Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN ALGORITHM FOR DECIDING IF A SET OF OBSERVED
INDEPENDENCIES HAS A CAUSAL EXPLANATION

T.S. Verma February 1992
J. Pearl CSD-920018

' TECHNICAL REPORT
Submitted to the 8th Conference on Uncertainty in Artificial Intelligence, R-177

February, 1992. February 1992

An Algorithm for Deciding if a Set of
Observed Independencies Has a Causal
Explanation

TS Verma* Judea Pearl]
<verma@cs.ucla.edu> <judea@cs.ucla.edu>
Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, CA 90024

February 20, 1992

Abstract

In a previous paper [8] we presented an algorithm for extracting
causal influences from independence information, where a causal in-
fluence was defined as the existence of a directed arc in all minimal
causal models consistent with the data. In this paper we address the
question of deciding whether there exists a causal model that explains
ALL the observed dependencies and independencies. Formally, given
a list M of conditional independence statements, it is required to de-
cide whether there exists a directed acyclic graph D that is perfectly
consistent with M, namely, every statement in M, and no other, is
reflected via d-separation in D. We present and analyze an effective
algorithm that tests for the existence of such a dag, and produces one,
if it exists.

Key words: Causal modeling, graphoids, conditional independence.

*TS Verma is a PhD student at UCLA

1 Introduction

Directed acyclic graphs (dags) have been widely used for modeling statistical
data. Starting with the pioneering work of Sewal Wright [14] who introduced
path analysis to statistics, through the more recent development of Bayesian
networks and influence diagrams, dag structures have served primarily for
encoding causal influences between variables as well as between actions and
variables.

Even statisticians who usually treat causality with extreme caution, have
found the structure of dags to be an advantageous model for explanatory
purposes. N. Wermuth [13], for example, mentions several such advantages.
First, the dag describes a stepwise stochastic process by which the data could
have been generated and in this case it may even “prove the basis for devel-
oping causal explanations” [1]. Second, each parameter in the dag has a well
understood meaning since it is a conditional probability, l.e., it measures
the probability of the response variable given a particular configuration of
the explanatory (parents) variables and all other variables being unspeci-
fied. Third, the task of estimating the parameters in the dag model can be
decomposed into a sequence of local estimation analyses, each involving a
variable and its parent set in the dag. Fourth, general results are available
for reading all implied independencies directly off the dag [12], [6], [5] and for
deciding from the topology of two given dags whether they are equivalent,
i.e., whether they specify the same set of independence-restrictions on the
joint distribution [2], [11], and whether one dag specifies all the restrictions
specified by the other [7]*.

This paper adds a fifth advantage to the list above. It presents an algo-
rithm which decides for an arbitrary list of conditional independence state-
ments whether it defines a dag and, if it does, a corresponding dag is drawn.
The algorithm we present has its basis in the “Inferred-Causation” (IC) al-
gorithm described in [8] and in Lemmas 1 and 2 of [11]. However, whereas in
[8] we were interested in detecting local relationships that we called “genuine
causal influences”, we now consider an entire dag as one unit which ought to
fit the data at hand.

1The criterion for dag equivalence is given in Lemma 3.1. It follows from Frydenberg’s
analysis of chain graphs, which applies to strictly positive distributions. The more direct
analysis of Verma and Pearl [11] renders the criterion applicable to arbitrary distributions,
as well as to non-probabilistic dependencies of the graphoid type [9].

1.1 Problem

Given a list M of conditional independence statements? ranging over a set
of variables U it is required to decide whether there exists a directed acyclic
graph (dag) D that is consistent with).

1.2 Definitions

A dependency model is a list of conditional independence statements of the
form I{A, B|C), where A, B and C are disjoint subsets of some set of variables
U. A dag D is consistent with a dependency model M if every statement in M
and no statement outside M follows from the topology of D. In this case, M
is said to be dag-isomorphic. A statement I follows from the topology of a dag
D, if I holds in every probability distribution that is compatible with D3. A
probability distribution P is compatible with D if it can be decomposed into
a product of conditional probabilities P(al7(a)), over all nodes a € U, where
#(a) is a set containing the parents of a in D. Finally, a statement I (A, B|C)
holds in a probability distribution P iff P(4{C)P(B|C)= P(AB|C).

The following definitions and notation are needed to understand the pro-
posed solution. A partially directed acyclic graph (pdag) is a graph which
contains both directed and undirected edges, but it does not contain any
strictly directed cycles. An eztension of a pdag G, is any fully directed acyclic
graph, D), which has the same skeleton (underlying undirected graph) as G
and the same vee structures as G. Three nodes form a vee structure, written
abc if a — b+ c and a is not adjacent to c. Two nodes are adjacent, written
ab, if either a — b, @ « b or a — b.

1.3 Overview

Section 2 details the solution to the problem posed in Sectionl.1. It presents
an algorithm which consists of the following three phases.

o Phase 1 examines the independence statements in M and tries to con-
struct a pdag, G with the following guarantees:

2We assume that M is closed under the graphoid axioms. See remark in Section 5 for
processing lists that are not closed.
3Alternatively, such a statement corresponds to a d-separation condition in D [6].

1. If M is dag-isomorphic then every extension of G will be consistent
with M.

2. If Phase 1 fails to generate a pdag, then M is not dag-isomorphic.
o Phase 2 extends a pdag, G, into a dag D, if possible.

e Phase 3 verifies if D is consistent with M.

If D is found to be consistent with M then M is dag-isomorphic, by
definition. If D is found to be inconsistent with M then M is not dag-
isomorphic and (by definition) no dag can be consistent with M.

Additional improvements to this algorithm and extensions to the problem
are discussed in Section 5.

2 The DAG Construction Algorithm

Phase 1
Generate a pdag G, from M, if possible.

1. For each pair of variables, (a,b), look through M for a statement of the
form I(a, b|S), where S is any set of variables (including 9). Construct
an undirected graph G where vertices a and b are connected by an
edge iff a statement I(a,b|S) is not found in M. Mark every pair of
non-adjacent nodes in G with the set S found in M, call this set S(a,b).

2. For every pair of non-adjacent nodes a and ¢ in G, test if there is a
node b not in S(a, c) that is adjacent to both a and c. If there is such a
node then direct the arcs @ — b and ¢ — b unless there already exists a
directed path from b to a or from b to ¢, in which case Phase 1 FAILS.

3. If the orientation of Step 2 is completed then Phase 1 SUCCEEDS, and
returns a partially directed graph, G.

Phase 2
Extend G into a dag, D, if possible.

1. Initially let C be an empty stack and let D equal G.

2. While D contains any nudirected arcs repeat 2a, 2b and 2c:

(a)

Close D under the following four rules, if possible.

Rule 1: If a — b— ¢ and « is not adjacent to ¢ then direct & — c.

b
Rule 2: If 7 N, thena — c.
a—r
Rule 3: If G\J{/C then direct b — d.

Rule 4: If a?ff then direct ¢ — b +— c.

If the closure was successful, i.e. there are no directed cycles or
new vee structures, then:

e If D still contains any undirected arcs, select one and choose
a direction for it, push the arc and a copy of D onto the stack
C and continue the while loop (i.e. go back to 2a).

¢ If G contains no more undirected arcs, then the while loop
is completed, Phase 2 SUCCEEDS, and returns a directed
acyclic graph D,

If the closure was unsuccessful, then discard the current value of
D and pop the most recent copy off of the stack along with the
selected arc. Reverse the chosen direction of the arc in D and
continue the while loop (i.e. go back to 2a).

Phase 3
Check if D is consistent with Af.

1. Test that every statement J in M holds in D (using the d-separation

criterion).

4

A linear time algorithm for testing d-separation is reported in f4}.

2. Pick any total ordering of the nodes which agrees with the directionality
of the D and let U, stand for the set of nodes which precede a in this or-
dering. For every node a in D, test if the statement I{a, U, \ #(a)|#(a))
1s in M.

3. If both tests are confirmed, EXIT with SUCCESS, and return D; else,
EXIT with FAIL.

3 Correctness

Phase 1

This phase examines M and generates a graph, G subject to the above guar-
antees, if possible. That is, if M is dag-isomorphic then every extension of
G is consistent with M. The correctness of Step 1 of this phase follows from
the following lemma [11] (a detailed proof of which can be found in [10]).
appendix);.

Lemma 3.1 Let M be any dag isomorphic dependency model, o dag D is
consistent with M iff the following two conditions hold:

1. ab in D iff Vs, I{a,b|S) ¢ M.
2. abe in D iff abc and —ac in D and Vs, if I(a,¢|S) € M then b ¢ S.
The only-if portion of this lemma guarantees that:

1. If there exists some dag D" which is consistent with M, then any dag
D consistent with M must have the same skeleton as D*.

2. Furthermore, every dag D, consistent with M must have the same vee
structures as D*.

The if part guarantees that every dag D which has the same skeleton and
vee structures as D*, is consistent with M.

The first step of Phase 1 attempts to construct this invariant skeleton, if
M is dag-isomorphic. The arrowheads added in the second step identify the
invariant vee structures, again, if M is dag-isomorphic.

6

Note however, that Step 2 of Phase 1, directs arcs immediately upon
finding one set S satisfving condition 2 of the lemma. This decision is correct
due to the following lemima:

Lemma 3.2 For any dag-isomorphic dependency model M and any three
variables a, b and ¢ forming a chain abe,

if ds s.t. I{a,c|S) € M and b ¢ S then Vi I(a,c|S) € M implies b ¢ S

Proof: Suppose abc and 35 s.t. I(a,¢|S) € M and b ¢ S. In order
for § to d-separate a and c, it must be the case that @ — b «— ¢ — if b
were not head-to-head then this two link path would be active given any set
not containing b. Now since b is head-to-head it must be the case that any
set S’ which contains b will activate this two link path, hence for any S if
I{a,b|S$") € M then b ¢ S'. a
This lemma permits the use of the first S found to orient the vee structures.

If M is not dag-isomorphic it would be possible for Phase 1 to build a
graph that is not a pdag if it weren't for the failure condition in Step 2. The
next example illustrates a failure resulting from an application of Phase 1 on
a non-dag-isomorphic dependency model.

Example 3.3 Let U = {a,b,c,d} and M be the closure of the set {I(a,c|0),
I{a,d|0), I(b,d|®)} under symmetry®.

Step 1 of Phase 1 will construct the skeleton a —b—c —d, and S(a,c) =
S(a,d) = S(b,d) = §. Since there is a chain abc and ~aZ and b ¢ S(a,c)
Step 2 could direct a — b « c. Similarly since bed and —~bd and ¢ ¢ S(b,d),
Step 2 could direct b — ¢ — d.

One of the two directions would be assigned first, then upon attempting
the second the algorithm would FAIL.

Phase 2

The task of Phase 2 is to find a whether a pdag, G, has any extensions and
to find one if such exists. This is a purely graph theoretic task; it does not
involve M.

’Symmetry states that I(A, B|C) iff I{B. A|C). Unless otherwise noted, dependency
models are assumed to be closed under symmetry since this is a trivial operation.

To prove that this phase of the construction is correct, it is sufficient
to prove that each of the four rules is sound. namely, that the orientation
choices dictated by these rules never need to be revoked.

e Rule1: If a — b — ¢ and « is not adjacent to ¢ then direct b — e.

Directing b — ¢ as & «— ¢ would create a new vee structure, abe, thus if
there is a consistent extension it must contain b — e.

b
e Rule2: If /N, theneae — c.
a—7rc¢

Directing a — ¢ as a « ¢ would create a directed cycle, {abca), thus if
there is a consistent extension it must contain ¢ — c.

e Rule3: If 0'@0 then direct b — d.

Directing b — d as b «— d would imply that ¢ — b must be directed as
a — b or else there would be a directed cycle, [adba]l. Now if b — ¢
is directed as b — c then there is a directed cycle, [bedb], and if it is

directed as b « c then there is a new vee structure, abc. Thus if there
is a consistent extension it must contain b — d.

o Rule 4: If 3\70 then direct @ — b — ¢.

First, @ — b must be directed as a — b or there would be a new vee
structure, dab. If b—c¢ is directed as & — ¢ then ¢—d cannot be directed
as ¢ — d or there would be a directed cycle, [cdabc]. Moreover, ¢ — d

cannot be directed as ¢ « d or there would be a new vee structure, bed.
Thus if there is a consistent extension, then it must contain a — b «— c.

Following are two simple examples of pdags which cannot be extended
into dags.

c |
d

7N

e f
(a) (b)

Figure 1: Two pdags which cannot be extended.

Example 3.4 Consider the graph of Figure 1.a. Initially, no rules apply, so
the algorithm would select and arc and direct it, e.q. a — b. Now Rule 1 will
apply twice, directing b — ¢ — d. However a third application to infer d — a
would produce a directed cycle. It is easy to see that a cycle would even if
the chosen direction of the selected arc were reversed. Thus this graph has
no dag extension.

Example 3.5 Consider the graph of Figure 1.b. Any application of Rule 1
to direct the arc ¢ — d would create a new vee structure. Hence this graph as
well, has no dag extension.

Phase 3

The soundness of Step 1 follows from the definition of consistency; it simply
checks if each and every independence statement of M is represented in D.
The soundness of Step 2, namely that testing only statments of the form
I{a,U, \ #(a)|7(a)) is sufficient follows from the proof of the soundness of
d-separation[12].

Example 3.6 LetU = a,b,¢ and M = {I(a,b(0), I(a,c|9), I(b,c|0)}. Phase 1
will produce an empty graph which can trivially be extended into an empty
dag. But every independence statement is true in an empty dag, including,
e.g. I{a,blc) which is not in M. Thus M is not dag isomorphic.

Example 3.7 Let U = a,b,c.d and M = {I(a,b|0), I(a,b|d), I{ab,d|c)}.
Phase 1 will produce G and Phase 2 will eztend it into D. But D does not
reflect I(a,bld) € M. Thus A is not dag isomorphic.

4 Complexity Analysis
Phase 1 can be completed in O([A} + |U|?) steps, as follows:

e Start with a complete graph G. For each statement, (A4, B|S) in M,
and for each pair of variables « € A, and b € B remove the links a — b
from G and define S{a,b) = S.

¢ For each node a let N(a) = {bla — b} be the set of neighbors of a.

e For each separating set S(a,b) defined above, note that C(a,b) =
N{a}U N(b)\ S(a,b) must be children of a and b so direct @ — ¢ «— b
Ve € C(a,b).

Phase 2 may appear to require an exponential amount of time in the
worst case due to possible backtracking in Step 2(c). However, we conjecture
that if G is extendible, then Rules 1-4 are sufficient to guarantee that no
choice will ever need to be revoked. Empirical studies have, so far, confirmed
our conjecture. Thus it would be possible to replace the backtrack step with
a definite failure, in which case the time complexity of this phase would be
polynomial, no more than O(|U|* * | E|).

Phase 3 can be completed in O(|M| «{E| + |M| * |U|) steps.

5 Extensions and Improvements

In general, the set of all independence statements which hold for a given
domain will grow exponentially as the number of variables grows. Thus it
might be impractical to specify M by explicit enumeration of its I-statements.
In such cases it may be desirable, instead, to specify a basis, L, such that M is
the logical closure of L, (i.e. M = CL(L)), relative to some semantics, (e.g.
the graphoid axioms, correlational graphoids axioms, or even probability
theory).

10

The major difficulty in permitting the dependency model to be specified
as the closure of some basis lies in solving the so called membership prob-
lem. Simply stated, the problem is to decide if a particular statement, Io.
is contained in the closure, A/, of a given list of statements. L. In general,
mermbership problems are often undecidable, and of those that are decid-
able, many are NP-complete. In particular, the membership problems for
both graphoids and probabilistic independence are unsolved [3].

However, in spite of this difficulty, it may still be possible to have an
efficient dag construction algorithm. because the queries required are of a
special form. The algorithm makes four types of queries to M:

—

. (Phase 1, Step 1) “Is there any S such that I{a,b|S) € CL(L)?”

[

. {Phase 1, Step 2) “Is b in any set S such that I(a,c|§) € CL{L)?”
3. (Phase 3, Step 1) “Is every statement in C L(L) represented in D?”
4. (Phase 3, Step 2) “Is every statement represented in D in CL(L)?”

In the case that M is assumed to be the graphoid closure of L, queries
of type 1, 2 and 3 are all manageable. The queries for Phase 1 can both be
quickly answered due to the following lemma®:

Lemma 5.1 If 35 s.t. I{a,b|S) € CL(L) then 348, s.t. I{aA,bB|CYE L

Remark: Note that this simplification is possible due to the special form of
these queries, namely that ¢ and b are both singletons and any separating
set will suffice.

Type 3 queries pose no particular problem since the axioms of graphoids
hold for d-separation. Thus it is enough to check that each statement in
L is represented in D to ensure that the every statement in closure of L is
represented in [

However, to check that each statement represented in D is contained
in CL(L) it is necessary to make the |U| membership queries explicated in
Step 2 of Phase 3. Although these statements have a special form, it is yet
unclear whether a lemma similar to 3.1 exits to simplify these queries.

Another possible source for simplification is to note that the dag D being
tested in Step 2 of Phase 3 is not just any random dag, but the output of the

®This lemma follows immediately from the form of the graphoid axioms.

11

construction algorithm. While Example 3.6 demonstrates that it is possible
for D to contain [-statements which are not in CL(L), it may still be the case
that any such I-statements must have either a certain form or some other
property that would simplify the membership query.

References

[1] D. R. Cox. Causality; some statistical aspects. To appear in J. Roy.

[2]

[3]

[4]

[5]

[6]

(8]

[9]

Statist. Soc. Ser. A.

M. Frydenberg. The chain graph markov property. Scand. J. Statist.,
17:333 - 353, 1990.

D. Geiger. Graphoids — A Qualitative Framework for Probabilistic In-
ference. PhD thesis, UCLA, 1990.

D. Geiger, T. S. Verma, and Judea Pearl. Identifying independence in
bayesian networks. Networks, 20:507 - 534, 1990.

S. L. Lauritzen, A. P. Dawid, B. Larsen, and H. G. Leimer. Independence
properties of directed markov fields. Networks, 20:491-505, 1990.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan-
Kaufman, San Mateo, CA, 1988.

J. Pearl, D. Geiger, and T. S. Verma. The logic of influence diagrams.
In R. M. Oliver and J. Q. Smith, editors, Influence Diagrams, Belief
Networks and Decision Analysis, pages 67 — 87. John Wiley and Souns,
Ltd., Sussex, England, 1989.

J. Pearl and T. S. Verma. A theory of inferred causation. In J. A, Allen,
R. Fikes, and E. Sandwall, editors, Priniples of Knowledge Representa-
tion and Reasoning: Proceedings of the Second International Conference,
pages 441 — 452. Morgan Kaufmann, San Mateo, 1991.

Judea Pearl and Azaria Paz. Graphoids: A graph-based logic for reason-
ing about relevance relations. In B. Du Boulay et al., editor, Advances
in Artificial Intelligence-II, pages 357-363. North Holland, Amsterdam,
1986.

12

[10]

11)

[12}

[13]

[14]

T. S. Verma. Invariant properties of causal models. Technical Report
R-134, UCLA Cognitive Systems Laboratory, 1991.

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models.
In Proceedings 6th Conference on Uncertainty in Al pages 220 - 227,
1990.

T.S. Verma. Causal networks: Semantics and expressiveness. Technical
Report R-65, UCLA Cognitive Systems Laboratory, 1986. Also in: R.
Shachter, T.S. Levitt and L.N. Kanal, editors, Uncertainty in Al 4,
pages 325-359, Elsevier Science Publishers 1989.

N. Wermuth. On block-recursive linear regression equations. Technical
Report ISSN 0177-0098, Psychological Institute, University of Mainz,
Mainz, FRG, September, 1991. Forthcoming in the Brazilian Journal of
Probability and Statistics.

S. Wright. Corrleation and causation. J. Agricult. Res., 20:557 — 585,
1921.

13

