such that there exists a path from v to ¢ in G,. We construct a solution to G’
by instantiating first the nodes in V) and then the rest of the nodes. Consider
G| = (W1, Ey), the subgraph induced by V; (containing only arcs connecting nodes
in Vj). Let d; be a reverse topological ordering of G. According to Lemma A.3,
G is backtrack-free along d;. Hence, we can construct a solution X’ to G} by
instantiating X; to = and then instantiating the rest of the variables in V] in a
backtrack-free fashion along d;. Having instantiated the nodes in 17, we can now
extend X' to a full solution X of G’ as follows. Let d be a topological ordering
of G, whose restriction to Gy is the reverse of d,. The nodes in Vi are already
instantiated. According to Lemma 4.32, we can extend X' to a full solution of G’
by instantiating the rest of the nodes, V — V4, backtrack-free along d. Therefore,
there exists a solution to G’ in which X; = z. O

113

114

1]

2]

(8]

[11]

[12]

[13]

[14]

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

J. F. Allen. Maintaining knowledge about temporal intervals. CACM,
26:832-843, 1983.

J. F. Allen. Towards a general theory of action and time. Artificial Intelli-
gence, 23:123-154, 1984,

J. F. Allen and P. J. Hayes. A common-sense theory of time. In Proceedings
of IJCAI-85, Los Angeles, CA, pages 528-531, 1985,

M. J. Almeida. Reasoning About the Temporal Structure of Narrative. PhD
thesis, State University of New York, Buffalo, NY, 1987.

S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability—a survey. BIT, 25:2-23, 1985,

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM Journal of Algebraic Discrete Methods, 8:177-
184, 1987.

B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems
of linear inequalities with two variables per inequality. SIAM Journal of
Computing, 9:827-845, 1980.

R. C. Backhouse and B. A. Carfe. Regular algebra applied to path-finding
problems. J. Inst. Math. Applications, 15:161-186, 1975.

U. Bertelé and F. Brioschi. Nonserial Dynamic Programming. Academic
Press, New York, 1972.

G. B. Dantzig. Linear Programming and Ezxtensions. Princeton University
Press, Princeton, NJ, 1962.

E. Davis. Constraint propagation with interval labels, Artificial Intelligence,
32:281-331, 1987.

E. Davis. Private communication, 1989.

T. Dean. Large-scale temporal data bases for planning in complex domains.
In Proceedings of IJCAI-87, Milan, Italy, pages 860-866, 1987.

115

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T. Dean. Using temporal hierarchies to efficiently maintain large temporal
databases. JACM, 36:687-718, 1989.

T. Dean, J. Firby, and D. Miller. Hierarchical planning involving deadline,
travel time and resources. Computational Intelligence, 4:381-398, 1990.

T. L. Dean and D. V. McDermott. Temporal data base management. Arti-
ficial Intelligence, 32:1-55, 1987.

R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition. Artificial Intelligence, 41:273-312, 1990.

R. Dechter. Constraint networks. In S. Shapiro, editor, 2nd Edition of
Encyclopedia of Artificial Intelligence. John Wiley, New York, 1992.

R. Dechter and 1. Meiri. Experimental evaluation of preprocessing techniques
in constraint satisfaction problems. In Proceedings of IJCAI-89, Detroit, MI,
pages 271-277, 1989,

R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction
problems. Artificial Intelligence, 34:1-38, 1987.

R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353-366, 1988.

Y. Deville and P. Van Hentenryck. An efficient arc consistency algorithm
for a class of CSP problems. In Proceedings of IICAI-91, Sydney, Australia,
pages 325-330, 1991,

S. Even. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.

E. C. Freuder. Synthesizing constraint expressions. CACM, 21:958-965,
1978.

E. C. Freuder. A sufficient condition of backtrack-free search. JACM, 29:24-
32, 1982,

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

J. Gaschnig. Performance Measurement and Analysis of Certain Search
Algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1979.

116

[29]

[32]

23]

34}

(35]

[36)

[37]

[38]

[39]

[40}

[41]

M. C. Golumbic and R. Shamir. Complexity and algorithms for reason-
ing about time: A graph-theoretic approach. Technical Report RRR-22-91.
Center for Operations Research, Rutgers University, New Brunswick, NJ.
1991.

I. Hamlet and J. Hunter. A representation of time for medical expert 5Vs-
tems. In Proceedings of the European Conference on Al in Medicine. Mar-
setlles, France, pages 112-119, 1987.

S. Hanks and D. V. McDermott. Default reasoning, nonmonotonic logics,
and the frame problem. In Proceedings of AAAI-86, Philadelphia, PA, pages
328-333, 1986.

R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

K. Kahn and G. A. Gorry. Mechanizing temporal knowledge. Artificial
Intelligence, 9:87-108, 1977.

M. G. Kahn, J. C. Ferguson, E. H. Shortliffe, and L. M. Fagan. Representa-
tion and use of temporal information in ONCOIN—cancer therapy planning
program. In M. K. Chytil and R. Engelbrecht, editors, Ezpert Medical Sys-
tems, pages 35—-44. Sigma Press, 1987.

H. Kautz and P. B. Ladkin. Integrating metric and qualitative temporal
reasoning. In Proceedings of AAAI-91, Anaheim, CA, pages 241-246, 1991,

L. G. Khachiyan. A polynomial algorithm in linear programming. Souviet
Mathematics Doklady, 20:191-194, 1979.

P. B. Ladkin. Time representation: A taxonomy of interval relations. In
Proceedings of AAAI-86, Philadelphia, PA, pages 360-366, 1986.

P. B. Ladkin. Metric constraint satisfaction with intervals. Technical Report
TR-89-038, International Computer Science Institute, Berkeley, CA, 1989.

P. B. Ladkin and R. D. Maddux. On binary constraint networks. Technical
report, Kestrel Institute, Palo Alto, CA, 1989.

D. J. Lehmann. Algebraic structures for transitive closure. Theoretical Com-
puter Science, 4:59-76, 1977.

C. E. Leiserson and J. B. Saxe. A mixed-integer linear programming problem
which is efficiently solvable. In Proceedings—21st Annual Allerton Confer-
ence on Communication, Control, and Computing, pages 204-213, 1983.

117

[42]

[46]

[47]

[48]

[49]

(50]

(51]

[52]

Y. Z. Liao and C. K. Wong. An algorithm to compact a vlsi symbolic layout
with mixed constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, CAD-2:62-69, 1983.

A. K. Mackworth. Consistency in networks of relations. Artificial Intell:-
gence, 8:99-118, 1977.

A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, 2nd Edition
of Encyclopedia of Artificial Intelligence. John Wiley, New York, 1992,

A. K. Mackworth and E. C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artifi-
cial Intelligence, 25:65-74, 1985,

J. Malik and T. O. Binford. Reasoning in time and space. In Proceedings of
IJCAI-83, Karlsruhe, West Germany, pages 343-345, 1983.

D. V. McDermott. A temporal logic for reasoning about processes and plans.
Cognitive Science, 6:101-155, 1982.

I. Meiri. Faster constraint satisfaction algorithms for temporal reasoning.
Technical Report TR-151, Cognitive Systems Laboratory, Computer Science
Department, University of California, Los Angeles, CA, 1990.

R. Mohr and T. C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225-233, 1986.

U. Montanari. Networks of constraints: Fundamental properties and appli-
cations to picture processing. Information Sciences, 7:95-132, 1974,

K. Nékel. Temporal matching: Recognizing dynamic situations from discrete
measurements. In Proceedings of IJCAI-89, Detroit, MI, pages 1255-1260,
1989,

B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence, 21:135-178,
1983.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complezity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

D. S. Parker. Partial order programming. Technical Report CSD-870067,
Computer Science Department, University of California, Los Angeles, CA,
1987.

118

(53]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. Poesio and R. J. Brachman. Metric constraints for maintaining appoint-
ments: Dates and repeated activities. In Proceedings of AAAI-91, Anaheim.
CA, pages 253-259, 1991.

P. W. Purdom. Search rearrangement backtracking and polvnomial average
time. Artificial Intelligence, 21:117-133, 1983.

Y. Shoham. Reasoning About Change: Time and Causation from the Stand-
point of Artificial Intelligence. MIT Press, Cambridge, MA, 1988.

R. Shostak. Deciding linear inequalities by computing loop residues. JACM,
28:769-779, 1981.

F. Song and R. Cohen. The interpretation of temporal relations in narrative.
In Proceedings of AAAI-88, St. Paul, MN, pages 745-750, 1988.

F. Song and R. Cohen. Temporal reasoning during plan recognition. In
Proceedings of AAAI-91, Anaheim, CA, pages 247-252, 1991.

R. E. Tarjan. Fast algorithms for solving path problems. JACM, 28:594-614,
1981.

R. E. Tarjan. A unified approach to path problems. JACM, 28:577-593,
1981.

R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs and selectively reduce
acyclic hypergraphs. SIAM Journal of Computing, 13:566-579, 1984.

R. E. Valdés-Pérez. Spatio-temporal reasoning and linear inequalities. Tech-
nical Report AIM-875, Artificial Intelligence Laboratory, MIT, Cambridge,
MA, 1986.

R. E. Valdés-Pérez. The satisfiability of temporal constraint networks. In
Proceedings of AAAI-87, Seattle, WA, pages 256-260, 1987.

P. VanBeek. Approximation algorithms for temporal reasoning. In Proceed-
ingsﬁf IJCAI-89, Detroit, MI, pages 1291-1296, 1989.

P. VanBeek. Fzact and Approzimate Reasoning About Qualitative Temporal
Relations. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada,
1990.

P. VanBeek. Reasoning about qualitative temporal information. In Proceed-
ings of AAAI-90, Boston, MA, pages 728-734, 1990.

119

[69]

[70]

[71]

[72]

(73]

[74]

J. F. A, K. VanBenthem. The Logic of Time. D. Reidel, 1983.

S. A. Vere. Planning in time: Windows and durations for activities and
goals. [EEE Transactions on Pattern Analysis and Machine Intelligence.
5:246-267, 1983.

M. Vilain. A system for reasoning about time. In Proceedings of AAAI-82,
Pittsburgh, PA, pages 197-201, 1982.

M. Vilain and H. Kautz. Constraint propagation algorithms for temporal
reasoning. In Proceedings of AAAI-86, Philadelphia, PA, pages 377-382,
1986.

J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum
ifi networks. Networks, 13:159-167, 1983.

B. C. Williams. Doing time: Putting qualitative reasoning on firmer ground.
In Proceedings of AAAI-86, Philadelphia, PA, pages 105-113, 1986.

120

