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Abstract

The limiting factor for high performance systems is being set by interconnection delay
rather than transistor switching speed. The advances in circuits speed and density are
placing increasing demands on the performance of interconnects, for example chip-to-chip
interconnection on multi-chip modules. To address this extremely important and timely re-
search area, we analyze in this paper the circuit property of a generic distributed RLC-tree
which models interconnections in high-speed IC chips. The presented result can be used
to calculate the waveform and delay in an RLC-tree. The result on the RLC-tree is then
‘extended to the case of a tree consisting of transmission lines. Based on an analytical ap-
proach a two-pole circuit approximation is presented to provide a closed form solution. The
approximation reveals the relationship between circuit performance and the design parame-
ters which is essential to IC layout designs. A simplified formula is derived to evaluate the

performance of VLSI layout.



1 Introduction

Interconnection design has been a major concern in the design of high-speed systems. The
state-of-the-art IC chips are designed to operate at multi-giga hertz clock rate. In this
speed range the traditional lumped — RC' model can no long provide sufficient modeling
information about interconnections. Instead, the effect of inductance must be considered,
and, in general, a distributive or transmission line model need to be used. Research on the
evaluation of interconnection performance has been active in several different levels. The
most accurate and original method is to solve 3-D (or 2-D) time-variant Maxwell equations
[Edw84, Rub90]. The effect of electrical and geometric parameters on the circuit performance
can be investigated in great detail. For instance, the scattering of waveform at a wire bend
(or a discontinuity) can be evaluated. However, due to the complexity of this approach only
numerical method is feasible. A general relationship between the circuit performance and
design parameters can not be explicitly established. Furthermore, a practical design tool

can not be developed based on this approach because of its formidable computation time.

A less complicated approach to evaluate interconnection performance considers a 1-D
problem, i.e., solves a 1-D telegraph equation [Bla69]. Even though the dimension of the
problem 1s reduced only the ideal case, an infinite long line or ideal termination, is analyt-
ically solvable [ZPK91]. For a generic interconnection structure, for instance, several lines
connected into a tree, an exact analytic solution is almost impossible to be obtained because

of the irregular boundary conditions encountered in solving the telegraph equation.

The next level to attack the interconnection issue is circuit simulation, which is a typical
numerical approach. This approach is based on the lumped circuit element model and
is valid when the wavelength is considerably larger than the element size. Since circuit
simulation is an indispensable step in IC design the research along this line focuses on
developing an efficient interconnection model so that it can be easily incorporated into the
existing circuit simulator, such as spice [Nag75, GYK90]. To develop a good interconnection
model requires a deep understanding of the fundamental physical principles determining
the interconnection performance. Unfortunately, these principles are difficult to be derived
directly from the numerical simulation itself. Although a simulator in principle can simulate
any circuit it has the disadvantage that a general understanding of physical meaning behind

the interconnection design is shaded by the numerical calculation.



A deep understanding of the intrinsic relationship between interconnection performance
and interconnect topology and parameters is the starting point for optimal interconnection
designs. Such a relationship can only be thoroughly explored from an analytical approach.
[n this paper we first analyze a generic distributive RLC — tree circuit. We shall solve
this problem analytically, and then extend the result to the case where the interconnect has
a tree structure consisting of transmission lines, which is called tree-of-transmission-lines.
Based on the analytic solution a lower order circuit approximation will be presented for
developing a closed form solution. The approximation reveals the interplay between circuit
performance and the design parameters which is essential to IC layout design {Dai91, Bak90].
A simplified formula is derived to estimate the performance of VLSI layouts. The accuracy

of the presented result is further confirmed by numerical calculations.

The paper is organized as follows. In Section 2 the necessary background and the circuit
formulation of interconnects in the high-speed system are introduced. In Section 3 the defined
problems, RLC-tree and tree-of-transmission-lines, are analyzed analytically. In Section 4
the approximation technique is discussed and a closed form solution is presented. In Section 5
some special issues regarding the tree-of-transmission-lines are discussed in detail. In Section
6 several design examples are presented and the accuracy of the developed approximation
1s confirmed by the numerical simulation. Finally, in Section 7 comments are made on the

obtained results and on the further research.

2 Preliminaries

Let us consider a circuit layout as illustrated in Figure 1 where gate Gy drives six gates
Giyt = 1,...6 through a net N. The interconnection (net N) has a tree structure. An
accurate modeling of this interconnection calls for the consideration of transmission line
effect when the circuit intends to operate at very high frequency. That is, each wire segment
needs to be treat as a transmission line. Since a net is usually laid out in a tree structure
we hence have a tree in which edges are transmission lines. We call it tree-of-transmission-
lines, Each transmission line in the tree is described by a telegraph equation. Because the
telegraph equation considers only 1-D electro-magnetical field, 2-D field effect is modeled by
introducing extra capacitance at the discontinuities of interconnects, such as branching point

and wire bend (Figure 2). The loading gates also introduce the capacitance or resistance at
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Figure 1: An illustration of the interconnection layout in IC chips.



the nodes of the tree, depending on the technology (MOS or Bipolar device). Formally, we
define

Definition 1 The topology of the tree-of-transmission-lines is a tree. Each edge of the tree

is a transmission line. At each node there is a capacitor connected to the ground.

In the following we shall first solve a distributive RLC-tree circuit and then extend the
result to the case of tree-of-transmission-lines by taking appropriate limitations. In order to
do so we cut each edge of tree-of-transmission-lines into many small segments and model each
segment by an RLC-circuit as indicated in Figure 2. The resulted circuit is a distributive
RLC-tree. Taking Laplace transform on the RLC-tree we can introduce a more simple and
general notation as illustrated in Figure 3, where Z;,7 = ..., represents impedance between
two nodes. Notice that the impedance here can represent a much more complicated circuit
than just the Laplace transform of a single resistance or capacitance. The analytical approach
addressed in the following sections based on the circuit model shown in Figure 3 actually

has a broader application than just the simple RLC-tree.

Let us consider the circuit voltage response vy at an arbitrary node k. Denote the path
from the root to node k by p(k). Denote the set of the nodes on p(k) by A, and the set of the
rest nodes in the tree by A,. The nodes in A, and A, are respectively called on — path and
of f — path nodes with respect to node k. Denote the path from node i to node j by p(i, j).
The impedance in an edge of the tree is called edge-impedance. Denote by Z,; ;y(s) the sum
of the edge-impedance of the edges in p(z,7). Call Z, ;)(s) path-impedance. From a node j
to ground there is an unique path without passing through the orther nodes. The impedance
of this unique path is denoted by Z,;)(s) and called node-impedance. Denote by Zj ;(s) the
path-impedance of the common portion of the paths p(k) and p(j). Suppose node : is the
branching point between p(k) and p(j). From the definition, Z ;(s) = Z,(;(s). We illustrate
the above notations and definitions in Figure 3 with k = 11, § = 6 and ¢ = 3. We have path-
impedance Zy14(s) = Z1+ 23+ 23, Zp2,8)(8) = Za+ Zs, Zoe)(s) = Z1+ Zo+ 23+ Zy+ Zs+ 7.

and node-impedance Z,(11)(s) = Zas.
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3 Analytical Theory

Let the input at the root be f(t), and its Laplace transform be F(s). Let Laplace transform
of v; be Vi(s). Suppose there are total m nodes in the tree. For an arbitrary node k the
voltage difference between & and the input is the summation of voltage drops along the path
p(k) [RPH83). Accordingly, we have

Vi(s)
Znis)(s)

F(s) — Vi(s) = iz,,‘j(s) ck=1,..,m. (1)

This gives a set of linear equations with Vi(s),k = 1,...,m, as unknowns. We write Eq.(1)

into the matrix form

411 G2 ... G, |1 Fy
A1 422 ...Q2.y Vi F (2)
Am1 Gm2z ... Gk Vi F.

where a; ; = Zi"(%)%,k #7,a;; = % +1,and F; = F, i = 1,...,m. Denote D(s) = detA
n(s n(;
and Ni(s) = det Ax, where Ay is the matrix obtained by substituting vector F into the k-th

column of A. Theoretically, V; (s) can be calculated by using the following equation.

_ Nels) . .
Vi = Bis)F= b (3)

Since the computation of Ny(s) and D(s) is time consuming and, in general, only the numer-
ical solutions are feasible, Pillage and Rohrer ([PR90]) proposed an approximation method
(AWE) to calculate them. In their AWE method a high order system is first approximated
by a desired lower order system, and then poles are calculated from the approximated lower
order system. Notice that their method relies on the numerical techniques. The physical
meaning of the solution is difficult to be explored explicitly. In the following we will ap-
proximate the calculation of system poles by exploiting the property of a linear system, and

further develop an analytical closed form solutjon.

Let sz, k = 1,...,m, be the roots of D(s) = 0. From the linear algebra we can calculate

the determinant of A by expanding it along the k-th row

D(S) = detA = Zak'jAk'j, “)

=1



where Ay j = (—1)"*7det Ay ; and detA, ; is the determinant of an (m — 1)-by-(m — 1) matrix
obtained by deleting the k-th row and j-th column. Ay, is the cofactor of ar;. We now

present a theorem.
Theorem 1 There exists at least one pole si such that Api(se) # 0.

Proof: Since Agx(s) describes a sub-circuit obtained by deleting node k from the original
circuit described by matrix A(s), there exists at least one pole s; which distinguishes the

two circuits when both circuits have a tree topology. O

From Theorem 1 we can define

A ;(sk)
Ak,k(sk) '

Or,; =

Eq.(4) becomes
Zk,_; Sk)
D(Sk E 6 3k Ak k Sk 14+ Z Gk,_, Ak.k(sk) =0 (6)
=1 Zn(3)(sk)
The fact that Agr(sk) # 0 implies that s must be the solution of

There might be several s;.s depending on the order of Eq.(7). Considering the arbitrariness

of the choice of row k and repeating the same operation to all rows of A(s) we obtain

Zy.i(s)

D(s) 1‘[ (1 +Zek,Zn(J)( )) (8)

k=1

We introduce a new parameter +; defined as !

Zei(se) | (& Zuglsn)
(Z O Z"(J)(sk)) (; Zn(j)(sk)) (9)

Eq.(7) becomes

Zyi(sk)
Y + —— =0, k=1,...,m. (10)
;Zﬂ(:r)(sk)

!Notice that si is the solution of Eq.(7).



All system poles are then calculated from Eq.(10). In the rest of this Paper we assume that
f(t) is a step function 2. Writing pole s; in the form 8; = ~a; +13; and taking the reverse

Laplace transformation we obtain

w(t)=Vo-> Res(Vi(s;))el-otilt p 1,..,m, (11)

i=1

where Res(Vi(s;)) is the residue of Vi(s) at pole s;.

4 A Closed Form Approximation

The primary goal of this paper is to find a causal relationship between circuit response, such
as the waveform at a node, and the circuit parameters. A closed form solution is hence
preferred since it reveals the physical meanings of the solution. Such a closed form solution
is also critical to the performance-driven layout in high-speed IC design as demonstrated
later in Section 6. In the previous section we have found a general solution (Eqs.(10) and
(11)) to a distributive RLC-tree circuit. Unfortunately, numeric calculation has to be used
to determine those poles and the corresponding residues for any non-trivial problems. This

to a certain extent shades the physical meaning of the solution.

Notice that pole s, is obtained by separating a factor from detA(s) by expanding det A(s)
along its k-th row. Since the k-th row of A(s) actually represents the relationship between
node k and all the other nodes, we can “consider”, for convenience, s as a pole associated
with node £ though we know that a pole is related to a system instead to a node. From
Eq.(6) it is clear that the factor (1 + X, ek’f%ﬁ%) separated from detA(s) contains all
the information of the relationship between node & and the rest of the circuit, since the other
factor Ay x(sx) doesn’t contain any element connecting node & and the rest of the circuit.
Therefore, the poles s; calculated by setting this factor equal to zero (Eq.( 10)) can be used
as the poles of a lower order approximation. Namely, we use the poles s; calculated from

o Zri((sk)
j'—'zl Zn(s)(s2)

to approximate the response at node k. Suppose the above equation has an order d(k) with

respect to s, and sy, Sk(2)) -+« 5 Sk(d(k)) are its roots. We have the following approximation

2The case of an arbitrary driving function f(t) can be discussed strnilarly.
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for the voltage at node k

d(k)
ve(t) = Vo — 3 Res(Visx(s)))e™ o). (13)

J=1
Eqs.(12) and (13) are the approximations of Eqs.(10) and (11), and specify a lower order

system which is an approximation of the original one.

[t remains to calculate the poles from Eq.(12) and the corresponding residues. This
requires v be calculated first ®. From the definition of ¥ (Eqs.(9) and (5)) its value can
be calculated if the poles are known. We hence face a chicken-and-egg problem here. The
purpose of introducing 7 is to simplify the calculation of poles. Thus, we shall first calculate
poles with v as a parameter. We then determine v by considering some special cases where
the solutions of poles are known. Namely, by comparing our solution of poles with v as a

parameter to the known poles we can determine the value of 7.

The special case we use to determine + is shown in F igure 4(a), where a uniform trans-
mission line is connected to a driver at £ = 0 and to a capacitor at x = [. This is a general
interconnection model for CMOS circuits. Zhou, Preparata and Kang studied the analytic
solution of this problem and further suggested to use a two-pole system to approximate the
original one [ZPK91]. For the considered transmission line let the resistance, inductance and
capacitance of unit length be R, L, and C, respectively. The driver has output impedance
Ry. The load has impedance ﬁ The poles of their two-pole system are determined by the
following equation with the assumption that CI >> C, *.

2
(CLI? +2L1C,) s* + (2RoCl + ROP + 2(Ro + RIC, ) s + (g) —0 (14)

In order to make comparison we apply our result Eq.(12) to the single transmission line
case. We uniformly cut the line into m segments and later let m — co. The nodes are labeled

as shown in Figure 4(b). We calculate the pole associated with node m locating at z = /.

Since the line is uniformly cut, Z,;)(s) = ﬁ = 2, Zm i(8) = R j + sLm; = (B 4+ s£);,

Zo(s) = Ro and Zp(y(s) = ﬁ, where (), is the gate capacitance. For the discussed circuit
Eq.(12) becomes
(LCI2 RC1?

2

+ Lng) 5%+ (ROCI+ + (Ro + Rl)cg) s+ Ym =0. (15)

3When context is clear we will omit the subscript of .

4This assumption can be satisfied in most practical interconnection design problems.
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Comparing Eq.(15) to Eq.(14) we find =,, ~ 1.23. The response at the receiving end is

expressed by
52

vir=V,-VW ( et + —Sl—e’ﬂ) (16)

83 — 5 51 — 83

where s; and s, are the solutions of Eq.(153).

We calculate numerically the waveform of the circuit shown in Figure 4(a) and the result
is shown in Figure 4(c). A fair match is seen comparing our result to the simulation one.
It is also seen that the RC-distributed model {RPH83] and RLC-lumped model [Bak90] can

not well model the discussed problem at the concerned frequency range.

5 Tree of Transmission Lines

For a tree structure, the response differs from node to node. The response at a particular
node can be calculated based on the poles associated with this node as discussed in Section
4. When calculating the response at a given node k the main difference between the single
line and the tree-of-transmission-lines is the existence of off-path nodes in the later case. In
the following we still use Eqs.(12) and (13) as a genera solution form and properly introduce

a scale factor to reflect the influence of the off-path nodes.

Let us consider the response at an arbitrary node k. Suppose node j is an off-path node
and the branching point between p(k) and p(;) is node i. The path-impedance Z,;y consists
of two portions: Zy(;) and Z ), respectively. Call Z,) on-path impedance, and Z,; j) off-
path impedance. Denote them by Z,. ;) and Z, ¢k ;), respectively. Figure 5 illustrates the

above definitions. Eq.(12) can be written as

Zx;(8) Z ;(s) -
Yk + — W + — = ( 17 )
J-EE;,, Zn(8) & Znti)(8)

where A, and A, are respectively the sets of on- and off-path nodes as defined in Section
2. H set Ep is empty (no off-path nodes) the above equation describes a single transmission
line which we have discussed in Section 4. The effect of branching points and off-path nodes
is reflected by the last summation 3 .7 Zi’:‘(:')i(% Notice that this summation originates
from charging capacitors at off-path nodes. The following observations are useful for the

construction of the scale factor (Figure 5).

12
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Figure 5: The effect of charging off-path node capacitors.
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1. The off-path impedance is zero. The off-path capacitors can be treat as the lumped
capacitors at the corresponding branching node. This case can be considered as a

single transmission line. Equivalently, the scale factor should be one unit in this case.

2. The off-path impedance is of infinity. There is actually no need to consider charging
the off-path node capacitors. The summation term over the off-path nodes should be

scaled to zero. That is, the scale factor should be zero.

3. Neither of the above two cases is true. That is, the off-path impedance has a finite

value. The scale factor takes the value between zero and one.

We introduce a scale factor : j € A,. We modify Eq.(17) by ®

1+Z F1lk,;)
Zk S 1 Zk (S)
1.23 + S 282 AN 18
,»,GZA Z;(s) Z L+ Zoprr) () Z;(s) (18)

Therefore, the bigger the z.z¢(t ;) the smaller the effect of charging off-path node j. The
introduced scale factor satisfies the requirement at the two extreme situations: either the
off-path impedance is zero or infinite. Eq.(18) and “(13) are the approximations for the tree-
of-transmission-lines. Actually, we can conservatively choose the scale factor to be one unit,
which leads to an upper bound on the delay estimation since all off-path capacitors are to
be charged regardless of the value of off-path impedance. Choosing the scale factor as one
unit we can merge Eq.(18) into Eq.(12) and, equivalently, we are no long to distinguish the

case of a single line from that of a tree-of-transmission-lines.

For the purpose of illustration we consider the tree-of-transmission-lines shown in Figure
6. In the figure two trees implement the same net N in Figure 1. We calculate the response
at node 11 for both trees. For a conservative evaluation we have chosen the scale factor to
be one unit. In Figure 7(a) our approximation result is plotted against the spice simulation
for Tree 1 to show the goodness of the approximation. In Figure 7(b) the performance of

two trees are evaluatated by using the obtained approximation method.

SWe suppose that v keeps the value determined from the single line case.

15
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Figure 7: Numerical calculations at node 11 in the tree-of-transmission-lines.
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6 Waveform, Delay and Design Examples

In this section we examine the waveform and delay of an interconnection circuit, and then
apply the obtained result to two IC design problems. The waveform is important here
because, different from the over-damping case, oscillations exist in the interconnection circuit
as demonstrated in Figure 7. Therefore, to properly define the delay of interconnects is not

a trivial problem. Actually, it is a rather difficult problem.

One of the traditional definitions of delay is defined as the time period 7 in which the node
voltage vi(t) stably reaches a given value or high. One choice of this given value usually is
0.9V, where V4 is the final value of vi(o0) ©. The stable here means vi(¢) > 0.9V, as t > 7.
This definition of delay is popular when the response is over- or critical-damped. It is not
clear whether this definition is still a good one when there exists oscillation. In Figure 7
we see 7 = 27ps by this definition. However, the loading gate at node k(= 11) may have
been permanently turned on at the time vg(t) first time reaches 0.9V, (¢ = 7ps). Notice that
different gates may have different threshold voltage and different circuits may have different
gate turn-on and turn-off design margin. It is clear that the definition of delay depends on

the specific application and the technology.

We now show two design examples. In the first example we calculate the waveform in two
different trees in Figure 6 which implement the same net in Figure 1. The simulation results
of delay at node 11 are shown in Figure 7. As is demonstrated, tree2 is more preferable than
treel in terms of circuit responses. Note that treel is a minimum-spanning tree, but has
very long tree radius. Tree2 has a slightly longer total wire length, but much smaller tree
radius. It was claimed in [CKR192] that a routing tree with small wire length and small
radius is the best in terms of circuit delay. Our work confirms their claim theoretically and
experimentally. An efficient algorithm to construct a routing tree with both small radius

and small wire length is given in [CKR*92].

The second example illustrates how to use the obtained result to design an optimal layout
[CZ92]. This time we examine two trees shown in Figure 8. The difference between these two
trees is that the wire width of the wire segment between nodes 1 and 2 is 2w in tree-double
and lw in tree-even. The design of the wire width in tree-double considers the impedance

match at node 2 {Bak90]. In Figure 9(a) we compare our result with the spice simulation

8Recall that we have assumed that a step input is applied at the root of the tree.
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for tree-even. Figure 9(b) evaluates the performance difference between two tree by using
the obtained approximation method. As is expected the response in tree-double is slightly

faster than that in tree-even,

7 Discussion and Conclusion

We have analyzed the distributive RCL-tree circuit and extended the obtained results to the
calculation of the tree-of-transmission-lines. A lower order circuit approximation has been
established for developing the closed form solution. The numerical calculation has shown the
validity of the approximation. The obtained results have been applied to the design of IC

layouts. We make the following comments on the discussed problem for the future research.

1. When studying the RLC-system a one-pole circuit approximation will not be sufficient
since it can not model the wave phenomenon. The wave phenomenon is essential in
the transmission line analysis. Hence, the approximation circuit should be at least of
order two. Our lower order circuit approximation can be considered as an extension
of the result of Rubinstein et al. where they studied an RC-tree [RPH83]. In fact, by

setting inductance equal to zero our result Eq.(12) will reduce to their result.

2. The definition of delay in a distributive RLC-circuit (or a tree-of-transmission-lines)
is not clear, especially when the transmission line is poorly terminated. As mentioned
in the paper this issue is technology-dependent. However, a more objective measure
on the signal delay needs to be addressed. A possible solution is to check the energy
passing down through the line and the energy needed to turn-on and turn-off a load
transistor [GZ92].

3. Our result on the lower order circuit approximation to a distributive RLC-tree can be
easily incorporated into VLSI layout tools since the result is in an analytical closed
form. The result not only provides a means for the performance evaluation of high-
speed interconnections, but also establishes the relation between the circuit response,
such as delay, and the interconnection parameters, such as wire length and wire width.
Further study on this issue is needed which is very important to the high-speed IC
design.

19
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Figure 9: Response at node 4 in the trees with different wire width
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