Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

MAMACG: A TOOL FOR AUTOMATIC MAPPING OF MATRIX
ALGORITHMS INTO MESH ARRAY COMPUTATIONAL GRAPHS

D. Le March 1992
CSD-920009

UNIVERSITY OF CALIFORNIA

Los Angeles

MAMACG: A Tool for Automatic Mapping
of Matrix Algorithms into

Mesh Array Computational Graphs

A thesis submitted in partial satisfaction
of the requirements for the degree

Master of Science in Computer Science

by

Dinh Lé

1992

© Copyright by
Dinh Lé
1992

The thesis of Dinh Lé is approved.

D N

D. Stott Parker

g 7

Richa Muntz

s e

Milos D. Ercegovac, Comniiftee Chair

University of California, Los Angeles

1992

1

To the boys and girls back home who don’t know beans about my work, but
who provided- security, comfort and good food whenever I needed. They deserve

my deep sincere thanks.

i

TABLE OF CONTENTS

1 Introduction.

2 Transformation of MAC-algorithms into Array Computational

Format
2.1 LU-decomposition

2.2 Warshall Algorithm for Transitive Closure

3 Derivation of the ODG,
3.1 Symbolic Execution, e
3.2 Mapping of Symbolic Statements Into ODG
3.3 Derivation of lu-decomp(3)s ODG
3.4 Derivation of wershall(3)’s ODG.

4 Derivation of the MMG and MAC-graph
4.1 Definitions of Bidirectional Flows
4.2 Removal of Bidirectional Flowsin ODG.
4.3 Regularize the Last Plane
4.4 Generation of the Mesh Array Computational Graph

5 Implementation of MAMACG

6 A Surveyof Related Work
6.1 Rao's Regular Iterative Algorithm (RIA)

v

6.2 MAQRS’s Afine Recurrence Equations (ARE) 16

6.3 VLSI Array Compiler System (VACS) 49
6.4 SDEF Programming System 51
6.5 ADVIS: Automatic Design of VLSI Systems 52
7 Summary and Further Research 54
A Running MAMACG 57
References 61

1.1

3.1

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Li1sT oF FIGURES

Steps taken to derive mesh array computational graphs 3
Steps taken in deriving lu-decomp(3)’s ODG 15
Steps taken in deriving warshell(3)’s ODG 22
Warshall(3)'s ODG 24
Graph generated after the removal of the negative nodes 29
MMG generated by Warshall(3) 34

MAC-graph generated by grouping along the Z-axis of L U-decomp(3)’s
MMG .. 36

MAC-graph generated by grouping along the Y-axis of LU-decomp(3)’s
MMG . 36

MAC-graph generated by grouping along the X-axis of L U-decomp(3)’s
MMG ... e 37

MAC-graph generated by grouping along the Z-axis of Warshall(3)’s
MMG ... 38

MAC-graph generated by grouping along the Y-axis of Warshall(3)’s
MMG ... e 39

MAC-graph generated by grouping along the X-axis of Warshali(3) s
MMG 39

vi

LisT oF TABLES

vii

e

ACKNOWLEDGMENTS

Prof. Milo§ Ercegovac set a high level of excellence early on, then ratcheted it up
whenever [started to feel satisfied. Qur journey together had its rough moments,
due primarily to my impatience, but the satisfying results make it all worthwhile.
Your guidance is greatly appreciated. Also appreciated is the time and advice of

committee members Prof. Richard Muntz and Prof. Stott Parker.

Dr. Jaime Moreno’s dissertation embarked me on this adventure. Not only did
Jaime teach me everything I know about mesh array computational graphs, but
his guidance, dedication, and wisdom transfigured this journeyman’s work. [am
in debt to you the most. Thank you Prof. Tomas Lang for all the long-distance

assistance that reached me by way of Jaime.

Brad Pierce helped me to revise my prose until it communicated what [re-
ally meant and to highlight the salient results of my research. William Cheng’s
magical graphical editor (tgif) and his personal tutorial enabled me to generate

those beautiful graphics automatically. Thank you kindly, friends.

Finally, thank you to my parents and family. We have not always seen eye to

eye, but we have seen a lot together.

This research has been supported in part by the NSF Grant No. MIP-8813340
Composite Operations Using On-Line Arithmetic for Application-Specific Parallel
Architectures: Algorithms, Design, and Ezperimental Studies and by the State of
California Hughes Aircraft Company MICRO Project Design of Mesh Arrays for

Matriz Computations.

vili

ABSTRACT OF THE THESIS

MAMACG: A Tool for Automatic Mapping
of Matrix Algorithms into

Mesh Array Computational Graphs
by

Dinh Lé
Master of Science in Computer Science
University of California, Los Angeles, 1992

Professor Milos D. Ercegovac, Chair

The design of MAMACG, a software tool for automatically mapping an im-
portant class of matrix algorithms into mesh array computational graphs, is
described. MAMACG is a concrete realization of Moreno's multi-mesh graph
(MMG) method. The author’'s MAMACG implementation in Elk, a dialect of

LISP with built-in X-graphics capability, is also described.

CHAPTER 1

Introduction

In [1], Moreno and Lang considered a class of matrix algorithms with the “loop-

body structure” described below:

Assume the following primitive syntactic sets: numerals (Nml), iden-

tifiers (Id), and base types (BTypes), where

Nml = {0,1,2,...}, BTypes = {int, bool, double}.

From these, sets of ezpressions (Exp), commands (Com), declara-
tions (Dec), and types (Types) are generated. The following nota-

tional conventions are used:

z €Id,k,m € Nml, bt € BTypes,v € Var

e € Exp,c € Com,d € Dec, ty € Types

Syntax Equations

loop-body ::= for = := ¢; to e; do ¢
v ::= 1 | z[eq,e]
e ::=v | e bop ey | uop e | (e)

bop 1=+ |~ | %1 /1@

uop ::= — | sin | cos | .-

c 1= v :=¢e | coic1 | loop-body
d ::= var z:ty | do;d,
ty := bt | array(k; :my;ky i m,) of bt

Variable z is a simple variable and variable z[ey, e;] is a subscripted
variable where e; and ¢; are the elements of its index [e1, €3], Note

that only 2-tuple subscripted variables are accepted by this language.

This thesis considers those matrix algorithms which may be described by a
single 2-tuple subscripted variable and up to three simple variables (used to index
the subscripted variable). Many matrix algorithms such as transitive closure,
LU-decomposition and BA™! fall into this important subclass, called mesh array

computational algorithm (MAC-algorithm).

MAC-algorithms can be rewritten in special formats, which, when symboli-
cally executed, produce parallel code with fine-grain granularity suited for im-
plementation on processor arrays. Indeed, extensive research related to effective
mapping of matrix algorithms is available [2] but few of these approaches have
resulted in practical design tools. This thesis describes the design and implemen-
tation of a tool, called MAMACG, which is based on the MMG method described
in [1]. The principal feature of MAMACG is the use of Elk [3], a dialect of LISP
with built-in X-graphics capability. Because of its high abstraction for fast imple-
mentation and interpretive nature for easy debugging, Elk is an ideal prototyping
language. The automation of the mapping of MAC-algorithms onto mesh array

computational graphs proceeds in the following three stages:

8]

1. Derive the orthogonal data-dependency graph (ODG) of a MAC-algorithm.

]

. Transform the OD(into a three-dimensional multimesh graph (M3{G).

3. Transform the MA/G into a two-dimensional mesh array computational

graph {(MAC-graph).

The second stage produces a unique solution—a three-dimensional graph with
unidirectional nearest-neighbor dependencies (MAG). The third stage produces
alternative solutions of mesh array computational graphs, based on the grouping
of the nodes in the MM parallel to the X, Y, or Z-axis and also on the size of
groupings.

This thesis begins by discussing how MAC-algorithms are represented in a
special formats which require all 2-tuple subscripted variables to be rewritten as
3-tuple subscripted variables, without changing the semantics of the algorithms.
This special format is referred to as array computational format due to its suit-
ability for implementation in arrays. This thesis then shows how the generated
symbolic statements of the algorithm’s array computational format are used to
produce an orthogonal data-dependency graph (ODG) which associates every 3-
tuple subscripted variable with a node and edges in the three-dimensional ODG.
Next the MMG is derived by removing bidirectional flows existing in the ODG.
Then the derivation of the mesh array computational graphs from the MMG is
described. The development and implementation of MAMACG in Elk is dis-
cussed in Chapter 5. A survey of related works is then described in Chapter 6.
The thesis concludes by summarizing the contributions of the research reported
in the thesis and suggests future research directions. The use of MAMACG is

described in Appendix A.

Note that all graphs shown in this thesis have been obtained using MAMACG.
The mapping of MAC-algorithms to their computational formats requires user
intervention, while the other steps are fully automated by MAMACG. Figure 1.1
shows the steps taken to map matrix algorithms to mesh array computational
graphs. Steps 2 through {4 are based on the MMG method described in [1].
MAMACG refines and formulates the MMG method’s high level description in

terms of an Algol-like language in order to automate the transformation in Elk.

The regularization stage in the MMG method transforms a matrix algorithm
into a fully-parallel data-dependency graph (FPG). This graph is then trans-
formed into the multimesh graph (MMG). The approach followed by MAMACG
does not use the FPG. Instead it derives the orthogonal data-dependency graph
(ODG) which bears a closer resemblance to the MMG.

Matrix Algorithm

@ Applying array computational rules Manually done

Array Computational Format

@ Symbolically executing the algorithm

Symbolic statements

@ Mapping symbolic stalemenis lo 3d-dependency graph

Orthogonal
data-dependency

graph
(0DG) Fully automated

@ Removing bidirectional flows from FPG

Multimesh
data-dependency
grapk
{MMG)

|

@ Grouping MMG by a rectangular prism along the thres axes

MAC-gruphs

Figure 1.1: Steps taken to derive mesh array computational graphs

CHAPTER 2

Transformation of MAC-algorithms into Array

Computational Format

To be used by MAMACG, a matrix algorithm must first be transformed from
its conventional single thread form into an array computational format which is

defined by the following rules:

1. At most three subscripted variables may appear in the right-hand-side ex-

pression of any assignment statement.

2. Each subscripted variable may appear on the left-hand-side expression only

once (single assignment rule).

3. All 2-tuple subscripted variables must be expanded to 3-tuple subscripted
variables without changing the semantics of the algorithm, where the added
dimension reflects the order in time the subscripted variable is assigned a

value. Suppose the following matrix algorithm were presented:

for k := 1 to n do begin
BODY

end

All 2-tuple subscripted variables inside BODY would be transformed to

3-tuple subscripted variables as follows:

(a) The variable o[z, j] appearing on the left-hand-side expression of a
statement is expanded to afi, j, k] since it refers to the variable afi, j]

of the k-th iteration being assigned a value.

(b} If a variable i, j] appears on the right-hand-side of a statement and
appears on the left-hand-side expression of no previous statement of
the current iteration, then it is expanded to ali, j, k — 1], since it refers

to the value of the variable a[f, j] of the previous iteration.

(c) If a variable a[:, j] appears on the right-hand-side of a statement and
it also appears on the left-hand-side expression of a previous statement
of the current iteration, then it is expanded to af, j, k] since it refers

to the value of the variable aft, j] of the current iteration.
4. Input subscripted variables, v[t, , k], have k = 0.

5. Output subscripted variables are specified at the beginning of the algorithm.

The rest of this chapter demonstrates the transformations of the single thread
forms of LU-decompostion and Warshall's transitive closure algorithms into their
array computational formats. The transformations into AC formats are being
done manually in this thesis but this step can also be automated. The next
chapter describes how MAMACG maps array computational formats to three-

dimensional orthogonal data-dependency graphs (ODG).

2.1 LU-decomposition

In the LU-decomposition computation, a given matrix A is decomposed into

A=LU

where L is a lower triangular matrix and U is an upper triangular matrix. The

LU-decomposition algorithm can be written as:

\\ input: A[n,n]
\\ output: Lin,n],Un. n]
var
i,],k int;
begin
for £ := 1 to n do begin
Ulk, k] := 1/A[k, k];
forj:=k+1tondo
Ulk,J] = Alk,
fori:=k+1tondo
L{i, &) .= Ali, k] = Uk, k];
fori:=k+1tondo
forj:=k+1tondo
Als,J] := Ali, j] = L{i, k} = ULk, 5
end

end

The tables below contain the transformations from the single thread computa-
tional format to the array computational format of the four statements appearing
in the algorithm; all 2-tuple subscripted variables are expanded to 3-tuple sub-

scripted variables using the technique described above.

single thread computational format

L| Ulk k] = 1/A[k, k]

o

Ulk,j] = Afk,Jj]

3. L[kl = Al k] +Ulk, k)

1| Alj) = Al j] - Lli, k)« Ulk, j)

array computational format

L | Ulk,k k] = 1/A[k, k, k- 1]
2. | Ulk,j, k] = Alkj,k—1)

3| Lli, kK] = Ali,k, k—1)* Uk, k, k]

4. A[ﬁ,j, k] = A[%Jsk_ll —L[%,k,k]*U[k,],k]

In statement 1, the left-hand-side expression U[k, k] is transformed to U[k, k. k|
because it refers to the element U[k, k] of the current iteration. The right-hand-
side expression, A[k, k], refers to the element of the previous iteration and, thus, is
transformed to A[k, k,k—1]. Applying the current-previous iteration dependence

relation to the remaining expressions results in the following code.

\\ input: A[n,n]
\\ output: L[n,n],U[n,n]
var
i, J, ke int;
begin
for £ := 1 to n do begin
Ulk, k, k) := 1/A[k, k. k — 1];
for y:=4+1tondo
Ulk, j. k] := Alk, j, k — 1];
fori:=%k+1tondo
Lii, k, k) .= A[i, k, k= 1] * Uk, k, k);
fori:=k+1tondo '
for j:=k+1tondo
Ali,j k] == Ali, j, k= 1] = L[i, k, k] * Uk, j,];
end

end

2.2 Warshall Algorithm for Transitive Closure

Let G be a directed graph G(V, E') where V is the set of vertices and E is the set
of edges. The transitive closure of G, the graph G*, has the same set of vertices
as . An edge (v;,v;) exists in G* iff there exists a set of edges in G that forms
a path connecting v; to Uj.

The graph G is represented by an n x n matrix A. The single thread compu-

tational format of the Warshall algorithm for transitive closure {4], shown below.

10

takes A as an input and produces A*—an n x n matrix that represents the graph

G*.

\\ input: A4[n.n]
\\ output: A[r.n]
var

i, 7, ki int;
begin

for k:=1tondo

for::=1ton do
for j:=1tondo
Ali, j] = Al1, j]Q(A[i, k] @ Alk, j]);

end

The variable A[f, j] appearing in the left-hand-side expression of the single
statement in the algorithm is expanded to A[f, j, k| because it refers to the vari-
able Alz, j] of the current iteration being assigned a value. The variables A[:, j],
Alt, k], and A[k, j] appearing in the right-hand-side expression of the statement
are expanded to A[7, j, k—1], A[¢, k, k1], and Ak, j, k—1], respectively, because
they refer to the values of A[¢, j|, AlZ, k], and A[k, 7], respectively, of the previous
iteration. The resulting array computational format of the Warshall algorithm

for transitive closure is shown below.

11

\\ input: A[n,nj
\\ output: A[n,n]
var

i J, k: Int;
begin

for £ :=1ton do

for::=1ton do
for j :=1to n do
Ali, Jo k] := Al), k= 1) @Ak, k=11 ® Alk, j, k — 1]);

end

CHAPTER 3

Derivation of the ODG

The automated transformation of a MAC-algorithm in array computational for-
mat to a three-dimensional OD(is performed by (i) symbolic execution of the
algorithm to obtain symbolic statements over the given range of indices, and (ii}

mapping of the symbolic statements onto the three-dimensional ODG.

3.1 Symbolic Execution

The symbolic execution of a matrix algorithm in array computational format

consists of the following steps:

1. Call the procedure that represents the algorithm in a pseudo-Algol code
given by the user. The arguments passed to the procedure are integer
constants that describe the lower and upper bounds of the indices of the

input matrices,

2. Bind the upper bound and lower bound variables to the integer constants

passed from the caller.

3. Iterate the loop based on the values of the upper bound and lower boun

variables.

13

4. Instantiate the 3-tuple index, [z, 7, k] where 7, 7, or & may be either a variable
or an integer constant, to a 3-tuple constant index, [¢/, 7', '] where ¢/, ;.

and &’ are all integer constants.

5. Generate the symbolic statements.

Figure 3.1a shows the instantiation of the upper bound variable n to 3 in

lu-decomp(3) and Figure 3.1b illustrates the corresponding symbolic statements.

Next we describe how symbolic statements are transformed into a three-

dimensional ODG.

3.2 Mapping of Symbolic Statements Into ODG

Definition 1 An ODG is a three-dimensional Euclidean directed graph G(V, E)
in which each vertex represents a computational node (defined by Rule 1) and
each directed edge represents a data channel (defined by Rules 3 and 4) carrying

input or output data. m
Figure 3.1c shows the ODG for lu-decomp(3).

Rule 1 (Computational node) Each symbolic statement generates a unique
computational node in the ODG. The left-hand-side expression of the symbolic
statement is a subscripted variable v[z, j, k] whose index, [i, j, k], determines the
coordinate where the node is situated in the ODG. The node is labeled v[z, j, £].
The right-hand-side expression of the symbolic statement determines the opera-

tion of the node. ®

For example, the symbolic statement L[2,1,1] := A[2,1,0]*U[1, 1, 1] generates

the computational node L{2,1,1] (labeled (4) in Figure 3.1¢); it is placed at coor-

14

i

@
3

L]
L]

(L
M
8
"

fork:=1to3do

begin

1. Ulkkk]:= 1/A[kkk-1];
forj:=k+1to3do
2. Ulk,.k] := Alk,J,k-1];
fori:=k+lto3do
3. L[ikk]:= Alikk-1]*Ulk,kk];
fori:=k+1to3do

for j:=k+1to 3 do

4. Afijg,k] := Allj,k-1] - L[i,k,k]*Ulk,j,k];

end

a) lu-decomp code after instantiating n to 3

k=1
U[1,1,1} := /A[1,1,61

U(1,2,1] := A{L,2,0)
U13,1] := A(L,3,0)

L{Z,1,1] == A[2,1,0] * U(1,1,1)
LG,L1]:= A(3,1,0] * UTLLY}

A[2,3,1]:= A(2,2,0) - L(2,L1)*U[L2,1}
AfZ,,1]:= A(Z3,9) - L(2,1,1]°U[L3,1]
A(32,1] := A[3,2,0] - L[3,1,1]*U[L,2,1]
A1) = A[33.0] - L(3,L11°U[,30)

{1

Q1

0)

n

0y

(13

L

Z

X

4

k=2

Ur32,2) := VA[2,2,1]

U2,3.2):= A[23))

L{3.2.2) := ARR1] * UR22)

A[33,2] = Al33,1] - L{3:.2:,2]°URLD21

k=3

(14) L UB333):= VABAZ)

b) Symbolic statements generated after 1st, 2nd and 3rd iteration

O

At

&
\)"\i

e

14

&Y\
A

=

A2

¢) Orthogonal data-dependency graph

ORCAS

broadcast paths
crossing nodes

Figure 3.1: Steps taken in deriving lu-decomp(8)’s ODG

15

dinate (2,1,1) of the three-dimensional ODG. The node performs the operation
A[2,1,0] * U[1,1, 1.

Definition 2 The size of the ODG is the smallest cube enclosing all the compu-

tational nodes generated by the symbolic statements. »

Rule 2 (Data flow) Data can flow parallel to the X axis, Y axis, or Z axis.
Relative to a node, there are five types of flows parallel to the X axis, whose set

is denoted by Qy,

bbb o

five types of flows parallel to the Y axis, whose set is denoted by {1y,

o = [—O— O —0-O— O} ,and

four types of flows parallel to the Z axis, whose set is denoted by {2z,

Q,,:/{,/CD,O/,O.

Let z € Qx,y € Qy, and 2 € Qz. A data flow relative to a node is defined as
the superimposition of z over y over z centered at the nodes (denoted by circles)

of z,y,and z. m

Rule 3 (Inputs) Aninput to a node situated at coordinate {2, 7, k) comes from a

node situated at coordinate (¢, j', k'} if a subscripted variable with index [¢', j/, ¥']

16

appears in the right-hand-side expression of the symbolic statement that gener-

ated the node situated at coordinate (7, j, k). The input is called

x-input if :# ¢, j=j,and k =k,

y-input if =1, +# j,and k = k',

z-input if =145 =j,and k # k'
A computational node may have at most three inputs. =

Rule 4 (Outputs) A node situated at coordinate (7,7, k) sends output to the
node situated at coordinate (i', j', &'} if a subscripted variable with index {¢, , k]
appears in the right-hand-side expression of the symbolic statement that gener-

ated the node situated at coordinate (¢, 7', k’). An output is called

x-output if i#4¢,j=j,and k=F,
y-output if :=7¢,j+# 3 ,and k=K,
z-output if i=¢,7=45,and ¥ —k=1.

Data on an output arc can be either generated within the node or transmitted

from another node. ®

In Figure 3.1c, the node located at (2,2,1) (labeled (6) in the figure) has a
x-input coming from the node located at (1,2,1) (labeled (2) in the figure), an
y-input coming from the node located at (2,1,1) (labeled (4) in the figure}), and

a z-input coming from the external node located at (2,2,0).

17

Rule 5 (Data Flow Delay) Data are passed between adjacent nodes in unit
time. Data flow from a computational node to the node(s) in the five adjacent
locations—positive z-axis, positive and negative y-axis, and positive and negative
x-axis. If data are required to pass through an adjacent location that is not
occupied by a node, a delay node is created at that location to relay the data.

Definition 3 A node, located at (i, j, &), is called a broadcast node if it sends
the same data to nodes located at (i}, ji, k1), ..., (¢h,j.,&.) where n > 1 and
k = ki = k;, that is, to more than one node located in the same plane of the ODG.
A node that sends the same data to multiple destinations through the x-output
is called an x-broadcast node; a node that sends the same data to multiple
destinations via the y-output is called a y-broadcast node; and, similarly, a
node that sends the same data to multiple destinations via the x-output and

y-output is called an xy-broadcast node. =

Figure 3.1¢ shows that the computational nodes {1),(2) and (3) are x-broadcast
nodes that feed the same data to the set of nodes {(4),(5)}, {(6),(8)}, and
{(7},(9)}, respectively; on the other hand, the computational nodes {(4) and (5)

are y-broadcast nodes that feed data to the set of nodes {(6),(7)} and {(8),(9)}.

respectively.

Definition 4 A path that carries the same data to several nodes along the X
axis is called an x-broadcast path; a path that carries the same data to several
nodes along the Y axis is called a y-broadcast path; otherwise, when it carries

different data to each node in the path, it is called a regular path. m

18

In Figure 3.1c, the broadcast paths going through the computational nodes

are denoted by the broken lines crossing the nodes.

Definition 5 A node that lays on an x-broadcast path is called an x-transmit-
ting node; a node that lays on an y-broadcast path is called an y-transmitting
node. m

Mapping Procedure

From the rules and definitions described so far, the procedure for mapping sym-
bolic statements into the QDG consists of processing each symbolic statement,

«ft, 7, k] := rhs-ezp, into a computational node as follows:

1. Generate a node and place it at location (z, j, k).

2. For each subscripted variable 3[¢,), k'] in rhs-ezp, generate an appropriate

X-input, y-input, or z-input to the node by applying Rule 3.

3. For each subscripted variable 3¢, j', k'] in rhs-exp, generate an appropriate
x-output, y-output, or z-output to the node located at {#', j', k) by applying
Rule 4. Note that the node located at (¢, j', k') can be either an external

input or an existing computational node.
4. Detect and report violation of data flow by applying Rule 2.

5. Classify a node as a broadcast node if it satisfies Definition 3.

The derivations of the ODGs for lu-decomp(8) and warshall($) is covered next.

19

3.3 Derivation of lu-decomp(3)’s ODG

Figures 3.la, 3.1b, and 3.1c show the steps taken in deriving lu-decomp(3)’s
ODG. In Figure 3.1a, the simple variable n, which determines the upper bound
of the subscripted variables appearing inside the algorithm, is instantiated to
3. Figure 3.1b shows the symbolic statements generated after the first, second.
and third iterations. Figure 3.1c shows lu-decomp(3)’s ODG after applving the

procedure for mapping symbolic statements into ODG.

Rule 1 maps the symbolic statements generated after the first iteration into
computational nodes U[1, 1,1}, U/[1,2,1], U[1,3,1], L{2,1,1], L[3,1,1], A]2,2,1},
A2,3,1], A[3,2,1], and A[3,3,1), which occupy coordinates (1,1,1), (1,2,1),
(1,3,1), (2,1,1), {(3,1,1), (2,2,1), (2,3,1}, {(3,2,1), and (3,3,1), respectively.
The other computational nodes are map;ped similarly.

To simplify the discussion, all the nodes are relabeled (1),(2),...,(14) as
shown in Figure 3.1b and Figure 3.1c. Rules 3 and 4 (inputs and outputs)
are used to map the symbolic statements into input and output arcs. By rule
4, node (1) sends output to nodes (4) and (5) since its label, U[1,1,1], appears
on the right-hand-side expressions of the symbolic statements that generated
computational nodes (4) and (5). Node (1), by definition 3, is an x-broadcast
node since it sends data to multiple nodes parallel to the X axis. By definition
4, the path that carries data from node (1) to nodes (4) and (5) is called a

broadcast path since it carries the same data to multiple nodes.

Stmilarly, node (2) sends its output to nodes (6) and (8) since its label appears
on the right-hand-side expressions of the symbolic statements that generated

computational nodes (6) and (8). Node (2) is also an x-broadcast node. The

path that carries data from node (2) to nodes (6) and (8) is a broadcast path.

A[1,1,0] is an external input because the third element of its 3-tuple index has
value 0. Node (1) receives input from the external input A[1,1, 0], by Rule 3, since
Al1,1,0] appears on the right-hand-side expression of the symbolic statement that
generated the computational node (1). This particular input is called a z-input

since it flows parallel to the Z axis.

The characteristics of the other arcs are derived in the same manner using

the definitions and rules described in Section 3.2.

3.4 Derivation of warshali(3)’s ODG

The derivation of warshall(3)'s ODG proceeds similarly to that in fu-decomp(3);

Figure 3.2a, 3.2b, and 3.2c show the corresponding steps.

fork:=1to3do
fori:=1to3do
forj:=1to3do
Afij,K] := Alij,k-1] xor (Afi,k,k-1] xor A[K,j,k-1]);

a) Warshall code after instantiating nto 3

(1) A[L1,1] ta A[1,1,0] xor (A{1,1,0] xor A[1,1,00
() AIL2Z1]:= AL1,2,0] x0r (A(1,1,0) xor A(1,2,0D
(3) A[L3,1]:= A[1,3,0] xor (A[1,1,0] xor A{1,3,0D
) A[2,1,1]:= A[2,1,0) xor (A(2,1,0] xor A(1,1,0]
(5% A[2,2,1] = A[2,2,0) xor (A[2,1,0] xor A{1,2,0D
(6 A[2,3,1] := A[2,3,0] x0r (A{2,1,0] x0r A[1,3,0D
0 A[3,1,1] := A[3,1,0] xor (A[3,1,0] xor A[1,1,0}
8y A3, 2,1} = A[3,2,0) xor (A[3,1,0] xor A[1,2,0]
9) A[3,3,1] := A[33,0] xor (A[3,1,0) xor A[1,3,0]

(10) A{1,1,2) := A{1,1,1] xor (A[12,1] mor A(2,1,1]
(I1) A[1,2,2):= A[12,1] xor (A[1,2,1] 3or A{2,2,1])
{12) A{1,32] := A[LY1] mor (A[1.2,1] mor A(L3,1D
(1)) A[2,12):= Al2,1,1] zor (A[2,2,1] ®or A{2,1,1D
(14) A{2.2,2):= A{22,1] sor (A[2,2,1] mor A{L,2,1D
(15) A[2.3.2] = A{23,1] xor (A[2,2,1]} z0r A[1,3,1D
(16) A3, 1,21:= A[3,1,1] =or (A[3,2,1] mor A[2,L,1]D
(17) A[3,2.2]t= AL, 1] sor (A[3.2,1] wor A[2,2,1])
(18) A[33,2) 1= A[3,1]) mor (A[3.2,1] sor A[2,3,1]

(19) A{1,13]
(20} Af1,23]
Qn Anag)
@2 A1)
@3 AL2)]
20 AR23J]
(29 AR13]
{26) AR 23]
7 AB33]

ix A[1,1,2] sor (A[13,2] or A[3,12]D
:= A{1,2,2] 2or (A[13,2] 3ar A[3,2.2])
= A{13,2] a0r (A[13,2) or A[3.32))
i= A{2,1,2) xor (A(23,2) r A[3,1.2))
1= A[2,2,2] zor (A[2,3,2] sor A[322])
i= A[1,3,2] mor (A[2,3,2] zor A[33.2])
1= A{3,1,2] xor (A[3,).2] sor A[3,12])
1= A{3,2,2] 2or (A[33,2] mor A[3,22])
= A{33,2] zor (A[373,2] zor A[3,3,2])

(b) Symbolic statements generated at iterations 1, 2 and 3

x All

Al

x-bidirectional nodes: (2) and (8)
y-bidirectional nodes: (4) and (6)
xy-bidirectional node: (5)

negative-x nodes: (11) and (12)
negative-y nodes: (13) and (16)
negative-xy node: (10)

x-bidirectional nodes: (12) and (15)
y-bidirectional nodes: (16) and (17)
xy-bidirectional node: (18)

negative-x nodes: (21) and (24)
negative-y nodes: (25) and (26)
negative-xy nodes: (19), (20), (22) and (23)

fc) Orthogonal data-dependency planes generated at iterations 1, 2 and 3

Figure 3.2: Steps taken in deriving warshall(3)’s ODG

(V]
[SV]

CHAPTER 4

Derivation of the MMG and MAC-graph

As the basis for efficient mesh array designs, the MMG method [1] introduces
a three-dimensional multimesh graph representation—the MMG. To obtain the
MMG from the corresponding ODG, bidirectional flows must be removed. Since
lu-decomp(3}’s ODG does not contain bidirectional flow, its MMG is its ODG. On
the other hand, since warshall(3)’s ODG contains bidirectional flows a technique
for removing bidirectional flows must be applied to transform its ODG into its
MMG. The rest of this chapter defines the properties of bidirectional flows and
describes a technique for removing them from the ODG. The generation of mesh
array computational graph (MAC-graph) from the resulting multimesh graph
(MMG) is then described.

4.1 Definitions of Bidirectional Flows

Definition 6 An x-broadcast node is a x-bidirectional node n[z, j, k] if one of
its outputs is directed to a computational node o[¢’, 7, k] located on its negative

x side (i’ < i). m

Definition 7 A y-broadcast node is a y-bidirectional node nli, j, k] if one of
its outputs is directed to a computational node of, 7', k] located on its negative

yside (7' < j). =

Definition 8 An xy-broadcast node n[i, J, k] is an xy-bidirectional node if
one of its outputs is directed to a computational node o'[i', j, k] located on its
negative x side (2’ < 1) and another output is directed to a computational node

o"{i, j". k] located on its negative y side (j” < j). @

‘f}—}? 13
. »{,
a'.l.'l)g 3
¥
i Pans %)
y ‘n/” /\?\njﬂ ad &
‘L(g”lm A sy AT s
< iz Pty
*21 *22 =83
(Ve (e &
X 25 /3' ~36 - /" 27
'Lé/f; -)Wr R)’v 18
J' 7 A~y 9
z31 x18 %33
x-bidirectional nodes: (11) and (17) x-bidirectional nodes: (21} and (24)
y-bidirectional nodes: (13) and (15) y-bidirectional nodes: (25) and (26)
xy-bidirectional node: {14) xy-bidirectional node: (27)
negative-x nodes: (11) and (12) negative-x nodes: (21) and (24)
negative-y nodes; (13) and (16) negative-y nodes: (25) and (26)
negative-xy node: (10) negative-xy nodes: (19), (20), (22) and (23)

Figure 4.1: Warshall(3)’s ODG

Examples of bidirectional nodes are shown in Figure 4.1. Node (11) located
at (1,2,2) is a y-bidirectional node since one of its outputs goes to node (10)
at (1,1,2) which appears on its negative y side; node (13} at (2,1,2) is a x-
bidirectional node since one of its output goes to node (10) which appears on its
negative x side; node (14) is a xy-bidirectional node since one of its output goes

to node (11) which appears on its negative x side and another output goes to

24

node (13) which appears on its negative y side.

Definition 9 A node located at (1, j, %) that receives data from two nodes lo-
cated at (¢/,j, k) and (i, ;" k) and resides on the negative x side (z < (') and
negative y side (j < ;") of these nodes, respectively, is called an Xy-negative

node. m

Definition 10 A node located at {1,j,k} that receives data from another node
(', 7, k} and resides on its negative x side (i < i') is called an x-negative node.

Definition 11 A node located at (i, j, k) that receives data from another node
{1,7, k) and resides on its negative y side (j < j') is called a y-negative node.

Examples of negative nodes are shown in Figure 4.1. Node (11) located at
(1,2,2) is an x-negative node because it receives data from node (14) and appears
on the negative x side of that node; node {13) is an y-negative node because it
receives data from node (14) and appears on the negative y side of that node;
node (10) is a xy-negative node since it receives data from node (11) and node

(13) and appears on the negative x side of (13) and on the negative y side of (11).

Observation 1 A three-dimensional ODG has no bidirectional flows if it con-
tains no x-negative node, no y-negative node, and no xy-negative node; otherwise.

it has bidirectional flows. m

As stated earlier, the ODG for lu-decomp(3) has no bidirectional flows, anii.
therefore, it also is the MMG. The ODG for Warshall(3), on the other hand.

25

has bidirectional flows and must be transformed into an AMMG. A technique for

removing bidirectional flows is discussed next.

4.2 Removal of Bidirectional Flows in ODG

To remove bidirectional flows in the ODG, NIAMACG moves all x-negative nodes
to the positive x side, all y-negative nodes to the positive y side, and all xy-
negative nodes to the positive xy side. The procedure used for these purposes is

discussed next, where we let the size of the ODG be a x 3 x .

Removal of X-negative Nodes

An x-negative node located at (7,j,k) of the ODG, can be moved to the new
location (a + i, j, k) if its x-input, y-input and z-input can be redirected to the
new location.

For example, the x-negative node (11) located at (1,2,2) in Figure 4.1 can
be moved to the new location (4,2,2) if its x-input (from node (14) located at
(2,2,2}), y-input (there is none) and z-input (from node (2) located at (1,2, 1})

can be redirected to the new location (4,2,2).

Redirect the X-input

The x-input that flows from the node located at (¢, 7, k) can be directed to the

new location {a + 4,4, k) if the following condition holds:

o The node located at {i’,j, k) is an x-transmitting node and the path from

(¢', 7, k) to {&@ + 14,5, k) is a broadcast path.

In Figure 4.1, the x-input of node (11) comes from an x-transmitting node
(14) and the path is a broadcast path. Therefore, it can be redirected to the new

location {4, 2,2).

Redirect the Y-input

The y-input that flows from {z, j’, k) can be directed to the new location {a+. J, k)

if one of the following conditions holds:

e The node located at (i, ', k) is a constant and has only the y-output,

e The node located at (z, ', k) was already moved to the new location (o +

i J' k).

o The node located at (i, ', k) is an xy-broadcast node. In this case, a delay
node is created at location (o +¢,7', k) with the x-input transmitted from
the node located at (i, j’, k), with no y-input, no z-input, and with the y-
output transmitted to the node located at (a + 1, j, k). There must exist
broadcast paths from the node located at (4, j*, k} to the node at {a+:, ', k)

and from the node at (o + ¢, ', k) to the node at (& +1, 7, k).

¢ The node located at (i, ', k) can be moved to the new location {a+1, j’, k).

Redirect the Z-input

The z-input that flows from (i,j,k — 1) can be directed to the new location

(a +1, §, k) if one of the following conditions holds:
e The node located at (z,j,k — 1) is a constant and has only the z-output.

e The node located at (z, 7, k—1) was moved to the new location {a+i, 5, k—1}.

27

o The node located at (i.),k — 1) x-broadcasts the z-input. In this case. the
node is moved to {@ + i, j,k — 1), a delay node is created at the location
(¢,7,k — 1) inheriting the z-input and transmitting it to the node located

at (o + 1. j. k- 1).

¢ The node located at (i,/,k — 1) can be moved to the new location {a +

i i k= 1).

In Figure 4.1, the z-input of node (11) came from node (2) (located at (1,2, 1})
and this node can be moved to the new location (4,2, 1) by creating a delay node
at location (1,2,1) to relay the external input from node (1,2,0) along the x-

broadcast path to node (2) at the new location (4,2,1).

Summary of rules

We now summarize the rules used by MAMACG in removing x-negative and

y-negative nodes.

Let node be the new location, and z-input, y-input’, and z-input be the new

set of inputs and output’ be the new output. If

node = (i, k)

(i‘!j'lk - 1)

z-input
y-input = (i), k)
z-input = (i',5,k)

OMPUt = {(ils[jlak1>a---s(imjmkn)}

then

node’ = (a+1,j,k)
=input’ = {(a+1,j,k—1)

y-input’ = {a+i,7k)

rinput’ = (i,], k)
outpuf = {{a 4+ 1 k1) (@ + iny S kn))
/@1 ﬁ)@3 'al .: Delay node
xl1 xI3 i3
! /12(9}4 /Lﬁs A1 14
B——r—r ’
x21 x29 x23

26

® »ie
:
AW
%
oy
S

x31 =3,

e
o
YA
!.;:\f

.
S
e /

O D
W dit) 22 'Ci; 28

ol
s s
Figure 4.2: Graph generated after the removal of the negative nodes

As the removal of y-negative nodes is isomorphic to the removal of negative-x

nodes, the corresponding discussion is omitted.

In Figure 4.1, the y-negative nodes (13) (located at (2,1,2)) and (16) (located
at (3,1,2)) must be moved to the new locations (2, 4,2) and (3,4,2), respectively,
When node (13} is moved to the new location, it requires that node (4) be moved
to the new location (2,4, 1). In moving node (4) to its new location, a delay node
is created and placed at the old location where node (1) resided so that data
coming from the external input from (2,1,0) can be relayed to node (4) at the

new location.

Removal of XY-bidirectional Flow

An xy-negative node located at (i,j, k) can be moved to the new location {a +
t, 3+, k) if its inputs—x-input, y-input and z-input—can be directed to the new

location (e + 1,3 + j, k).

Redirect the X-input

The x-input located at (¢', j, &) can be directed to the new location {a+1, 8+, k)

if etther of the following conditions holds:

1. The node located at (¢, 7, k) is an x-transmitting and the node located at

{¢', 7, k) was moved to the new location (i, 3 + j, k).

2. The node located at (i, j, %) is a xy-broadcast node. In this case, a delay
node is created at location (i, 7, k) with no x-input, the y-input transmit-
ted from the node located at (¢, 3 + j, k), no z-input, and one x-output

transmitted to the node located at (a + 1,3 + J, k).

30

Redirect the Y-input

As the redirection of y-input located at (i, j', k) to the new location (a+i, 8+, kY
is isomorphic to the redirection of x-input located at {i’.;, k) to the new location

(e +1'. 3 + j, k), the corresponding discussion is omitted.

Redirecting the Z-input

The z-input that flows from (z,7,k — 1) can be directed to the new location

{a +1,3+ j, k) if one of the following conditions holds:

e The node located at (i,j,k — 1) is a constant and only has the z-output.

o The node located at (7, j, k — 1) xy-broadcasts the z-input. In this case, the
node is moved to the new location {a + 4,3 + 7,k — 1), three delay nodes
are created at locations {i,7,k — 1), {a + 4,5,k —1), and (i,8+ 7,k — 1).
The delay node located at (i, j, k — 1) receives input from the node located
at (¢, j, k —2) and transmits it to the delay nodes located at {a +1,j,k— 1)
and (:,3 + j,k — 1)} which are then transmitted to the node located at

(a+4,8+75,k-1).
¢ The node located at (i,j,k — 1) can be moved to the new location {a +
ialg +]$ k- 1)'
Summary of rules

If the node located at {z, 7, k) cannot be moved to a new location, then MAMACG
cannot map the algorithm to a mesh array computational graph. Otherwise, let

node’ be the new location, and z-input/, y-input’, and z-input’ be the new set of

31

inputs and output’ be the new output, and if

then

node'
z-input’
y-input
z-input’

output

y-input

node = (i,j,k)

znput = (i,),k — 1)

(,7', k)

r-input = (', 7,k)

Ou'tpu“’ - {(ilijl'lkl)'l“‘7(iﬂ,J'n!kn)}

I

{(a+i,8+7,k)
(a+i,8+7,k-1)
(a+1i,5',k)
(i",B+J,k)

{(31 +a1jl +ﬂ1kl)1" 's(iﬂ + a!jﬂ +6s kn)}

4.3 Regularize the Last Plane

The graph resulting from application of the technique for removal of negative
nodes might have an irregular last plane, as shown in Figure 4.2. The different
pattern of the upper and left bordering nodes of the last plane and that of the

upper and left bordering nodes of the other planes makes it more difficult to

schedule and analyze the graph.

The regularizing process involves regularizing the bordering nodes, which in-

clude the corner top-left node, the leftmost nodes, and the topmost nodes of the

last plane, so that they follow the same pattern:

32

o If the corner top-left node of the first plane was moved to the new Xy
location, then move the corner top-left node of the last plane to the new Xy
location. Likewise. if the corner top-left node of the first plane was moved
to the new y location then move the corner top-left node of the last plane
to the new y location. If the corner top-left node of the first plane was
moved to the new x location then move the corner top-left node of the last

plane to the new x location. Otherwise, stay at the same location.

o If the leftmost nodes of the first plane were moved to the new x location,
then move all the leftmost nodes of the last plane to the new x location.
If the leftmost nodes of the first plane stay at the same location then stay
at the same location. Anything else triggers an error since no other case is

possible.

¢ If the topmost nodes of the first plane were moved to the new y location,
then move all the topmost nodes of the last plane to the new y location.
If the topmost nodes of the first plane stay at the same location then stay
at the same location. Anything else causes an error since no other case is

possible.

In Figure 4.2, the first plane’s corner top-left node (1) was moved from loca-
tion (I1,1,1) to location (4,4,1) and the last plane’s top-left node (27) remained
at location (3,3,3). Figure 4.3 shows node (27) after being moved to location
(5,5,3).

The first plane’s leftmost nodes, (4) and (7), of Figure 4.2 were moved to the
new locations (2,4,1) and (3,4, 1), respectively, while the last plane’s leftmost

nodes, (21} and {24), were not moved. Figure 4.3 shows nodes (21) and (24) after

33

. : Delay node

g
"

W

14

9.

KL#”

o

A
Ay

e n

LD

f? 13
-\4

7

Tk

Al
s

A

24
—\-jll

e

- K 2
ﬁm.fw YN PN
z R, O
~ HJ.., .9,\/3 ~
: g i

xI1

O
e

15

27

Figure 4.3: MMG generated by Warshall(3)

34

heing moved to (4,6,3) and (5,6, 3), respectively.

The first plane’s topmost nodes, (2) and (3), of Figure 4.2 were moved to the
new locations (4,2,1) and (4,3,1), respectively, while the last plane’s topmost
nodes, (25) and (26), were not moved. Figure 4.3 shows nodes (25) and (26) after
begin moved to {6,4,3) and (6,5,3), respectively.

The resulting Warshall(3)’s MMG is shown in Figure 4.3. The generation of

mesh array computational graphs (MAC-graphs) of a MMG is illustrated next.

4.4 Generation of the Mesh Array Computational Graph

The three-dimensional MA G is transformed into one of many possible mesh array
computational graphs by grouping the primitive nodes along one of the three axes
by rectangular prisms of base size p x ¢, where p is the factors of the projected
width size and g is the factors of the projected length size. Currently, MAMACG

only considers a 1 x 1 prism.

The set of primitive nodes and links within one group is called a mesh array
computational node (MAC-node) and the set of MAC-nodes is called the MAC-
graph.

The resulting MAC-graphs for lu-decomp(3) are shown in Figure 4.4, Fig-

ure 4.5, and Figure 4.6.

In Figure 4.4, nine MAC-nodes, labeled M1,..., M9, were formed after the
projection of a 1 x 1 prism along the Z axis. M9 contains computational nodes
located at (3,3,1), (3,3,2) and (3,3,3); M8 contains nodes located at (3,2.1)
and (3,2,2); M7 contains node located at (3,1,1).

In Figure 4.5, six MAC-nodes, labeled M1,..., M6, were formed after the

35

M1 M4 M7
ar
™
M3 M5 M8
) 4 b
4
b S
M3 Me M9

Figure 4.4: MAC-graph generated by grouping along the Z-axis of LU-decomp(3)’s
MMG

M1

M4 M5 Me

Figure 4.5: MAC-graph generated by grouping along the Y-axis of
LU-decomp(3)’s MMG

36

projection of a 1 x 1 prism along the Y axis. M1 contains computational nodes
located at (1,1,1), (1,2,1) and (1,3,1); M2 contains nodes located at (2,1,1).

(2,2,1), and (2,3,1); M3 contains nodes located at (2,2,3) and (2,3,2).

, M1 M3 M3
: 4 b 4
M4 M5
C")
Mé

Figure 4.6: MAC-graph generated by grouping along the X-axis of
LU-decomp(3)’s MMG

In Figure 4.6, six MAC-nodes, labeled M1,..., M6, were formed after the
projection of a 1 x 1 prism along the Y axis. M1 contains computational nodes
located at (1,1,1), (2,1,1) and (3,1,1); M2 contains nodes located at (1,2, 1},
(2,2,1), and (3, 2,1); M3 contains nodes located at (1,3,1}, (2,3,1) and (3,3,1).

The resulting MAC-graphs for Warshali(8) with base size 1 x 1 are shown in
Figure 4.7, 4.8, and 4.9.

The choice of grouping axis and the dimensions of the rectangular prism af-
fect the performance and cost of the derived mesh array computational graph as
discussed in [1]. For example, the MAC-graph generated by grouping along the Z
axis of Warshell(8)’s MMG, shown in Figure 4.7, has no MAC-node that contains
more than three computational nodes, while the MAC-graph generated by group-
ing along the Y axis of Warshall(3)’s MMG, shown in Figure 4.8, has MAC-node

that contains four computational nodes. The number of computational nodes

37

x11 | xl2 | x13
x21 x2. x23
L 4 L/ ” > .
;\
x31 238 x33
b4 5 -
9 - 4 TN
z (A
L 4 Y) >
._ :f > -

L 0 iL)l

Figure 4.7: MAC-graph generated by grouping along the Z-axis of Warshall(3) s
MMG

38

xI3
x18
x1!

x23
x22
x2f

il
[}
& 3’? f

&

Figure 4.8: MAC-graph geherated by grouping along the Y-axis of Warshall(3)’s
MMG

xl1 x13 xI3
=31 X322 x33
=33

¥z I

S b =

Figure 4.9: MAC-graph generated by grouping along the X-axis of Warshall(3} s
MMG

39

within a MAC-node dictates the amount of computation needs to be done by
that MAC-node. Thus, the MAC-graph generated by grouping along the 7 axis
has better throughput than the MAC-graph generated by grouping along the Y
axis because the first takes less time to compute (three computational nodes) and

pass on the result than the latter (four computational nodes).

The next chapter describes the implementation of MAMACG.

40

CHAPTER 5

Implementation of MAMACG

Following object-oriented programming style, the current implementation of MA-
MACG has five objects—ODG, MMG, X-MAC-graph, Y-MAC-graph, and Z-
MAC-graph—which are responsible for the formation of the ODG, MMG, MAC-

graphs obtained by grouping along the X-axis, Y-axis, and Z-axis, respectively.

When an ODG object is created, it:

—

. takes input, output, and local variables;

o

creates a hash table to contain all variables with each variable associated

with a computational node;

3. creates a hash function to lookup and update information about a compu-

tational node; and

4. creates a mesh-3d-matrix with each entry corresponding to a label of a

computational node.
The ODG object accepts the following messages:

assign! Take an assignment statement, process the statement according to Chap-
ter 3 to create a computational node and insert it into the mesh-3d-matrix.
During the processing of a statement, the following actions can occur:

insert-input!, insert-output!, input-cnt, x-output-cnt, etc.

41

display-odg Display the ODG.

Upon its creation, the MMG object inherits from the ODG object the mesh-
3d-matrix, and all the information about each computational node, including:
input-cnt. output-cnt, input-queue, Xx-output-queue, y-output-queue,

etc. The MMG object accepts the following messages:

remove-bi-flow! Apply the technique described in Chapter 4 to remove bidi-

rectional flows in the existing mesh-3d-matrix.

display-mmg Display the MMG.

Upon its creation, the X-MAC-graph object inherits from the MMG object
the transformed mesh-3d-matrix. Presently, X-MAC-graph object has only one
function—to display the AfAC-graph obtained by grouping the prism of size 1 x 1
along the x-axis. In the future, the code can be expanded to apply all prisms of
size p x ¢ with p being one of the factors of 3’ and ¢ being one of the factors of
¥, where @’ x ' x 4" is the size of the MMG. Y-MAC-graph and Z-MAC-graph

objects are treated in the same manner as the X-MAC-graph object.

Elk [3] has proven to be a valuable asset in the speedy developement of MA-
MACG. To improve its single-view interface session restriction (only one session
may exist at a time}, we have partially implemented multiple-view interface ses-
sions (one session is interpretive and the rest are graphical) so that all sessions
can be operated simultaneously. Since the interpretive interface session oper-
ates under Scheme, it provides a complete and powerful procedural language to
create, manipulate, and communicate with the various objects—ODG, MMG, X-

MAC-graph, Y-MAC-graph, and Z-MAC-graph—in the system. The graphical

42

interface sessions allow the designer to see the various aspects of the objects in
the system from many different angles and to manipulate the objects using the
friendlier graphical interface (although much less powerful than the interpretive

interface.)

The current Elk implementation, however, lacks the speed to deal with large
problems. For example, solving the MMG for Warshall(6) takes approximately

two minutes and the time complexity grows exponentially. An Elk compiler would

be highly desirable.

Currently the main code of MAMACG has approximately 5000 lines of Scheme
code (about 140 Kbytes).

43

CHAPTER 6

A Survey of Related Work

MAMACG derives the array computational graphs of the a given matrix algo-
rithm by applying the five steps shown in Figure 1.1. Steps 2 through 4 are based
on the MMG method described in {1]. MAMACG formulates the high-level de-
scription of the MMG method in terms of an Algol-like language to automate it

in Elk.

In {1], the regularization stage transforms MAC-algorithms directly to or-
thogonal data-dependency graphs. However, the technique was not completely
developed an.d, therefore, could not be implemented. Step 1 shown in Figure 1.1
sidesteps this problem by requiring matrix algorithms to be written in index-
dependency formats which can then be directly realized to orthogonal data-
dependency graphs. Index-dependency format, as defined in [1], is characterized

by the following property:

“The computation of each instance of a variable in an algorithm is
associated with a point in a multi-dimensional space defined by the

indices.”

This chapter begins by describing the two index-dependency techniques—
Rao’s regular iterative algorithm [6] and MQRS’s affine recurrence equations

[10]—and pointing out their relations to MAMACG. It then covers the related

44

synthesis works which include VACS [13], SDEF (11}, and ADVIS [12].

6.1 Rao’s Regular Iterative Algorithm (RIA)

In [6], Rao’s RIA is defined by the triple {I, X, F'} where:

“I is the index space which is the set of all lattice points enclosed within a

specified region in S-dimensional Euclidean space,

X is the set of V variables that are defined at every point in the index space,
where the variable r; defined at the index point k is denoted by z;(k) and

takes on a unique value in any particular instance of the algorithm, and

F' is the set of functional relations among the variables restricted to be such that

if z;(k) is computed using z;(k — dj;), then

d;; is a constant vector independent of k and the extent of the
index space, and for every [contained in the index space, z;(/) is
computed using z;(! — d;;) (if z;(k — d;;) falls outside the index

space, then this is an external input to the algorithm).”

Rao’s Regular Iterative Algorithm requires the algorithm to be written in the

following restricted format;

1. statements must be written in single assignment form,

2. index-matching—every subscripted variable must associate its index with

a unique three-dimensional coordinate—and

3. localization of dependencies—a variable may receive data only from another

variable if their three-dimensional coordinates are adjacent.

45

In (1], Moreno points out the limitations of using RIA

“RIAs seem attractive as regular descriptions of algorithms, due to
their compactness and suitability for manipulation. However, an anal-
vsis of the process of obtaining RIAs indicates the following limita-

tions:

e Transforming an algorithm into a RIA might add computing
load, in terms of additional variables and operations. Conse-
quently, implementing the RIA implies performing more opera-

tions.

¢ Currently, there is no systematic technique to obtain an RIA for

a given algorithm.”

MAMACG incorporates RIA’s single assignment rule. Another index-dependency

technique, called affine recurrence equations, is covered next.

6.2 MQRS’s Afine Recurrence Equations (ARE)

A matrix algorithm represented in affine recurrence equations (ARE) is realized
as a systolic array by mapping ARE to the reduced dependence graph (RDG),
and then assigning timing-functions to the vertices in the RDG. ARE, RDG, and

the timing-functions are described in [10] as follows:

“In the following, Z denotes the set of integers. A system of ARE is

a finite collection of equations of the form
2€D - U(z) = fIV(I(2)),..]

46

where:

¢ z1s a point of Z™.
o U and V are variables belonging to a finite set of V.

o) is the set of integral points of a convex polyhedron of Z7, i.e.
a set defined by a finite number of linear inequalities on z. D is

called the domain of the equation.

o [is an affine mapping from Z™ to Z! called index mapping. [

has the form

[(z)=Az+ B
where the constants A and B are integral matrices: A € Z! x 27,
and B ¢ Z,

¢ f is a single-valued function that depends strictly on its argu-

ments; we assume that the function f has complexity O(1).

e the ... means that there can be other arguments of the same
form as V(I(z)).

¢ the domains of two equations having the same variable in the left-
hand side are disjoint. This hypothesis ensures that a variable

is not defined twice.

Given an ARE, we say that a variable instance U(z) depends directly

on V(y) if there exists an equation
z€ D - U(=) = fIV(I(z)),..]

such that ¢+ € D and y = I(z). We say that U/(z) depends on

V(y), and we denote U(z) > V(y), iff there exists a finite sequence

47

of directly dependent variable instances U/{{z;),...,Ug(k) such that

U(z) = Ur(z1) and V{y) = Up(x).

The reduced dependence graph (RDG) of an ARE is the graph whose
vertices are the variable {/ € V of the system, and whose edges are
tuples (U, V, D, I}, with origin vertex U, extremity vertex V, domain

D and index . There is such an edge for all pair I/ and V of equations

ze€ D —-U(z)= fIV{I(2)),..]

The scheduling problem is to find a function that associates each
variable instance {/(z) with a given non negative instant of time ¢, in
such a way that the arguments needed for the calculation of U(z) are
already calculated at time t. If such a mapping exists, the system is

said to be explicit or computable.

A particular case of timing function is an affine timing function. De-
fine for each variable U, a function ty from Z" to Z, where n is the

index dimension of U, of the form:
tu(z) = 4\%]21 + ...+ Arza + oo

where A}, ..., A} are integers independent of U. In the following, we

let Az = /\bzl +...+ Al za.

Assume that the evaluation of each function of the system takes at
least one unit of time. The following theorem gives a constructive

means for obtaining the function t:

Theorem The numbers Ay, ay,U € V define a timing function iff:

o for all edge (U, V, D, I) of the RDG, we have:

48

1. for all vertex ¢ of D, Apr.o ~ Av.(I(a)) 4+ ay — ay > 0,

2. forallray pof D, Ap.p— A Ap>0
e for all variable [,

1. for all vertex ¢ of the domain Dy of U, Ay.c + oy > 0,

2. for all ray p of Dy, Ap.p > 0.

Because ARE can only be applied to a limited number of applications and
because of the complexities involved in deriving the timing-functions, we did
not consider using it to derive the orthogonal data-dependency graph. Instead,
MAMACG requires the designer to transform the algorithm into a format in
which the order of time a variable is assigned a value is explicitly stated. This
format enables MAMACG to directly realize the algorithm as an orthogonal

data-dependency graph.

The rest of this chapter describes the related projects that tried to automate
the process of realizing matrix algorithms to systolic arrays. They include VACS,

SDEF, and ADVIS.

6.3 VLSI Array Compiler System (VACS)

VACS, developed by Kung and Jean [13], is based on the graph-based method
developed by Kung (2], and accepts high-level behavior inputs and generates

(optimal) array structures. It proceeds in the following three stages:

1. Obtain the Dependency Graph (DG). There is no systematic way of deriving

the DG, although some guidelines have proven useful.

49

2. Map DG to Signal Flow Graphs (SFGs). As described in 2], “a complete
SFG description should include both functional and structural description
parts. The function description defines the behavior within a node, whereas
the structural description specifies the interconnection (edges and delays)
between the nodes. Theoretically, the structural part of an SFG can be
represented by a finite directed graph, G = (V| E, D(£)). The vertices V
model the nodes. The directed edges £ model the interconnections between
the nodes. Each edge ¢ of £ connects an output port of a node to an input
port of some node and is weighted with a delay count D(e). The delay count
is the number of delays along the connection. Often, input and output ports

are referred to as sources and sinks, respectively.”

3. Realize SFG to processor array. The highly abstracted SFG can easily be

transformed to a SIMD, systolic array, or wavefront array.

As stated in [13],

“VACS accepts high-level behavior inputs in terms of dependence
graphs and generates (optimal} array structures. VACS is interactive
and graphic-based with several optimality criteria and design tradeoff
being evaluated in advance. A complete system should have included
original derivation of DG, DG/SFG transformation, mapping onto ar-

rays, and interfaces with lower-level compiler and with host machine.

Ultiminately, different input formats may be accepted by the VACS.
It appears very feasible to translate the specific inputs into a DG ex-
pression. Some researchers have made very good progress toward this

goal [9] [8]. With the awareness of such development, we have so far

50

focused on using DGs as input in the current VACS. The VACS gener-
ates array structures for a variety of algorithms, including those with
non-shifting-invariant DGs and processors with time-varying func-
tions. Graphic interface, criteria evaluator, and simulation tools are
provided to facilitate the design process. A designer can see the DG
graphically displayed, modify the DG, simulate the DG, evaluate dif-
ferent optimality criteria, select an “optimal” design, and even evalu-

ate the numeric performance of the array with finite word precisions.”

MAMACG shares a similar goal with VACS in displaying the orthogonal data-
dependency graph. MAMACG, however, goes a step further in automating the
derivation of the MMG and MAC-graphs (correspond to SFGs).

6.4 SDEF Programming System

SDEF is a systolic array programming system. As stated in [11],

“It is intended to provide (1} systolic algorithm researchers/developers
with an executable notation, and (2) the software systems community
with a target notation for the development of higher-level systolic soft-

ware tools.

The SDEF system constitutes a programming environment for de-
scribing systolic algorithms. It includes a notation for expressing sys-
tolic algorithms, a translator for the notation, and a systolic array

simulator with trace facilities.

The translator generates a C program that performs the computa-

tion specified by the SDEF description. After being compiled, this C

3l

program can be run on the SDEF systolic array simulator.

An SDEF program specifies both the computation and the communi-
cation requirements of a systolic algorithm. The SDEF program also

specifies how the systolic algorithm is to be ‘embedded’ in spacetime.

The SDEF notation is not intended to be the ultimate systolic pro-
gramming language. Higher-level languages are contemplated. Much
research into tools for analyzing systolic algorithms, as well as syn-
thesizing and optimizing them, has been conducted. SDEF does not
subsume these tools. Where automated, such tocls can be connected
to SDEF’s front-end: SDEF can be used to express the results of the

analyses, syntheses, and optimizations performed by other ‘ools.”

By using SDEF, a systolic array system can be made reusable, verifiable, and
testable. However, SDEF is not a synthesis tool. MAMACG, in contrast, is a
synthesis tool that automates the derivation of the mesh array computational
graph, a basic representation of a systolic array system. However, the results
automatically generated by MAMACG possess SDEF’s positive characteristics—

reusability, verifiability, and testability.

6.5 ADVIS: Automatic Design of VLSI Systems

ADVIS is a tool for partitioning and mapping matrix algorithms into systolic

arrays. It does so in three stages:

1. Derive the mathematical models for VLSI arrays and algorithms. This
formalism is necessary for mapping algorithms into architectures and for

partitioning algorithms.

2. Map matrix algorithms into VLS arrays using the formalism derived in

stage 1.

3. Partition Algorithm.

One of the main problems of ADVIS is the manual derivation of the data
dependence matrix in its formalism. This step could be automated, but more
research would be needed. The results produced by ADVIS are algebraic expres-

sions whose correctness can be hard to verify. MAMACG and ADVIS differ in

approach.

33

CHAPTER 7
Summary and Further Research

We have described a tool and its implementation for automating the transforma-
tion of a class of matrix algorithms to multi-mesh graphs and projecting them
onto mesh array computational graphs. The steps taken to derive the mesh array

computational graphs include:

1. Transform a matrix algorithm into a special format called array compu-
tational format. Because the index of all subscripted variables appearing
inside this format have 3-tuple indices, each subscripted variable can be

associated with a three-dimensional coordinate based on its index.

2. Symbolically execute the algorithm for a fixed-size problem to generate

symbolic statements.

3. Map the symbolic statements to a orthogonal data-dependency graph (ODG).
Each symbolic statement generate a computational node that takes up a

position in the three-dimensional coordinate based on its 3-tuple index.

4. Remove bidirectional flows within the ODG to obtain a multimesh graph
(MMG) that has only unidirectional flows. This topology allows the input
to enter on the left and top of the graph and the output to exit on the right

and bottom of the graph which is a desirable feature for chip layout. Fur-

54

thermore, the flow of data from a node to one of its neighboring nodes does

not collide with any other flow, a desirable feature for fast communication.

QT

Map MM{ onto mesh array computational graph MAC-graphs by project-

ing along the X, Y, and Z axes.

The results obtained by MAMACG are concrete and can be used to develop
additional tools to ultimately derive the special-purpose and general-purpose

mesh processor arrays.

The technique, however, can only be applied to a limited class of matrix
algorithms with small fixed-size data. Futhermore, the first step in transforming

matrix algorithms to array computational formats still requires user intervention.

To achieve the goal of full automation, a technique for mapping matrix algo-

rithms to their array computational formats is being developed.

It is not feasible to derive MAC-graphs for large-size problems due to memory
and time requirements. To solve this problem, a technique that recognizes the
geometry of the three-dimensional MMG is being investigated. The recognition
of the geometry of a small-size three-dimensional MMG enables MAMACG to
predict the topology and content of the large size MMG, thus enabling MAMACG
to solve a large-size problem using minimal amounts of memory and processing

time.

The different MAC-graphs obtained by projecting along one of the three axes
possess different characteristics. A technique for deriving the three important
characteristics—cell communication bandwidth, local storage per cell, and stor-
age organization—of the special-purpose mesh array computational system de-

scribed in {1] can be automated so that the most appropriate (in terms of cost

39

measures and technology constraints) system for a given technology can be de-

termined quickly and accurately.

An architecture that could take advantage of MAMACG’s multiprocessing
capability would provide the basic structure of a general-purpose mesh processor
array. Based on such an architecture and on MAMACG’s multiprocessing capa-
bility, a compiler could be developed to generate code that optimally schedules

and executes matrix algorithms on mesh array architectures.

56

APPENDIX A
Running MAMACG

MAMACG runs on Elk, a dialect of Scheme with builtin X graphics capability.
This appendix assumes that Elk exists on the system. MAMACG is divided into

portions-—main codes and algorithms

37

Main codes

G-gui.scm

adt.sem

math.scm

matrix.scm

mesh-util.secm

mesh.scm

object.scm

systolic.scm

transform.scm

util.sem

vector.scm

MAC-graph user interface

basic abstract data type objects

local math library

matrix library

MAC-graph utilities

MMG object routines

object programming routines

ODG object routines

graphics transformation routines

basic Scheme utilities

vector library

58

Algorithms

BAinv.scm BA-inverse
given.scm given rotation
mat-mul.scm matrix multiplication

warshall.sem Warshall transitive closure

To run an algorithm, says warshall.scm, do

% elk

> (lvad ‘warshall.scm)

At this point, elk will generate the following messages before returning the

prompt

[Autoloading systolic.scm]
[Autoloading mesh-gui.scm]
(Autoloading x1ib]
[Autoloading x1lib.o]
[Autoloading util.scm]
[Autoloading object.scm]
[Autoloading adt.scm]
[Autoloading vector.scm]
(Autoloading matrix.scm]
[Autoloading transform.scm]

(Autoloading math.scm]

39

[Autoloading pattern.scm]
[Autoloading mesh-util.scm]
[Autoloading G-gui.scnm]

(Autoloading mesh.scm]

To obtain the ODG for the transitive closure problem of size 3, run

> (warshall 3)

An X window, called ODG-window, should pop up. Type L and the QDG of
(warshall(3)) will appear on the ODG-window. The MMG of (warshall(3)) can be
obtained by typing R on the ODG-window. A second X window, called MMG-
window, will appear along with the MMG. The MAC-graphs can be obtained
by typing G on the MMG-window. Three X windows—X-MAC-window, Y-
MAC-window, and Z-MAC-window—will appear along with the X-MAC-graph,
Y-MAC-graph, and Z-MAC-graph. The windows can be destroyed by clicking on
the MMG-window and the ODG-window.

60

REFERENCES

[1] Jaime H. Moreno and Tomas Lang. Matrix Computations on Systolie-
Type Meshes, IEEE Computer, 23(4):32-31 (April 1990).

(2] S. Y. Kung. VLSI Array Processors, Prentice-Hall, 1988.

[3] Oliver Laumann. Elk Extension Language Interpreter.

[4] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. pp 195-223.

[5] Veljko M. Milutinovic. Computer Architecture. pp 454-494.

[6] Shailesh K. Rao and Thomas Kailath, Fellow, [EEE. Regular Iterative
Algorithm and their Implementation on Processor Arrays. Proceedings
of the IEEE, Vol, 76, No. 3, March 1988, pp 259-269.

{7] José A. B. Fortes, King-Sun Fu, and Benjamin W. Wah. Systematic
Design Approaches for Algorithmically Specified Systolic Arrays. Com-

puter Architecture Concepts and Systems, edited by Veljko M. Miluti-
novié. North Holland, 1988.

(8] Marina C. Chen. A parallel language and its compilation to multiproces-
sor machines, J. Parllel and Distributed Computing, 1986, pp. 461-91.

[9] J. Buand Ed F. Deprettere. Converting Sequential Iterative Algorithms
to Recurrent Equations for Automatic Design of Systolic Arrays, in
Proc. IEEE ICASSP, pp. 2025-28, 1988.

[10] Christophe Mauras, Patrice Quinton, Sanjay Rajopadhye, and Yannich
Saouter. Scheduling Affine Parametrized Recurrences by means of Vari-
able Dependent Timing Functions. Proceedings Application Specific Ar-
ray Processors. Edited by Sun-Yuan Kung, Earl E. Swartzlander, Jr..
Jose A. B. Fortes, and K. Wojtek Przytula. IEEE Computer Society
Press, September 1990.

f11) Bradley R. Engstrom and Peter R. Cappello. The SDEF Program-
ming System. Journal of Parallel and Distributed Computing 7, 201-231
(1989).

[12] D. I Moldovan. ADVIS: A software package for the design of systolic
arrays. J[EEE Transactions on Computer-Aided Design, January 1987.
pp. 33-40.

61

[13] S.Y. Kung and Jack S. N. Jean. Array Compiler Design for VLSI/WSI
Systems. International Conference on Systolic Arrays held at Killarney,
Co. Kerry, Ireland, 1989. Edited by John McCanny, John McWhirter.
and Earl Swartzlander Jr. Prentice Hall.

62

