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Abstract

In order to reduce interconnection delay and increase packaging density, the multichip module
{MCM) technology is used in the design of high-performance VLSI systems. A commonly used
method for multilayer MCM designs is the three-dimensional (3D) mare routing, which suffers
from a number of problems: il is very sensitive to the net ordering, it requires long computation
time, and it often results in a large number of vias in the routing solutions. The objective of this
rescarch is to develop an efficicnl multilayer general arca router as an allemative to the 3D maze
router for solving the multilayer MCM routing problem. Our router, named SLICE, is indepen-
dent of net ordering, requires much shorier computation time, and uscs fewer vias. A key step in
our router is to compute a maximum non-crossing bipartite matching, which is solved optimally
in O (nlogn) time where # is the number of possible connections. We tested our router on a
number of examples, including two MCM designs from MCC. The total wirelength used by
SLICE is only a few percent away [rom the optimal on average. Compared with a 3D maze
router, SLICE is six times {aster and uses 29% fewer vias. Another feature of SLICE is that it
works on only a "thin slice” of a two-layer routing grid at a time, while a 3D maze router works
on the entire three dimensional routing grid. Therefore, SLICE can successfully produce solu-
tiens for large MCM routing examples where 3D maze routers [ail due to insuflicient memory.

1. Introduction

As VLSI fabrication technology advances, intcrconneclion and packaging (P/) technologies
have become a bottleneck in system performance [1,2, 3], In the traditional approach, each chip
is first packed into single chip packaging (SCP) and then mounted on a printed circuit board
(PCB). The area of cach SCP is usually scveral limes larger than the corresponding bare chip.
As a result, the packing density is severely limited. Morcover, there exist {wo levels of inter-chip
interconnections: the connections on SCPs and the connections on the PCB. The wasted space
and the addition level of interconnections limit the packing density and degrade the system per-
formance.

The multichip module (MCM) technology reduces the wasted space on a board and eliminates
a level of interconnection by assembling and connccting bare chips on a common substrate. The
substrate consists of multiple routing layers used for inter-chip interconnections. Without indivi-
dual packaging for the chips, the bare chips can be placed much closer on the MCM substrate,
which leads to a significanl incrcase in packing density and decrease in inlerconnection delay,



Due to the high packing density in MCM designs, the MCM routing problem is more difficult
than the conventional IC or PCB routing problems. First, MCMs may have far more interconnec-
tion layers than ICs. For example, the multi-chip module developed for the IBM 3081 main-
frame has 33 layers ol molybdenum conductors (including 1 bonding layer, 5 distribution layers,
16 interconnection layers, 8 voltage reference layers, and 3 power distribution layers [4, 5]).
Fujitsu’s latest supercomputer, the VP-2000, uscs a ccramic substrate with over 50 interconnec-
tion layers [6]. Moreover, unlike routing in ICs where the entire routing region can be naturally
decomposed into channels and switchboxes, there ts no nawral routing hierarchy in MCM rout-
ing. The MCM routing problem is an immense three-dimensional general area routing problem
where connection can be carried out almost cverywhere in the cntirc multilayer substrate.
Finally, the pitch spacing is much smaller and the routing resull is much denscer in MCM routing
as compared (o those in conventional PCB routing. Thus, traditional PCB routing tools are often
inadequate in dealing with MCM designs'.

Few methods are available [or MCM routing. A commonly used methed for multilayer MCM
designs is the three-dimensional {3D) mazc routing |6,7]. Although this method is conceptually
simple to implement, it suffers [rom several problems. First, the quality of the maze routing solu-
tion is very sensitive to the ordering of the nets being routed, yet there is no eflfective algorithm
for determining a good net ordering in gencral. Morcover, since cach net is routed independently,
global optimization is difficult and the final routing solution often uses a large number of vias
despite the fact that there arc many interconnection layers. Finally, 3D maze routing requires
long computational time and large memory space. For example, one industrial example that we
obtained from MCC has a 75 micren routing pilch and a routing arca of 174 x 174 mm?; this
results in a routing grid ol 2032 x 2032 for a single layer! 11 is cerainly not a trivial task to store
such a grid for each layer and search in it cliiciently.

Another method for multilayer MCM rouling is 1o divide the routing layers into a number of
x—y layer pairs. Nets are [irst assigned Lo x—y laycr pairs and then two-layer routing is carried
out for each x—y layer pair (the x-laycr runs horizontal wircs and the y-layer runs vertical wires)
(8}. Although this approach is elficient, it faces a few problems. First we have o pre-determine
the number of the routing layers before we can carry oul layer assignment. Moreover, the
approach does not take advantage ol the existence of the large number of routing layers. Thus,
some nets may use many vias since they are forced 10 be rouled within two layers. For high-
performance MCM designs, vias not only increase the manufacture cost but also degrade the sys-
tem performance since they form inductive and capacitive discontinuitics and cause reflections
when the interconnections have 10 be modeted as transmission lines [2].

Several efficient routers have been proposcd for silicon-on-silicen based MCM technology
{1,9,10,11]. Since the number of signal routing layers is usually small (2 to 4 layers) in this
technology, some techniques for IC routing, such as hierarchical routing and rubber-band routing,

! Beside the problem of efficiem wtilization of routing resource, there are also several performance issues involved in MCM routing,
For example, for high-performance designs, the wires need to be madeled as lossy transmission lines, where signal reflection and
cross-latk need 10 be 1aken into consideration.



can be applied to yield good solutions.

The objective of our research is (o develop an efficient multilayer general area router as an
alicrnative to the commonly used 3D mare router for solving the multilayer MCM routing prob-
lem. Our router, named SLICE, has a number of advantages. Firsl, it processes many nets
simultaneously so that the routing solulion is independent of net ordering. Morcover, it requires
much shorter computation time and much smaller memory storage. Finally, it emphasizes planar
routing so that most of the nets use very few vias, A key step in our method is 10 compute a max-
imum non-crossing bipartite matching, which is solved optimally in O (nlogn) time (where n is
the number of possible connections). We tested our router on a number of examples, including
two MCM designs from MCC, and compared the results with those by a 3D maze router. On
average, both routers use about the same total wirclength, but the 3D maze router is 6 times
slower and uses 29% more vias. Another important feature is that SLICE works on only a "thin
slice” of a two-layer routing grid at a time, while a 3D maze router works on the entire three
dimensional routing grid. Therelore, SLICE can success(ully produce solutions for large MCM
routing examples where 3D mazc routers (ail duc 10 the memory requirement.

The remainder of this paper is organized as lollows. Section 2 formulates the multilayer MCM
routing problem. In Section 3, we give an overview of our algorithm and we describe each step
of the algorithm in detail. Experimental resulls and a comparative study are presented in Section
4. Finally, we discuss the extension of our work in Section 5.

2. Problem Formulation

The MCM routing problem consists of a set of modules, a set of nets, and a multilayer routing
substrate. Modules (dies) are mountcd on the top of the substrale by wire bonding, tape-
automated bonding (TAB), or (lip-chip bonding with solder bump connections. The substrate
consists of multiple signal routing layers, with (possiblc) obstacles in some routing layers, such
as power/ground connections and thermal conducting vias. The I/O terminals (pads) of the
modules are connected to the substrale either directiy or through routing to the external pads that
surround the individual medules for engincering changes {21, The pads are brought 10 the the first
signal routing layer either directly through distribution vias or through one or more redistribution
layers. The redistribution layers arc required when the pads are oo dense to be connected
directly to the signal rowting layers. A pin redisiribution algorithm was presented in {12). The
goal of our MCM router is to complete the connections for the [/O terminals in cach net using the
signal routing layers in the substrate.

The signal routing layers in the substratc arc numbered {rom top 1o bottom. We assume that
there is a routing grid superimposcd on cach routing layer where the spacing between grid lines is
determined by the routing pitch for the given P/I technology. We assume that the routing grid is
a Manhattan grid. However, our algorithin can handle 45 degree routing as well. Two wires in
adjacent signal routing laycrs can be connecled by a via. Vias may be stacked on top of each
other to connect wires in non-adjaccnt layers. Stacked vias can be formed in several ways, e.g.,
by filling the etched via with nickel in the AT&T AVP process or by plaling copper posts as in



the MCC process [13]. Fig. 1 shows a cross section of a sample four layer routing region,

The output of the routing problem is a set of routing segments and vias that connect each net.
The quality of the routing can be measured by the total wirclength, the number of vias, the
number of wire bends (jogs) and thc number of layers required to complete the routing. Long
wire paths increase propagation time and should be avoided. Vias and wire bends degrades the
signal’s fidelity by introducing impedance discontinuity in signal paths thus should also be
minimized. Vias usually cause more serious problems than jogs, so that our router gives via
minimization a higher priority. Each additional routing layer increases the manufacturing cost
and thus the number of layers should also be minimized.

3. Description of the algorithm

In this section, we present our fast multi-layer general arca router, ¢alled SLICE, for MCM and
single-sided PCB designs. We first give an overview of the entire algorithm, and then we describe
each step in detail,

3.1. Overview of the algorithm

The basic idea behind our algorithm is 10 perform planar routing on a layer by layer basis.
After routing on one layer, we propagate the terminals of the uncompleted nets to the next layer.
Then we continue routing on the next laycr and perform the single layer routing again. We repeat
the process untit all the nets are routed.

A crucial part of our algorithm is to compute a planar routing solution for each layer and try to
connect as many nets as possible in that layer. For nets that cannot be completed in the layer, we
try to perform a partial routing so that these nets can be compieted in the next layer with shorter
wires. We scan the routing region from left to right and process each pair of columns that has ter-
minals at a time. For each adjacent column-pair, we compute a maximum weighted non-crossing
matching (MWNCM) which consists of a sct ol non-crossing edges that extend from the left
column to the right column. This gives us a topological planar routing solution between the
column-pair, Next, we generate the physical routing between the current column-pair based on
the selected edges in the non-crossing matching. Then, we move on (o the nexi column-pair and
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Fig. 1. Cross scction of a multilayer (4 layer) routing region.




compute the non-crossing matching and physical routing again [or that column-pair. The planar
routing process is completed when the right end of the current tayer is reached. Then, we distri-
bute the terminals of the uncompleted nets so that they can be propagated to the next layer
without causing local congestions. Since the left to right scanning operation in the planar routing
results in mainly horizontal wires in the planar routing solution, in order to complete the routing
in the vertical direction, we use a restricted two-layer maze router which is much faster than a
general maze router to route within a thin vertical slice of the substrate onc at a time from left to
rightz. We clean up the routing solution by removing unnccessary jogs and wires in the current
layer. For nets that are not completed, their terminals are propagated to the next layer. Finally,
we rotate the routing region by 90 degrees so that the scanning direction in the next layer is
orthogonal to the one used in the current layer. The entire process is iterated until all the nets are
routed. This top level algorithm is summarized in Fig. 2. We shall describe cach step in detail in
the remaining subsections.

3.2. Planar routing

The terminals that lie on the same vertical grid line form a column. In our planar routing algo-
rithm, we scan the routing region across {rom left w right and perform routing between each
column-pair. Let x; and x, bc the x-coordinates ol the left and right column of the current
column-pair, respectively. Conceptually, a column-pair lorms a channel and we define the chan-
nel capacity to be C ., =X, ~ x;. During planar routing in the current layer, the tcrminals of the
uncompleted nets are put in the list P prop- These terminals will be propagated 10 the next routing
layer.

Algorithm SLICE
N = {list of nets};
{=1; /* Start at layer 1 */
while (N # ) do
Compute planar routing on layer /;
Redistribute the uncompleted terminals on layer /;
Perform restricted maze routing on layer £;
Remove unnccessary jogs;
Propagale the terminals of the uncompleted nets o layer ! + 1;
Rotate the routing arca by 90 degrees;
[=1+1;
end
end
Fig. 2. Overview of (he SLICE router.

2 Note that the scanning direction in the next layer will be orthogonal 1o the scanning dircction in the current layer, which will also
help to complele nets that require mainly vertical wircs.



For each column-pair, the occupied grid points on the left column are called start-points.
Clearly, each start-point is either a terminal propagated from the previous layer, or the endpoint
of a partial routing solution computed in the previous channel. We denote a start-point #; in the
current layer by a triple n; = (x;, ¥;, net;), where (x;, y;) is the coordinates of the point, and net;
is the net mumber of the point. For & start-point #;, the terminal that it is 10 be connected to is

called the rarget of n;, denoted by target(n;).’

We shall concentrate our discussion on routing between a single column-pair. We begin with a
list 7; that contains all the start-points on the left column and go through the following three
steps to complete the planar routing. (1) For all start-points on the left column of the current
column-pair, we generate a set S ol weighted edges that connect these start-points to the right
column. The weight for each edge represents the gain if we include this connection in the planar
routing solution. (2) We compule the maximum weighled non-crossing matching Symwves of S,
which corresponds 1o the best topological planar routing solution belween the current column-
pair. We shall show that Lhis step can be carried out optimally in O(nlogn) time, where # is the
number of edges in . (3) Finally, we compule the physical routing solution based on the edges in
Sarwneass. The steps in the planar routing algorithm are illustrated in Fig. 3, where the net
number for each terminal is given besides the terminal, and there are three column-pairs. Routing
in the first column-pair has been compleled, and we are processing the second column-pair. Fig.
3(a) shows the weighted cdges extending from the start-points on the left column to the right
column, Fig. 3(b) shows the edges sclected in the maximum weighted non-crossing matching,
and Fig. 3(c) shows the physical routing based on the sclected edges. We now describe these
steps in detail.
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Fig. 3. Steps in planar routing for a column-pair. (ay Generate possible (topological) connections;
(b) Compute a maximum weighted non-crossing matching; (c) Generate physical routing,

? As a preprocessing slep of SLICE, we decompose each mulii-ierminal nev into a sct of 1wo-lerminal subnets based on the Prim’s
minimum spanning tree algorithm. Thercfore, each star-point always has a well-defined target. The prior decomposition does not af-
fect the routing quality very much since (1) most nets are two-lemminal nets in MCM routing;, (2) we allow the routes of two subnets of
the same net Lo meet and form a Steiner point in our planar routing procedure.
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3.2.1. Generating the weighted edges

Given a list of start-points £; on the left column, we want 1o generate the set § of weighted
edges that connects the start-points in £; to the grid points on the right column. Conceptually, for
a start-point »; = (x;, ¥;, het;) in P;, we can generate an edge from (x; y;) to every grid point on
the right column which is free or occupied by a terminal of net 1;. However, this may result in
too many edges, and most of them will have very little chance of being selected in the maximum
non-crossing matching in the next step. To conscrve both memory and time, we use a simple
heuristic, called range reduction, to rcduce the number of edges that are generated. Clearly, the
channel capacity C cap Dounds the density of the vertical segments that can be routed between a
column-pair. Let v;,,, and y;.,, be the y-coordinates of the n-1h start-point (not grid point) above
and below n; on the left column, respectively. Now if we assume that all the start-points on the
left column will be routed, then the connection for each start-point above or below n; will
increase the channel density by one. Thercfore, it is sufficient to generate edges whose right end-
points are within the y-interval [ y;.¢__ . Yisc,,, |- This is the reduced range where the edges for

cap
n; can end on the right column,

The weight of each edge represents the gain if we include the edge in our planar routing solu-
tion. For each start-point #;, let #; = target(n;). We define the preferred region to be the y-
interval on the right column defined by the y-coordinates of #; and n;. Clearly, if an edge from
n; ends within the preferred region, it does not increase the wirclength of ner;. So we assign a
high weight, weight preferred, 10 the edges ending in the prelerred region. Moreover, if an edge
from n; ends exactly on n; (when n; is on the right column), we assign an even higher weight,
weight completed, 10 the edge in favor of completion of the net. For the cdges that end outside
the preferred region, wc assign them a small weight weight outside. In general,
weight completed > weight preferred > weight outside. We experimented with several
weighting functions and the best choice is the following. We set weight completed and
weight preferred 1o be two constants, and let weight outside decrcase linearly as the right end
of the edge moves away [rom the preferred region.

3.2.2. Computing the maximum weighted non-crossing matching

The most irnportant parl of our planar routing algorithm is computing a topological planar rout-
ing solution between cach column-pair.  We begin with a set of weighted edges
S=1{s,82, ' -, 3, Eachedgein § represents a possible topological route that extends from
a start-point to the right column. The weight for each edge represents the gain if we include this
route in the planar routing solution. Each edge s; is a four-tuple (Z, r, w, net) where [ is the y-
coordinate of the left end of the edge. ¢ is the y-coordinale ol the right end of the edge, w is the
weight of the edge, and net is the nct number ol the edge. Since we want to choose a set of best
edges that can be routed on the current layer, we need 10 sclect a set of edges from S that are
non-crossing and have the maximum total weight. This is the maximum weighted non-crossing
bipartite matching (MWNCM ) problem. However, in our formulation, we permit two edges in a
non-crossing matching to sharc a common endpoint at the right column if they belong to the same
net.
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Fig. 4. Mapping the edges Lo points in the plane. Edges in P (§) indicate the dominance relations
(assuming the starl-points 1 and 2 are of the same nct),

In order to compute a MWNCM, we map each edge (/, r, w, net) to a point in the x —y plane
using the one-to-one mapping (x,y) = (/,r), where (x,y) is the position of the point in the x ~y
plane. Given two points p; = (x;, y;) and p; = (x;, ¥,) in the x =y planc, p; dominates p; if (i)
x;2x; and y; > yj, or (i) x; 2x; and y; = y; and ner; = net; (note that net; is the net that the
corresponding edge of p; belongs to). Il condition (i) is satisfied, we say that p; strictly dominates
pj: otherwise, when condition (ii) is satislicd, we say thal p; laterally dominates p;. The domi-
nance relations are illustrated in Fig. 4, where edge ¢ strictly dominates edges a and b, and edge
b laterally dominates edge a (assuming that ¢ and & are of the same net). Clearly, if p; dom-
inates p;, the two edges that are mapped 10 p; and p; are either strictly non-crossing or sharing
the same endpoint on the right column when they are of the same net.* We defing a chain among
a sct of points P in the x—y planc, to be an ordered list of points C = {py_po -+, py} where
each ppe P, and p ;. dominates py for k =1, 2, -+ -, m—1. We call p,, the head-node of the
chain. We define the weight of a chain C, denoted by weight (C), 1o be the sum of the weights of
the points in C. We define the maximum-chain C . 10 be the chain that has the maximum
weight among a given set of points. We then have the following results:

Lemma 1: The dominance relation is transitive.

Proof: Suppose that p; dominates p; and that p; dominates pg. There are four possibilities:
(i) p; strictly dominates p; and p; striclly dominates pyi; (i) p; strictly dominates p; and p;
laterally dominates py; (iii} p; laterally dominates p; and p; sirictly dominates py; and (iv) p;
laterally dominates p; and p; laterally dominates py. Itis straight forward to verify that in cases
(i) - (iii}, p; strictly dominates pg, and in case (iv) p; laterally dominates p. Therefore, the dom-
inance relation is transitive. 3

* Note that when two edges of the same net share a right endpoint, a Siciner point is formed. So our method can generate Steiner
routing trees automatically.
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Fig. 5. A set of edges S and its corresponding point sct P (S). Note that start-points 2 and 3 are
of the same net. The dominance relations arc shown in P (§) as thin arrows The MWNCM in S,
and the corresponding maximum-chain in P () arc shown as dotted arrows.

Theorem 1: Let S be the sct of cdges between a column pair and P(S) be the set of
corresponding points on the x—y planc. Then, P (S) forms a partially ordered set. Moreover, the
set of edges M in S is a maximum weighted non-crossing matching if and only if the correspond-
ing points P (M) form a maximum-chain in P (§).

Proof It is easy to see that the dominance relation is reflexive (i.e., p; dominates p; itself) and
antisymmetric (i.e., if p; dominates p; and p; dominaics p;, then p; =p;}. Also, according to
Lemma 1, the dominance relation is transitive. Therefore, the point set P {S) with the dominance
relation forms a partially ordered set | 14].

According to the definition of the dominance relation, it is casy to verify that two edges in M
are non-crossing if and only if the two corresponding points in P (M) are related by the domi-
nance relation (i.e., one dominates the other). Therelore, the set of edges M < § forms a non-
crossing matching if and only if any two points in P (M) arc relaied by the dominance relation.
Since P (§) is a partially ordered set, any two points in P (M) are rclated by the dominance rela-
tion is equivalent to that P (M) is a chain in P (§). Morcover, since the weight of the chain
P (M) is the same as the weight of the edge sel M, we conctude that M is a maximum weighted
non-crossing matching if and only il P (M) is a maximum-chain in P (§). O

A maximum-chain of a point set £ can be computed as follows: We construct a directed graph
Gp, called the dominance graph, in which each node represents a point in P, and add an edge
(@:,p;) to Gp if and only if point p; dominates point p;. Fig. 5 shows a sct of edges and the
dominance graph on the corresponding point set {the edges implicd by the transitive relation are
omitted for clarity). It is not dillicult to show that Gp thus constructed is a directed acyclic graph
and a maximum-chain in P corresponds 10 a2 maximum weighted path in Gp. Since the max-
imum weighted path in a dirccted acyclic graph can be computed in O (n?) time, where # is the
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number of nodes in the graph [15], we can compute a MWNCM in O (n?) time, where 7 is the
number of edges we generated between a column-pair. The maximum weighted edges in § and
the maximum weighted path in P (S) are shown in Fig. 5 as dotied edges. However, since the
procedure for computing a maximum weighted non-crossing matching will be used for every
column-pair, we seck for a more cfficicnt implementation. We have developed an O (nlogn)
time algorithm for computing the MWNCM based on a data structure called the priority search
tree [16]). Before we describe the algorithm in detail, we first siate a lemma:

Lemma 2 Suppose that each point in £ has a positive weight. Then, if point p laterally dom-
inates point ¢ in a maximum-chain in £, there does not exist 4 point r such that p laterally dom-
inates r and r laterally dominates ¢.

Proof: If such a point r exists, we can add it into the maximum-chain to get a chain of even
larger weight, which leads to a contradiction. [

According to Lemma 2, if poini p laterally dominates point ¢ in @ maximum-chain, then q is
the first point of the same net left of p in the same row. This fact is used in the construction of a
maximum-chain by our algorithm.

Let P be the corresponding point set of the given set of edges, we shall compute a maximum
chain in P under the dominance relation. The points in P having the same x-coordinate form a
column, and the points in P with the same y-coordinate form a row. Our algorithm processes the
points on a row by row basis, and we process the points in the same row from left to right. This
guarantees that when we are processing a point, all the points which are dominated by the current
point have been processed alrcady. During the exccution of the algorithm, we maintain a binary
priority search tree, called PTREE. Euachlcaf L ol PTREE corresponds 1o a column occupied by
a point in P, and it has three fields, L.x, L.weight, and L.head. The ficld Lx stores the x-
coordinate of the column. During the execution of our algorithm, assume that p is the highest
point that we have processed so far at column L., then L.weight is the weight of the maximum
chain among the points that are swrictly dominated by p or in the same column below p, and
L.head is the head node ol that maximum chain (notc that p may not be the head). We shall
show how 1o maintain L.weight and L.head later on in the algorithm. Each internal node / of
PTREFE has a lield /.weight which records the largest weight of the leaves that are in the subtree
subtree(I) rooted at /. (Clearly, il X and Y are the two children of [, then
L.weight = max(X.weight, Y.weighr).) Fig. 6 shows an instance of the PTREE and the point
set in the x—y plane. The weights (or the teaf-nodes in PTREE and the points in P are also
given in the Fig. 6. For example, when we start processing point ¢, we have H.oweight = 27 and
H .head = a since the maximum chain among the points strictly dominated by g or in the same
column below g is (a, b, ).

Our algorithm processes the points in £ one row al a time {rom bottom to top, and processes
the points in the same row from left to right, so we sort all the points according to their y-
coordinates first and then x-coordinates. Wc maintain four fields for each point p: p.weight,
p.net, p.total weight and p.next. The ficlds p.weight and p.net store the weight and the net
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Fig. 6. Priority search tree (PTREE) used to compute the MWNCM.

number of the edge corresponding 1o the point, respectively. The field p.total weight stores the
weight of the maximum-chain C, with p as its head node, and p.next points to the next point
after p in Cp. Initially p.fotal weight = 0 and p.next = nil for all points.

For each point p, p.total weight can be determined as follows: let leaf L in PTREE
correspond to the column where p is located. Let PATH; be the path from L to the root in
PTREE. Let!q, 5, ..., I; be the roots of the Ieft subtrecs hanging from the path PATH (i.e., [;
is the left child of some node in PATH| ). The algorithm scarches for leaf L’ such that

k
L weight = max l;.weight (1)

i=
Then, we have p.rotal_weight = p.weight + L' weight and p.next = L' head. This covers the
case where p strictly dominates p.next. To cover the case that p laterally dominates p.next, we
look for the point g in the same row as p with g.ner = p.ret. According to Lemma 2, we need
only to consider such a d which is closest 10 p. If
p.total weight < p.weight + g.total_weight, then we set p.total_weight =
p.weight + g.total_weight and p.next =¢. Fig. 6 illustrates the computation of
p.total_weight and p.next for the point p. The leaf node L in PTREE corresponds to the
column where p is located. The path PATH; (rom L 10 the root is shown by the dashed line. The
nodes F and H arc the roots of the left subtrees hanging lrom PATH; . According to Equation

(h,
L weight = max(F.weight, Hweight) = max{(17,27)=27.

If point g is not in the same net as p, then
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p.aoral_weight = p.weight + L' weight =15 + 27 = 42.
If ¢ and p are in the same net, then
p.rotal_weight = max(q.roral_weight, L' .weight) + p.weight = max(47, 27) + 15= 62.

{(Note that g.total _weight = g.weight + F.weight =30+ 17 =47, which has been computed
when ¢ was processed in the previous sicep.)

After we have processed a row of points, we update the entries in PTREE. (Note that we do
not update the node leaf L immediately alter we have processed the current point p, because we
use L.weight to record the weight of the maximum-chain among the points that are strictly dom-
inated by p or are in the same column below p.) For each point ¢ in the current row, let leaf Lq
correspond to the column that ¢ is located; if q.total_weight > L, weight, then
Lg.weight = q.total_weight and L, head = ¢. Furthermore, we update the weights of the inter-
nal nodes in PATHLG.

After all the points are processed, the point p,, with the largest toral_weight is the head of the
maximum chain in P and we can follow the p,,.xnext field (o get the rest of the maximum chain.
Our algorithm is summarized in Fig. 7.

Theorem 2: Given the set S of # cdges between a column-pair, the maximum weighted non-
crossing matching can be computed in O (nlogn) time.

Proof We shall show that our algorithm spends O (logn) time for processing each point p in
P. Since PTREE is a binary priority search tree, it has depth O (logn). Thus, there are O (logn)
left subtrees hanging from PATH; . Wc can find oul the subtrece whose root, say /;, has the max-
imum weight in O (logn). Morcover, we can find the lcal node L in the subtree subtree (I;)
with L' .weight = I; weight in O (fogn) time. (In order 1o find such a leaf node L', we start with
{; as the current node and afways move the child who has the same weight as the current node.
When we eventually hit a leal node, we return it as L'.) Furthermore, 1o locate the point ¢, which
is immediately laterally dominated by p, takes only constant time. (We preprocess each net and
record for each point p the point which is immediately laterally dominated by p. This prepro-
cessing can be donc in lincar time.) Therefore, p.tofal_weight can be computed in O (logn)
time for each point p in P.

When p is the last point in a row, we update the Icaf node L, in PTREE for each point ¢ in
that row. Moreover, we update the weights of the intemal nodes in PATH;, (i.e. we start with
L, as the current node X. Let paren: (X) be the parent node of X in PTREE, then we update
parent (X).weight by max{parent (X).weight, X weight). We assign X = parent(X) and
repeat the updating operation until parent (X') becomes the root of PTREE). Since the length of
each PATHLq is O (logn), our algorithm spends O (loga) time updating PTREE for each point
gin P,

Therefore, our algorithm spends at most O (logn) time processing cach point p in P. Hence,
the time complexity of our algorithm is bounded by O (nlogn). O
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Algorithm Compute MWNCM
P={pi,p> -, pnfi/* Thesetof (x, y) points mapped from § */
PTREE = A priority search tree with leaves associated with the x-coordinates of the points in P;
Sort P according to p.y followed by p.x;

foreach pin P
let leaf L in PTREE correspond to the column where p is located;
let PATH;, be the path from L 1o the root in PTREE;
let{y Io ..., I; be the roots of the left subtrccskhanging from PATH, ;

locate the leaf node L such that L' .weight = max [;.weight,
i=l

let g be the rightmost point in the same row as p with ¢.net = p.net;
if (g exists) and (q.total_weight > L' .weight) then

p.total weight = g.total_weight + p.weight and p.next = g,
else

p.total weight =L'. weight + p.weight and p.next =L’ head,
endif

if (p is the last point in a row) then
foreach ¢ in the row do
let leaf L, correspond the column where ¢ is localted;
if (g.toral_weight > L, weight) then
L, weight = q.1otal_weight,
Lg.head = g,
update the weights of the internal nodes in PATHLq;
endif
end /* of foreach */
endif

let p,, be the point with the largest p.rotal weight;
construct the maximum chain C ,,;, by following the p,, .next ficld;
Sarwney = the edges corresponding to the points in C qax:
end
Fig. 7. Algorithm for computing the MWNCM.

We noticed a significant speed-up when the O (n2) time algorithm was replaced by the
O (nlogn) time algorithm for computing a maximum weighted non-crossing matching between
each column-pair,

3.2.3. Physical routing

The solution we obtained [rom computing the maximum weighted non-crossing matching in
the previous section gives us a set of edges, Sywwycm ={$1, 82, **°, Spf, where
s; =(l; r; net;), l; and r; being the y-coordinates of the left and right endpoints of the edge, and
net; is the net number of the edge. Each cdge represents a connection between the two points,
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(x;, I;) and (x,, ;) in the current routing plane, where x; and x, are the x-coordinates of the left
and right columns, respectively. As the result of the physical rouling, we end up with a list of
endpoints of the routings, P,, on the right column, which , together with the terminals that are on
the right column, will form the new list of start-poitts on the new left column in the next iteration
of column-pair routing. Because the edges in Sywnvey are topological routing solutions, not all
edges can be routed duc to the channel capacity constraint. We add to P prop he start-points
whose edges failed 10 be routed.

We perform the routing separately on two classes of cdges from Symnvewm as defined below.
Given an edge s; = ({;, r;, net;), we say that 5; is a rising edge if /; < r;. Otherwise, we say that
s; is a falling edge (i.e. {; = r;). We group all the rising edges in S,;,. and all the falling edges in
A fail- We also order the edges in S fall N increasing y-coordinates, and order the edges in Srise in
decreasing y-coordinates. That is, if Sy;g, Or Spay = {81,82, *~,8pf, then for Sy, I; < 1y for
i=0, -+, n=1. Whereas for S,j, {; 2{;s; fori=0, ---, n—1. 1t is not difficult to show
that the edges in S,;5. and Sy, can be routed separately.

We perform the physical routing one edge at a time. We now describe the routing for S,,,.. For
each edge s5; in Sy, we start routing from (x;, /;) in the routing plane, and route towards (x,, r;)
in the following manner. We advance the routing along the y-axis upward until the routing is
blocked, or if we have reached the y-coordinate r;. Then we shall route one grid unit along the x-
axis rightward if possible and repeat the routing along the y-axis. This process is repeated until
one of the following three cases is encountered. (1) The connection is completed, (2) the routing
has ended on the right column but did not reach (x,, r;), and (3) the routing has failed to reach
the right column. For case (1), we simply add the start-point (x,, r;, net;) to P,. For case (2), we
add the start-point with the new y-coordinate, (x,, new_r;, net;) 1o P,, where r_new; is the y-
coordinate of the end-point of the physical routing on the right column. For case (3) we remove
any partial routing that we might have added between the column-pair, and add the start-points
n; = (xy, Iy, net;), and targer(n;) 10 the list of lerminals P ., 10 be propagated to the next
layer. Fig. 8 illustrales these cases. The left side of Fig. 8 shows four rising edges in the
MWNCM named a, b, ¢, d. Terminals £ 1 and 12 arc of other nets. Routing for edges @ and b are
completed. Edge ¢ is routed 1o the right column but at a different y-coordinate. That is, we have
altered the topological solution since the end-point of the routing does not correspond to the end-
point of the edge in MWNCM. However, we fail 1o route edge d because of the blocking termi-
nal on the right column. In this case, both Lhe start-point of the cdge d and its target will be added
to Ppmp. For edges in Sfa[!s the procedure is similar exeept that routing along the y-axis is
always downward,

3.3. Pin redistribution

Another feature of the SLICE router is that it redistributes terminals during the routing process
to avoid local congestion. Unlike the pin redistribution algorithm presented in [12], our pin redis-
tribution process is interleaved with the routing process. At the end of planar routing of each
layer, a pin redistribution step is performed. Since the planar routing for a net is blocked only
when it encounters some obstacles or other routings, the terminals in P prap tend to be clustered.
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MWNCM After physicat routing
Fig. 8. Example of physical routing.

This will make the routing on subsequent layers difficult because the routings will be congested
around the clustered terminals. To reduce the routing congestion, we want to ensure that the ter-
minals in P ,,, are are evenly distributed. We define the terminal density of a given column to
be the number of terminals in that column. Then 1o reduce the routing congestion, we {ry to
move the terminals in P, such that lerminal densities are roughly equal among all the
columns®, Furthermore, we should try 10 move the terminals in such a way so that the increase in
wirelength is minimized. Our pin redistribution algorithm processes the terminals one at & time,
moving the terminals horizontatly to a column with the lowest terminal density. For a given ter-
minal of net n, the possible columns that it can be moved 1o is restricted to be in the range
[x (n); — slack, x (n), + slack], where x {n); and x (n), are the x-coordinates of the leftmost and
rightmost terminals of net #, and slack is a small constant. Experimental results show that the pin
redistribution algorithm consistently improves the utilization of the routing resources.

3.4. Restricted maze routing

Our planar algorithm will preduce routing scgments extending predominantly in the scanning
direction. Therefore, many start-points may not be routed because they are lined up almost verti-
cally, To complement the planar routing, we usc a restricted maze router 1o complete as many left
over nets as possible.

To conserve memory, we restrict the maze-routing to within two routing layers. Moreover, we
restrict the range of the maze router to a thin "vertical slice” of the routing region since we are
primarily interested in vertical connections. Typically, the maze range is 10% of the width of the
routing region.

3.5. Jog removal
Since the planar routing algorithm does not penalize the formation of wiring jogs, the com-

pleted routings may contain many unnecessary jogs. Therefore, a clean up phase is necessary to
remove these jogs to improve the quality of the planar routing solution.

¥ Since the routing direction for the next layer is vertical, the lerminals that arce on the same column often block each other. There-
fore, reduction in terminal density at each column leads w beuer routing results.
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We identify two kinds of jogs. We call simple jogs 1o be those that can be eliminated by a mov-
ing a single wire segment as shown in Fig. 9. Otherwise, the remaining jogs are called the jogs
complex jogs, where more then one wire scgments need to be moved to eliminate a jog as shown
in Fig. 10. SLICE tries 1o remove the simple jogs first, then it tries 10 remove the remaining com-
plex jogs. Both algorithms arc based on the efficient plane sweeping technique used extensively
in computational geometry {17]. Experimental results show that on the average, more than 49%
of the jogs can be removed by our algorithms,

4. Experimental Results

We implemented SLICE on the Sun workstations using the C language. The following experi-
mental results were recorded on a Sun SPARC station 1I with 32MB of memory. We tested the
program on five examples shown in Table 1. The examples test], test2, and test3, are generated
with random netlists. Examples mccl and mec2 were industrial MCM routing examples provided
by MCC. Example mce?2 is a supercomputer with 37 VHSIC gate arrays.

number of | number of | number of size of piich Lo
Example chips nets pins substrate (mm 2) (um) grid size
test] 4 500 1000 22.5%22.5 75 300 x 300
test2 9 957 1914 30x 30 75 400 x 400
test3 9 1254 2508 37.5x375 75 500 x 500
meel 6 802 2495 45 x 45 75 599 x 599
mcce?2 37 7118 14570 1524 x 1524 75 2032 x 2032

Table 1: Characteristics of examples

¢ ——o *Q—
—e —®
j2
I—L_. \ .
{(a) Before Jog remaoval (b} After jog remaval

Fig. 9. Removal ol stmple jogs by moving horizontal segments downward.

& —o o ——=o
J
——® —®
® ®
o ] & L]
*r—— ®
(a) Jog | cannot be removed {b) Jog j can be removed if
by moving a single segment. b is first moved to b’

Fig. 10. Example of a complex jog.
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The routing results obtained by SLICE on these examples are given in Table 2. The lower
bound on wire length for each net is computed by the hall perimeter of the bounding rectangle
that encloses all the terminals in the nel. This is a conservative lower bound [or multi-terminal
nets. Tt can be seen that SLICE uses at most 9% more than this lower bound for all examples

except mecl ©,

number of | number of | number of wire length run time
Example
layers vias jogs lower bound SLICE ratio | (hr:min)
testl 5 2013 3453 102238 109092 | 1.067 0:02
test2 6 5271 9656 265000 286723 | 1.082 0:06
test3 6 6892 13552 426308 459046 | 1.077 0:12
meel 5 6386 11215 339226 402258 | 1.186 0:12
mcc?2 7 47864 108321 5622935 5902818 | 1.050 8:15

Table 2: Characteristics of solutions

Table 3 shows that a large percentage of the nets are completed within the first few routing
layers. For all cases, more than 80% of the nets are completed within the first 4 routing layers.

i % of nets completed in x layers
Example 3 4 5 6 7
test1 4.8 | 52.8 | 80.2 | 97.6 | 1000
test2 25 | 276 | 558 | 827 96.3 { 100.0
test3 2.3 | 30.1 | 569 | 849 97.3 | 100.0
mccl 12,2 | 531 | 82.8 | 98.0 | 100.0
mce2 1.O | 33.1 | 59.5 | 81.2 93.5 99.0 | 100

Table 3. Distribution of completed nets

Table 4 shows the effect of the two jog removal algorithms. Note that each of the individual
jog removal algorithms may remove both kinds of jogs, thus the total jogs removed by applying
both algorithms are less than the sum of the jogs removed by applying the two individual algo-
rithms independently.

8 There are many multi-lerminal nets in mecl. Since the lower bound piven by the half perimeter of the bounding box is not tight
for multi-terminal nets of size 4, our lower bound for mect is considerably smaller than the oplimal wirelength. In fact, it is common-
ly believed that the wirelength of 4 minimum Steiner tree for a multi-lerminal net is at most 88% of the wirelength of a minimum
spanning tree on average [ 18], which leads 1o a new wirclength lower bound of 362497 for meel. ‘The result by the SLICE router is
only 11.0% more than the new lower bound.
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Total number of jogs
Example Without Algo. to remove | Algo. to remove Both
jog removal Simple Jogs Complex Jogs Algorithms

testl 6732 3785 4015 3453
test2 18519 10991 11328 9656
test3 25725 15944 16079 13552
mcel 20399 12260 12999 11215
mcc2 249551 131681 126173 108321

Table 4: Effcets of jog removal algorithms

Table 5 shows the effect of the pin redistribution algorithm. The algorithm consistently reduces
the number of laycrs necded 1o complete the routing at the expense of a slight increase (2.5%) in
the total wirelength. The impact of the pin redistribution algorithm on the number of vias and
jogs is usually small. On average, the number of jogs is increased by 2.5% and the number of
vias is increased by 0.6%.

Example no. of layers no. of vias no. of jogs total wirelength
with | without wilh without with without with without
testl 5 6 2013 2025 3453 3366 109092 107247
test2 6 7 5271 5268 9656 9230 286723 279542
test3 6 7 6892 06821 13552 13326 459046 445208
mccl 5 6 6386 6120 11215 11183 402258 388078
mcc? 7 9 47864 48769 108321 | 104606 | 5902818 | 5807699

Table 5: Effects of pin redistribution algorithm,

We also compare our results with a general 3D maze router in Table 6. The 3D maze router

uses a reserved layer mode

178

, in which the horizontal wires and vertical wires are routed in dif-

ferent layers. The 3D maze router was nol able Lo run on mcc2 on our system due o the large
size of the example. On the average, SLICE is more than six times [asier than the 3D maze
router, and uses 29% fewer vias than the 3D maze router. However, the number of layers used by
SLICE is generally more than the 3D maze router. But as shown in Table 3, the last few layers in
the SLICE solutions are very sparse.

" The 3D maze router using the reserved tayer model perfomned much betier than the one using the un-reserved layer model. For ex-
ample, in our experiment, the number of layers required for example meel 1s 17 with the un-reserved layer model versus 5 layer with
the reserved layer modcl.

® We tried both 1he teserved layer and the un-reserved layer model two-layer maze router in SLICE but the difference in the results
is insignificant. For all the test cases, the results by SLICE reported in Table 2 to 6 arc based on the un-reserved layer model two-layer

maze router.




number of number of number of total run time
Example layers vias jogs wire length (hr:min}
SLICE | maze | SLICE | muare | SLICE | maze SLICE maze SLICE | maze
testl 5 4 2013 2975 3453 421 109092 1 107908 0:02 0:08
test?2 6 4 5271 7127 9656 892 286723 | 273642 0:06 0:48
test3 6 4 6892 9347 13552 | 104 459046 | 441552 0:12 1:40
mecl 5 5 6386 8794 11215 | 1244 402258 | 397221 0:12 0:59
mee?2 7 - 47864 - 108321 - 5902818 - 8:15 -

Table 6: Comparison with maze router

Another advantage that SLICE has over the 3D maze router is its low memory requirement. For
the example mcc2 (a supercomputer with 37 gate arrays), in order (o store the entire grid of size
7x2032x2032, the 3D maze router nceds 110MB of memory (assuming that we use four bytes
for cach grid point to store the net number, routing cost, etc.) That is why the 3D maze router
failed to route the example on our system. Howgver, using a maze routing range of 10%, at any
time, the working space of SLICE is only 2x10%x2032x2032 = 3.3MB of memory. So SLICE
successfully produced a satisfactory solution. Furthermore, if the routing pitch for the same
example is reduced by a factor of two, the 3D maze router will require 441MB of memory
whereas SLICE will require only 13.2MB of working memory. Clearly, lor the next generation
of dense MCM design, the 3D maze router will face more severe memory limitation, and the
advantage of SLICE will become much more significant.

5. Conclusions and Future Extensions

In this paper, we presented a fast multilayer general area router named SLICE for MCM
Designs. The routing result of the SLICE router is independent of net ordering and uses fewer
vias. The total wirelength produced by SLICE is only a few percents away from the optimal.
Compared with a general 3D mavc router, with a small increase in the number of routing layers,
SLICE runs more than six times laster, uses 29% fewer vias, and requires far less memory.

The SLICE router can also handic 45 degree routing. Afler we obtain a maximum weighted
non-crossing matching, we ¢an use a more sophisticated procedure 10 map the topological routing
solution into a physical routing solution which allows 45 degree routing. The SLICE router can
handle arbitrary obstacle in the routing region as well since it can avoid generating edges whose
end-points are on the obstacles.

Although the SLICE router reduces the 1otal number of vias significantly, it might be possible
the some individual nets have high via counts. We are in the process of developing a MCM
router which can bound the number of vias used for every net in order 1o achieve predictable per-
formance. We also hope 10 take some performance issues (such as coupling and reflection) into
consideration in our design ol the next generation of MCM router,
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