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Abstract

This paper presents an experimental evaluation of two orthogonal schemes for solving
constraint satisfaction problems (CSPs). The first scheme involves a class of pre-
processing techniques including directional arc consistency, directional path consistency
and adaptive consistency. The second is concerned with the order in which variables are
chosen for evaluation during the search. In the first part of the experiments we measured
the performance of backtracking and its common enhancement -- backjumping with and
without each of the pre-processing techniques above. The results show that directional
arc-consistency, and backjumping (without any preprocessing) outperform all other
preprocessing techniques; the first dominated the second in computational intensive
situations. The second part of the experiments suggest that dynamic search rearrange-
ment, is the best ordering while among the static orderings both max-cardinality and

min-widzh yield the the best pre-ordering.

*This work was supported in part by the National Science Foundation, Grants #IRI1-8815522 and IRI-9157636 and by the Au
Force Office of Scientific Research, Grant #AFOSR-88-0177.



1. Introduction

Constraint Satisfaction Problems (CSPs), belong to the class of NP-complete problems.
Such problems normally suffer from lack of realistic measure of performance; worse-case
analysis fails to reveal average-case behavior. It is either not refined enough to distinguish
between different algorithms or, since based on extreme cases, it may give an erroneous view of
typical performance. Hence, it fails to identify those algorithms that are good in practice. Con-

sequently, theoretical analysis must be supplemented by experimentai studies.

The most thorough experimental studies so far include Gaschnig comparisons of
backjumping, backmarking and constraint propagation, [Gaschnig 1979] Haralick and Elliot’s
study of look-ahead strategies [Haralick 1980) and, more recently, Dechter’s experiments with
structure-based techniques, [Dechter 1990] and Prosser’s hybrid tests with backjumping and for-
ward checking strategies [Prosser 1991]). Additional studies were reported in [Dechter 1987,
Stone 1986, Rosiers 1986, Ginsberg 1990].

Idealy, experimental studies are most informative when conducted on a "representative”
set of problems from one’s domain of application. This, however, is a very difficult task. Real
life problems are often too large or ill defined to suit a laboratory manipulation, Thus, a com-
mon compromise is to use either randomly-generated problems or canonical examples that
received attention (e.g., n-queens, cross-word puzzles, and graph-coloring problems). Clearly,
conclusions drawn from such experiments reflect only on problem domains that resemble the
experimental conditions and caution must be exercised when generalizing to real-life problems.
They do reveal, however, the problem’s parameters that effect the relative usefulness of various

algorithms.

The experiments reported in this paper were performed in two different sites and can be
categorized into two classes. The first concems pre-processing algorithms, which transform a

given constraint network into a more explicit representation. The three pre-processing



algorithms tested are directional arc consistency (DAC), directional path consistency (DPC),
and adaptive consistency (ADAPT) [Dechter 1987]. These algorithms respectively represent
increasing levels of pre-processing effort. The second category tests the effect of various order-
ing strategies on backiracking and backjumping. We tested four static heuristic orderings: min-
width, max-degree, max-cardinality, depth first search (DFS), and one dynamic ordering,

dynamic search rearrangement [Purdom 1983).

The results show upfront, that, contrary to predictions based on worse-case analysis, the
average complexity of backtracking on randomly-generated problems is far from exponential; it
is rather almost linear. This has a prominent effect on the benefit generated by pre-processing.
Indeed, the pre-processing performed by the most aggressive scheme, ADAPT, did not pay off,
except in very sparse graphs, in spite of its theoretical superiority over backtracking. On the
other hand, the least aggressive scheme, DAC, came out as a winner in computationally intensive
cases. Apparently, DAC performs just the right amount of pre-processing. As to ordering stra-
tegies, dynamic ordering outperformed all static orderings. It apparently yields the smallest
search space with a reasonable amount of overhead. Among the static orderings, min-width and
max-card clearly dominated the max-degree and DFS orderings, however, the exact relationship

between the first two is still inconclusive.

Viewing our results in the context of earlier experimental evaluation, we see a common
pattern. In practice Backtracking, is not as bad as its worse-case bound indicates, and significant
improvement can be realized with only minor help. More intense help would be ineffective

yielding an overall worse performance.

The paper is organized as follows. Section 2 presents the constraint network mode] and
general background. Section 3 presents the tested algorithms. Sections 4 describes the experi-
mental design, while Section 5 presents the results. Section 6 provides a summary and conclud-

ing remarks.



2. Constraint Processing Techniques -- Background

A constraint network (CN) consists of a set of variables, X = (X,,...,X,}, each associated
with a domain of discrete values, D, »....Dp, and a set of constraints, {C, ... ,C,}. Each con-
straint is a relation defined on a subset of variables. The tuples of this relation are all the simul-
taneous value assignments to this variable subset which, as far as this constraint alone is con-
cemned, are legal(. Formally, a constraint, C;, has two parts: 1). a subset of variables,
Si={Xy, ,...,X,-J.(‘.) . on which it is defined, called a constraint-subset, and 2). a relation, re!;,
defined over S;: rel;c Dyx--- xD,-J. @ - The scheme of a CN is the set of its constraint subsets,
namely, scheme (CN)={$,,53,...,5.}, S; cX. The projection of a relation, p, on a subset of

variables, U = Uy,..., Uy, is given by:
y(p) = {x, = (x,, »-Xy)| 3 Xep, X is an extension of x, ).

An assignment of a unique domain value, to each member of some subset of variables is
called an instantiation. An instantiation is called a solution if it satisfies a/l the constraints.

The set of all solutions is a relation, p, defined on the set of all variables. Formally,
p={X,=xy1,....X,=x,) | VS, € scheme, Is;p crel} (1

A CN may be associated with a constraint graph, where nodes represent variables and
arcs connect variables that appear in the same constraint. For example, the CN depicted in figure
la presents a cross-words puzzle. The variables are E (1, horizontal), D (2, vertical), C (3, verti-
cal), A (4, horizontal), and B (5, horizontal). The scheme is {ED, EC, CA, AD, DB } and the
constraint graph is given in figure 1b.

Typical tasks defined on a CN are to determine whether a solution exists, to find one
solution or the set of all solutions, and to determine whether an instantiation of a subset of van-

ables is part of a global solution. These tasks are collectively called Constraint Satisfaction

™ This does not mean that the actual representation of any constraint is necessarily in the form of its defining
relation, rather, the relation can in principle be generated using the constraint’s specification without the need to
consult other constraints in the network.



] > 3 Dy = {hoses,laser,shee’t,snail,steer}
Dg = {hike,aron,keet,earn,same}

; De = {run,sun,let,yes,eat,ten}

4 Dpz{no,be,us,it}

Cap = {(hoses, same) »(laser, same), (sheet,earn),
(snail,aron), (steer, earn)}

(a)

(b) (c)
Figure 1: A cross word puzzle (a), its CN representation (b), and a DFS pre-ordering (c).

Problems (CSPs).

Techniques used in processing constraint networks can be classified into three categories.
1. Search techniques for systematic exploration of the space of all solutions. The basis for all
search algorithms is backtracking. 2. Consistency algorithms, for transforming a CN into a
more explicit representation. These algorithms are used either in a preprocessing phase to
improve the performance of the subsequent backtracking, or they can be incorporated into the
search procedure itself. 3. Structure-driven algorithms, which exploit the topological features
of the network to guide the search. Hybrids of these techniques are also available. For a

detailed survey of constraint processing techniques see [Mackworth 1991, Dechter 1991].



Backtracking traverses the search space in a depth-first fashion. The algorithm typically
considers the variables in some order. It systematically assigns values to variables unti! either a
solution is found or it reaches a dead-end, where a variable has no value consistent with previ-
ous assignments. In this case the algorithm backtracks to the most recent instantiation, changes

the assigned value, and continues. It is well-known that the worse-case running time of back-

tracking is exponental.

Improving the efficiency of backtracking amounts to reducing the size of the search
space it expands. Researchers have developed two types of procedures: pre-processing algo-
rithms that are employed prior to performing the search, and algorithms that are used dynami-

cally during search.

The pre-processing algorithms include a variety of consistency enforcing algorithms
[Montanari 1974, Mackworth 1977, Freuder 1978]. These algorithms transform a given con-
straint network into an equivalent, yet more explicit form, by deducing new constraints to be
added to the network. Iﬁ a nutshell, a consistency-enforcing algorithm makes a small subnet-
work consistent relative to its surrounding constraints. For example, the most basic consistency
algorithm, called arc-consistency or 2-consistency (also known as constraint propagation or
constraint relaxation) ensures that any legal value in the domain of a single variable has a legal
match in any other variable. Path-consistency (or 3-consistency) ensures that any consistent
solution to a two-variable subnetwork is extensible to any third variable, and, in general, i-
consistency algorithms guarantee that any locally consistent instantiation of i—1 variables is
extensible to any i-th variable. Algorithms, directional arc consistency (DAC), directional path
consistency (DPC), and adaptive consistency (ADAPT) are all restricted versions of these
consistency-enforcing algorithms that take into account the direction in which backtracking

instantiates the variables.



Ordering the variables prior to search is another class of pre-processing algorithms that
has attracted much attention. Several heuristics for static orderings have been proposed
[Freuder 1982, Dechter 1989]. Heuristics, such as min-width, max-cardinality, max-degree and

DFS ordering, most follow the intuition that tightly-constrained variables should be instantiated
first.

Strategies that dynamically improve the pruning power of backtracking can be classified

as look-ahead schemes and look-back schemes.

Look-ahead schemes are invoked whenever the algorithm is about to assign a value to
the next variable. Some schemes, like forward-checking, use constraint propagation [Waltz
1975, Haralick 1980] to predict the way in which the current instantiation restricts future assign-
ments of values to variables. Other schemes, like dynamic search rearrangement, decide which

variable to instantiate next [Freuder 1982, Purdom 1983, Stone 1986].

Look-back schemes are invoked when the algorithm encounters a dead-end and prepares
to backtrack. There are two main issues here. 1. Decide how far to backtrack. By analyzing the
reasons for the dead-end it is often possible to go back directly to the source of failure instead of
to the immediate predecessor in the ordering. This idea is often referred to as backjumping
[Gaschnig 1979]. 2. Record the reasons for the dead-end in the form of new constraints, so that
the same conflicts will not arise again, later in the search (terms used to describe this idea are
constraint recording and no-good constraints). Dependency-directed backtracking incor-

porates both backjumping and no-goods recording {Stallman 1977).

Structure-based techniques, such as backjumping, directional i consistency and adaprive
consistency can be viewed as structure-based improvements of some of the above techniques

{Dechter 1991].



3. The tested algorithms

We first present our two search algorithms, backiracking and backjumping, and then we describe

the consistency-enforcing algorithms and the ordering heuristics used.

3.1 Backtracking and Backjumping

Backiracking systematically assigns values to variables until either a solution is found or there is
a dead-end. It then goes back to the most recent instantiation, changes it and continues. A back-
tracking algorithm for finding one solution is given in figure 2. It is defined by two recursive
procedures, forward and go-back. The first extends a current partial assignment if possible, and

the second handles dead-end situations, The procedures maintain lists of candidate values, C

i
for each wvariable, X;. Their initial values is computed by ‘‘compute-
candidates(xy, . . .,x;,X;.1)" that selects all values in the domain of variable X;+1 which are
consistent with previous assignments. Backtracking starts by calling forward with i =0, namely,

the instantiated list is empty.

forward (xy, ..., x;)
Begin
1. if i = n exit with the current assignment.
2. Ciy) <-- compute-candidates(xy, . . .,x;,X;+1)
3. if C;4, is not empty then
4. x4 <-- first element in C;,;, and
5. remove x;, from C;,, and
6. forward(xy,...,x;.Xi41)
7. Else
8. go-back(xy,...,x;)
End

go-back(xy,..., x;)
Begin
1. if i =0, exit. No solution exists.
2. if C; is not empty then
3. x; <--firstin C;, and
4. remove x; from C;, and
5. forward(x,,...,x;)

6. Else
7. go-back(xy,...,x;_1)
End
Figure 2: Algorithm backrracking



Backjumping improves the "’go-back’’ phase of backtracking and whenever a dead-end
occurs at variable X, it backs up to the most recent variable, Y, connecred 1o X in the constraint
graph. If variable Y has no more values, then it should back-up more, to the most recent vari-
able, Z, connected to both X and Y, and so on. This algorithm is a graph-based variant of
Gaschnig’s backjumping, [Gaschnig 1979] which extracts knowledge about dependencies from
the constraint graph alone. It was shown that graph-based backjumping outperforms backtrack-
ing on an instance by instance basis. [Dechter 1990] For a comparison between backjumping

and graph-based backjumping see [Prosser 1991].

In our implementation of graph-based backjumping, both forward and jump-back (the
go-back variant of backjumping) carry a parameter P, storing the set of variables that need to be
consulted upon the next dead-end. Accordingly, lines 6 and 8 are changed to:
forward(xy, ..., x;,x;41,P), and jump-back(xy, . ..,x;,X;41,P). Procedure jump-back is shown
in Figure 3. Its parameters are the partial instantiation, x,, ... ,x;, the dead-énd variable, Xin
and P.

jump-back(xy,...x;,X;.1,P)
Begin
1. if i =(), exit. no solution exists.
2. PARENTS <- Parents(X; ;)
3.P « P U PARENTS
4. Let j be the largest indexed variable in P,
5. P«P-X;
6.If C; # O then
7. x;=firstin C;, and
8. remove x; from C;, and
9. forward(xy,...,x;,P)
10. Else,
ll'ju’np'ba‘:k(xl’ «eaXja] ’XpP)
End.

Figure 3: Procedure jump —back



Consider, for instance, the ordered constraint graph in Figure la. If the search is per-
formed in the order £,D,A,C,B and a dead-end occurs at B, the algorithm will jump back to vari-

able D since B is not connected to either C or A,

In general, the implementation of backjumping requires a careful maintenance of each
variable’s parents set. Some orderings, however, facilitate a simple implementation. If we per-
form a depth-first search (DFS) on the constraint graph (to generate a DFS tree), and apply
backjumping along the resulting DFS numbering [Even 1979, finding the jump-back destination
amounts to following a very simple rule: if a dead-end occurred at variable X, go back to the
parent of X in the DFS tree. A DFS tree of the problem in figure 1b is given in figure 1c. The
DFS numbering (which amounts to an inorder traversal of this tree) is (E,D,B,A,C). Again, if a

dead-end occurs at node A the algorithm retreats to its parent in the DFS tee, D.

When backjumping is performed along a DFS ordering of the variables, its complexity
can be bounded by O (exp (m)) steps, m, being the depth of the DFS-tree.

3.2 Pre-processing algorithms

Deciding the consistency level that should be enforced on the network is not a clear cut choice.
Generally speaking, backtracking will benefit from representations which are as explicit as pos-
sible, having higher consistency level. However, the complexity of enforcing i-consistency is
exponential in i. Thus, there is a trade-off between the effort spent on pre-processing and that

spent on search. Indeed, the primary goal of our paper is to explicate this trade-off.

Algorithms DAC, DPC, and ADAPT, being the directional versions of arc-consistency,
path-consistency and n-consistency, have the advantage that they take into account the direction
in which backiracking will eventually search the problem. Thus, they avoid processing many

constraints which are not encountered during search.
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We start with adaptive-consistency, then generalize its underlying principle to describe a
class of pre-processing algorithms which contain both DAC and DPC. Given an ordering of the
variables, the parent set of a variable, X, is the set of all variables connected to X which precede
it in the ordering. The width of a node is the size of its parent set. The width of an ordering is
the maximum width of nodes in that ordering, and the width of a graph is the minimal width of
all its orderings. For instance, given the ordering (E,D,C,A,B) in Figure 4a, the width of node B
is 1, while the width of this ordering is 2, and so is the width of this graph. Algorithm adaptive
consistency (ADAPT), shown in Figure 5, processes the nodes in a reverse order, i.e., each node

is processed before any of its parents.

B B
A A
c C
0 D
E E
(a) (b)

Figure 4: Ordered constraint graphs
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adaptive-consistency( X 1, .. . ,X,)
Begin

l.fori=nto 1 by-1do

2. Compute parenis(X;)

3. perform record —constraint(X;, parents(X N

4. connect all elements in parents(X;) (if they are not yet connected)
End

Figure 5: Algorithm adaptive consistency

The procedure record-constraint(V,SET) generates and records those tuples of variables
in SET that are consistent with at least one value of V. For instance if, in our example, A has
only one feasible word, aron, in its domain, and if C and D each have their initial domains, then
the call for record-constraint(A, {C,D}) will result in recording a constraint on the variables
{C,D}, allowing only the pairs ((earn,run),(earn,sun),(earn,ten)}. ADAPT may tighten exist-
ing constraints as well as impose constraints over clusters of variables. It was shown {Dechter
1987], that when the procedure terminates backtracking can solve the problem, in the order
prescribed, without encountering any dead-end. The topology of the new induced graph can be
found prior to executing the procedure, by recursively connecting any two parents sharing a

common successor (see Figure 4b).

Consider our example of Figure 4a. Variable B is chosen first, and since it has only one
parent, D, the algorithm records a unary constraint on D's domain. Variable A is processed next,
and a binary constraint is enforced on its two parents, D and C, eliminating all pairs which have
no common consistent match in A. This operation may require that an arc be added between C

and D, and so on. The resulting induced graph contains the dashed arc in Figure 4b.

Let W(d) be the width of the ordering d, and W* (d) be the width of the induced graph
along this ordering. It can be shown that solving the problem along the ordering d is
O (n-exp(W* (d)+1)) [Dechter 1987].

12



The directional algorithms, DAC, DPC and directional —i —consistency, differ from
ADAPT only in the amount and size of constraint recording performed in step 3. Namely,
instead of recording one constraint among all parents, they record a few, smaller constraints on
subsets of the parents. Let level be a parameter indicating the utmost cardinality of the recoreded
constraints. The class of algorithms adaprive (level) is described in Figure 6. It uses a pro-

cedure, new—record(level, var, set), that records only constraints of size level from subsets of

set.

adaptive(level, X |, ... ,X,)

Begin

1. fori=nto 1 by -1do

2. Compute parents(X;)

3. perform new—record( level, X;, parents(X;))

4. for level22, connect all elements in parents(X i) (if they are not yet connected)
End

new-record(level, var, set)

Begin

1. if level < |set| then

2. for every subset § in ser, 5.t |S | = level do
3. record—constraint(var,S)

4, end

3. else do record —constraint (var,sef)

end

Figure 6: Procedures adaptive and new —record

Adaprive(level =1) reduces to DAC, while for level =2 it becomes DPC. The graph
induced by all these algorithms (excluding the case of level =1 where the graph doesn’t change),
has the same structure as the one generated by adaptive consistency. Since
adaptive(level = W* (d)) is the same as adaptive consistency, it is guaranteed to generate a

backtrack-free solution.

The complexity of adaprive (level) is both time and space dominated by the procedure
new—record(level) which is O( [VIV:vgﬂ (ke rinllevel W* (d)} )). This bound can be tightened if the

ordering d results in a smaller W* (d). However, finding the ordering which has the minimum

13



induced width is an NP-complete problem [Arnborg 1987].
3.3 Variable Ordering

It is well known that the ordering of variables, be it static throughout search, or dynamic, may
have a tremendous influence on the size of the search space explored by backtracking algo-
rithms. Finding an ordering which would minimize the search space is a difficult problem and,

consequently, researchers have concentrated on devising heuristics for variable ordering.

The best known dynamic ordering is the dynamic search rearrangement, which was
investigated analytically via average-case analysis in [Purdom 1983, Haralick 1980, Nudel
1983}, and experimentally in {Stone 1986, Rosiers 1986]. This heuristic selects as the next vari-
able to be instantiated a variable that has a minimal number of values which are cohsistent with
the current partial solution. Heuristically, the choice of such variable minimizes the remaining

search. Other, more elaborate estimates of the remaining search space were also considered

(Purdom 1981, Zabih 1988].

We consider four static orderings. The minimum width (min—width) heuristic [Freuder
1982), orders the variables from last to first by selecting, at each stage, a node having a minimal
degree in the subgraph induced by all nodes which have not been selected yet. As its name indi-

cates, the heuristic results in a minimum width ordering.

The maximum degree (max—degree) heuristic orders the variables in a decreasing order
of their degree in the constraint graph. This heuristic also aims at (but does not guarantee)

finding a minimum-width ordering.

The maximum cardinality (max—card) ordering selects the first variable arbitrarily,
then, at each stage, it selects a variable which is connected to the largest set of already selected
variables. This heuristic can be thought of as the fixed version of dynamic search rearrange-

ment: the next variable to be selected is the most constrained one, being connected to the largest

14



set of already instantiated variables.

A DFS ordering is generated by a depth-first-search traversal of the constraint graph. It
can be combined with any of the previous ordering for tie-breaking rule. In our experiments the

tie breaking rule was random.
4. Experimental Design

Our experiments were performed in two different locations to be named site-1 and site-2. In
each location different problem instances were generated and different algorithm combinations
were tested. Overall, 35 algorithm combinations were tested. In site-1, backtracking (BTK) and
backjumping (BJ) were executed on each problem instance twice, once directly, without any
pre-processing, and once after pre-processing the network by either directional arc consistency
(DAC), directional path consistency (DPC) or adaptive consistency (ADAPT) (8 combinations).
Each algorithm combination was run along each one of the static ordering, max-degree, max-
cardinality, and min-width, (yielding 24 combinations). Two more runs of backtracking and
backjumping (without pre-processing) were performed in conjunction with dynamic ordering. In
site-2, backtracking and backjumping were executed twice on each problem instance: once
without any pre-processing, and once after pre-processing it by full arc —consistency (AC) (4
combinations). Each algorithm combination was tested with each one of the static orderings,
max —cardinality, min—-width and DFS ordering, and with the dynamic ordering (yielding 16

combinations).

Table 1 summarizes the algorithm combination tested and their corresponding sites, indi-
cated by their entries. For instance, we see that DPC -BJ (i.e., DPC followed by BJ) was tested
only in site-1, while BJ was tested both in site-1 and site-2. Note, that an instance by instance

comparison is feasible only within sites.
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BTK [ BJ [ DAC | DPC | ADAPT | DAC | DPC | ADAPT
BJ BJ BJ BTK | BTK | BTK
maz-degree 1 1 1 1 1 1 1 1
maz-card 1 1 1 1 1 1 1 1
2 2 2
min-width 1 1 1 1 1 1 1 |
2 2 2
dynamic 1 1
2 2
dfs
2 2 2
1 — site-1
2 — site-2

Table 1: Algorithms and test combinations

The test problems in each site were selected from a randomly-generated CSPs. The ran-
dom problems were created by generating random graphs and associating each arc with a
randomly-generated binary constraint. We purposely concentrated on parameters (e.g., probabil-
ity of an arc) which result in more difficult problems for backtracking. We chose to restrict the
set of test problems to binary CSPs primarily because problems with constraints of higher order
tend to have denser constraint graphs for which the pre-processing algorithms have higher over-
head. It should be pointed out, however, that adaptive consistency adds to the network non-
binary constraints, hence the implementation of backtracking and backjumping had to accom-

modate general, non-binary, CSPs.

The problem instances experimented with in both sites had similar characteristics. In
site-1 we experimented with two sets of random problems: one containing 42 instances, each
having 10 variables and 5 values and the other, containing 35 instances, each with 15 variables

and 5 values. These instances represent the more difficult problems among a much larger set of
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problems, from which all the easy problems were omitted. Larger problems took too much time
and space for our machine to handle, especially for adaptive consistency. Similarly, in site-2 we
experimented with two sets of random problems. One consisting of 104 instances, each having

10 variables and 5 values and the other with 107 instances having 15 variables and 7 values

each.

We recorded the number of consistency-checks and the number of dead-ends (number of
backtrackings) in each run. The number of consistency-checks is considered a realistic measure
of the overall performance, while the number of dead-ends is indicative of the size of the search
space explored. The implementation of dynamic ordering in site-2 used an additional data struc-
ture in the form of a set of tables. In this case we counted the number of table-lookups and

added it to the number of consistency checks.

Each algorithm was run twice on each problem instance: once for finding one solution
and once for finding all solutions. The results were clustered into 6 groups according to the
problem size (10 or 15 variables), and the following three cases: for finding one solution (called
“first"), for finding all solutions (called "all"), and for cases where no solution exists (called

"failure”).
5. Experimental Results
5.1 Evaluation of Pre-processing Algorithms

We first report our results in site-1. Our first goal is to compare the effects of the three pre-
processing algorithms DAC, DPC and ADAPT followed by backtracking and backjumping. Fig-
ures 7-12 present graphs displaying the average number of consistency checks, classified accord-
ing to the width of the induced graph, W*. Figures 7 and 8 present data for the max-degree ord-
ering. The first displays results for 10-variable instances, while the second focuses on 15-

variable instances. Similarly, Figures 9 and 10 display min-width results, and Figures 11 and 12
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summarize max-cardinality results. Each horizontal pair of graphs presents the results for a
group of instances, where the left graph contrasts the results for algorithms ADAPT, BTK and BJ,
while the right one shows (using a different scale) the results for algorithms BJ, DAC and DPC.
The results reported for DAC, DPC, and ADAPT are for the cases where they were comple-
mented by backjumping. When we used backiracking, we observed a similar behavior, since
after pre-processing most of the dead-ends were eliminated. Comparing ADAPT to BTK and BJ
(left columns in all figures), we see that even on the average, adaptive-consistency has an
exponential behavior as a function of W*, BTK and B/, on the other hand, exhibit a much more

moderate, maybe even linear, behavior.

The average performance of ADAPT is better than BTK only for small values of W,
mostly for finding all solutions. Evidently, the amount of pre-processing performed by ADAPT
is too heavy to be justified by just one solution (see left, upmost graphs), but when it is shared by
several solutions, it becomes worth-while (see left, middle figures). For the case of n=10, when

looking for one solution, BTK outperformed ADAPT even for W* = 1,2,

When compared to BJ, however, ADAPT appears as a complete looser. BJ outperformed
ADAPT in almost all instances. Clearly, BJ exploits the structure of the problem in a more
efficient way than ADAPT and should be preferred, especially considering the fact that it doesn’t
need the additional space which is consumed by ADAPT. Although ADAPT does not seem to be
a sensible choice for a one time solution, it still can be used for finding a better representation of
a network of constraints, for example, when the network represents some knowledge-base on
which many queries are to be answered over time. In such cases the work for generating the new

representation can be ignored [Dechter 1989].

The disappointing results of ADAPT can be explained by comparing it with the two
other, less ambitious, pre-processing algorithms, DAC and DPC. When we counted the number

of dead-ends left after pre-processing (Figure 13), we found out that in almost all problem
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Figure 7 : number of consistency-checks for algorithms DAC, DPC, ADAPT, BJ
and BTK with max—degree ordering on 10-variables random problems.
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Figure 10 : number of consistency-checks for pre-processing algorithms DAC, DPC, ADAPT, B/
and BTK with min—widsh ordering on 15-variables random problems.
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Figure 11 : number of consistency-checks for pre-processing algorithms DAC, DPC, ADAPT, BJ
and BTK with max —cardinality ordering on 10-variables random problem:s.
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Figure 12 : number of consistency-checks for pre-processing algorithms DAC, DPC, ADAPT, BJ
and BTK with max—cardinality ordering on 15-variables random problems.
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instances even algorithm DPC eliminated all future dead-ends. It is clear, therefore, that for
problem instances of this type, ADAPT is doing unnecessary pre-processing. Moreover, the
number of dead-ends left by algorithm DAC (see figure) shows that a substantial amount of the
“work is accomplished even by this algorithm which performs the smallest amount of constraint
recording. Observing the graphs of Figures 7-12, we see from their left columns that BJ outper-

formed both BTK and ADAPT.

Let us focus now on the right-hand columns which compare BJ, DAC and DPC. Clearly,
the two algorithms that stand out in these experiments were BJ and DAC (followed by BJ). Both
outperformed DPC in almost all cases, however none of them dominated the other. When look-
ing carefully at their relative performance according to the problem’s size, the ordering used and
the task at hand, we see the following pattern. Algorithm BJ was better than DAC only for the
task of finding the first solution and for problems of small size (10 variables), irrespective of the
ordering. In the more demanding cases, when the problems were large (15 variables) or for the
task of finding all solutions, DAC was better. This result is easy to explain: for heavy tasks, the

overhead presented by DAC will be outweighed by its gain.
5.2 The Effects of Variable Ordering

We now focus on characterizing the effect of variable ordering, be it static or dynamic, on the
various algorithm combinations, in particular on backtracking and backjumping. We present
results from both sites. Figure 14 presents results from site-1. It shows the results of running
backtracking and backjumping using four orderings: 1. max-degree (max), 2. max-cardinality
(card), 3. min-width (min), and 4. dynamic ordering (dnmic). Each graph presents the average
number of consistency checks over all instances, disregarding W". Again, we group the results

according to the problem size (10 or 15 variables), and the three cases, first, gll, and failures.

To see the effect of the induced width, a selected set of graphs is presented in Figure 15.

To maintain continuity we averaged the same set of instances, and therefore W* indicates the

25



Data from "n=15,first,deadends"

200
- BTK-MAX
- BJ-MAX
o DAC-MAX
- DPC-MAX
100 -
. '/:\'r/:
1 2 3 4 5
we
Data from "n=15,all,deadends"”
500
] = BTK-MAX
-+ BJ-MAX ‘
4001 . DAC-MAX
-+ DPC-MAX
300
200 -
100
1 2 3 4 5

Data from “h=15,fallures,deadends”

w‘

300

200

7] J
5

BTK-MAX
BJ-MAX

DAC-MAX
DPC-MAX

tete

200

Data from "n=15,tirst,deadends”

100 -

tete

BTK-CARD
BJ-CARD

DAC-CARD
DPC-CARD

100 4

L

Data from "n=15,failures,deadends”

& BTK-CARD
- BJ-CARD
& DAC-CARD
- DPC-CARD

»n
w

o
-d

4

-

4
Lo ]

-

4

£a

Figure 13 : number of deadends for processing algorithms (DPC, DAC, BJ and BTK) with
max —cardinality and max —degree ordering on 15-variables random problems.
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Figure 14 : number of consistency-checks for BJ and BTK on orderings: max —degree,
max —cardinality, min —width and dynamic in site-1 for 10 and 15 variable problems.
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induced width of max-degree ordering.
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Figure 15: The effect of variable ordering on consistency checks
parametrized by w*.

Figure 14 shows that the max —degree ordering comes out as a complete looser, while
there is no clear ‘*winner’’. Again we observe some patterns governing the role of ordering rela-
tive to the task and the problem size. Specifically, min—width was the best ordering for the task
of finding the first solution (except for BTK in large problems), max-card was the best ordering
for finding all solutions, and dynamic ordering was generally best for failure instances (with the

exception of BJ in small problems). When we compared the number of dead-ends associated
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with each ordering (see Figure 16), it becomes clear that dynamic ordering expands the smallest

search space (i.e., it has the least number of dead-ends on an instance by instance basis, almost).
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Figure 16: The effect of variable ordering on search space
(number of deadends) parametrized by w*.

Therefore, had we better implemented this technique we may have had a better overall perfor-
mance. Indeed in site-1’s implementation of dynamic ordering no data structure was used to
alleviate redundant consistency checks as was done in other look-ahead schemes such as forward

checking [Haralick 1980].

This problem was corrected in our experiments in site-2. Here we compared three static

orderings and one dyramic ordering. We used min —width and max—card as in site-1, but instead
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of max—degree (as it had been so bad in site-1) we used a DFS ordering with a random tie-
breaking rule. In this site, dynamic ordering was implemented more efficiently, using data struc-
tures similar to those used in [Haralick 1980] that take at most quadratic space. Consequently,
when collecting the data, we added the number of table look-ups to the number of consistency

checks.

As can be seen from Figures 17 and 18, with this implementation dyramic ordering dom-
inated all other orderings. Contrary to our observatons in site-1, we see a clear superiority of

min-width over max-card in these instances.
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Figure 17 : number of consistency-checks for BJ and BTK on orderings: max—degree, max—cardinalitv,
min—width and dynamic in site-2 for 10 and 15 variable problems.
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Figure 18: The effect of variable ordering on number of consistency checks parametrized by w*
(with and without pre-processing by arc —consistency) in site-2.

6. Summary and Conclusions

We evaluated the performance of several backtracking techniques for solving CSPs. First, we
tested the effect of various pre-processing algorithms on backsracking and backjumping, using
static orderings, and second, we tested the effect of five variable ordering schemes. The conclu-
sions are summarized in Figures 19 and 20. We used a graphical representation to summarize

the relative merits of the algorithm as reflected by the number of consistency checks. An arrow
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from A to B indicates that algorithm A is superior to algorithm B, with perhaps some exceptions
as annotated on the arrows. For instance, figure 19 indicates that DAC outperforms BJ except on
finding first solution on size-10 problems. Similarly, Figure 20 presents the relative strength of
different orderings w.r.t. BTK (Figure 20a) and BJ ( Figure 20b). The solid lines show results
taken at site-1 while the dotted lines show results taken at site-2. An inconclusive relationship is

denoted by an undirected arc labeled by “*#”".

DpPC

proldims

Figure 19: Relative performance of pre-processing algorithms

In summary, our experiments indicate that in most cases directional arc consistency fol-
lowed by backjumping outperforms all other schemes, while dynamic search rearrangement is
the most promising ordering scheme. When static ordering is used, the experiments suggest that
combining DAC with min-width or max-cardinality orderings will yield best results on the aver-

age.

Viewed from the perspective of prior experiments our resuits fit into a general pattern. In
all techniques tested, be it pre-processing or in-processing, weak enhancement schemes were the
most effective (due to their low overhead). Stronger schemes did not pay off. For example, in
testing different levels of look-ahead schemes, Haralick and Elliot concluded that, forward-

checking, the least intensive look-ahead mechanism performed much better then the more
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Figure 20: Relative merits of ordering schemes for BTK (a) and BJ (b).
intensive partial-look-ahead and full-look-ahead (see figures 6,8,10,11 in [Haralick 1980] ). The
same is evident from Gaéchnig’s experiments with DEEB, which was his way of incorporating
full arc-consistency into the search (see figures 4.3-1, 4.4.2-2 in [Gaschnig 1979] ). Similarly, in
generating heuristics for value selection preferences it was shown that only very shallow advise
improved the search (see figures 15 and 16 in [Dechter 1987] ). In assessing various look-back
schemes we found the same phenomenon. When augmenting backjumping with various levels of
constraint recordings, (i.e., learning no-goods parametrized by the size of the constraints and the
depth of reasoning) it became evident that only very shallow leaming of only small constraints

was worth undertaking (Figure 7,8 in [Dechter 1990] ).

These results, current and previous ones alike should be qualified before further extrapo-
lated. The conclusions are valid only relative to problem domains with statistics similar to those
used in generating the test samples. Consequently, the next phase of experimentation should

focus on testing whether this pattern of behavior scales up to larger random problems and to
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real-life applicatons.
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