Computer Sclence Department Technical Report
University of California
Los Angeles, CA 90024-1596

STRUCTURE IDENTIFICATION IN RELATIONAL DATA

R. Dechter March 1992
J. Pearl CSD-920014

In Proceedings of the Canadian AI Conference 1992,

Toronto, Canada, January 1992,

R-172 (short)
March, 1992

Structure Identification in relational data *

Rina Dechter
Information and Computer Science
University of California
Irvine, CA 92717
dechter@ics.uci.edu

Abstract

This paper presents several investigations into
the prospects of identifying meaningful struc-
tures in empirical data, structures that permit
effective organization of the data to meet re-
quirements of future queries. We propose a
general framework whereby the notion of iden-
tifiability is given a precise formal definition,
stmilar to that of learnability. Using this frame-
work, we then address the problem of exXpress-
ing a given relation as a k-Horn theory and,
if this is impossible, finding a best k-Horn ap-
proximation to the given relation.

1 Introduction

Discovering meaningful structures in empirical data has
long been regarded as the hallmark of scientific activity.
Yet, despite the mystical aura surrounding such discov-
eries we often find that computational considerations of
efficiency and economy play a major role in determining
what structures are considered meaningful by scientists.
Along this vein, we address the task of finding a compu-
tationally attractive description of the data, a descrip-
tion that, both, is economical in storage, and permits
future queries to be answered in a tractable way.
Invariably, the existence of such a desirable descrip-
tion rests on whether the dependencies among the data
items are decomposable into local, more basic depen-
dencies, possessing some desirable features. A classical
example would be to find a finite state machine (with
the least number of states) that accounts for observed
dependencies among successive symbols in a very long
string. In more elaborate settings the dependencies can
form a graph (as in the analysis of Markov fields) or a
hypergraph (as in relational databases), and the task is
to find the topology of these structures. Structure iden-
tification includes such tasks as finding effective repre-
sentations for probability distributions, finding econom-
ical decompositions of database schema, finding simple
Boolean expressions for truth tables, or finding logical
theories that render subsequent processing tractable.

*This work was supported in part by the Air Force Office
of Scientific Research, AFOSR 900136 and by NSF grant IRI-
91579386.

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, CA 90024
Judea@cs.ucla.edu

Despite the generality of the task at hand, very few
formal results have been established, and these were pri-
marily confined to probabilistic analysis [Chow and Liu,
1968; Pearl and Verma, 1991]. In this paper we focus
on categorical data and categorical descriptions of the
data. Given a relation g in the form of an explicit listing
of the tuples of p, we ask whether we can find a more
desirable description of p, say a constraint network pos-
sessing desirable topological features, or a logical theory
possessing desirable syntactic features (e.g., Horn theo-
ries). The former is treated in a recent report [Dechter
and Pearl, 1991} and the latter in section 3. In both
cases the desirable features would be such that facilitate
efficient query processing routines.

We view this task as an exercise in automatic iden-
tification, because our main concern will be to recog-
nize cases for which desirable descriptions exist and to
identify the parameters of at least one such description.
Thus, we explore the existence of a tractable identifica-
tion procedure that takes data as input, returns a theory
and works in time polynomial in the size of the input.
Given that the data was generated from a theory that
has a desirable structure, our procedure should identify
the underlying structure if it is unique, or an equivalent
structure in case it is not unique. Conversely, if the data
does not lend itself to effective organization, we wish our
procedure to acknowledge this fact, so as to save further
explorations. An additional requirement is sometimes
imposed on the procedure, to identify a ”best” approxi-
mated theory, in case an exact desirable theory does not
exist. We call this latter requirement ?strong identifia-
bility”.

Our analysis bears close relationships to that of Sel-
man and Kautz [Selman and Kautz, 1991), where theory
formation is treated as a task of "knowledge compila-
tion”. The main difference between the two approaches
is that Selman and Kautz begin with a preformed theory
in the form of a (reasonably sized) set of clauses, while we
start with the bare observations, namely, a (reasonably
sized) set of tuples which represent the models of the
desired theory. This enables us to easily project the re-
lation onto subsets of variables and solve subtasks which
would be intractable had we started with a clausal the-
ory. Another difference is that we require definite de-
termination of whether the theory approximates or de-
scribes the data.

Technical Report

This paper is organized as follows: Section 2 intro-
duces a general framework of the identification task. We
define weak and strong notions of identifiability and com-
pare them to Valiant’s [Valiant, 1984] notion of learn-
ability using familiar examples. Section 3 focuses on
identifying Horn theories and shows that k-Horn theo
ries (in which every clause contain at most & literals) can
be identified and updated in polynomial time, when k is
bounded. All theorems will be stated without proofs,
which can be found in [Dechter and Pearl, 1991).

2 Preliminaries and Basic Definitions

2.1 Theories: Networks and Formulas

We denote propositional symbols, also called variables,
by upper case letters P,Q, R, XY, Z, .., propositional
literals (i.e. P,=P) by lower case letters D¢, T, Y, 2, ..
and disjunctions of literals, or clauses, by «,8.... The
complement operator ~ over literals is defined as usual:
If p==@Q, then ~p = Q, If p=@Q then ~ p = -Q.
A formula in conjunctive normal form (CNF) is a set of
clauses, ¢ = {ay,...,} and it denotes their conjunc-
tion. The models of a formula ¢, M(p), is the set of all
satisfying truth assignments to all its symbols. A clause
o is entailed by ¢, written ¢ = «, iff « is true in all
models of p. A clause « is a prime implicant of o iff
¢ Faand ABC ast. p = 0. A Horn formulais a
CNF formula whose clauses all have at most one posi-
tive literal. A k-CNT formula is one in which clauses are
all of length k or less, and a k-Horn formula is defined
accordingly.

Given a clause @ we denote by base(a) the set of all
propositional symbols on which « is defined. For in-
stance, If @ = {P V =~Q V R} then base(a) = {P,Q, R}.
To characterize the structure of a formula w» we define
its scheme to be the set of variables on which clauses are
defined. Formally:

Definition 1 (Scheme)
Let o = p(z1, ..., 20) = {a1, ..., a,}, then

scheme(p) = {base(a;)|1 < j < r}. (1)
Example 1 Consider the formula
¢ ={(-PVQVR),(PVS),(~PV=S),(~PVR)}. (2)

In this case,

scheme(p) = {{P,Q, R}, {P, S}, {P, R}}, (3)

We next define the notions of constraint networks and
relations which parallel the notions of formulas and their
satisfying models for the case of multi-valued variables.
A relation associates multi-valued variables with a set of
tuples specifying their allowed combinations of values. A
constraint networkis a set of such relations, each defined
on a subset of the variables and, together, are taken as
conjunction of constraints, namely, they restrict value
assignments to comply with each and every constituent
relation. The theory of relations was studied extensively
in the database literature [Maier, 1083].

Definition 2 (Relations and Networks)

Given a sel of mulli-valued variables X = {X1,...., Xa},

each associated with a domain of discrete values,
Dy, ..., Dy, respectively, a relation or g constraint
p = p(Xy,...,Xn) is a subset of value assignments to
the variables in X,

p=A{(z1, - za)l(21, ... 2,) € {D1xDyx...xD,}}. (4)

A constraint network over X, N(X), consists of a
set of such relations pi1, ..., p; each defined on a subset
of variables S1,..,5:,5; C X. The set § = {S1,..,5:}
15 called the scheme of the constraint network, denoted
scheme(N). The network N represents a unique relation
rel(N) defined on X, which stands for all consistent as-
signments, namely:

rel(N) = {Z = (21,..., 2a)| VS € $,T5,(T) € pi}. (5)

where Il5.(T) denotes the projection of T onto S; C X.
Ifrel(N) = p we say that N describes p.

Clearly, any CNF formula can be viewed as a spe-
cial kind of constraint network, where the domains
are bi-valued, and where the models of each clause
specify a constraint on the variables contained in that
clause. Accordingly, we say that a bi-valued relation
p = p(X1,...,Xn) is described (or represented) by a
formula ¢ = @(zy, ..., 2,) iff M(p) = p. We will use the
term theory to denote either a network or a formula and,
correspondingly, use scheme(T) and M(T) (or rel(T)).

When considering ways of approximating a relation p
by a theory T we will examine primarily upper bound
approximations, namely, theories T such that p C M (T).

Definition 3 A theory T € C is said to be a tightest
approzimation of p relative to a class C' of theories ifpC
M(T), and there is no T € C such that p C M{T") C
M(T).

Example 2 The following relation:

P,QRS
11190
0101
0011
0rit
0601
can be defined by the network:
PQ R 5 PR
101 071 00
111 190 01
g10 11
001
011
d oo

Being bi-valued, this relation can alse be described by the
formula:

¢ ={(=PVQVR),(PVS), (-PV-8),(=PVR)}. (6)

2.2 Identifiability

We are now ready to give a formal definition of iden-
tifiability — a property intrinsic to any class of theories
and which governs our ability to decide whether a given

relation p has a description within the class or not. As
a preliminary and trivial example, we will then show
(in subsection 2.4) that the class of k-CNF formulas is
identifiable only for k = 2, namely, there is no tractable
way of deciding whether an arbitrary relation p has a
description as a k-CNF formula, unless £ = 2. The class
of 2-CNF theories, however, will turn out to be strongly
identifiable, namely, not only can we decide the existence
of a 2-CNF description, but we can also produce such a
description if it exists, or, produce the tightest 2-CNF
theory if a precise description does not exists (hence the
term “strong”.)

To motivate the definition below we should notice that
the decisions above depend on what we know apriori
about the observed relation p. For example, were we
given assurance that p has a description in k-CNF, it
would be easy to produce one such a description. Thus,
it is necessary to define the notion of identifiability rela-
tive to a background class C’ of theories from which p is
chosen. We will adopt the convention that unless stated
otherwise, C” is presumed to be the class of all theories,
namely, p is arbitrary.

Definition 4 : (Identifiability)
A class of theories C is said to be identifiable relative
to a background class C’, iff:

1. (Recognition) For every relation p that is describ-
able by some theory T in C’, there is an algorithm
A, polynomial in |p|, that determines if p has a de-
scription in C, and

2. (Description) If the answer to (1) is positive, A
finds one theory of T € C that describes p, (ie.,
b= M(T))

C 1s said to be strongly identifiable if, in addition
to (1) and (2) above:

3. (Tightness) A always finds a theory Ty in C that is
e tightest approzimation of p.

By convention, a class in which the recognition or
description tasks are NP-hard will be defined as non-
identifiable. Note however that the complexity of A4 is
measured relative to the size of p, and not relative to
the size of its description 7. Thus, the notion of identi-
fiability will be applicable to highly constrained theories
where the number of distinct observations grows polyno-
mially with the number of variables.

2.3 An example: Identifiability of k-CNF
theories.

Let C' be the set of all theories defined on n binary vari-
ables. Consider whether the class Cy C C' of relations
expressible by k-CNF theories is identifiable relative to
C’'. Although we have algorithms for meeting require-
ment (3) (and hence (2)) of constructing a tightest k-
CNF approximation for any given relation p, we do not
have an effective way of testing whether this approxi-
mation represents the relation p exactly, or a superset
thereof. Even generating a single model of a tightest k-
CNF theory is an NP-hard problem for k > 2. We thus
conclude that €} is not identifiable!.

'The non-existence of a tractable procedure for testing
exact match with p is based on an unpublished theorem con-

Now consider the case where the background class
C' is known in advance to consist of k-CNF theories,
namely, p has a k-CNF description. It is easy then to
identify one k-CNF theory which describes p. We sim-
ply project p onto every subset of k or less variables
and, for every r-tuple t, (r < k) that is not found in the
projection of p on X1, X4, ..., X, we introduce the clause
(#1V 3V .. .2,), with z; being a positive literal iff x; is
false in ¢. This can be accomplished in time proportional
to |p|(2n)*.

The theory found can be shown (see section 3) to be
a tightest approximation of p relative to Cy and, since P
is assured to have a description in Cy, this theory must
be a precise description of p. We thus conclude that Ck
is strongly identifiable relative to itself.

As a final variant of this example, consider the class
of 2-CNF theories. This class is identifiable relative to
any arbitrary C’, and the reason is as follows: Given an
arbitrary relation p, we can find a tightest 2-CNF ap-
proximation 7 of p by the projection method described
above. There remains to determine whether 7 represents
p precisely. This last task can be accomplished by sim-
ply comparing the size of M(r) to that of p. If the two
sizes are equal, 7 is obviously a description of p, because
M(r) contains p. The distinct feature that renders 2-
CNF theories identifiable (unlike k-CNF, k > 2) is the
tractability of the size-comparison task. A recent result
[Dechter and Itai, 1991} states that for every theory T
satisfiable in time t, deciding whether [M(T)| > ¢ takes
time O(ct). Now , since 2-SAT is satisfiable in polyno-
mial time, testing M(7) > {p] can also be accomplished
in polynomial time.

2.4 Identifiability vs. Learnability

There is a strong resemblance between the notion of iden-
tifiability and that of learnability [Valiant, 1984]. If we
associate theories with concepts (or functions) and the
models of a theory with the learning examples, we see
that in both cases we scek a polynomial algorithin that
will take in a polynomial number of examples and will
produce a concept (or a function) consistent with those
examples, from some family of concepts C. Moreover, it
is known that in order for a family C to be learnable
(with one-sided errors) it must be closed under intersec-
tion, and the algorithm must produce the tightest con-
cept in C consistent with the observations Natarajan,
1987]. This is identical to condition (3) of strong identi.
fiability.

The main difference between the problems described
in this paper and those addressed by Valiant’s model of
learning is that in the latter we are given the concept
class C and our task is to identify an individual mem-
ber of C that is (probably) responsible for the observed
instances (in the sense of assuming a small probability
of error on the next instance). By contrast, in struc-
ture identification we are not given the concept class C.
Rather, our objective is to decide whether a fully ob-
served concept p, taken from some broad class ' (e.g.,
all relations) is also a member of a narrower class

veyed to us by J. Ullman.

of concepts, one that possesses desirable syntactical fea-
tures (e.g., 2-CNF, a constraint-tree, or a Horn theory).
Thus, the task is not to infer the semantic extension of a
concept from a subset of its examples (the entire exten-
sion is assumed to be directly observed), but to decide
if the concept admits a given syntactical description.

It turns out that deciding whether the tightest approx-
imation exactly describes a given concept, even when the
concept is of small size, might require insurmountable
computation; a problem not normally addressed in the
literature on PAC learning.

The differences between learnability and identifiabil-
ity can be well demonstrated using our previous exarmple
of the class Ci of &-CNF theories. We have established
earlier that while C; is not identifiable relative to the
class C' of all relations, it is nevertheless strongly identi-
fiable relative to ¢’ = C;. By comparison the class C}, is
known to be polynomially learnable [Vakiant, 1984] since,
given a collection of instances I of M), one can find
in polynomial time the tightest k-CNF expression that
contains I (see section 3.1). The fact that C}, is not iden-
tifiable is not too disturbing in PAC learning tasks, be-
cause there we assume that the examples must be drawn
from some &-CNF theory, so in the long run, the tight-
est k-CNF approximation to ¢ will eventually coincide
with the theory from which ¢ is drawn. However, non-
identifiability could be very disturbing if the possibility
exists that the examples are taken from a theory outside
Ci. In this case the tightest k-CNF theory consistent
with the examples might lead to substantial (one-sided)
erTors.

In general, if we set C’ = C, then, if C is learnable, it
must also be strongly identifiable, because condition (1)
is satisfied automatically, and the learnability require-
ment of zero error on negative examples is equivalent to
(3). (Note that since the learner is entitled to observe
the entire concept, the PAC requirement of limited er-
ror plays no role in identifiability tasks.) However, there
are concept classes that are identifiable but not learn-
able under the condition ¢’ = C, a simple example of
which is the class of constraint trees. This class is not
learnable because it is not closed under intersection, stili,
it has been shown to be identifiable [Meiri et al., 1990;
Dechter, 1990; Dechter and Pearl, 1991]. The same ap-
plies to star-structured networks. On the other hand,
chains and k-trees are not identifiable [Dechter and
Pearl, 1991].

3 Identifying Horn theories

In general, determining whether a given query formula
foltows from a given CNF formula is intractable. How-
ever, when the latter contains only Horn clauses the
problem can be solved in linear time [Dowling and Gal-
lier, 1984]. Moreover, expertence with logic program-
ming and databases suggests that humans find it natural
to communicate knowledge in terms of Horn expressions.
Thus, it would be useful to determine whether a given
set of observations (the data p) can be described as a
Horn theory.

The tractability of Horn theories stems not from the
topology of the interactions among their clauses but,

rather, from the syntactic restriction imposed on each
individual clause. However, there are several impedi-
ments to the prospects of identifying general Horn the-
ories. First, Selman and Kautz have shown that finding
a tightest Horn approximation to a given CNF formula
is NP-hard [Selman and Kautz, 1991]. All indications
are that starting with a given relation does not make
this task any easier. Second, Selman and Kautz also
observed that some CNF theories can be converted into
Horn expressions only after invoking exponentially many
clauses (in the size of the source theory). In such cases
it will be futile to use the Horn theory instead of the
observations themselves. The more practical question to
ask then is whether a given relation can be described as
a Horn theory of a reasonable size. To that end, we first
analyze the identifiability of k-Horn formulas, namely,
Horn formulas in which every clause contains at most &
literals, and then extend the results to Horn theories of
limited overall size. We start by analyzing general CNF
formulas parameterized by their scheme.

3.1 Canonical and Maximal Formulas

Paralleling the multi-valued case, we will first extend
the auxiliary notions of projection nelwork and minimal
network to those of projection formula and mazrimal for-
mule.

Definition 5 Let p be a bi-valued relation over X —
X1, Xn. We define
canonical(p) = {(~ z;V ~ 23V..V ~ z,.)|(z}, 22

v Zn) & P}
)

(7
Example 3 Let p(P,Q,R) = {(100}, (010), (001)}.
Then, canonical(p) = {(~P V ~Q Vv R, (Pv Qv
~R),(~PV@QV-R),(PVQVR),(~PV-QV -R}.

Similarly,

Definition 6 Given ¢ consiraint network N =
{p1,., 0}, we define canonical(N) as the formula gen-
erated by collecting the canonical formulas of every con-
stituent relation in N. Namely,

canonical(N) = U{canonical(p;)|p; € N} ()
Clearly, M(canonical(p)) = p, and M(canonical(N)) =
rel(N).
We are now ready to extend the notion of projection
network to a projection formula:

Definition 7 Given a relation p and a scheme S, the

projection formula of p w.r.t S, denoted Ls(p), is
given by:

Ls(p) = canonical(Ils(p)). (9

Theorem 1 Let Fg be the class of CNF formulas having
scheme 5. The formula Ts(p) is a tightest approzima-
tion of p relative Lo Fy.

Paralleling the notion of minimal networks in multi-
valued relations, we will now show that among all formu-
las ¢ in Fg that are equivalent to I's(p), T's(p) is max-
imal w.r.t. the partial order C defined by set inclusion
(of clauses). Clearly the class Fs is closed under union,
The next theorem proves that among all equivalent for-
mulas in Fs, Ts(p) is the unique maximal formula.

Theorem 2 Let ¢, 7 € Fs and let p = M), then
L pnvr=pUrayp
2. There ezists a unigue mazimal (w.r1 C } formula
us representing p given by ps = Ls(p).

A clause that contains another is clearly redundant,
hence we prefer to consider formulas in reduced form:

Definition 8 A formula ¢ is reduced if none of ifs
clauses contains another. The formula obtained af-

ter eliminating clause subsumption from w is denoted
reduced(yp).

Theorem 3 Let ug be a mazimal formula of some rela-
tion, then reduced(ps) contains all and only the prime-
implicants of ps that are restricted to the subsets in S,

3.2 k-Horn formulas

We now restrict our attention to k-Horn formulas and
their identifiability. We will first present a tractable al-
gorithm for generating the maximal tightest k-Horn ap-
proximation to a given relation, followed by a tractable
test for exactness.

Let S** denote the set of all subsets of X of size k or
less. Our algorithm can be stated as follows: Given a
relation p on n variables and a constant k, generate the
formula I's.x(p) and throw away all non-Horn clauses.
We claim that the resulting Horn theory is a tightest k-
Horn approximation of p. Since, as we will show, this is
also the longest form of the tightest approximation, we
then generate its equivalent reduced version. To test if
the resulting Horn theory represents p exactly, we enu-
merate its models and test that no one lies outside poA
formal justification to this process is given in the follow-
ing paragraphs.

Given a formula ¢, we denote by H orn(yp) the formula
resulting from eliminating all non-Horn clauses from P.

Theorem 4 Let p be an n-ary bi-valued relefion, k a
constant, m = s (p) and = Horn(w). Let Hy be the
family of k-Horn formulas, then,

1. nis a tightest k-Horn approzimation of m.

2. 1 15 mazimal w.rt. Hy.

3. Both n and reduced(n) are tightest k-Horn epproz-
imations of p.

4. ff M(n) D p, no k-Horn formula describes p.

5. reduced(n) equals the set of all k-Horn prime-
implicants of n.

Theorem 4 implies that the algorithm given below
which generates the formula reduced(Horn(Ts.x(p))), is
guaranteed to return a tightest k-Horn approximation of
p. The algorithm also returns a statement as to whether
the formula found is an exact representation of p.

Algorithm Horn-generation(p, k)

Input: a relation p(X,, <1 Xn) and an integer k.

OQutput: A k-Horn formula describing p or a k-Horn tightest
approximation of p.

1. begin

2. generate x <== I c.4 (p} (by projecting p on all subsets
and performing the canonical transformation)

3. Let p <= Horn(x) (by eliminating all non-Horn clauses
from).

4. n <= reduced(s). (by eliminating subsumptions)

5. Sequentially enumerate the models of #, {m1,ma, ...},
using the method in [Dechter and Itai, 1991), and

o If for some 1 < |p|, mi & p, or if M(n) contains
more than |p| elements, then return: "7 is a tightest
k-Horn approximation.” else, return: 77 describes

»

.
6. end.

In [Dechter and Itai, 1991] we showed that the models of
a Horn formula can be enumerated in time linear in the
number of models and the size of the formula. However,
in the above algorithm we do not need to compute more
then |p| models, thus this computation is bounded by
lpl.-

To summarize;

Theorem 5 Algorithm Horn-generation provides o
tightest k-Horn approzimation of an arbitrary relation p.
Moreover, this approzimation equals the k-Horn prime-
implicants of p. O

Example 4 Consider again the relation

FPQR

D D
o ke
L =Y

and let k = 2. We have

.~

£Q

190
Hg-n(p) =0 I
/N

LR Q

D
o D
D~

0
1
0

and P ={0,1}, @ = {0,1}, R={0,1}. When applying
the canonical transformation io each of these relations
we get the (already reduced) formula:

s:a(p) = {(=PV=Q),(~PV -R),((-RV -Q)}.

Since this is @ Horn formula we do not throw clouses
away. Compuling the number of models of this theory
yields { models (there is an additional (0,0, 0) tuple)}, thus
we conclude that the formula is a tightest 2-Horn approz-
imation of p, and that p is not 2-Horn tdentifiable, If we
generate the 3-Horn approvimation for p we get the same
formula. (The reason being that in this case, the 2-Horn
appromimation already contains all its Horn-prime im-
plicants.) Going through the Horn-generation algorithm,
step 2 yields:

Ps-a(p) = {("PV Qv R),(PV - V"R), (—vP V@V “R)
(PV@QVR),(-~PV-Q-R), (=PV=Q},(-PV-R),~RV =@}

Step § eliminates the only non-Horn clause: (PVQVR)
and the result of further eliminating subsumptions is the
same formula:

Horn(reduced(Ts+3(p))) = {(-Pv-Q), (=PV-R), ~RV-Q)}.

(10)

This suggests an angtime variation of our algorithm.
Instead of applying the algorithm to all subsets of size k,
we first apply the algorithm to subsets of size 2, then add
the result of processing subsets of size 3, and so on, until
we get a satisfying approximation. The next theorem
assesses the complexity of our transformation and the
size of its resulting Horn theory.

Theorem 6 (complezity)

1. The length (number of clauses) of
reduced(Horn(Tg-x(p))) is O(kn*+1).

£ The complezity of Horn-generation(p, k) is
O(n*((k + 1)lp| + 24)).

Another important variant of the method described
above is its en-line version, which is useful for stream
processing. Assume the tuples of p are not available all
at once, but are obtained sequentially as a stream of
observations, normally containing many repetitions. In
this case it might be advantageous to store a parsimo-
nious theory of past data, rather than the data itself,
and to update the theory incrementally whenever an ob-
servation arrives that contradicts the theory.

Assume we are given a theory h which is a tightest
k-Horn approximation of all past data, p, and a new tu-
ple t arrives that contradicts h. In principle, updating
h requires finding a tightest k-Horn theory that agrees
with pU {t}. but, since p is no longer available, the best
we can do is to find a tightest k-Horn approximation of
M(h)U{t}. Fortunately, since Hy, is closed under inter-
section, we are guranteed that the two approximations
are equivalent, namely, no information is lost by storing
h instead of the exact stream of past observations.

The next theorem states that updating h can be done
in polynomial time. Although each update may, in the
worst case require as many as O(n*t1) steps, it is nev-
ertheless polynomial, and is more efficient than approx-
imating p U {t} from scratch when the size of p is expo-
nential in n,

Theorem 7 Incremental updating of best k-Horn ap-
prozimations takes O(n**') steps per update.

Clearly, the facility for incremental on-line updating
would be useful only when the size of p is the main factor
that limits our ability to find a useful description of the
data.

3.3 Extensions to general Horn formulas

A recent algorithm by [Angluin et al., 1990) permits us to
extend the results of the last section to the identification
of Horn theories of size g(n), for any fixed polynomial g.2
The algorithm of Angluin et al. exactly learns Horn the-
ories from equivalence queries and membership queries.
An equivalence query is a conjectured Horn theory, and
the response by the teacher is a counterexample to the
correctness of the conjectured Horn theory (i.e. an as-
signment that satisfies the correct theory but not the
conjectured theory, or vice versa). In the case that there
are no counterexamples, then the learning algorithm has
succeeded in identifying the correct theory. Membership

*This possibility was brought to our attention by an
anonymous reviewer of [Dechter and Pearl, 1991].

queries allow the algorithm to ask if a given assignment
satisfies the target (i.e., correct) Horn theory, and it is
answered yes or no by the teacher.

To be able to answer equivalence queries in polyromial
time, Angluin et al. assumed that the target theory is
Horn (in general, testing equivalence of two given theo-
ries is intractable). If we are given a relation p, then
we can answer equivalence queries and provide coun-
terexamples in polynomial time even when p is non-
Horn. Given a conjectured Horn theory H, we first
check that every tuple of p satisfies [. If not, we return
the unsatisfying tuple as a counterexample. Otherwise,
M(H) contains p, and we then determine whether or
not M(H) = p by the polynomial enumeration method
of [Dechter and Itai, 1991].

Thus, since we can polynomially answer the two basic
queries of Angluin's learning algorithm, the algorithm
must output an exact Horn representation of p if one
exists. To determine whether or not one exists of size at
most g(n), we can run the algorithm for ¢(n, ¢(n) time,
where t(n, k) is the time needed by the algorithm to ex-
actly learn a Horn theory of size k over n variables. If the
algorithm succeeds in exactly learning p within t(n, g(n))
time, then there clearly is a Horn theory for p of size at
most g(n). Otherwise, there is not. Of course, in this
case the algorithm does not supply a tightest Horn ap-
proximation, and the strong identifiability of g(n)-Harn
theories remains an open problem.

4 Conclusions

This paper summarizes several investigations into the
prospects of identifying meaningful structures in empiri-
cal data. The central theme is to identify a computation-
ally attractive description, in cases where the observed
data possess such a description and a best approximate
description otherwise. This feasibility of performing this
task in reasonable time has been given a formal definition
through the notion of identifiability, which is normally
weaker (if C' = C) than that of learnability.

In a related paper [Dechter and Pearl, 1991] we have
explored more generally the decomposition of data into
a given scheme of smaller relations, as illustrated in Sec-
tion 2.3. It can be shown that, whereas a best ap-
proximation can be found, it is only in cases where
the scheme is intrinsically tractable (e.g., 2-CFN) that
we can (tractably) decide if the resulting approximation
constitutes an exact representation of the data. The de-
composition of data into a structure taken from a class
of schemes turned out to be a harder task, intractable
even in cases where each individual member of the class
is tractable. The class of tree-structured schemes is an
exception. Here it was shown that an effective procedure
exists for determining whether a given relation is decom-
posable into a tree of binary relations and, if the answer
is positive, identifying the topology of such a tree. The
procedure runs in time proportional to the size of the
relation, but it is still an open question whether it pro-
vides the best tree-structured approximation in case the
answer is negative.

Focusing on bi-valued data, this paper has explored
the identification of descriptions whose tractability stems

from syntactical rather than structural features. In par-
ticular, we showed that k-Horn theories can be identified
in polynomial time, when k is bounded. Finally, the pa-
per presents both any-time and on-line algorithms for
identifying Horn theories.

An important issue that was not dealt in this paper is
assessing the goodness of the approximations provided
by k-Horn theories. Another question is the feasibility
of constructing both an upper bound and a lower bound
approximations of g, in the manner discussed in [Selman
and Kautz, 1991] and also in [Dechter, 1990). Finally,
we should mention that the methods presented in this
paper will also handle partial observations, namely, ob-
servations of truncated tuples of p.

5 Acknowledgments

We thank Itay Meiri and Amir Weinshtain for useful
discussions.

References

[Angluin et al.,, 1990] D. Angluin, M. Frazier, and
L. Pitt. Leaving conjunctions of horn clauses. In Pro-
ceedings of the 31st Annual Symposium on Foundalion
of Computer Science, Volume I, St. Louis, MS, Octo-
ber 1990. IEEE Computer Society Press.

[Chow and Liu, 1968] C. K. Chow and C. N. Liu. Ap-
proximating discrete probability distributions with de-
pendence trees. JEEE Trans. on Info. Theory, 1T-
(14):462-467, 1968.

[Dechter and Itai, 1991] R. Dechter and A. Itai. The
complexity of finding all solutions. Technical report,
University of California at Irvine, 1991.

[Dechter and Pearl, 1991] R. Dechter and J. Pearl.
Structure identification in relational data. Technical
Report R-172, Cognitive Systems Laboratory, UCLA,
1991. Forthcoming Artificial Intelligence.

[Dechter, 1990} R. Dechter. Decomposing a relation into
a tree of binary relations. Journal of Computer and
System Sciences, 41(Special Issue on the Theory of
Relational Databases):2-24, 1990.

{Dowling and Gallier, 1984] W. F. Dowling and J. H.
Gallier. Linear time algorithms for testing the sat-
isfiability of propositional horn formula. Journal of
Logic Programming, 3:267-284, 1984.

[Maier, 1983) D. Maier. The Theory of Relational
Databases. Computer Science Press, Rockville, Mary-
land, 1983.

[Meiri et al., 1990] 1. Meiri, R. Dechter, and J. Pearl.
Tree decomposition with applications to constraint
processing. In Proceedings of the the American As-
sociation of Artificial Intelligence (AAAI-90), pages
10~16, Boston, MA, 1890.

[Natarajan, 1987] B.K. Natarajan. On learning boolean
functions. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computation, pages 296~
304, 1987.

[Pearl and Verma, 1991} J. Pearl and T. Verma. A the-
ory of inferred causation. In J. A. Allen, R. Fikes,
and E. Sandewall, editors, In Principles of Knowl-
edge Representation and Reasoning: Proceedings of
the Second International Conference, pages 441-452,
San Mateo, CA, 1991. Morgan Kaufmann.

[Selman and Kautz, 1991] B. Selman and H. Kautz.
Knowledge compilation using horn approximation. In
In Proceedings of AAAI-91, Aneheim, CA, 1991.

[Valiant, 1984] L. G. Valiant. A theory of the learn-
able. Communications of the ACM, 27(11):1134-1142,
1984.

