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Abstract

We recently described a formalism for reasoning with if-then rules that are ex-
pressed with different levels of firmness [9]. The formalism interprets these rules as
extreme conditional-probability statements, specifying orders of magnitude of disbe-
lief, which impose constraints over possible rankings of worlds. It was shown that,
once we compute a priority function Z+ on the rules, the degree to which a given
query is confirmed or denied can be computed in O(logn) propositional satisfiability
tests, where n is the number of rules in the knowledge base. In this paper, we show
that computing Z* requires O(n? x log n) satisfiability tests, not an exponential num-
ber as was conjectured in [9], which reduces to polynomial complexity in the case of
Horn expressions. We also show how imprecise observations can be incorporated in our
formalism and how the popular notions of belief-revision and epistemic entrenchment
are embodied naturally and tractably.
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1 Introduction: Infinitesimal Probabilities, Rankings

and Common Sense Reasoning

The uncertainty encountered in common sense reasoning fluctuates over an extremely wide
range. For example, the probability that the new book on my desk is about astrology is less
than one in a million. If however, I spot a Zodiac sign on page 1, the probability becomes
close to 1, say 0.999. Intelligent agents are expected to reason with such rare eventualities
and to produce explanations and actions whenever these occur. Given this wide range of
uncertainty and the 't that the majority of everyday decisions involve relatively low payoffs,
the full precision of probability calculus may not be necessary, and an order-of-magnitude
approximation may be sufficient. Thus, instead of measuring probabilities on a scale from
zero to one, we can lmagine projecting probability measures onto a quantized logarithmic
scale and then treating beliefs that map onto two different quanta as being of different orders
of magnitude.

This method of approximation gives rise to a semi-qualitative calculus of uncertainty,
one in which degrees of (dis)belief are ranked by non-negative integers (corresponding per-
haps to linguistic quantifiers such as “believable,” “unlikely,” “very rare”) still capable of
accounting for retraction and restoration of beliefs by Bayesian conditionalization. The ori-
gin of this approximation can be traced back to Ernest Adams [1], who developed a logic
of conditionals based on infinitesimal probabilities, and to the Ordinal Condition Functions
of Spohn [18]. Potential applications in nonmonotonic reasoning were noted in (12, 13] and
further developed in [11, 7, 13, 8, 9].

A simple way of viewing infinitesimal probabilities is to consider an ordinary probability
function P defined over a set (1 of possible worlds (or states of the world) w and to imagine
that the probability P(w) is a polynomial function of some small parameter ¢, for example
1 —c1€ or €2 — e3¢, Accordingly, the probabilities assigned to any subset of ) represented by
a logical formula ¢, as well as all conditional probabilities P(1|y), will be rational functions
of . We define the ranking function x(¢]p) ! as the power of the most significant s-term
in the expansion of P(¢|p). In other words, «(¥|¢) = n iff P(¥|p) has the same order of
magnitude as ™.

The following properties of ranking functions (left-hand side below) reflect, on a loga-
rithmic scale, the usual properties of probability functions (right-hand side), with “min”
replacing addition, and addition replacing muitiplication:

5(¢) = mink(p) @ Plp) = g P(p) (1)
k(p) =0o0r k(~p) =0o0r both : Pp)+ P(-p)=1 (2)
R A w) = s(Ple) +x(p) = Pl Ap)=P(le)P(p) (3)

'Spohn [18] called this function a “non~probabilistic® Ordinal Condition Function.



Parameterizing a probability measure by ¢ and extracting the lowest exponent of ¢ as the
measure of (dis)belief mirrors the process by which people abstract qualitative beliefs from
numerical probabilities and accept them as tentative truths. For example, we can make the
following correspondence between linguistic quantifiers and e™:

P(¢p) =¢° ¢ is believable, - is believable s(¢)=20
P(¢) =€t ¢ is unlikely, —¢ is believed K(g) =1
P(¢) =e? ¢ is very unlikely , —¢ is strongly believed k(@) =2
P(¢) = &> | ¢ is extremely unlikely , = is very strongly believed | x(¢) = 3

These approximations yield a probabilistically sound calculus, employing integer addi-
tion, for manipulating the orders of magnitude of disbelief. It is governed by the following
principles:

1. Each world is ranked by a non-negative integer « representing the degree of surprise
associated with finding such a world.

2. Each well-formed formula (wff) is given the rank of the world with the lowest « (most
normal world) that satisfies that formula.

3. Given a collection of facts ¢, we say that o follows from ¢ with strength & if x(z)|) > 6,
or, equivalently, if the & rank of ¢ A —o is at least § + 1 degrees above that of ¢ A .2

The basic « ranking system, as described in Spohn [18], requires the specification of a
complete ranking function before reasoning can commence. In other words, the knowledge
base must be sufficiently rich to define the x associated with every world w. Unfortunately,
in practice such specification is not readily available. For example, we might be given the
information that “birds normally fly” (written x(—f|d) > 0) and no information whatsoever
about the flying habits of red birds or non-birds. We still would like to conclude that
red birds normally fly, even though the information given is not sufficient for defining a
complete ranking function. In order to draw plausible conclusions from such fragmentary
pieces of information, we require additional inferential machinery that should accomplish
two functions: First, it should enrich the specification of the ranking function with the
needed information and, second, it should operate directly on the specification sentences in
the knowledge base, rather than on the rankings of worlds (which are too numerous to list).
Such machinery is provided by a formalism called system-Z* [9] which accepts knowledge
in the form of quantified if-then rules (e.g., “birds fly (with strength 6)”) and computes
the plausibility of any given query (e.g., “Tim, being a red-bird, flies (with degree §)”) by
syntactic manipulation of these rules.

To accomplish these functions, system-Z+ incorporates two principles in addition to those
given above:

%In probabilistic terms, P(o|¢) > 1 — ccl8+1).



4. Each input rule “if ¢ then v (with strength §),” written ¢ 2 ¥, 1s interpreted as a
constraint on the ranking «, forcing every world in ¢ A -3 to rank at least § +1 degrees
above the most normal world in p, that is, x(¥|p@) > 8.

5. Out of all rankings satisfying the constraints above, we adopt the (unique) ranking «*
that assigns each world the lowest possible (most normal) rank.

The first contribution of this paper is to improve the inference process of system-Z+ and
establish its tractability. A key step in the procedures developed in [9] was the computation
of a priority ranking Z* on the rules in the knowledge base, which was conjectured to
be intractable. In Section 3 (after some preliminary definitions in Section 2), we present a
procedure for computing Z7% that requires a polynomial number of propositional satisfiability
tests and hence is tractable in applications permitting restricted languages, such as Horn
expressions, network theories, or acyclic databases.

The second contribution of this paper is to equip system-Z* with the capability to reason
with soft evidence or imprecise observations (Section 4). Such a capability is important when
we wish to assess the plausibility of ¢ (using Principle 3 above) but the context ¢ is not
given with absolute certainty. In other words, there is some vague testimony supporting
¢ but that testimony is undisclosed (or cannot be articulated using the basic propositions
in our language, e.g., testimony of the senses); all that can be ascertained is a summary
of that testimony saying that “¢ is supported to a degree n.” We propose two different
strategies for computing a new ranking &’ from an initial one , given soft evidential report
supporting a wif ¢. The first strategy, named J-conditionalization, is based on Jeffrey’s
Rule of Conditioning [14]. It interprets the report as specifying that “all things considered,”
the new degree of disbelief for —¢ should be «'(-¢) = n. The second strategy, named L-
conditionalization, is based on the virtual evidence proposal described in [13]. It interprets
the report as specifying the desired shift in the degree of belief in ¢, as warranted by that
report alone and “nothing else considered.” We show that L-conditionalization has roughly
the same complexity as ordinary conditionalization, and then we relate our formalism to the
theory of belief revision in [2]. Finally, Section 5 summarizes the main results.

2 Preliminary Definitions: The Ranking «*

We start with a set of rules A = {r; | r; = ¢ 5 ¥i,1 < 1 < n}, where ¢; and ¥ are
propositional formulas over a finite language of atomic propositions, “—” denotes a new
connective, and §; is a non-negative integer. A truth valuation w of the atomic propositions
in the language will be called a world. The satisfaction of a wif ¢ by a world w is defined as
usual and denoted by w = ¢. w is a model for ¢ if w satisfies . Let § stand for the set of
possible worlds. Ranking functions are defined as follows:



Definition 2.1 (Rankings) A ranking function « is an assignment of non-negative in-
tegers to the elements in {2, such that x(w) = 0 for at least one world w € . We extend
this definition to induce rankings on wifs;3

_ ) minge, k(w)  if @ is satisfiable,
wy) = { 00 otherwise.

(4)

Similarly, given two wifs ¢ and ¢ such that ¢ is satisfiable, we define the conditional ranking

() as k(lp) = k(¥ A p) — K(e).

O

Definition 2.2 (Consistency) A ranking « is said to be admissible relative to a given
AL iff

min k{w)+ 6 < min  s(w) (5)

whEeiAd whEwi Ay

(equivalently k(@i A ¥;) + 8 < k(@i A =), or k(=¥;|p; > 0)) for every rule ¢; 5 9 € A.
A set A is consistent iff there exists an admissible ranking & relative to A.
O

Consistency can be decided in O(]A}?) satisfiability tests, and it is independent of the §-values
assigned to the rules in A [9]. Eq. 5 echoes the usual interpretation of defaults rules [17),
according to which ¢ holds in all minimal models for ¢. In our case, minimality is reflected
in having the lowest rank, that is the highest possible likelihood. If we say that w falsifies
or violates a rule 2, b whenever w k= ¢ A -1, the parameter § can be interpreted as the

minimal degree of surprise (or abnormality) associated with finding the rule ¢ N ¥ violated,
given that we know . In probabilistic terms, consistency guarantees that for every ¢ > 0,

there exists a probability distribution P such that if o; &, ¥i € A, then P(¢i]@i) > 1 — ecl.

The distinguished ranking «%, defined below, assigns to each world the lowest possible
rank permitted by the admissibility constraints of Eq. 5 (Def. 2.2). Such an assignment
reflects the assumption that, unless we are forced to do otherwise, each world is considered
as normal (likely) as possible.

Definition 2.3 (The ranking «*) Let A = {r; | 7 = ¢; = i} be a consistent set of
rules. x* is defined as follows:

o+ (w) = 0 if w does not falsify any rule in A, (6)
T | maXepga-w[Z21(r)] + 1 otherwise,

3For notational convenience we will use the same symbol x to denote the ranking on wifs.



where Z*(r;) is a priority ranking on rules, defined by

Z*(ri) = w@fgﬁ[ﬁ(w] + 6. (7)

O

In [9], we show that Eqs. 6 and 7 define a unique admissible ranking function &% that is
minimal in the following sense: Any other admissible ranking function must assign a higher
ranking to at least one world and a lower ranking to none.

3 Plausible Conclusions: Computing the Z*-rank

Given a set A, each admissible ranking x induces a consequence relation m, where ¢ m o
iff k(o A @) < k(—o A ¢). A straightforward way to declare o as a plausible conclusion of A
given ¢ would be to require ¢ }-E o in all k admissible with A. This leads to an entailment
relation called £-semantics {13], 0-entailment [15], and r-entailment [11], which is recognized
as being too conservative. The approach we take here is to select a distinguished admissible
ranking, in our case k%, and declare ¢ as a plausible conclusion of A given ¢, written ¢ |y 7,
iff k¥ (¢Ao) < kT (pA—e).* According to Eq. 6 in Def. 2.3, both x* and [y can be computed
effectively once the priority ranking Z* on rules is known. We next present a procedure for
computing Z*, which is identical to the one presented in [9] save for the crucial computation
of Eq. 8 (Step 3(b)). Whereas in (9] this computation was thought to require an exponential
search over worlds, we now show that it can be accomplished in O(|A| x log |A|) satisfiability
tests. Some of the steps in Procedure Z_rank depend upon the notion of foleration. A rule

@ 2y o is tolerated by A if the wif ¢ Ao A; @i D ¥ is satisfiable (where ¢ ranges over all rules
in A).®

Procedure Z_rank

Input: A consistent knowledge base A. Output: Z*-ranking on rules.

1. Let Ag be the set of rules tolerated by A, and let RZ* be an empty set.
2. For each rule r; = @; 25 y; € A, do: set Z(r;) = &; and RZ+ = RZ*+ U {r;}.
3. While RZ* # A, do:

*If we are concerned with the strength 6 with which the conclusion is endorsed, then ¢ |q6_-' vy iff kT (¢ A
o)+ 8 <K (¢ A—a).

3The notion of toleration is also crucial for deciding consistency: A is consistent iff there is a tolerated
default rule in every nonempty subset A’ of A (Theorem 1, [9]).



(a) Let At be the set of rules in A’ = A — RZ™ tolerated by A’

(b) For each r : ¢ 2 o € AT, let Q, denote the set of models for ¢ A o that do not
violate any rule in A": compute

Z(r) = min {x(w,)] + 6 (8)
where
wlwr) = max {Z(rj) o | pj A=} +1 (9)

and rj @ @; %, Yv; € RZT.®
(c) Let v* be a rule in  having the lowest Z; set RZt = RZ+ U {r*}.

End Procedure

Theorem 3.1 about the correctness of Procedure Z_rank is taken from [9]. Lemmas 3.2
and 3.3 and Theorem 3.4 prove the polynomial complexity of Procedure Z_rank.

Theorem 3.1 The function Z computed by Z_rank complies with Def. 2.9, that is Z = Z*+.

Lemma 3.2 Let A = {r; | ; = p; 5, Y;} be a consistent set where the rules are sorted in
nondecreasing order according to priorities Z(r;). Let x{w) be defined as in Eq. 6:

_Jo if w does not falsify any rule in A,
)= { P 201 1 o (10)
Then, for any wff ¢, k() can be computed in O(log |A|} propositional satisfiability tests.

Proof: The idea is to perform a binary search on A to find the lowest Z(r) such that there
is a model for ¢ that does not violate any rule ' with priority Z(r') > Z(r). We first divide
A into two roughly equal sections: top-half (rpiqg to rrign) and bottom-half (riy to rmig).
Then we examine the top-half: If the wif & = ¢ AIZ ., »; D t; is satisfiable, then there
exists a model for ¢ that does not violate any rule in this top-half. It follows that Z(rn.4)+1
is an upper bound on the value of £(¢), and the binary search is continued iteratively in the
bottom-half. If, on the other hand, a is not satisfiable, then the maximum Z(r;) for any
model for ¢ must be in the top-half, and the search is continued there. Eventually, the set
in which the search is conducted is reduced to one rule, and we can determine the value of
k(¢) with one more satisfiability test. O

8Note that Eqs. 8 and 9 correspond to Egs. 7 and 6 in Def. 2.3.
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Lemma 3.3 The value of Z{¢ 4 o) in Eq. 8 can be computed in O(log |RZ™1) satisfiability
tests.

Proof: Let A’ in Step 3(a) be equal to {¢. 5, ¢}, and let the wif @ be equalto c A A, @i D
17; where 7 ranges over all the rules in A’. Note that since any world w, in ©, is a model
for ¢ A ¢ and does not violate any rule in A’, it follows that w, € Q, iff w, E «. Then,
since x(a) = min,, eq, k(wy), Z(d LR o) must be equal to k(a) + 1 + §. Thus, once A’
is sorted, by Lemma 3.2, k() can be computed in O(log |[RZ*|) satisfiability tests, which
proves Lemma 3.3. 0O

Theorem 3.4 Given a consistent A, the computation of the ranking Z% requires O(|A|* x
log |Al) satisfiability tests.

Proof: Step 1 requires at most |A| satisfiability tests and is performed once, while Step 2
takes at most |A| data assignments. Step 3(a) again requires O(|A|) satisfiability tests.
Computing Eq. 8 in Step 3(b) can be done in O(log |RZ7|) satisfiability tests according
to Lemma 3.3,7 and since it will be executed at most O(|A|) times, it requires a total of
O(|A| x log |A|) satisfiability tests. Step 3(c¢) is a minimum search which can be done in
conjunction with the computation of Eq. 8, since we only need to keep the minimum of
such values. It involves || data comparisons. Loop 3 is performed at most |A| —{Ap| times,
hence the whole computation of the priorities Z+ on rules requires a total of O(|A!% x log |A|)
satisfiability tests. O

Once Z% is known, determining the strength § with which an arbitrary query ¢ is con-
firmed, given the information ¢, requires O(log |A|) satisfiability tests: First «*(¢ A o) and
k¥ (¢ A —o) are computed, using a binary search as in Lemma 3.2. Then, these two values
are compared and the difference is equated with the strength §. Clearly, if the rules in A
are of Horn form, computing the priority ranking Z* and deciding the plausibility of queries

(¢ }ga &) can be done in polynomial time [4].

4 Belief Change, Soft Evidence, and Imprecise Ob-

servations

So far, a query ¢ |r§a o was defined as a pair of Boolean formulae (¢, o), where ¢ (the context)
stands for the set of observations at hand and o (the target) stands for the conclusion whose

“Note that we need RZt to be sorted, nondecreasingly, with respect to the priorities Z. This requires
that the initial values inserted in RZ¥ in Step 2 of Procedure Z_rank be sorted — O(|A,|?) data comparisons
— and that the new Z-value in Step 3(c) be inserted in the right place — O(|RZ*|) data comparisons. We
are assuming that the cost of each of these operations is much less than that of a satisfiability test.



belief we wish to confirm, deny, or assess. A query (¢, o) would be answered in the affirmative
if ¢ was found to hold in all minimally ranked models of ¢, and the Adegree of belief in o
would be given by «(-o|¢) — k(c|d).

In many cases, however, the queries we wish to answer cannot be cast in such a format,
because our set of observations is not precise enough to be articulated as a crisp Boolean
formula. For example, assume that we are throwing a formal party and our friends Mary
and John are invited. However, judging form their previous behavior, we believe that “if
Mary goes to the party, John will stay home {with strength §),” written M 5 —J. Now
assume that we have a strong hunch (with degree K') that Mary will go to the party (perhaps
because she is extremely well dressed and is not consulting the movie section in the Times)
and we wish to inquire whether John will stay home. It would be inappropriate to query
the system with the pair (M, —~J), because the context M has not been established beyond
doubt. The difference could be critical if we have arguments against “John staying home,”
for example, that he was seen renting a tuxedo. A flexible system should allow the user
to assign a degree of belief to each observational proposition in the context ¢ and proceed
with analyzing their rational consequences. Thus, a query should consist of a tuple like
(¢1, K1, ¢2, Koy .., ¢m, K 0), where each K; measures the degree to which the contextual
proposition ¢; is supported by evidence.

At first glance it might seems that such facility is automatically provided by system-Z+,
through the use of variable-strength rules. For example, to express the fact that Mary is
believed to be going to the party, we can perhaps use a dummy rule Obs; AEM (stating that
if Mary meets the set of observations Obs; then Mary is believed to be going to the party)
and then add the proposition Obs; to the context part of the query, to indicate that Obs,;
has taken place.

This proposal has several shortcomings, however. First, the net impact of our new rule
0bs,y X M would be sensitive to previously collected information about Mary’s intentions
(say she has bought a plane ticket) that we may wish to suppress. In other words, we often
wish to express the assessment that, all things considered, Mary’s going to the party is
believed to degree K.

Second, in many systems it is convenient to treat if-then rules as a stable part of our
knowledge, unperturbed by observations made about a particular individual or in any specific
set of circumstances. This permits us to compile rules into a structure that allows efficient
query processing. Adding query-induced rules to the knowledge base will neutralize this
facility.

Finally, rules and observations combine differently: The latter should accumulate the
former do not. For example, if we have two rules a % ¢ and b % ¢ and we observe a and b,
system-Z% would believe ¢ to a degree max(éy, 6;). However, if @ and & provide two indepen-
dent reasons for believing ¢, the two observations together should endow ¢ with a belief that
is stronger than any one component in isolation. To incorporate such cumulative pooling of
evidence, we must encode the assumption that @ and b are conditionally independent (given



¢), which is not automatically embodied in system-Z*.%

To avoid these complications, the method we propose treats imprecise observations by
invoking specialized conditioning operators, unconstrained by a rule’s semantics. We distin-
guish between two types of evidential reports:

1. Type-J: “All things considered,” our current belief in ¢ should become J.

2. Type-L: “Nothing else considered,” our current belief in ¢ should shift by L.

4.1 Type-J: All Things Considered

Let ¢ be the wif representing the event whose belief we wish to update so that x'(—¢) = J
(and, consequently, «'(¢) = 0). In order to compute x'(v0) for every wif v, we rely upon
Jeffrey’s Rule of Conditioning [14]. Jeffrey’s rule is based on the assumption that while the
observation changed the agent’s degree of belief in ¢ and in certain other proposition, it did
not change the conditional degree of belief in any propositions on the evidence ¢ or on
the evidence ~¢ [14]. Thus, letting P’ denote the agent’s probability distribution after the
report on the value of P'(¢) is incorporated, and, using P to denote the agent’s probability
distribution prior to this report, we have®

P'(¢) = P(¢]¢) and P'(¢|~4) = P(|9), (11)

which leads to Jeffrey’s rule,

P'(4) = P(¢|¢)P'(¢) + P(¢|=8)P'(¢). (12)

Translated into the language of rankings (using Eqs. 1-3), Eq. 12 yields
K'(¥) = min[(1|¢) + £'(); £(p|=0) + £'(=8)], (13)

which offers a convenient way of computing «'(v¢') once we specify £'(¢} = 0 and «'(—¢) = J.
Eq. 13 assumes the an especially attractive form when computing the &’ of a world w:

oy = ) swle)+r(8)  HfwlEe
W)= { £(w|=¢) + &'(~¢) ifw = ¢ (14)

8The assumptions of conditional independence among converging rules is embodied in the formalism of
Maximum Entropy [8].
®Eq. 11 is known as the J-condition [14).
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Eq. 14 corresponds exactly to the a-conditionalization proposed in Spohn [18] (Def. 6, p. 117),
with @ = J. If k'(—¢) = oo, this process is equivalent to ordinary Bayesian conditionaliza-
tion, since k'{w) = k(w|¢) if w = ¢ and &'(w) = oo otherwise. Note, however, that in
general this conditionalization is not commutative; if ¢; and ¢; are mutually dependent
(ie., k(d2|¢1) # £(42)),’° the order in which we establish x(—¢1) = J; and &(=¢,) = J;
might make a difference in our final belief state, represented by the ranking &".!!

4.2 Type-L Reports: Nothing Else Considered

L-conditionalization is appropriate for evidential reports of the type “a new evidence was
obtained which, by its own merit, would support ¢ to degree L.” Unlike J-conditionalization,
the degree L now specifies changes in the belief of ¢, not the absolute value of the final belief
in ¢. As in the case of type-J reports, we assume that in naming ¢ as the direct beneficiary
of the evidence, the intent is to convey the assumption of conditional independence, as
formulated in Eq. 12. Next, we assume that the degree of support L characterizes the
likelihood-ratio A(¢) associated with some undisclosed observation Obs, as is done in the
method of virtual conditionalization [13]:

_ P(Obs|¢)
MO = FonT-oy

which governs the updates via the product rule

P(8) _ NO)P(8)
Plo) - P(9) 1)

Translated into the language of rankings, this assumption yields

k() — '(=4) = k(8) — K(=¢) — L (17)

and, since either £’(¢) or £'(-¢) must be zero, we obtain

K($) = max(0;(6) - r(~4) — L, (18)
K(~4) = max(0;x(~4) — x(6) + L) (19)

'9This condition mirrors probabilistic dependence, i.e., P(¢3)¢1) # P(d2).

1Spohn (f18], p. 118) has acknowledged the desirability of commutativity in evidence pooling but has not
stressed that a-conditionalization commutes only in a very narrow set of circumstances (partially specified by
his Theorem 4). These circumstances require that successive pieces of evidence support only propositions that
are relatively independent — the truth of one proposition should not imply a belief in another. Shenoy [16] has
corrected this deficiency by devising a commutative combination rule which behaves similar to L-conditioning.

11



We see that the effect of L-conditionalization is to shift the degree of disbelief difference
between ¢ and —~¢ by the specified amount L. Once «'(¢) is known, we can use Jeffrey’s rule
(Eq. 13) to compute the &'(3)) for an arbitrary wif ¥

min{x(|@) + £(¢) — x(=¢) — Li s(|=¢)] if x(=¢) — r(¢) < L,
() = min[x(¥]|¢); k(¥i=9) + (=) + L — s(¢)] if (~d) — x(¢) > L, (20)
min[x(¥|9); k(¢ |-9)] if k(—¢) — x(¢) = L.

This expression takes the following form for &'(w):

K () = { kf{w|d) + max[0; k() — k(—9) — L] ifwgE g, (21)
k{w|-¢) + max(0; k(~d) — x{¢) + L} if w = —¢.

As in J-conditionalization, if L = oo then &'(w) = x(w|¢). For the general case, we can
see that the effect of L-conditionalization is to shift downward the x of all worlds that are
models of the supported proposition ¢ relative to the x of all worlds that are not models
for ¢. However, unlike J-conditionalization, the net relative shift is constant and is equal to
L, independent of the initial value of x(@). It is easy to verify that L-conditionalization is
commutative (as is iis probabilistic counterpart, see Eq. 16), and hence it permits a recursive
implementation in the case of multiple evidence.

We can illustrate these updating schemes through the party example consisting of the
single rule 7, : M 2 —J (“if Mary goes to the party, then John will not go”). A trivial
application of Procedure Z_rank yields Z*(r,,) = 4, and using Eqs. 4 and 6 we find x(z) =0
for every proposition z, except ¢ = J A M, for which we have k(M A J) = 5. This means
that we have no reason to believe that either Mary or John will go to the party, but we are
pretty sure that both of them will not show up. Now suppose we see that Mary is very well
dressed, and this observation makes our belief in M increase to 3, that 1s, rc""('-'M) = 3.
As a consequence, our belief in John staying home also increases to 3 since, using either
J-conditionalization or L-conditionalization, x*'(J) = 3. Next, suppose that someone tells
us that he has a strong hunch that John plans to show up for the party, but he fails to tell
us why. There are two ways in which this report can influence our beliefs. The natural way
would be to assume that our informer has not seen Mary’s dress, and might not even be
aware of John and Mary’s relationship — hence we assess the impact of his report in isolation
and say that whatever the value of our current belief in John going, it should increase by 3
increments, or L = 3. Following Eq. 20, «*"(J) and s*"(~M) will both be equal to 0, and
we are back to the initial uncertainty about John or Mary going to the party, except that our
disbelief in both Mary and John being at the party has decreased to x*"(M A J) = 2. The
second way would be to assume that our informer is omniscient and already has taken into
consideration all we know about John and Mary. He means for us to revise our rankings so
that the final belief in “John going” will be fixed at x*"(-J) = 3. With this interpretation,
we J-condition «*' on the proposition ¢ = ~J and obtain x*"(M) = 3, concluding that it is
Mary who will not show up to the party after all.
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4.3 Complexity Analysis

From Eq. 13 we see that «'(3) can be computed from «(¢|¢) and «(w|—¢), which, assuming
we have Z*, requires a logarithmic number of propositional satisfiability tests (see Section 3).
L-conditionalization can follow a similar route, as depicted in Eq. 20.

Special precautions must be taken when simultaneous, multiple pieces of evidence become
available. First, J-conditionalization is not commutative, hence we cannot simply compute
' by J-conditioning on ¢; and then J-conditioning &’ on ¢, to get k”. We must J-condition
simultaneously on ¢, and ¢; with their respective J-levels, say J; and J,. Worse yet, an
auxiliary effort must be expended to compute the J-level of each combination of ¢’s, in our
case ¢y A da, d1 A ¢, etc. This is no doubt a hopeless computation when the number of
observations is large.

L-conditionalization, by virtue of its commutativity, enjoys the benefits of recursive com-
putations. Let e; and e; be two (undisclosed) pieces of evidence supporting ¢, (with strength
L) and ¢, (with strength L.}, respectively. We first L-condition « on ¢; and calculate k')
and «'(¢2} using Eq. 19 and Eq. 20, respectively. Applying Eq. 20 this time to &'(¥» A ¢,),
we calculate £'(¢]¢;). Second, we L-condition &' on ¢, compute £”($;) using Eq. 19, and,
finally, using x'(|¢;) and x”(¢2) in Eq. 20 obtain «"”(3).)? Note that, although each of
these calculations requires only O{log |A|) satisfiability tests, this computation is effective
only when we have a well designated target hypothesis ¥ to estimate. The computation
must be repeated each time we change the target hypothesis, even when the context remains
unaltered. This is so because we no longer have a facility for encoding a complete descrip-
tion of &', as we had for x (using the Z*-function). Thus, the encoding for ' may not be
as economical as that for £ (the number of worlds is astronomical), unless we manage to
find dummy rules that emulate the constraints imposed on ¢; by the (undisclosed)} observa-
tion. Such dummy rules must enforce the conditional independence constraints embedded
in Eq. 12, without violating the admissibility constraints (Eq. 5) in A (see [10]).

4.4 Relation to the AGM Theory of Revision

Alchourrén, Gardenfors and Makinson (AGM) have advanced a set of postulates which define
a minimal set of desirable properties for rational belief revision [2]. These postulates have
become a standard, against which (new) proposals are being tested. However, as was pointed
out by Boutilier {3] and others, the AGM postulates do not provide a calculus with which
one can either reason about or, realize the revision process.

Spohn [18] has shown that if one associates the set of beliefs with those propositions %
for which x(—%) > 0, then the process of belief revision affected by a-conditioning (or J-
conditioning in our terminology) obeys the AGM postulates. It follows then that the ranking

12The generalization to more than two pieces of evidence is straightforward.
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systemn proposed in this paper, also obeys those postulates under the same interpretation
of beliefs. Boutilier {3] has further shown that a version!® of the priority function Z* is
associated with the epistemic entrenchment ordering of the AGM theory.

There are several advantages, however, to our system over those proposed by AGM
and Spohn, all stemming from the fact that our revision process revolves around rules, not
around the beliefs, rankings or expectations that emanate from those rules. By contrast, the
logic of AGM is built around “sets of beliefs” or “sets of expectations” and that of Spohn
revolves around the ranking function x. This difference has both practical and philosophical
implications. First, since the number of propositions in one’s belief set is astronomical, and
so 1s the number of worlds, it is a computational necessity to base belief revision on rules,
whose number is usually manageable. Second, our system extracts both beliefs and rankings
from the content of A, and requires no outside specification of belief orderings.

Third, in order to be able to undo belief changes, Spohn’s framework must limit the input
information to defeasible or imprecise observations (i.e., a-conditioning with a < o0). In
our system, we can accommodate both imprecise and precise observations (corresponding to
a = oco) using ordinary conditioning. Given a set of precise observations ¢, the set of beliefs
is defined as those propositions & for which k(—¢|¢) > 0. Retraction of obsolete observations
can be done by simply removing those observations from ¢.

Fourth, and perhaps most significantly, our system is capable of responding not merely to
empirical observations but also to linguistically transmitted information such as conditional
sentences (i.e., if-then rules). For example, suppose someone tells us that Mary too tries
to avold John in parties; we simply add this information to our knowledge base in the form
of a new rule, J — =M, recompute Z%, and are prepared to respond to new observations
or hearsay. In Spohn’s system, where revisions are limited to a-conditioning, one cannot
properly revise beliefs in response to conditional statements.!?

5 Conclusions

This paper proposes a belief-revision system that reasons tractably and plausibly with lin-
guistic quantification of both observational reports (e.g., “looks like”) and domain rules (e.g.,
“typically”). We have shown that the system is semi-tractable, namely, tractable for every
sublanguage in which propositional satisfiability is polynomial (Horn expressions, network
theories, acyclic expressions, etc.). To the best of our knowledge, this is the first system that

13The proof in [3] considers the priorities Z+ resulting from a flat set of rules {i; 2 4;}, namely one in
which all §’s are 0, as in system-Z [15].

14Gardenfors [6] attempts to devise postulates for conditional sentences, but finds them incompatible with
the Ramsey test (page 156-160).
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reasons with approximate probabilities which offers such broad guarantees of tractability.!®
We expect these results to carry over to the theory of possibility as formulated by Dubois
and Prade [5], which has similar features to Spohn’s system except that beliefs are measured
on the real interval [0,1}. In addition we have shown that, without loss of tractability, the
system can also accommodate expressions of imprecise observations, thus providing a good
model for weighing the impact of evidence and counter-evidence on our beliefs. Finally, we
have shown that the enterprise of belief revision, as formulated in the work presented in [2],
can find a tractable and natural embodiment in system-Z7*, unhindered by difficulties that
plagued earlier systems.
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