Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PROPOSITIONAL SEMANTICS FOR DISJUNCTIVE LOGIC
PROGRAMS

R. Ben-Eliyahu March 1992
R. Dechter CSD-920013

Propositional Semantics
for Disjunctive Logic Programs

Rachel Ben-Eliyahu
Cognitive Systems Laboratory
Computer Science Department
University of California

Los Angeles, California 90024
rachel@cs.ucla.edu

Rina Dechter

Information & Computer Science
University of California

Irvine, California 92717
dechter@ics.uct.edu

Abstract

In this paper we study properties of the class of head-cycle-free extended
disjunctive logic programs (HEDLPs), which includes, as a special case, all
nondisjunctive extended logic programs. We show that any propositional
HEDLP can be mapped in polynomial time into a propositional theory such
that each model of the latter corresponds to an answer set, as defined by sta-
ble model semantics, of the former. Using this mapping, we show that many
queries over HEDLPs can be determined by simply solving propositional
satisfiability problems, that is, without enumerating answer sets,

This mapping suggests an alternative definition of stable model seman-
tics, expressed in the familiar language of propositional logic, and it has
several important implications: It establishes the NP-completeness of this
class of disjunctive logic programs, allows existing algorithms and tractable
subsets for the satisfiability problem to be used in logic programming, facil-
itates the evaluation of the expressive power of disjunctive logic programs,
and leads to recognition of useful similarities between stable model semantics
and Clark’s predicate completion.

1 Introduction

Stable model semantics, proposed by Gelfond and Lifschitz (GL9Y1], success-
fully bridges the gap between two lines of research, default reasoning and
logic programming. Gelfond and Lifschitz pointed out the need for explicit
representation of negated information in logic programs and accordingly de-
fined eztended logic programs as those that use classical negation in addition
to the negation-as-failure operator.

One advantage of stable model semantics is that it is closely related to
the semantics of Reiter’s default logic [Rei80], in the framework of which an
extended logic program may be viewed as a default theory with special fea-
tures. This duality allows transference of insights, techniques, and analytical
results from default logic to logic programming, and vice versa.

The work presented here puts this duality into practice. We use tech-
niques developed for answering queries on default theories [BED91a] to com-
pute answer sets for disjunctive logic programs (according to stable model
semantics). We also show how this semantics can be given an interpretation
in propositional logic.

Specifically, we show that a large class of extended disjunctive logic pro-
grams (EDLPs) can be compiled in polynomial time into a propositional
theory such that each model of the latter corresponds to an answer set of
the former. Consequently, query answering in such logic programs can be
reduced to deduction in propositional logic. This reduction establishes the
NP-completeness of various decision problems regarding query answering in
such logic programs and suggests that any of a number of existing algorithms
and heuristics known for solving satisfiability are now applicable for comput-
ing answer sets. Moreover, known tractable classes for satisfiability induce
the identification of new tractable subsets of logic programs. As an example
we introduce new tractable subsets of logic programs which correspond to
tractable subsets of constraints satisfaction problems (CSPs).

Aside from the computational ramifications, our translation provides an
alternative representation of stable model semantics, expressed in the famil-
lar language of propositional logic. This facilitates the comparison of various
sernantic proposals for logic programs and also allows evaluation of their ex-
pressive power. In particular, it leads to the discovery of useful similarities
between stable model semantics and Clark’s predicate completion.

Our translation does not apply to the full class of EDLPs but only to
a subclass (albeit a large one) of head-cycle-free extended disjunctive logic
programs (HEDLPs). Note that this class contains any extended nondis-
junctive logic program. The question of whether stable model semantics for
the class of all disjunctive logic programs can be expressed in propositional
logic in polynomial time remains open.

The rest of the paper is organized as follows: In Section 2 we review
the definition of EDLPs and their stable model semantics and present some
new characterizations of answer sets for such programs. Section 3 shows
how an HEDLP can be mapped into a propositional theory and discusses

he properties of our mapping. Section 4 illustrates four outcomes of the

translation concerning the language’s expressiveness, complexity, tractable
classes, and relationship to Clark’s predicate completion. In Section 5 we
mention relevant work by others, and in Section 6 we provide concluding
remarks. Omitted proofs can be found in the full paper [BED91b].

2 Extended Disjunctive Logic Programs

EDLPs are disjunctive logic programs with two types of negation: negation
by default and classical negation. They were introduced by Gelfond and
Lifschitz {GL91], who defined an EDLP as a set of rules of the form

Ll ||Lk1— Lk+1, aany Lk+m1 not Lk+m+1, veay not Lk+m+n (1)

where each L, is a literal and not is a negation-by-default operator. The
symbol ‘|’ is used to distinguish it from the ‘v’ used in classical logic. A
literal appears positive in the body of a rule if it is not preceded by the not
operator. A literal appears negative in the body of a rule if it is preceded by
the not operator.!

Example 2.1 Suppose we know that a baby called Adi was born. We also
know that a baby, if there is no reason to believe that it is abnormal, is
normal and that normal babies are either boys or girls. This information
could be encoded in a disjunctive logic program as follows:

Baby(Adi) —
Normal_baby(z) +— Baby(z), not Abnormal(z)
Boy(z) | Girl(z) «— Normal_baby(z).

The literal Abnormal(z) appears negative in the body of the second rule. The
literal Normal_baby(z) appears positive in the body of the third rule.

Gelfond and Lifschitz have generalized stable model semantics so that it can
handle EDLPs. We next review this semantics with a minor modification:
while Gelfond and Lifschitz’s definition allows inconsistent answer sets, ours
does not. Given a disjunctive logic program II, the set of answer sets of II
under this modified semantics will be identical to the set of consistent answer
sets under Gelfond and Lifschitz’s original semantics. With slight changes,
all the results in this paper apply to their semantics as well.

First, an answer set of an EDLP II without variables and without the
not operator is defined. Let £ stand for the set of grounded literals in the
language of II. A contezt of £, or simply “context”, is any subset of £.

An answer set of Il is any minimal? context S such that

1. for each rule Ly|...|Lge— Liy1, ..oy Lipy in I, if Liv1,ooyLpymisin §,
then for some ¢ = 1,...,k L; is in S, and

2. § does not contain a pair of complementary literals.30

!Note that positive (negative) literal and a literal that appears positive (negative) in a
body of a rule denote two different things (see Example 2.1).

?Minimality is defined in terms of set inclusion.

3Under Gelfond and Lifschitz’s semantics this item would say, “If 5 contains a pair of
complementary literals, then § = £”.

Suppose Il is a variable-free EDLP. For any context § of £, Gelfond and
Lifschitz define II¥ to be the EDLP obtained from II by deleting

L. all formulas of the form not L where L ¢ § from the body of each rule
and

2. each rule that has the formula not I where I € §.

Note that II¥ has no not , so its answer sets were defined in the previous
step. If S happens to be one of them, then we say that S is an answer set of
. To apply the above definition to an EDLP with variables, we first have
to replace each rule with its grounded instances.

Consider, for example, the grounded version of the program II above:

Baby(Adi) —
Normal_baby(Adi) «— Baby(Adi), not Abnormal(Adi)
Boy(Adi) | Girl(Adi) — Normal_baby(Adi).

The reader can verify that IT has two answer sets:
{Baby(Adi), Normal baby(Adi), Girl(Adi)} and
{Baby(Adi), Normal baby(Adi), Boy(Adi)}.

We will assume from now on that all programs are grounded and that
their dependency graph has no infinitely decreasing chains. The dependency
graph of an EDLP 1, G, is a directed graph where each literal is a node
and where there is an edge from L to L’ iff there is a rule in which L appears
positive in the body and L’ appears in the head?. An EDLP is acyclic iff
its dependency graph has no directed cycles. An EDLP is head-cycle free
(that is, an HEDLP) iff its dependency graph does not contain directed
cycles that go through two literals that belong to the head of the same rule.
Clearly, every acyclic EDLP is an HEDLP. We will also assume, without
losing expressive power, that the same literal does not appear more than
once in the head of any rule in the program.

We next present new characterizations of answer sets. The declarative
nature of these characterizations allows for their specification in Proposi-
tional logic in a way such that queries about answer sets can be expressed
in terms of propositional satisfiability.

We first define when a rule is satisfied by a context and when a literal
has a proof w.r.t. a program IT and a context S,

A context S satisfies the body of a rule iff each literal that appears
positive in the body is in § and each literal that appears negative in the
body is not in 5. A context S satisfies a rule iff either it does not satisfy its
body or it satisfies its body and at least one literal that appears in its head
belongs to .

A proof of a literal is a sequence of rules that can be used to derive the
literal from the program. Formally, a literal I has a proof w.r.t. a context
S and a program IT iff there is a sequence of rules 6, ..., §, from II such that

*Note that our dependency graph ignores the literals that appear negative in the body
of the rule.

1. for each rule &;, one and only one of the literals that appear in its head
belongs to .S (this literal will be denoted hs(8:))

2. L = hg(éy,),

b

3. The body of each §; is satisfied by S, and,

4. é; has an empty body, and for each i > 1, each literal that appears
positive in the body of §; is equal to hs(é;) for some 1 < j < 4.

The following theorem clarifies the concept of answer sets:
Theorem 2.2 A context § is an answer set of an HEDLP 11 iff

1. § satisfies each rule in 11,

2. for each literal L in S, there is a proof of L wrtIl and §, and

3. § does not contain a pair of complementary literals. O

Note that the above theorem will not necessarily hold for programs hav-
ing head cycles. Consider, for example, the program having the set of rules
{P|Q—, P—Q,Q— P}. The set {P,Q} is an answer set of this program
but it violates condition 2 of the theorem, since neither P nor has a proof
w.r.t. the answer set and the program. '

Is there an easy way to verify that each literal has a proof? It turns out
that for an acyclic EDLP the task is easier:

Theorem 2.3 A contezt S is an answer set of an acyclic EDLP 11 iff
1. § satisfies each rule in 11,
2. for each literal L in §, there is a rule § in I such that

(a) the body of § is satisfied by S,
(b) L appears in the head of §, and
(¢) all the literals other than L in the head of § are not in S,

and
3. § does not contain a pair of complementary literals. O

To identify an answer set when IT is eyclic, we need to assign indexes to
literals that share a cycle in the dependency graph:

Theorem 2.4 A context § is an answer set of an HEDLP 11 iff
1. § satisfies each rule in 1I,

2. there is a function f : £ — N* such that, for each literal L in S, there
is @ rule § in Il such that

(a) the body of § is satisfied by S,
(b) L appears in the head of §,
(¢) all literals in the head of § other than L are not in S, and,

(d) for each literal L’ that appears positive in the body of §, f(L') <
f(L},

and

3. 5 does not contain a pair of complementary literals. O

The above characterizations of answer sets are very useful. In addition to
giving us alternative definitions of an answer set, they facilitate a polynomial
time compilation of any finite grounded HEDLP into a propositional theory,
such that there is a one-to-one correspondence between answer sets of the
former and models of the latter. The merits of this compilation will be
illustrated in the sequel.

3 Compiling Disjunctive Logic Programs into a
Propositional Theory

Each answer set of a given logic program can be viewed as representing a
possible world compatible with the information expressed in the program.
Hence, given an EDLP II and a context V, the following queries might come

up:
Existence: Does II have an answer set? If 0, find one or all of them.
Set-Membership: Is V contained in some answer set of II?
Set-Entailment: Is V contained in every answer set of II?

In this section we will present algorithms that translate a finite HEDLP H
into a propositional theory Ty such that the above queries can be expressed
as satisfiability problems on this propositional theory.

The propositional theory Ty is built upon a new set of symbols £ in
which there is a new symbol Iy, for each literal L in L. Formally,

Ln = {I|L € L).

Intuitively, each [;, stands for the claim “The literal L is In the answer set”,
and each valuation of £ represents a context, which is the set of all literals
L such that I is assigned true by the valuation. What we are looking
for, then, is a theory over the set £p such that each model of the theory
represents a context that is an answer set of II.

Consider procedure translate-1, below, which translates an HEDLP 1T
into a propositional theory TJ;.

translate-1(11)

1. For each body-free rule Ly|...|Lg— in II, add Ip, v ...V Iy, into Tyy.

2. For each rule
L] |iLk1‘—‘— Lk+11 seey Lk-}-m; not Lk+m+1, aiey not Lk+m+n (2)

with no empty body add
ILk+1 A A ILk+m A _'ILk+m+1 A A ﬂILHm_'_“—JLl V..V,

into 1.

3. For a given L € £, let S be the set of formulas of the form

ILk+1 AL A ILk+m A _|ILk+m+l AL A ﬁILk+m+n A-Ip AL A _"IL,_l A

-1, A"'A—'IL::

1+1

where there is a rule of the form (2) in II in which L appears in the
head as L;.

For each L in £ such that the rule “L+«—" is not in I add to Ty the
formula I, —[Vaes, a] (note that if 57 = @) we add I, — false to T).

4. For each two complementary literals L, L' in £, add —J; v ~{pr to Tn.
a

The theory T, produced by the above algorithm, simply states the con-
ditions of Theorem 2.3 in propositional logic: the first and second steps of
algorithm franslate-1 express condition 1 of the theorem, step 3 expresses
condition 2, and step 4 describes condition 3. Hence:

Theorem 3.1 Procedure translate-1 transforms an acyclic EDLP 1l into a
propositional theory Tny such that 8 is a model for Tn iff {L|&(I;) = true}
is an answer set for II.

What if our program is cyclic? Can we find a theory such that each of
its models corresponds to an answer set? Theorem 2.4 suggests that we can
do so by assigning indexes to the literals.

When we deal with finite logic programs, the fact that each literal is
assigned an index and the requirement that an index of one literal will be
lower than the index of another literal can be expressed in propositional logic.
Let #L stand for “L is associated with one and only one integer between 1
and n”, and let [#Ly < #L,] stand for “The number associated with L, is
less than the number associated with L;”. These notations are shortcuts for
formulas in propositional logic that express those assertions (see [BED91b]).

7

The size of the formulas #L and [#L, < #L,] is polynomial in the range
of the indexes we need. We can show that the index variables’ range can be
bounded by the maximal length of an acyclic path in any strongly connected
component in Gy (the dependency graph of II).

The strongly connected components of a directed graph are a partition
of its set of nodes such that, for each subset ¢ in the partition and for
each z,y € C, there are directed paths from z to y and from y to z in G.
The strongly connected components can be identified in linear time [Tar72].
Thus, once again we realize that if the HEDLP is acyclic, we do not need
any indexing,.

The above ideas are summarized in the following theorem, which is a
restricted version of Theorem 2.4 for the class of finite HEDLPs.

Theorem 3.2 Let I be a finite HEDLP, and let r be the length of the longest
acyclic directed path in any component of Gri. A contezt S is an answer set
of an HEDLP 1 iff

1. § satisfies each rule in 11,

2. there is a function f : L — 1,..,r such that, for each literal L in S,
there is a rule § in Il such that

(a) the body of & is satisfied by S,
(b) L appears in the head of §,
(c) all literals other than L in the head of § are not in S, and,

(d) for each literal L' that appears positive in the body of § and shares

g cycle with L in the dependency graph of I, f(I') < f(L),
an

3. § does not contain a pair of complementary literals. O

Procedure translate-2 expresses the conditions of Theorem 3.2 in propo-
sitional logic. Its input is any finite HEDLP II, and its output is a propo-
sitional theory T7; whose models correspond to the answer sets of II. Tjy is
built over the extended set of symbols L' = Lal{L = i|L € £,1 < i< r},
where r is as above. Steps 1, 2, and 4 of translate-2 are identical to steps 1,
2, and 4 of translate-1, so we will show only step 3.

translate-2(II)-step 3

3 Identify the strongly connected components of Gp;. For each literal [that
appears in a component of size > 1, add #L to Tj.

For a given L € £, let S, be the set of all formulas of the form

ILk+1 A A ILk+m A "'ILk+m+1 A A _‘ILk+m+n A-dp ALLA "ILJ_l A
i A AT A[#Li < H#LIN A [#Lgye < #1)

such that there is a rule in II

Lyf.|Lge—Lgy1, ..y Ly, n0t Liyposa, ..., not Litiman

in which L appears in the head as L;j and Liqy,..., Lige (8 < m) are
in L’s component,

For each L in £ such that the rule “L+«—" is not in II add to Ty the
formula Iy —[V,¢s, @] (note that if S = @ we add I; — false to Tn).
O

Note that if translate-2 gets as an input an acyclic HEDLP it will behave
exactly the same as translate-1, thus it is a generalization of translate-1.

The following proposition states that the algorithm’s time complexity
and the size of the resulting propositional theory are both polynomial:

Proposition 3.3 Let Il be an HEDLP. Let |11| be the number of rules in I,
n the size of L, and r the length of the longest acyclic path in any component
of Gn. Algorithm translate-2 runs in time O(|II|n?*r?) and produces O(n +
[TI}) sentences of size O(|l}nr?).

The following theorems summarize the properties of our transformation. In
all of them, Ty is the set of sentences resulting from translating a given
HEDLP II using translate-2 (or translate-1 when the program is acyclic).

Theorem 3.4 Let Il be an HEDLP. If Tn is satisfiable and if 8 is a model
for Tn , then {L|6(1L) = true} is an answer set for II.

Theorem 3.5 IfS is an answer set for an HEDLP 11, then there is a model
8 for T such that 8(I1) = true iff L € .

Corollary 3.6 An HEDLP I has an answer set iff Tiy is satisfiable.

Corollary 3.7 A contest V is contained in some answer set of an HEDLP
1L iff there is @ model for Ty that satisfies the set {I;|L € V}.

Corollary 3.8 A literal L is in every answer set of an HEDLP 11 iff every
model for Ty satisfies Iy,

The above theorems suggest that we can first translate a given HEDLP
Il to Tn1 and then answer queries as follows: to test whether IT has an answer
set, we test satisfiability of 77y; to see whether a set V of literals is a member
in some answer set, we test satisfiability of TnlJ{I|L € V}; and to find
whether V is included in every answer set, we test whether Ty = A Levir.

Example 3.9 Consider again the program II from the previous section {“Ba”
stands for “Baby(Adi)”, “Bo” stands for “Boy(Adi)”, and each of the other
literals is represented by its initial):

Ba—
N+e—Ba,not A
Bo|G—N

The theory Tr, produced by algorithm translate-2 (and also by algorithm
translate-1, since this program is acyclic), is as follows:

{following step 1:
IBa
following step 2:
Igg A-Tp— Iy, IN— I, V I
following step 3:
In—1Iga A ~ls, IBo—IN A ~lg, Ig—In A -Ip,, ~Iy
(no sentences will be produced in step { since there are no complementary
literals in L)

This theory has ezactly two models (we mention only the atoms to which
the model assigns true): {Ig.,In,Ig}, which corresponds to the answer
set { Baby(Adi), Normal baby(Adi), Girl(Adi} }, and {Ig,, IN,IB,}, which
corresponds to the answer set { Baby(Adi}, Normal_baby(Adi), Boy{Adi) }.

4 Outcomes of Our Translation

4.1 NP-completeness

Gelfond and Lifschitz {[GL91] have shown that there is a close relationship
between default theories and logic programs interpreted by stable model
semantics. Their observation allows techniques and complexity results ob-
tained for default logic to be applied to logic programming, and vice versa.
For example, the complexity results obtained for default logic [KS91, $ti90]
establish the NP-hardness of the existence and membership problems and
the co-NP-hardness of the entailment problem for the class of HEDLPs,

In view of these results, the polynomial transformation to satisfiability
that we have presented in the last section implies the following:

Corollary 4.1 The eristence problem for the class HEDLP is NP-complete.
Corollary 4.2 The membership problem for the class HEDLP is NP-complete.

Corollary 4.3 The entailment problem for the class HEDLP is co-NP-
complete.

4.2 Tractability

The results obtained in the last subsection suggest that in general many
types of queries on a disjunctive logic program are NP-hard or co-NP-hard
under stable model semantics.

Our mapping of HEDLPs into propositional theories suggests a new di-
mension along which tractable classes can be identified. Since our transfor-
mation is tractable, any subset of HEDLPs that is mapped into a tractable

10

subset of satisfiability is tractable too. Among other known techniques, we
can apply techniques from the CSP literature that solve satisfiability and
characterize tractable subsets by considering the topological structure of the
problem (for a survey, see [Dec92]).

For instance, in [BED91a] we have shown how a CSP technique called
tree-clustering, developed by Dechter and Pearl [DP89)], can be used to solve
satisfiability. Based on this technique, we can characterize the tractability
of HEDLPs as a function of the topology of their interaction graphs. The
interaction graph is an undirected graph where each literal L in £ is asso-
ciated with a node and the set of all literals that appear in rules with £ in
the head are connected in a clique.

The first theorem considers the clique width of the interaction graph.

Definition 4.4 (clique width) A graph is chordal if every cycle of length
at least 4 has a chord. The clique width of a graph G is the minimal size of
a mazimal cligue in any chordal graph that embeds G.

Theorem 4.5 For an HEDLP whose interaction graph has a clique width g,
existence, membership, and entailment can be decided in O(m*(2r)*+?) steps.

In the above theorem and in the next, = stands for the number of rules
or the number of literals used in the program, whichever is bigger, and =
stands for the length of the longest acyclic path in any component of the
dependency graph of the program (so if the program is acyclic, r = 1).

Note that an upper bound to the clique width is the number of literals
used in the program and that the upper bound is always at least as large as
the size of the largest rule in the program. We believe, however, that tree-
clustering is especially useful for programs whose interaction graphs have a
repetitive structure. Programs for temporal reasoning, where the temporal
persistence principle causes the knowledge base to have a repetitive structure
are a good example. In [BED91b] we demonstrate the usefulness of tree-
clustering for answering queries on such programs.

The next theorem relates the complexity to the size of the cycle-cutset
of the interaction graph.

Theorem 4.8 For an HEDLP (D, W) whose interaction graph has a cycle-
cutset of cardinality c, ezistence, membership, and entailment can be decided
in O(m1(2r)°t1) steps.

4.3 Expressiveness

Are disjunctive rules really more expressive than nondisjunctive rules? Can
we find a nondisjunctive theory for each disjunctive theory such that they
have the same answer sets/extensions? This question has been raised by Gel-
fond et al [GPLT91]. They consider translating a disjunctive logic program

11

II into a nondisjunctive program II' by replacing each rule of the form (1)
(see Section 2 above) with & new rules

L1<—-Lk+1, sany Lk+m1 not Lk—i—m-}-l, ey not Lk+m+na not L-z, veny not Lk,

Li—Liy1se Likgm, 10t Liymir, .y 00t Lipmgn, not Ly, ..., not L_;.

Gelfond et al show that each extension of II’ is also an extension of II, but
not vice versa. They gave an example where IT has an extension while II’
does not. So, in general, TI' will not be equivalent to II. We can show,
however, that equivalence does hold for HEDLPs.

Theorem 4.7 Let Il be an HEDLP. § is an answer set for I iff it is an
answer set for II'. O

The reader can verify the above theorem by observing that our translation
will yield the same propositional theory for both IT and II'. The theorem
implies that under stable model semantics no expressive power is gained
by introducing disjunction unless we deal with a special case of recursive
disjunctive logic programs. '

4.4 Relation to Clark’s Predicate Completion

Clark [Cla78] made one of the first attempts to give meaning to logic pro-
grams with negation (“normal programs”). He has shown how each normal
program Il may be associated with a first-order theory COM P(II), called
its completion. His idea is that when a programmer writes a program II,
the programmer actually has in mind COM P(II}, and thus a formula Q is
implied by the program iff COMP(IT) = Q (See [BED91b] for review of
these well-known results).

The translation that we provided in Section 3 leads to the discovery of
a close relationship between stable model semantics® and Clark’s predicate
completion.

Theorem 4.8 Let II be a normal acyelic propositional logic program. Then
M is a model for COMP(I) iff {Ip|P € M} is a model for Tiy. O

proof (sketch): Let I be an acyclic normal logic program, £ the language of
II, and 771y the theory obtained from Tty by replacing each occurrence of the
atom [p, where P is an atom in £, with the symbol P. It is easy to see that
the set of models of 7’1 projected on £ is equivalent to the set of models of

COMP(II). O

®Note that in normal logic programs we have only one negation operator, which we
regard as a negation by default operator for the sake of computing answer sets.

12

Corollary 4.9 Let II be an acyclic normal propositional logic program. 11
has a stable model iff COM P(l) is consistent. Furthermore, M is a model
for COMP(I1} iff M is an answer set for II. O

Corollary 4.10 LetII be an acyclic normal propositional logic program. An
atom P s in the intersection of the answer sets of Il (as defined by stable
model semantics) iff COMP(II) = P. O

Corollary 4.11 LetII be an acyclic normal propositional logic program. An
atom P does not belong to any of the answer sets of Il (as defined by stable
model semantics) iff COMP(Il) E -~P. D

It is already known that each stable model for a normal logic program is
a model of its completion [MS89] and that if an atom is implied by the
completion of a locally stratified normal program, then it belongs to its
(unique) answer set [ABWS88, Prz89]. We believe that the observations in
Corollaries 4.9-4.11 are new because they identify the class of acyclic normal
propositional logic programs as a class for which stable model semantics
(under “skeptical reasoning”®) is equivalent to Clark’s predicate completion.

5 Related Work

Elkan [E1k90] has shown that stable models of normal logic programs can be
represented as models of propositional logic, but did not provide an explicit
propositional theory to characterize these models. The mapping described
in Section 3 above can be regarded as one such characterization.

Marek and Truszczynski [MT91] have shown how questions of member-
ship in expansions of an autoepistemic theory can be reduced to propositional
provability and have stated that this reduction can be used for checking
whether an atom is in the intersection of all stable models of a normal logic
program. Since they do not provide an explicit algorithm for such decisions,
it is hard to assess the complexity of their method, and it is not clear whether
it would yield results similar to those presented here.

6 Conclusions

This paper provides several characterizations of answer sets of HEDLPs ac-
cording to stable model semantics. It shows that any grounded HEDLP can
be mapped in polynomial time into a propositional theory such that models
of the latter and answer sets of the former coincide. This allows techniques
developed for solving satisfiability problems to be applied to logic program-
ming. It also enables evaluation of the expressive power of these programs,

8 “CSkeptical reasoning” means that a program entails an atom iff the atom belongs to
all of the program’s answer sets.

13

identification of their tractable subsets, and discovery of useful similarities
between stable model semantics and Clark’s predicate completion.

One of the possible drawbacks of stable model semantics is that it entails
multiple answer sets. The approach proposed in this paper suggests that in
order to compute whether a literal belongs to one or all answer sets we do
not need to compute or count those sets. Thus, multiplicity of answer sets
may not in itself be a severe computational obstacle to the practicality of
disjunctive logic programming.

We are currently investigating extensions of our work to a class of un-
grounded logic programs.

Acknowledgments

This work was partially supported by NSF grant IRI-9157636, by the Air
Force Office of Scientific Research grant AFOSR 900136, by GE Corporate
R&D, and by Toshiba of America.

The authors thank Michael Gelfond, Vladimir Lifschitz, Jack Minker,
Stott Parker, Teodor Przymusinski, and Carlo Zaniolo for helpful conver-
sations on the relations between logic programming and default reasoning.
Michael Gelfond pointed out to us the difference between the uses of dis-
Jjunction in default logic and in logic programs. Vladimir Lifschitz drew our
attention to the close connection between our translation and Clark’s pred-
icate completion. We also thank Judea Pearl and Halina Przymusinska for
valuable comments on earlier drafts of this paper.

References

[ABW88] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declar-
ative knowledge. In Jack Minker, editor, Foundations of Deduc-
tive Databases and Logic Programs, pages 89-148. Morgan Kauf-
mann, 1988.

[BED91a] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics
for default logic. Technical Report R-172, Cognitive systems lab,
UCLA, 1991. Presented at the 4th international workshop on
nonmonotonic reasoning, May 1992, Plymouth, Vermont. A short
version appears in the proceedings of AAAI-91 under the name
“Default Logic, Propositional logic, and Constraints™.

(BED91b] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics
for disjunctive logic programs. Technical Report R-170, Cognitive
systems lab, UCLA, 1991. Submitted.

[Cla78] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Databases, pages 293-322. Plenum Press, New
York, 1978.

14

[Dec92]

[DP8Y)

[E1k90]

[GL91)

[GPLT91]

[KS91]

[MS89]

[MT91]

[Prz89]

[Rei80]

[Sti90]

[Tar72]

Rina Dechter. Constraint networks. In Stuart C. Shapiro, edi-
tor, Encyclopedia of Artificial Intelligence, pages 276-285. John
Wiley, 2nd edition, 1992.

Rina Dechter and Judea Pearl. Tree clustering for constraint
networks. Artificial Intelligence, 38:353-366, 1989.

Charles Elkan. A rational reconstruction of nonmonotonic truth
maintenance systems. Artificial Intelligence, 43:219-234, 1990,

Michael Gelfond and Vladimir Lifschitz. Classical negation in
logic programs and disjunctive databases. New Generation Com-
puting, 9:365-385, 1991.

Michael Gelfond, Halina Przymusinska, Vladimir Lifschitz, and
Miroslaw Truszczynski. Disjunctive defaults. In KR-91: Pro-
ceedings of the 2nd international conference on principles of

knowledge representation and reasoning, pages 230-237, Cam-
bridge,MA, 1991.

Henry A. Kautz and Bart Selman. Hard problems for simple
default logics. Artificial Intelligence, 49:243-279, 1991.

Wiktor Marek and V.S. Subrahmanian. The relationship between
logic program semantics and non-monotonic reasoning. In Logic
Programming: Proceedings of the 6th International conference,
pages 600-617, Lisbon, Portugal, June 1989. MIT Press.

Wiktor Marek and Miroslaw Truszczynski. Computing intersec-
tion of autoepistemic expansions. In Logic Programming and
Non-monotonic Reasoning: Proceedings of the 1st International
workshop, pages 37-50, Washington, DC USA, July 1991.

Teodor Przymusinski. On the declarative and procedural seman-
tics of logic programs. journal of Automated Reasoning, 5:167—
205, 1989.

Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81-132, 1980,

Jonathan Stillman. It’s not my default: The complexity of mem-
bership problems in restricted propositional default logics. In
AAAI-90: Proceedings of the 8th national conference on artificial
intelligence, pages 571-578, Boston,M A, 1990.

Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1:146-160, 1972.

15

