Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ZERO-SKEW CLOCK ROUTING TREES WITH MINIMUM
WIRELENGTH

K. Boese March 1992
A. Kahng CSD-920012

Zero-Skew Clock Routing Trees With Minimum Wirelength

*

Kenneth D. Boese and Andrew B. Kahng

Abstract

In the design of high performance VLSI systems, minimization of clock skew is an increasingly
important objective. Clock routing trees should also have minimum wirelength in order to reduce
system power requirements and deformation of the clock pulse at the synchronizing elements of the
system. In this report, we present the Deferred-Merge Embedding (DME) algorithm, which embeds
any given clock tree topology to minimize total wirelength while preserving zero clock skew. Extensive
experimental results show that the algorithm yields zero-skew trees with 7% to 14% wirelength reduction
over previous constructions in [12] {13] [18]. The DME algorithm may be applied with either the Elmore
or linear delay model, and it yields optimal total wirelength for the linear delay regime.

1 Introduction and Preliminaries

Circuit speed is a primary consideration in the design of high performance VLSI designs. In a synchronous
VLSI design, the circuit speed is increasingly limited by two factors: (i) delay on the longest path through
combinational logic, and (ii} clock skew, i.e., the maximum difference in arrival times of the clocking signal
among the synchronizing elements of the design. This is seen from the well known inequality governing the

clock period of each clock signal net [2] [12]:

clock period 2 tg 4+ tskew +Lsu + tas

where 14 is the delay on the longest path through combinational logic, ¢,k s the clock skew, t,, is the set
up time of the synchronizing elements {assuming edge triggering), and ¢4, is the propagation delay within
the synchronizing elements. The term ¢4 can be further decomposed into ty = t4_interconnect+td_gates, Where
td_interconnect 18 the delay associated with the interconnect of the longest path through combinational logic,
and t4_gares 18 the delay through the combinational logic gates on this path. Increased switching speeds
due to advances in VLSI fabrication technology imply that the terms 2,4, {45, and £4_gases all decrease
significantly. Therefore, t4_interconnect and 45en become more dominant factors in determining circuit
performance: Bakoglu [2] has noted that ¢,.,, may account for over 10% of the system cycle time in high-
performance systems. With this in mind, a number of researchers have recently studied the clock skew

minimization problem.

*This work was supported in part by NSF MIP-9110696, ARO DAAK-70-92-K-0001, and a GTE Graduate Fellowship.
Author affiliations: Dept. of Computer Science, UCLA, Los Angeles, CA 90024-1596.

For building block design styles, Ramananathan and Shin [14] proposed a clock distribution scheme
which applies when the blocks are hierarchically organized. The number of blocks at each level of the
hierarchy is assumed to be small since the algorithm exhaustively enumerates all possible clock routings
and clock buffer optimizations. Burkis [5] and Boon et al. [4] also proposed hierarchical clock tree synthesis
approaches involving geometric clustering and buffer optimization at each level. General clock tree resyn-
thesis or reassignment methods were used by Fishburn [9] and Edahiro [7] to minimize the clock period
while avoiding hazards or race conditions; [9] employed a mathematical programming formulation, while
(7] employed computational geometric techniques within a clustering-based heuristic, All of these methods
are essentially limited to small problem sizes, either by algorithmic complexity or by reliance on a strong
hierarchical clustering. By contrast, we are interested in clock tree synthesis for “flat” designs with many
sinks (synchronizing elements); such instances arise for large standard-cell and sea-of-gates designs, as well

as multi-chip module packages.

Clock tree construction for designs with many clock sinks was first attacked by the H-tree method, which
was used in regular systolic arrays by Bakoglu and other authors [1] [6] {10] [19]. While the H-tree structure
can significantly reduce clock skew {6] [19], it is applicable only when all of the synchronizing components are
identical in size and are placed in a symmetric array. The first robust clock tree construction for cell-based
layouts is due to Jackson, Srinivasan and Kuh [12]: their “method of means and medians” (MMM) algorithm
generates a topology by recursively partitioning the set of sinks into two equal-size subsets, then connecting
the center of mass of the entire set to the centers of mass of the two subsets. Although it was shown in [12]
that the maximum difference in pathlength from the root to different synchronizing components is bounded
by O(\/%—‘) on average, [13] showed small examples for which the source-sink pathlengths in the MMM
sclution may vary by as much as half the chip diameter. In some sense, this reflects an inherent weakness in
the top-down approach, which can commit to an unfortunate topology early on in the construction. Kahng,
Cong and Robins [13] gave a bottom-up matching approach to clock tree construction: their method
eliminates all skew in terms of source-sink pathlengths, while using 5%-7% less total wirelength than the
MMM algorithm. However, as [13] focused primarily on pathlength balancing, their method addresses
clock skew minimization only in the sense of the finear delay model. Tsay [18] subsequently gave a similar
bottom-up algorithm that achieved zero skew trees with respect to the Elmore delay model [8] [15). In the
same spirit as the method of {13], Tsay’s method combines pairs of zero skew trees at “tapping points”
(the roots of the recursively merged subtrees, analogous to the “balance points” in [13]) to yield larger zero

skew trees.

Both the top-down method of [12] and the bottom-up methods of [13] [18] concentrate on the problem of
computing a good heuristic clock tree topology. However, this work essentially disregards total wirelength
considerations (e.g., [18]} adds redundant wiring as needed to match delays). In other words, they do nat
effectively address the associated problem of finding a minimum-cost embedding of the heuristic topology.
Indeed, these previous methods are highly inflexible in that they permanently embed each internal node
of the tree as soon as it becomes defined. Disregarding wirelength may not be practical, since excess
interconnect will not only increase layout area but also result in greater tree capacitance, thus requiring

more power for distribution of the clock signal.

In this report, we propose a new approach which achieves exact zero clock skew while significantly

reducing the total wirelength in the clock tree, i.e,, for any given topology, we can achieve an effective
embedding. The basic idea of our algorithm is to defer the embedding of internal nodes in the topology for
as long as possible: (i) a bottom-up phase computes loci of feasible locations for the roots of recursively
merged subtrees, and (ii} a top-down phase then resolves the exact embedding of these internal nodes of
the clock tree. In practice, our Deferred-Merge Embedding (DME) algorithm will begin with an initial
clock tree computed by any previcus method, then maintain zero clock skew while reducing the wirelength.
In regimes where the linear delay model applies, our method produces the optimal {minimum-cost) zero
skew clock tree with respect to the prescribed topology, and this tree will also enjoy the minimum possible

source-terminal delay.

Experimental results in Section 4 below show that the DME approach is highly effective with the linear
delay model. We achieve average savings in total clock tree cost of 13% over the MMM algorithm [12]
and 7% to 9% over the method of [13]. Qur methods are quite robust, and extend to “prescribed skew”

formulations as well as more general optimizations of topologies for both clock routing and global routing.

The remainder of this report is organized as follows. In Section 2, we formalize the minimum-cost
zero skew clock routing problem and also establish the linear and Elmore delay models that are used in
the subsequent discussion. Section 3 presents our main results. These include: (1) the Deferred-Merge
Embedding (DME) algorithm for efficiently embedding a given topology and (ii) application of the DME
algorithm to both the linear and Elmore delay regimes; Section 4 gives experimental results and comparisons
with previous work. Results contained in this report have been submitted to the IEEE International
Conference on ASIC (1992). The summary submitted to that conference for review is included in Appendix
A.

2 Problem Formulation

The placement phase of physical layout determines positions for the synchronizing elements of the circuit
design, which we call the sinks of the clock net. A finite set of sinks, denoted by § = {s1,s2,...,8,} € RZ,
specifies an instance of the clock routing problem. We say that a connection {opology is an unweighted
rooted binary tree, GG, which has n leaves corresponding to the set of sinks S. A clock tree T(S) is an
embedding of the connection topology in the Manhattan plane! The root of the clock tree is the clock
source, denoted by sg. We direct all edges of the clock tree away from the source; a directed edge from v
to w may therefore be uniquely identified with w and denoted by e,,. We say that v is the parent of w, and
w is a cheld of v; the set of all children of v 1s denoted by children(v). The wirelength, or cost, of the edge
e, is denoted by [e,|. The cost of 1" is the total wirelength of the edges in T'.

Given a clock tree T(S), we use t4(sg, 5;) to denote the signal propagation time, or delay, on the the
unique path from the source sq to the sink s;; the collection of edges in this path is denoted by path(sq, s;).?
The skew of T(S) is the maximum value of |t4(sg, s;} — ta(sn, s;)| over all sink pairs s;,s; € S, and T(S)

is a zero skew clock tree (ZST) if its skew is zero. The zero skew clock routing problem is thus stated as

INote that the binary tree representation suffices to capture arbitrary Steiner routing topologies.
?Note that a path from node v to node w, where v and w are on some source-sink path, will not contain e,.

follows:
Given a set S of sinks, construct a zero skew clock tree T(S) with minimum cost.

Our work is concerned with the variant of the zero skew clock routing problem where a connection topology

G is prescribed, and we wish to find the minimum cost zero skew clock tree that has topology G.

Observe that the notion of a zero-skew clock tree is well-defined only when we can evaluate signal delays.
The delay from the source to any sink depends on the wirelength of the source-sink path, the RC constants
of the wire segments in the routing, and the underlying connection topology of the clock tree.® Using
equations such as those of Rubinstein et al. [15], one may achieve tight upper and lower bounds on delay
in a distributed RC tree model of the ¢lock routing. However, two simpler approximations of RC delay are
more easily computed and optimized during the clock tree construction. These are the linear delay model

and the Eimore delay model, which are appropriate to clock tree synthesis in different technological regimes.

2.1 Delay Models
2.1.1 Linear Delay

In the linear delay model, the delay along path(sg,s;) is proportional to the length of the path and is

independent of the remainder of the connection topology. We may express the path delay trp(sg, i)} as

tep(sos)= Y. e

cyEpath{sg,3:)

More generally, the linear delay between any two nodes u and w in a source-sink path is

tpw,w)= Y. el

e, Epath(u,w)

The linear delay model is particularly appropriate for emerging substrate interconnect technologies on
multichip module (MCM) packages [17], e.g., low resistivity thin-film interconnect. The linear delay model
also has added relevance for MCMs because the MCM approach achieves its performance wins by integrating
multiple die on a single package, i.e., interchip delay is significantly reduced. For yield and ease of system
design, individual ICs in an MCM design are often relatively slow compared with leading-edge monolithic
packages, and the linear delay model remains a reasonable approximation. Below, we show that for the
linear delay model, our DME algorithm gives the optimal solution to the zero skew clock routing problem
for any prescribed connection topology. However, with higher ASIC system speeds the Elmore delay madel

gives a more accurate delay approximation,

3The global routing phase of layout will typically consicer the clock and power/ground nets for preferential assignment to
(dedicated) routing layers. We assume that the interconnect delay parameters are the same on all metal routing layers, and
we ignore via resistances. Thus, wirelength becomes a valid measure of the RC parameters of interconnections.

2.1.2 Elmore Delay

Let « and respectively denote the resistance and capacitance per unit length of interconnect, so that the
resistance r., and capacitance e, of e, are respectively given by o - |e,| and 8- |e,|. For each sink s; in the
tree T(S), there is a loading capacitance ¢z, which is the input capacitance of the functional unit driven

by s;.

We let T, denote the subtree of T(S) that has v as its root, and we let €, denote the tree capacitance
of T,,; this is equal to the total node capacitance of T,,. €, can be calculated from the node capacitance of
v and the summation of the capacitances of its children, yielding the following recursive formula:

C. = cL; if v is a sink node s;
= P)
2 wechitdren(v) Cew + Cuw if v is an internal node

According to [16] [15] [8], the Elmore delay tgp(se, s:) can be calculated by the following formula (see

[18] for a discussion of related circuit models):

tep(so, 8:i) = Z re, Cy.

¢v€path(sa,s,)

More generally, the delay time between any two vertices u and w on a source-sink path is given by

tegp(u,w) = Z re, Cy.
eyEpathiu,w)
The Elmore delay is additive: if v is a vertex on the u-w path, then tgp(u, w) = tgp{u,v)+tgp(v,w). For
example, if v is a child of u and w is a sink s;, then ipp{u,s;) = r. Cy +tgp(v, s:). A sink node s; may

be treated as a ZST with capacitance ¢p, and delay zero.

3 Main Results

At a high level, we divide the construction of the ZST into into (i} generation of a connection topology,
and (ii) embedding of the connection topology in the Manhattan plane. This report presents the Deferred-
Merge Embedding (DME}) algorithm, which computes a wire-efficient embedding of a given topology. The
approach is successful with both the linear and Elmore delay models; in the linear delay model it will

produce the minimum cost ZST for the given topology.

3.1 The Deferred-Merge Embedding (DME) Algorithm

The Deferred-Merge Embedding algorithm embeds interior nodes of the connection topology & via a two-
phase process. First, we process the topology in bottom-up order, and construct a tree of line segments
which represents possible placements of interior nodes in the ZST T but defers the actual node embeddings.

Then, a top-down phase resolves the exact embeddings of the nodes of T

3.1.1 Bottom-Up Phase: The Tree of Segments

Given the set of sink locations § and the connection topology (7, we construct a iree of merging segments.
Each merging segment is associated with a node of G and represents a set of possible placements of that
node. The tree of segments is constructed in a bottom-up order, because the definition of each segment

requires previous definition of its two children.

Let v be a node in connection topology G with children a and . Suppose T, and T} are zero-skew
embeddings of the subtrees rooted at a and &, respectively. Then a merging point p of v is a placement of v
which allows T, and 7} to be merged into a zero-skew tree T, with minimum additional wire. Let e, and
ey be the edges connecting T, and T} to p. The edge lengths |e,| and |ey] are called the merging distances
between v and @ and between v and b, respectively. The calculation of the merging distances depends on
the delay model used and will be described in Sections 3.2.1 and 3.3.1 below.

The additional wirelength used to merge T, and T, equals |e,] + |es| and is called their merging cost.
If the merging cost is minimized, either the merging cost will equal the distance d(a,b), or, if additional
wire is needed to balance the delays, one merging distance will equal 0 and the other will be greater than

d(a,b). A merging segment between points a and b is the set of all merging points between T, and Tj.

Let d(p, ¢) denote the Manhattan distance between two points p and q. Define the distance between
two sets of points P and @, d(P, Q) to be

min{d(p,¢) | p € P and ¢ € Q}

We define a Manhattan arc as a line segment with slope 41 or -1. The collection of points within a fixed
distance of a Manhattan arc is rectangular region whose boundary lines are also Manhattan arcs. Such a
region is called a tilted rectangular region or TRR. (See Figure 1 for an example of a TRR.) The Manhattan
arc at the center of a TRR is called its core, and is formally defined as the subset of the TRR that is
of maximum distance from its boundary. The radius of a TRR is the distance between its core and its

boundary.

core

radius

Figure 1: An example of a TRR with core and radius as indicated.

The roots of subtrees T, and T, can be anywhere on their respective merging segments. Call these

segments ms(a) and ms(b). Then every point p on the merging segment ms(v) between T, and T}, ms(v),
must be within distance |eq| of ms(a) and within distance |ep| of ms(b). Consequently, if we build TRRs
trr, with core ms(a) and radius |e,]| and {rry with core ms(b) and radius |es|, then ms(v) C trr, Nire;.
Moreover, because any point p with d(p, ms(a)) < |e,| and d(p, ms(d)) < |es] will be a merging point

between T; and T} with minimum merging cost, ms = trr, Ntrry.

Figure 2 contains a more precise description of the algorithm to construct the tree of merging segments.
In the figure, Figures 3 and 4 illustrate the algorithm for the two cases where (a) the merging cost equal

d(ms{a), ms(b)) and (b) the merging cost is greater than d(ms(a), ms(b)).

Procedure Build_Tree_of Segments
Input: Topology G
Output: Merging Segments ms(v) for each node v in G
for each node v in GG (bottom-up order)
bf if v is & terminal node,
ms(v) — {placement(v)}
else
Let a and b be the children of v.
Calculate.Merging Distances(|e, |, es]);
Create TRR’s irr, and trry as follows
core(trr,) — ms(a)
radius(trry) — lea]
core(lrry) — ms(b)
radius(trry) — |es
ms(v) — trry Nire,
endif

Figure 2: Algorithm to construct tree of segments.

trr{a) trrib)
* *
P " . ..
.‘ - .. L]
- '. . ‘.
‘0 . ‘0 .
. " - '.
ms (a)
ms (b} .
s{v)
(}1-xid
*
- - -
,. Lt .e
- *
- +*
- L]

Figure 3: Procedure Build_Tree_of Segments: construction of merging seg-
ment ms(v) if the merging cost equals d(ms(a), ms($)).

The next lemma proves that merging segments will always be Manhattan arcs (although they may

sometimes be single points). The lemma also states that trr, Nirr, can computed in constant time. Con-

trr{b)

P

trr{a)=ms{a} . .

ms {b) .

ld(ai-ld(b} e

Figure 4: Procedure Build_Tree_of_Segments: construction of merging seg-
ment ms(v) if merging cost is greater than d(ms(a), ms(b)).

sequently, the procedure Build_Tree_of_Segments requires constant time to compute each merging segment,

and linear time to construct the entire tree of segments.

Lemma 1 The intersection of iwo TRRs, Ry and Ra, is also @ TRR and can be found in constant time.
If radius(Ry) + radius(Rs) = d{core(R1), core(R»)), then By N Ry is a Manhattan arc.

Proof: The lemma follows readily if we rotate the plane by 45 degrees so that the boundaries of the
TRRs are vertical and horizantal line segments. (See Figure 5.) Let Ry and Ra be the two TRRs after

rotation, and let their boundary lines be as follows:

e R (a3 <apand by < by)

r =
T = a9
y = b
y = b
* Ry (a3 < a4 and b3 < by4)
r = as
r = a4
y = b3
y = by

Then Ry N Ry is a rectangular region with boundary lines

x = maz{ay,as)
z = min(as,aq)
y = max(by,bs)
y = min(by,bs)

The construction above of By N Ra requires a constant number of steps. Since rotating a rectangle by 45

degrees also requires only constant time, the intersection of two TRRs can be found in constant time.

If radius(R1) +radius(Ry) = d(core(R1), core(Rz)), then decreasing the radius of either R; or R must
cause their intersection to be empty. (Otherwise, we could form a path between core(R;) and core(R») with
length less than d(core(R,), core(R2)).) Consequently, Ry N Re must have zero width and be a segment or

a single point. Since it is also a TRR, it must be a Manhattan arc. O

core of the
intersection

y=bZ ... \

‘

ki
o
bt
1
.
.
.
.
.

X=a1l x=a3 x=a2? x=ad

Figure 5: Intersection of TRR’s after 45 degree rotation. In this example,
the intersection is defined by boundary lines * = a3, © = a2, y = b3, and
¥ = bg.

3.1.2 Top-Down Embedding of Nodes

Once the tree of segments has been constructed, the exact placements of interior nodes in the ZST T are
chosen in a top-down manner. For node » in topology G, we select the embedding of v, placement(v), as
follows. If v is the root node, then any point in ms(v) can be chosen as placement(v). If v is an interior

node other than the root, then v can be embedded at any point in ms(v) that is within distance [e,| of the

placement of v’s parent p. Merging segment ms(p) is constructed so that d(ms(v), ms(p)) < le,|, which
BIng

guarantees that there exists a point placemeni(v) within distance |e, | of placement(p).

Figure 6 contains the algorithm to embed interior nodes given the tree of segments. The algorithm
creates a square TRR trr, with radius equal to the length of e,, and with core equal to the placement of

v;’s parent node v,. The placement of v; can be any point from ms(v;) Nérr,. (See Figure 7).

Procedure Find_Exact_Placements
Input: tree of segments TS containing ms(v) for each v in G
Output: ZST T
for each interior node v in G (top-down order)
if v 1s the root
choose any ¢ € ms(v)
placement(v) — ¢
else
Let p be the parent node of v.
construct trr, and trr, as follows
trr, — ms(v); /* radius(trr,) = 0 */
core(trry) — {p}
radius(trry} — edge_length(v)
choose any g € trry Ntrr,
placement(v) — ¢

endif

Figure 6: Pseudo-code algorithm for embedding interior nodes in the ZST

L. trrip)
c. .0
. placement (p) *,
; ® s
.. '0
‘., ldipi-ld(v} .
placement (v} ’.‘/, .
- *

ms (vy=trr(v)

Figure 7: Procedure Find.Exact_Placements: finding the placement of v
from the placemnt of its parent p.

10

3.2 Application of DME to Linear Delay
3.2.1 Calculating Edge Lengths

Calculating edge lengths is very straightforward in the linear delay model. Let a and & be two siblings in
topology G with merging segments ms(a) and ms(b). Suppose typ(a) and typ(b) are the delays between

a and b and each of the leaf nodes in their respective subtrees. Let v be the parent of a and &.

Zero skew at v requires that

trp(a) + |ea| = top(b) + |es]

I [trp(a)—trp(b)| < d(ms(a), ms(b)), then the merging cost is minimized with |e,|+|es| = d(ms(a), ms(b)).

Hence,

_ d(ms(a), ms(b)) + fLD(b) — tLD(a)
2

leal

and
_ d(ms(a), ms(b)) + tpp(a) — trp(b)
2

les]

If on the other hand, {trp(a) — trp(b)| > d(ms(a), ms(b)), then the merging cost will be minimized with
one of the edge lengths set to 0. If tzp(a) > trp(b), then |es| = 0 and |ep] = trp(e) — trp(b). Similarly, if
trpla) < trp(b), then |ey| =t p(b) —trp(a) and leyi = 0.

3.2.2 Optimality of DME for Linear Delay
We have proved the following theorem asserting the optimality of DME for the linear delay model.

Theorem 1 Given a set of sinks S C R? and a connectlion topology G, the DME algorithm produces ¢ ZST
T with mintmum cost over all Z5Ts with topology G and sinks S.

The proof of Theorem 1 requires the following three lemmas. First, define a straight-line path between two
points # and y as any path of shortest length between them (in the Manhattan metric). If z and y are not
on the same horizontal or vertical line, then there will be an infinite number of straight line paths between
« and y. Define the projection area PA(z,6)) from a point z through a set of points as the set of all
points p for which there exists a straight line path from z to p that passes through Q. (¢ must be between

p and z.) Figure 8 contains an example of the projection area from a point z through a Manhattan arc .

Lemma 2 Let ms be a merging segment between the two poinis p and q. Then
PA(p, msyU PA(q, ms) = R*.

In other words, the union of the {wo projection areas from p and q, respectively, through their merging

segment, ms, is the entire plane,

11

Figure 8: Projection areas under the Manhattan and Euclidean metrics.

Proof: Merging segment ms is constructed as the intersection of two TRRs, trrp, and trrg, such that

core(trry) = {p}, core{trry) = {g}, and

radius(tre,) o+ d(p,q)

radius(trr;) = (1 —z)*d(p,q)

where 0 < 2z < 1. If x = 1 or = 0, the lemma is immediately true, since PA(p, {p}) = PA(q, {¢} = R*.
Let e; and ey be the two endpoints of merging segment ms. If 0 < x < 1 then we need to consider the two

cases depicted in Figure 9:

(a) e; and e are both corners of the same TRR, either trr, or trr,.

(b) e1 and es are corners of different TRR’s: e; a corner of trr, and ez a corner of trry.

Define a rey pipa2 from point p; through point py as the half-line with endpoint py that extends through
p2. In case (a), we can assume without loss of generality that e; and e, are both corners of trr,. Con-
sequently, the staight-line paths between p and e; and es must be a vertical and a horizontal line. In
Figure 9(a) it is evident that PA(p,ey) is the half plane with border line e;p; and PA(p, ea) is the half
plane bordered by line eaps. Moreover, PA(p,ms) is the infinite region separated from p by ray eip;,
segment ms, and ray espa. PA(q,ms) is the region separated from ¢ by the same border. Consequently,

PA(p, ms) U PA(g, ms) is the entire plane.

Similarly, in case (b) (Figure 9(b)), PA(p, ms) is the infinite region separated from p by e;p;, ms, and
esp2. PA(g, ms) is the region separated from ¢ by the same border. So again, PA(p, ms)U PA(q, ms) = R?.
0.

12

(a) (b)

Figure 9: Two cases to consider in the proof of Lemma 4.

Lemma 2 is used in the proofs of Lemmas 3 and 4. Lemma 3 shows that in the optimal ZST the
placement of a node must be in its merging segment. Lemma 4 demonstrates that the placement of two
sibling nodes must be a nearest pair of points between their merging segments. Let placement(T, v) be the
embedding of node v € G for ZST T.

Lemma 3 Given v an interior node in a Z5T T(5) with fopelogy G. Suppose thai a and b are the children
of v, and the sublrees of T rooted at a and b can be generated using DME for some placement of v on ms(v).
Then if ¢ = placement(T,v) & ms(v), then a new ZST T can be consiructed such that cost(T') < cost{T),

placement(T’,v) € ms(v), and the delay al poini ¢ remains unchanged.

Figure 10: Optimal placement of v must be on ms(v).

Proof: Consider Figure 10. Let a and & be the placements in T of v's children. By the Lemma 2, there
exists a point ¢’ on ms(v) such that there is a straight-line path from a to q or from & to ¢q. that passes
through ¢’. Without loss of generality, assume that this path is from & to ¢. Now, consider the ZST with
source ¢ that is constructed by cutting T at ¢. Because b — ¢’ — ¢ is a straight-line path, the segment bg in

T can be replaced with segments bg’ and g¢' without increasing the delay between b and ¢. Se,

trpla)+length(T,aq) = trp(b)+ length(T, bv)

13

> trp(b)+d(b,¢") +d(¢',q)

where length(T, aq) is the edge length between points @ and ¢ in 7. Furthermore, since ms(v) was chosen

to balance the delay at points @ and b, we must have that
tep(a) = trp(b) +d(b,q') — d(a, ¢')

and, thus
Iength(T, Clq) Z d(a, (I’) + d(qll q)

Hence, moving the placement of v from ¢ to ¢’ can reduce the cost of the tree by at least d(q’,q), while
g

preserving the leaf distance at point ¢. O

The next lemma shows that in an optimal ZST, two sibling nodes must not only be chosen from
their respective merging segments, but must also satisfy the distance constraints contained in procedure

Find_Exact_Placements.

Lemma 4 Suppose that in ZST T, a and b are two sibling nodes wilh parent v. Suppose also that the
subtrees of T rooted et a and b can be generated using the DME algorithm. If d(a,b) > d(ms(a), ms(b) and
d(a,b) > [trp(a)—trp (b)), then o new tree T’ can be constructed cost(T') < cost(T) with unchanged delay
at placement(T, v).

Figure 11: Optimal placement of siblings must be close enough to satisfy
procedure Find_Exact_Placements.

Proof: (See Figure 11). Let o’ and ¥ be placements of e and b on ms(e) and ms(b) that are within the

correct distance:

d(a’,b') < MAX(d(ms(a), ms(b)), [trp(a) = trp(b)]),

14

Let ¢ = placement(T,v). Then by Lemma 2, either ¢ € PA(Y,ms(v)) or ¢ € PA{a', ms(v)). Assume
without loss of generality that ¢ € PA(b’, ms(v)). Then there is a straight line path between ¥ and ¢ that

passes through ms(v) at some point ¢’. Furthermore, d(§', ms(v) < d(b, ms(v})), and consequently
(b, q} < dib, q).

Because the choice of a root node in DME does not change the cost of the resulting tree, we can move a to

a’ and b to ¥ without affecting the cost of their subtrees. Consequently
d(¥',¢') + d(q’, q) = d(¥', q) > d(b, 9).

This implies that tree T can be modified by moving node v from g to ¢’ while leaving the delay at point ¢
unchanged. Moreover, the cost of the new tree T” is less than that of T by at least d(¢’¢) O

Proof of Theorem 1: The proof is by contradiction. Suppose ZST T has minimum cost for point set S
and topology G but cannot be produced using the DME algorithm. Then there must a non-empty set of
nodes N such that v € N il and only if

o placement(T,v) € ms(v); or
» if a is the sibling of v,

d(placement(T, v), placement(T,a)) > M AX(d(ms(a), ms(b)), [trp(v) —trp(d)]),

Let v/ be a node in N with greatest depth in G. Let o’ be the sibling of v/. Then since v' has maximum
depth, all of the descendents of v* and a’ can be produced using DME. Consequently, by Lemmas 3 and 4,

v/ can also be produced by the embedding algorithm, which contradicts the definition of set N. O

3.2.3 Experimental Results for Linear Delay

As a test of the tree cost performance of DME for linear delay, we ran the algorithm on placements of the
MCNC benchmarks Primaryl and Primary2 used in [12] and {13}; these were originally provided by the
authors of [12]. Primaryl contains 269 sink nodes and Primary2 contains 603 sink nodes. We used the
topologies produced by Kahng, Cong, and Robins (KCR) [13] using a bottom-up, matching based method.
We compared our results with the Method of Means and Medians (MMM) of Jackson, et al [12] and with
KCR. [13]. The results are presented in Table 1. Using the same topologies, the DME algorithm reduced
the cost of trees produced by the KCR algorithm from 7% to approximately 9%. The overall reduction from
MMM was between 13% and 14%. The embedding algorithm also produced a significant improvement in
the delay time between source and sink nodes. For Primaryl the delay time was reduced from 6.6 in KCR

to 5.2. For Primary2 the reduction was from 10.8 to 9.8.

15

MMM | KCR | KCR + DME | cost reduction cost reduction

cost cost cost from MMM (%) | from KCR (%)
Primaryl | 161.7 { 153.9 140.3 13.2 8.8
Primary2 | 406.3 | 376.7 350.4 13.8 7.0

Table 1: Comparison of the embedding algorithm in the linear delay model on industry benchmarks Primary
1 and Primary 2. We used the topology produced by KCR. Note that the MMM algorithm produced trees
with standard deviation in pathlength of 0.29 for Primaryl and 0.74 for Primary2. KCR and KCR+EMB

constructed trees with zero skew.

3.3 Application to Elmore Delay

3.3.1 Calculating Edge Lengths in the Elmore Delay Model

In this section, we present the calculation of edge lengths needed to merge two ZST’s with minimum merging
cost. These calculations are due to Tsay [18]. Let T; and T} be two ZST’s with capacitance C1 and C2,
respectively, and delay ¢; = tgp(a) and t; = tgp(b). Suppose v is a merging point with minimum merging

cost. Let T, be the ZST with root v and edges e, and e, connecting 7, and T3.

From the definition of Elmore delay, we have that tgp(v,a) = reu(%ceu + C1) +t1. So merging point v

satisfies the following equation:

1 1
ree(§cﬂu +Cl)+tl =reb(§ceb+02)+t2. (1)

Let d(a,b) = k. Suppose that T, and T} can be merged with merging cost ; in other words, le,| = z and
ley] = & — z for 0 < 2 < k. Then the resistances r., and r., are @z and a(x —), respectively. Also, the
capacitances ¢., and ¢, are Sr and S(x — z}, respectively. By substituting these equalities into Equation

1 and solving for z, we have that
ta—t; +ar(Ca + 1K) @)
 a(Cy + Cy+ Br)

case 1: If 0 < z < &, then there exists a zero skew merging point of T, and T} located within the boundaries

of a and b. The merging distance is solved by Equation 2 and the merging cost is &.

case 2: If x < 0 or 2 > &, then the assumption of merging cost & results in a negative edge length for either
eq or ep. In this case, an extended distance &' is required to balance the difference in the delays of the two
trees. If ¢ < 0, which means t; > 1;, we choose @ as the merging point and set le,] = 0 and |ey| = &'. By
Eq. 1, we have that

t = am’(%,@re’ +C2) + 12

and we use the quadratic formula to solve for ':

((aCy)? + afB(ty — 1))} ~ aC,
af

!
K =

16

Similarly, if # > &, we choose node & as the merging point and

. ((aC1)? + 0Bt — 1)) — aCy
K =
af

In this case, the merging cost is &'.

The above analysis shows that a zero skew merging point between two ZSTs can always be found.

3.3.2 Counter-Example for Elmore Delay

For the linear delay model, DME produces a minimum cost ZST for a given topology. The deferred
placement of interior nodes in our algorithm insures that our placement algorithm will reduce the cost
over placement methods that merge subtrees with minimum additional cost without deferring the exact

placements.

However, for some sink sets and topologies, our embedding scheme will not be optimal in the Elmore
delay model. This is demonstrated by the ZST’s T" and 7” in Figures 12 and 13. T and T’ connect terminal
points sy, ..., s¢ to source sp. Both trees are assumed to extend to the right side of sy, with a mirror image
of the subtrees on the left of sg. In this example, we set both the resistance and capacitance per unit length,

o and 3, to one, and the loading capacitance ¢z, of each sink node s; to zero. 4

ZST T was constructed so that if points s; and s, are merged at point p;, then vertical wires from
points s3 through sg will merge along the horizontal wire from s; to s¢ with exactly zero skew. If s; and
sz are merged on the merging segment between them, then the delay at p; will increase, and jogs will be
required in the edges e,, through e,,. In this example, the four required jogs are each greater than 0.3.

Hence their sum is greater than 1, the the amount of wire saved initially in 7’ by merging s; and sz at po.

Table 2 contains the calculated delay and capacitance at each of the interior nodes of 77 and T". For

example in T the capacitance at py, Cp, is 33; and the delay at node ps is

(11.297)2

0.1
tED(pg) =tgp(p1)+0.1+% (c',;.1 + '5—) =60.5+3.30b=63.8= 3

The node capacitance at any interior node is defined to equal the cost of its subtree plus the sum of the
loading capacitances of the subtree’s leaves. Since all loading capacitances are zero in our example, the
node capacitances equal the cost of the corresponding subtrees. Consequently, we see from Figure 2 that
cost(T) is less than cost(T") by 0.44. Thus the embedding algorithm DME does not always produce a

minimum cost ZST for a given topology.

*The example can be easily altered to include non-zero loading capacitances. To do this, shorten each edge adjacent to a
terminal node by a small value ¢ > 0 and and set the loading capacitance of all terminal nodes to ¢.

17

sb
53 "
11.683
11
sl 11 pl | .1 p2 1 .1 pd 5 s0
- » & — u
p3
10
1 11.297
»——
82 12.155
| |
sd
s6 u

Figure 12: ZST T which violates the embedding algorithm but has optimal
cost for its topology. Note that the tree is not drawn to scale and the
lengths of segments are as indicated.

1125 .3042 32
) T ———
53
11.683
11
.1046 .1037
.6875 \\\ .1037
s1 1;\\\\ \ pZ’[///94’ 5.3005 s0
L -
O | p1r p37
10
12.155
52
11.297 <4

.3078 ———————a
L3005 sg

Figure 13: ZST T which violates the embedding algorithm but has optimal
cost for its topology. Note that the tree is not drawn to scale and the
lengths of segments are as indicated.

References

[1] H. Bakoglu, J. T. Walker and J. D. Meindl, “A Symmetric Clock-Distribution Tree and Optimized
High- Speed Interconnections for Reduced Clock Skew in ULSI and WSI Circuits”, Proe. IEEE Inil.
Conf. on Compuler Design Port Chester, NY, October 1986, pp. 118-122.

(2] H. Bakoglu, Circuits, Interconnections and Packaging for VLSI , Addison-Wesley, 1990,

18

Tree T Tree 7"

node | delay | capacitance | node | delay | capacitance
Po 50 20
P 60.5 33.0 P} 64.0 32.0
2 63.8 44.4 h 67.3 43.7
3 68.2 56.2 5 71.9 55.8
P 73.9 68.4 v 77.6 68.4
s0 | 428.6 2x73.44 sg | 454.0 | 2x73.66

Table 2: Delay and capacitance at each internal node of ZSTs T and T".

[3] K. D. Boese and A. B. Kahng, “Zero-Skew Clock Routing Trees With Minimum Wirelength,” to appear
in Proc. IEFE Intl. Conf. on ASIC, 1992

[4] S. Boen, S. Butler, R. Byrne, B. Setering, M. Casalanda and Al Scherf, “High Performance Clock
Distribution For CMOQS ASICS,” IEEE Custown Integrated Circuils Conference, pp. 15.4.1-15.4.4, 1889.

[5] J. Burkis, “Clock Tree Synthesis for High Performance ASICs”, IEEE Intl. Conf. on ASIC, pp. 9.8.1-
9.8.4. 1991.

[6] S. Dhar, M. A. Franklin and D. F. Wann, “Reduction of Clock Delays in VLSI Structures,” Proc. IEEE
Intl. Conf. on Computer Design, 1984, pp. 778-783.

[7] M. Edahiro, “A Clock Net Reassignment Algorithm Using Voronoi Diagram,” JEEE Inil. Conf. on
Computer-Aided Design, pp. 420-423, Nov. 1690.

[81 W. C. Elmore, “The Transient Response of Damped Linear Networks With Particular Regard to
Wide-Band Amplifiers,” Journal of Applied Physics, vol.19, no.1, pp. 55-63, Jan. 1948.

[9} J. P. Fishburn, “Clock Skew Optimization,” JEEE Transactions on Computers, vol. 39. No 7, pp.
945-951, July 1990.

(10} A. L. Fisher and H. T. Kung, “Synchronizing Large Systolic Arrays”, Proceedings of SPIE 341, May
1982, pp. 44-52.

[11} M. Garey and D. S. Johnson, “The Rectilinear Steiner Problem is NP-Complete”, STAM J. of Applied
Math. 32(4) (1977), pp. 826-834.

[12] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock Routing for High Performance ICs,” 27th
ACM/IEEE Design Automaiion Conference, pp. 573-579, 1990.

[13] A.B. Kahng, J. Cong, and G. Robins, “High-Performance Clock Routing Based on Recursive Geometric
Matching,” 28th ACM/IEEE Design Automation Conference, pp. 322-327, 1991.

[14] P. Ramanathan and K. G. Shin, “A Clock Distribution Scheme for Non-Symmetric VLSI Circuits,”
IEEE Intl. Conference on Compuier-Aided Design, pp. 398-401, Nov. 1989.

[15] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal Delay in RC Tree Networks,” IEEE Transac-
tions on Compuier-Aided Design 2(3) July 1983, pp. 202-211.

[16] T. Sakurai, “Approximation of Wiring Delay in MOSFET LSL,” IEEE Journal of Selid-State Circuits
18(4), August 1983, pp. 418-426.

[17] K. P. Shambrook, “An Overview of Multichip Module Technologies”, Proc. IEEE Workshop on Mul-
tichip Modules, March 1991, pp. 1-6.

[18] R. S. Tsay, “Exact Zero Skew,” IEEE Int. Conference on Computer-Aided Design, 1991, pp. 336-339.

(19] D. F. Wann and M. A. Franklin, “Asynchronous and Clocked Control Structures for VLSI Based
Interconnection Networks,” IEEE Transactions on Computers, 21(3), March 1983, pp. 284-293.

19

Appendix A:

Summary of Work Submitted to IEEE Intl. Conf. on ASIC

20

Zero-Skew Clock Routing Trees With Minimum Wirelength

Kenneth Boese and Andrew Kahng
UCLA Computer Science Dept., Los Angeles, CA 90024-1596
Communicating Author: Andrew Kaling, C3 Dept., 3732 Boelter Hall, UCLA,
Los Angeles, CA 90024-1596; Tel. 310-206-7073, FAX 310-825-2273

Technical Area: ASIC/MCM CAD Tools (Clock Tree Synthesis)

Abstract

Clock routing trees are an important component in the design of high performance VLSI systems. Two
objectives in designing clock trees are to minimize clock skew and to minimize the total length of wire. We
present an algorithm to construct a zero-skew clock routing tree that minimizes the amount of wire used,
subject to compatibility with a prescribed connection topology. The algorithm improves upon previous
algorithms that choose routing tree topologies but de not expleit certain properties of the Manhattan
metric for wire placement. In fact, our work may be used to improve the clock trees constructed by
previous algorithms in the literature; moreover, it extends to the Elmore delay model in addition to the
linear delay model, and again results in zero-skew trees with reduced wirelength.

Technical Summary

We present an algorithm to design minimum-skew clock routing trees for high-performance VLSI systems. We
represent a clock routing tree by its connection topology, which is an unweighted binary tree whose leaves are
the terminals to be connected by the clock tree. The clock tree skew is the maxirnum difference in signal delay
along any two source-terminal paths. Qur objective is to construct a clock routing tree with zero skew, where
delay may be computed by either the linear or Elmore delay [1] models.

The algorithm produces a zero-skew clock routing tree (ZCRT) in linear time via a two-phase approach:
we employ bottom-up merging of subtrees with respect to a given topology, and then find optimal locations of
the internal nodes during a subsequent top-down phase. In contrast, previous clock tree constructions (e.g., [3]
(5]) use approaches such as bottom-up matching in order to define the clock tree topology; such methods suffer
from a lack of flexibility in that they permanently embed each internal node of the tree as it is defined.

We have proved the following results. In the linear delay model, (i} our algorithm produces the minimum
cost ZCRT, i.e., the tree that uses the minimum amount of wire, with respect to the prescribed connection
topology; (ii) this tree will have the minimum possible source-terminal delay, equal to one-half the diameter
of the set of clock terminals; and (iii) the algorithm finds the placement of the clock source for the ZCRT
which will yield minimum total tree cost over all possible topologies. In the Elmore delay model, (iv) the
algorithm applies techniques of [5] to compute edge lengths and produces a zero-skew tree that reduces total
wirelength via effective choice location of “tapping” points. Moreover, the algorithm may be used to derive
the minimum-cost trees compatible with connection topologies constructed by other algorithms, e.g., [2] [3] [3].
Because the procedure is bottom up and iterative, it can readily be applied to multi-staged clock trees or other
hierarchical systems. Finally, with either the linear or the Elmore delay model, the algorithm runs in linear
time; this surprising efficiency seems to be an artifact of the Manhattan metric! In practice, the linear-time
complexity will be dominated by the time required to compute a heuristic connection topology.

I1Note that a more general linear programming approach may be applicable to perform optimal “Steiner point shifting” for a
given topology; such a method may succeed in alternate geometries to which our algorithm does not apply.

Appendix: Details of the Algorithm (Linear Delay Model)

The input to algorithm ALG1 will be a point set P € R? and topology G for connecting P. The output
will be a ZCRT T that has minimum cost over all embeddings in ®? of the topology G.

Phase I constructs, in a bottom up manner, the intersections of diamond-shaped regions surrounding each of
the terminal points in P. The intersection of any number of diamond-shaped regions will be rectangular regions
tilted at a 45-degree angle from the z- and y-axes. The intersections are performed in the order determined by
topology G and the centers or “cores” of each intersection will contain possible placements for the corresponding
interior node.

Phase II works in a top-down manner to find the exact placement of interior nodes. It places the source of
the clock tree at any point on the core constructed in Phase I for the root node. For every other interior node
of the topology, Phase II selects any point from the corresponding core that is within a prescribed distance
(which we call ec in the discussion below) of the embedding of its parent node.

Definition: A tilted rectangular region or TRR is the union of a rectangle and its interior region where the
sides of the rectangle all have slope 1 or -1. For consistency, we say that line segments having slope 1 or -1,
single points, and the empty set are all also TRR’s.

Define the core of a TRR to be the subset of the TRR that is of maximum Manhattan distance from its
perimeter. The core will always be a line segment, a point, or the empty set (when the TRR is itself empty).
The radius of a TRR is the distance from its core to its perimeter. For instance, the TRR with corners (0,1},
(1,0), (2,3), and (3,2) has radius 1; its core is the line segment with endpoints (1,1) and (2,2). For any TRR
R, we use core(R) and radius(R) to respectively denote the core and radius of R.

The details of our algorithm are as follows:

o (Initialization) For the point set P, let each 7 € P have coordinates (#;,). Calculate the diameter d of
P as the maximum of

max(z; —) — min(x; — ¥
ieP(l %) rirélgl(:c, ¥i)

and
max(zi + %) — min(zi + %).

Construct a diamond-shaped TRR with radius d/2 around each point in P. Associate each diamond with
its corresponding leaf node in the topology G. (The intersection of all of these TRR’s is guaranteed to
be nen-empty.)

e (Phase I) In a bottom-up manner, construct a TRR for each interior node in G as the intersection of the
TRR’s of its two children. (The core of this TRR is a set of possible placements of the node.)

e (Phase IIa) At the root node, choose any point in the core of its TRR as the placement for the source
node.

¢ {Phase IIb) In a top-down manner, choose actual placements of the interior nodes. For any parent and
child node, let Ry be the TRR of the parent and R» be the TRR of the child. The cost of the new edge
will be sett to radius{Ry) — redius(R;). Call this value ec. Construct a diamond of radius ec around the
embedding chosen for the parent node and then find the intersection of the core of B2 with this diamond.
Choose any point ¢ in this mtersection as the placement of the child node.

References

[1] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard to Wide-Band Am-
plifiers”, J. Appl. Phys. 19(1) (1948), pp. 55-63.

[2] M. A. B. Jackson, A. Srinivasan and E. 5. Kuh, “Clock Routing for High-Performance 1Cs”, Proc. ACM/IEEE
Design Automation Conf., June 1990, pp. 573-579.

[3] A. Kahng, J. Cong and G. Robins, “High-Performance Clock Routing Based on Recursive Geometric Matching”,
Proc. ACM/IEEE Design Automation Conf., June 1991, pp. 322-327.

[4] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, New York, Springer-Verlag, 1985.
[5] R.S. Tsay, “Exact Zero Skew”, Proc. IEEE Intl. Conf. on Computer-Aided Design, 1991, pp. 336-339.

