Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ANALYSIS OF BOOLEAN N-CUBE INTERCONNECTION
NETWORKS FOR MULTIPROCESSOR SYSTEMS

M.-Y. HORNG March 1992
CSD-920008

UNIVERSITY OF CALIFORNIA

Los Angeles

Analysis of Boolean n-Cube Interconnection

Networks for Multiprocessor Systems

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science
by

Ming-yun Horng

1992

© Copyright by
Ming-yun Horng
1992

The dissertation of Ming-yun Horng is approved.

Kirby Baker

Christopher Tang

/4 / Jack Carlyle

fike G o

~

Milos Ercegovac

e sl

"~ Leonard Kleinrock, Committee Chair

University of California, Los Angeles
1991

ii

To my family,

for providing me with the love, support and freedom.

it

TABLE OF CONTENTS

1 Introduction e 1
1.1 Multiprocessor Interconnection Networks. 1
1.2 Boolean n-Cube Networks 6

1.2.1 Topological Properties 8
1.2.2 Routing Procedures 9
1.2.3 Switching Techniques 12
1.3 Design Consideration 13
1.3.1 Simplicityo 13
1.3.2 Deadlock-free Routing in Finite-buffered Networks 14
1.3.3 Fault-tolerant Routing in Damaged Networks 15
1.3.4 Performance Analysis and Improvements 15
1.4 Summary of Dissertation., .. 16

2 Basic Models for Boolean n-Cube Networks 19
2.1 Introduction. 19
2.2 Assumptions of the Network Operation 19
2.3 Model 1: A Buffer at Each Outgoing Channel 21

2.3.1 Assumptionsofthe Model 21
2.3.2 Analysisofthe Model 23
2.3.3 Validationof the Model 30
2.4 Model 2: A Shared Buffer at Each Node 31
2.4.1 Assumptionsofthe Model 31
2.4.2 AnalysisoftheModel 34
2.4.3 Validation of the Approximation 38
2.5 Alower Boundonthe MeanDelay 39
2.5.1 The Optimistic Assumption 40
2.5.2 Analysisofthe Model 42
2.5.3 Discussion: How good is the Random Assignment 46
26 Conclusions e 48

3 Analysis of a Deadlock-free Routing Algorithm with the De-

flection Technique oo 0oL 49
3.1 Imtroduction. 49
3.2 A Deadlock-free Routing Algorithm in Boolean n-Cube Networks 50
3.3 Analysis of the Deadlock-free Routing Algorithm 53

3.3.1 AssumptionsoftheModel 54
3.3.2 Imbedded Markov Chain Analysis 55

iv

3.3.3 Calculating the Matrix P o6

3.3.4 Determining the Valuefor B, 60
3.3.5 Delay and Throughput 65
3.3.6 Effects of Deflection 66
3.3.7 Validation of the Model and Discussion 68
34 OptimizationIssues 71
3.5 Conclusions e e e e 74

Analysis of Deflection Routing in k-Ary n-Cube Networks . 75

41 Introduction. e 75
4.2 Deflection Routing in k-Ary n-Cube Networks 78
4.3 Analysis of the Deflection Routing Algorithm 81
4.3.1 AssumptionsoftheModel 81
4.3.2 Analysisofthe Model 82
4.3.3 Validation of the Model, 92
4.4 Discussion e 935
4.4.1 Optimal Buffer Assignment 95
4.4.2 Choice of Dimensions and Radixes 96
45 Conclusions e e 100
Fault-tolerant Routing in Boolean n-Cube Networks 102
51 Imtroduction.o 102
5.2 Degradation of Networks with Node Faults 105
5.3 Routing in 1-Degraded Subnets 110
5.3.1 The k-Degraded Subnet 111
5.3.2 The Optimal-path Routing Algorithm 111
533 Discussion o oo 112
54 Routing in Convex Subnets, 114
5.4.1 The Convex Subnet 114
5.4.2 The Routing Algorithm 116
54.3 Discussion o e 117
5.5 Routing in Two-level Hierarchical Networks 118
5.5.1 Network Decomposition 119
5.5.2 The Two-level Hierarchical Routing Algorithm 121
55.3 Discussiono oL e e 123
56 Conclusionso 125
Conclusions and Future Research 128
6.1 Future Worko 129
6.1.1 Virtual Cut-through with Deflection 130

6.1.2 Communication Locality 131

6.1.3 Dynamic Restoration of Regularity 132

6.1.4 Fault-tolerant Routing for k-Ary n-Cube Networks 133

6.2 Final Remarks o 133

A Search for Zeroes in the Optimistic Model 134
References e 139

vi

1.1
1.2
1.3

2.1
2.2

2.3
2.4
2.5

2.6
2.7
2.8

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

4.7

LIST OF FIGURES

Architectures of multiprocessor systems.
A Boolean 4-cubenetwork.o o o
Basic routing algorithm for Boolean n-cube networks.

Model 1: A queue at each outgoing channel.

Mean delay of a Boolean 6-cube network with a separate buffer
at each outgoing channel. oo 0oL

Model 2: A shared buffer foranode.
An example of parallel and random message assignment.

Mean delay of Boolean 6, 8, and 10-cube networks. Lines corre-
spond to the Poisson approximation and points are taken from
asimulation. o

Comparing the mean delays obtained from models 1 and 2.
Mean number of messages successfully transmitted.

Comparing the mean delay of the random assignment algorithm
with an optimistic lower bound in a Boolean 6-cube network.

An example of two-phase message assignment.
A node with finitebuffers. oo 0.
Snapshot of queue fluctuations incyclem.

State transition diagram for the number of hops traversed by a
IESSAGE. « « « « -« e e e e e e e

Input rate and output rate vsagiven 7,
Channel utilization and probability of forwarding.

Probability of acceptance of an input message.
Throughput per node vs new message generation rate.
Mean message delay vs the throughput of each node.
Power vs applied input rates.

The buffer sizes which can deliver the percentage of the maximal
achievable power.o oo

The examples of k-ary n-cube networks with 16 nodes.
Transition diagram for calculating the mean path length.

State transition diagram for calculating mean path length.
Throughput per node for a 8-ary 2-cube network.
Mean delay vs throughput per node for a 8-ary 2-cube network. .

The buffer size in a node which delivers 95% of the maximum
achievable power in a 8-ary 2-cube network.

The buffer size in a node which delivers 95% of the maximum
achievable power in a 4-ary 3-cube network.

vii

47

93
LY
o7

62
66
63
69
70
71
72

73

77
86
90
93
94

48

4.9

4.10

5.1
5.2

5.3

5.4
5.5
5.6

5.7

5.8
5.9

5.10

5.11
5.12

5.13

5.14

Normalized delay as a function of the normalized throughput for

a network with 64 nodeswhen 3=0.. 99
Normalized delay as a function of the normalized throughput for
a network with 64 nodes when 8 =025. 100
Normalized delay as a function of the normalized throughput for
a network with64d nodeswhen 8=1.. 101
A Boolean 4-cube network with node faults. 103
A cut in dimension 3. (Surviving links crossing the cut are shown
asheavy lines). 106
Minimal achievable delay of a Boolean 4-cube network with two
different failurerates. Lo, 109
The optimal-path routing algorithm for 1-degraded subnets . . . 112
Percentage of surviving nodes in the 1-degraded subnets. 113
A convex subnet constructed for the damaged Boolean 4-cube
network as shown in Figure 5.1. 116
A convex subnet constructed for a network containing a faulty
link. . . . e 117
Percentage of nodes remaining in the convex subnets. 118
Comparison of percentage of surviving nodes in a Boolean 8-cube
NELWOTK. . . . o o v o e e e e e e e e e 119
Mean delay for the convex subnets of the Boolean 6-cube net-
works with 6 faulty nodes.o 120
The algorithm for decomposing a Boolean n-cubenetwork. 121
A two-level hierarchical structure of the Boolean 4-cube network
asshown in Figure 5.1. oo 123
Mean number of clusters generated by our decomposition algo-
rithm for a Boolean 6-cube network. 125
Comparison of the mean path length of the two-level hierarchical
network and the original network. 126

viii

ACKNOWLEDGMENTS

I would like to express my appreciation to my doctoral committee consisting
of Professors Leonard Kleinrock, Kirby Baker, Jack Carlyle, Milos Ercegovac,
and Christopher Tang. I am particularly grateful to the committee chairman
and my advisor, Dr. Leonard Kleinrock for providing enthusiasm, support, and

advice during my graduate years.

This research has been supported by the Advanced Research Projects Agency
of the Department of Defense under contract MDA 903-82-C0064, Advanced
Teleprocessing Systems, and contract MDA 903-87-C0663, Parallel Systems
Laboratory. I thank the projects managers for their supporting and believ-

ing in what we have been doing.

The ATS/PSL research group has been a wonderful environment in which
to work with. To former students of the research group, Jau Huang, Willard
Korfhage, Farid Mehovic, Joy Lin, Bob Felderman, Shioupyn Shen, and current
students, Chris Ferguson, Jon Lu, Rajeev Gupta, Brian Tang, I offer my sincere
thanks for helpful discussions. In particular, I would like to thank Bob, Jon,
and Chris for their comments on earlier versions of my dissertation. I am also
thankful to the following staff of the group: Lily Chien, Cheryle Childress, and
Brenda Ramsey.

I dedicate this dissertation to Angela, my wife, for her constant encour-
agement and understanding and making my life joyful. My last and greatest
gratitude goes to my Mom, Li-yu W. Horng, for her everlasting love and sup-

port.

ix

VITA

1958 Born, Taipei, Taiwan

1981 B. 8., Computer Science and Information Engineering
National Taiwan University

1987 M. 8., Computer Science
University of California, Los Angeles
1988-1992 Graduate Student Researcher, Parallel Systems Laboratory,
Computer Science Department, University of California, Los
Angeles
PUBLICATIONS

Ming-yun Horng and Leonard Kleinrock, “Fault-tolerant Routing with Regu-
larity Restoration in Boolean n-Cube Interconnection Networks,” in the Pro-
ceedings of the Third IEEE Symposium on Parallel and Distributed Processing,
pp. 458-465, December 1991.

Ming-yun Horng and Leonard Kleinrock, “On the Performance of a Deadlock-
free Routing Algorithm for Boolean n-Cube Interconnection Networks with Fi-
nite Buffers,” in the Proceedings of 1991 International Conference on Parallel
Processing, pp. 228-235, August 1991.

Ming-yun Horng, “An Analytic Model for Packet Flow in a Boolean n-Cube
Interconnection Network,” Master Thesis, University of California, Los Angeles,
December 1987.

ABSTRACT OF THE DISSERTATION

Analysis of Boolean n-Cube Interconnection
Networks for Multiprocessor Systems

by

Ming-yun Horng
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1992
Professor Leonard Kleinrock, Chair

An effective interconnection architecture, which provides high-bandwidth and
low-latency interprocessor communications, is the key to high performance mul-
tiprocessor systems. The Boolean n-cube network has become a popular inter-
connection architecture due to its topological properties. In this dissertation,
we propose and analyze a set of routing algorithms for Boolean n-cube net-
works. Most of the analysis we give involves approximation which are shown

to be excellent.

We first present several models for evaluating the performance of the Boolean
n-cube network. Performance bounds are also examined. We then develop and
analyze a deadlock-free routing algorithm with deflection for Boolean n-cube
networks with finite buffers. We focus on the effect of the buffer size on per-
formance. We show that the throughput of the network never degrades and
that a small number of buffers in a node can deliver good performance. We
further extend our model to a general class of networks called k-ary n-cubes
and show that “2n” buffers in a node are essential for efficient behavior of an n-
dimensional network. We also analyze the networks with various combinations

of dimension n and radix k.

x1

We develop several fault-tolerant routing schemes based on the idea of restor-
ing the regularity of a damaged Boolean n-cube network. One way to restore
the regularity of a Boolean n-cube network in the presence of only node fail-
ures is to simply disable those nodes with more than one bad neighbor. The
remaining network is called a “1-degraded subnet.” A very simple optimal-
path routing algorithm is developed for such a subnet. This approach works
well in the situation where a whole cluster of nodes have been "bombed out.”
However, many nonfaulty nodes may have to be disabled. We further develop
a heuristic algorithm to construct a “convex subnet” in an attempt to retain
more nonfaulty nodes. This approach considers both node and link failures.
We show that the optimal-path routing algorithm also works for the convex
subnet, and that only a small number of nonfaulty nodes need be disabled. We
also developed a two-level hierarchical fault-tolerant routing scheme without
disabling any nodes. Here, a non-convex Boolean n-cube network is decom-
posed into a set of convex subcubes. A two-level hierarchical routing algorithm
is developed. We show that the increase in the mean path length caused by

hierarchical routing is very small.

xii

CHAPTER 1

Introduction

1.1 Multiprocessor Interconnection Networks

A wide range of applications in science and technology such as weather fore-
casting, acrodynamic simulation, image analysis and military defense require
enormous computational power that cannot be achieved with a serial computer.
The current trend to solve the problem is to break the computation into sub-
parts, build a multiprocessor system incorporating a number of processors, and
then concurrently execute these subparts on the system. Many multiprocessor
systems are commercially available, but many different multiprocessor architec-
tures are available. In recent years, the advance of VLSI technology has given
us an opportunity to build a large scale multiprocessor system consisting of
hundreds of thousands of inexpensive processors, which can perform over 10

operations per second [Hil85)}.

Many efforts in developing parallel algorithms, parallel compilers, task par-
titioning and allocation schemes, and communication architectures, have been
made to improve the overall performance of multiprocessor systems. Among
these, the construction of an interconnection network which provides very high

speed and fault-tolerant interprocessor communications is critical.

In general, there are two ways of using an interconnection network in a

multiprocessor system. (See Figure 1.1.) A multiprocessor can be constructed
as a shared memory architecture or a distributed memory architecture. In the
shared memory architecture, an interconnection network is interposed between
the processors and the memory modules. Each memory module is accessible to
all processors. The problem of the shared memory architecture is that, as the
number of processors grows, contention for the memory modules can result in
serious performance degradation. The other approach is known as a distributed
memory architecture, where direct communications between processors are pro-
vided. In this architecture, each processor has its own local memory, which it
can access very fast. To access the memory of another processor, a processor
needs to communicate with that processor by exchanging messages through
the interconnection network. The distributed memory architecture is becoming
increasingly popular for large-scale multiprocessor systems because its cominu-

nication locality is easier to exploit.

Various network topologies for interconnecting the processors and/or mem-
ory modules have been proposed. For a review of these networks, see [Fen8l],
[HB84], and [Sie85]. There is no single network that is generally considered the
best for all applications. For example, one very simple communication archi-
tecture is the bus architecture where a single bus is shared by all processors.
However, the bandwidth of the bus limits the total communication traffic on
the network. Although this problem can be alleviated by increasing the band-
width of the bus, the cost of building faster and faster buses can go unbounded.
Besides, the communication latency will become intolerable if the bus is heavily

loaded. Thus, the number of processors supportable by a shared bus is limited.

Based on the ways in which processors communicate with each other, inter-

rocessin rocessin ™ rocessin

Interconnection Network

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

(a) Shared Memory Architecture

Local
Memory

Local
Memory

Local
Memory

i essin rocessin

Interconnection Network

(b) Distributed Memory Architecture

Figure 1.1: Architectures of multiprocessor systems.

connection networks can be classified as direct networks or indirect networks.
In an indirect network, there are no direct links between processors. Com-
munications between processors must go through a set of intervening switches.
Typical examples of the indirect networks include crossbar networks, multistage
networks (e.g., the Omega network), etc [Fen81]. The crossbar is a simple archi-
tecture in which a connection between any two processors can be established in
a cycle. Let N be the number of processors. The number of switches required
in a fully connected crossbar network is O(N?), which becomes prohibitively

large for large N.

A multistage network consists of several stages of switches. In general, each
switch is of the same size and constructed as a small crossbar switch. One
typical network of this family is the Omega network which consists of loga N
stages; each stage has N/2 switches. Each switch has two input ports and two
output ports. Between two adjacent stages is a perfect-shuffie interconnection.
The hardware cost of the Omega network with N processors is proportional to
Nlog,N. However, in the Omega network, there is only one single path between
any two nodes. This increases the probability of a traffic jam developing and

makes fault-tolerant routing more difficult.

In the direct network, processors communicate directly with each other over
a set of point-to-point links. Typical point-to-point topologies include rings,
trees, stars (special cases of trees), meshes, complete connections, and Boolean
n-cubes. To support a large-scale multiprocessor system, a good point-to-point

interconnection network should exhibit the following properties:

1. The diameter of the network should grow slowly with an increasing num-

ber of processors.

2. The processors should be topologically equivalent.
3. The addressing scheme should provide a simple routing mechanism.

4. There should be redundant paths between each pair of processors such
that congestions can be avoided. Also, by carefully designing the routing
algorithms (as shown in Chapter 5), we should be able to continue to use

a network in the presence of node and/or link failures.

5. The network should be cost-effective. Links and node hardware to support
the physical connections cost money. We should keep the number of links

in a network reasonably small.

Thus, for a large-scale interconnection network, some topologies, such as
rings and meshes, are immediately ruled out due to their limitations on com-
munication bandwidths and long latencies. Trees become impractical because
of the unbalanced heavy load in the root of the tree. This problem of root
congestion can be remedied by adding extra links at the higher levels of the
tree. Complete connections give the minimal latency time, but their cost is
very high. The Boolean n-cube network is an architecture which satisfies all
those requirements. We also note that the considerations of performance and
cost are very dependent on the currently available technologies. For example, if
a chip can only have at most one hundred pins based on the current technolo-
gies, a topology which requires 101 pins per chip is absolutely undesirable. In
the rest of this dissertation, we will concern ourselves with the design and per-
formance of the routing algorithms for interconnection networks. The detailed

implementation in hardware is beyond our discussion.

000
0001 1000 001

e C

0010 0011 1010 1011

0100 0101 | 1100 101

(Y0111 1110 {
0110 1119

Figure 1.2: A Boolean 4-cube network.

1.2 Boolean n-Cube Networks

The Boolean n-cube network, also known as the hypercube network, has certain
topological properties which are discussed in [SS88]. In the following discussion,
we simply use node to indicate a processor or a communication co-processor
which handles communications for several processors. A Boolean n-cube net-
work consists of 2" nodes, each addressed by an n-bit binary number from 0
to 2® — 1. Nodes are interconnected in such a way that there is a link between
two nodes if and only if their addresses differ in exactly one bit position. We
say two neighboring nodes with addresses i and j are connected together with
a link in dimension k if and only if |i — j| = 2%, where k =0, 1,...,n — 1. Thus,
every node has exactly n neighbors; each is linked to the node with a different
dimension from 0 to n — 1. A Boolean 4-cube network is shown in Figure 1.2,
where, for example, nodes 1000 and 1010 are connected together in dimension
1. Here, we assume that every link is bidirectional so that messages can be sent
in both directions simultaneously. There are a total of n2*~! links in a Boolean

n-cube network.

Each node in a Boolean n-cube network is assumed to be able to serve
multiple local processors. A message is injected into the node from its local
processor(s) if that processor needs to communicate with some other processor
served by another node. The message is then routed to its destination node.
When a node receives a message which is destined to one of its local processors,

the node removes the message from the network and delivers it to the processor.

Many commercial and research multiprocessor systems based on the Boolean
n-cube interconnection network have been built since 1980s. A survey of the
such systems can be found in [HMB89]. The 64-node Cosmic Cube was the first
such machine and was built at Caltech; it became operational in 1983. Each
node of this machine is an Intel 8086/8087 microprocessor. The Cosmic Cube
has been applied to a variety of computational tasks, and significant speedups

have been achievable compared to conventional computers of similar cost.

The Connection Machine [Hil85] is another good example of a machine which
exploits the properties of the Boolean n-cube network. The Connection Ma-
chine CM-2 [TMC87] consists of 64K processors, each associated with 4K bits of
memory and a simple serial arithmetic logic unit. The processors are intercon-
nected in a packet-switched Boolean 12-cube network, where 16 processors are
attached to each node in the Boolean 12-cube network as its local processors.
Other examples of Boolean n-cube network-based multiprocessors include the
NCUBE/ten [NC85], the Intel iPSC Hypercube {Int85), and the Caltech Mark
Series [PTLP85].

Of course, the Boolean n-cube network has its own drawbacks. For example,
to exploit the rich connections of the network, a node must be equipped with

the capability of sending multiple messages simultaneously. Moreover, as the

dimension of a Boolean n-cube network increases, the cost and difficulty of de-
signing and fabricating also increases significantly. This architectural limitation
on its dimension has become the most serious drawback of the Boolean n-cube
network. In Chapter 4, we will discuss the possibility of building a machine

with a network of small dimensions.

1.2.1 Topological Properties

Topological properties of the Boolean n-cube network which are important to
the discussion of this dissertation are briefly discussed in this section. A Boolean
n-cube can be recursively constructed with lower dimensional cubes. For ex-
ample, consider two Boolean (n - 1)-cubes whose nodes are addressed from 0
to 2*~!. By connecting every node of the first (n — 1)-cube to the node of the
second with the same address, and adding 2" to the address of each node in the
second (n — 1)-cube, we can construct a Boolean n-cube network. A Boolean
n-cube network can be separated into two (n — 1)-cube networks by removing

all of the links in a particular dimension.

A subcube in a Boolean n-cube network is uniquely identified by a string of
n symbols in the ternary symbol set {0, 1, X'}, where X is a don’t-care symbol.
For example, in Figure 1.2, the 4-node subcube containing nodes 0010, 0011,
0110, and 0111 is addressed as 0.X1X. We note that a node itself is essentially
a subcube where each of the n symbols is either 0 or 1. The Hamming distance
between two subcubes with addresses ¢ = @,_1an_3...a16p0 and b = bp_1bn_a...01 b0
is defined as follows:

n—1

D(a,b) = >_d(ai, bi),

i=0

where

1 fa;=0and b;=1,0ora;=1and ;=0
d(a,‘,b,') = {

0 otherwise.

\

In a direct network, communication between any two non-neighboring nodes
must take place via message passing through intermediate nodes. The path from
one node to another can be represented by a sequence of such intermediate
nodes. The length of a path is equal to the number of links on the path.
We say a message is transmitted over an “optimal path” if the length of the
path is equal to the Hamming distance between the message’s source node and
destination node. In a Boolean n-cube network, messages are normally routed
to their destination nodes via an optimal path. However, in order to avoid
congestion, a message can be routed through a longer path. Also, in Chapter
5, we will see that in a damaged network where some nodes or links are down,

a node might not be able to communicate with another via an optimal path.

1.2.2 Routing Procedures

The key function of an interconnection network is to effectively route messages
among nodes. Many routing schemes for computer networks have been exten-
sively studied in the past decade. Most of of them have been developed for
long-haul communication networks. A typical routing algorithm was the one
used in the ARPANET [Kle76]. Those routing algorithms are usually compli-
cated due to the irregular topologies of the underlying networks. Moreover,
most of these algorithms require each node to maintain a routing table whose

size is proportional to the number of nodes in the network. These algorithms

When a message is received,
if (header = 0)
Send the message to the local processor.
else
Select a 1-bit from the header.
Change the selected 1-bit to 0.
Send the message over the corresponding channel.

Figure 1.3: Basic routing algorithm for Boolean n-cube networks.

are impractical for large-scale interconnection networks; one solution to this

problem is to use hierarchical routing {(KK77].

The routing algorithm for an interconnection network should take advantage
of the network’s topological regularity. Very simple routing algorithms for the
Boolean n-cube network can be found, for example, in [SB77} and [Lan82]. The
header (address portion) of an input message is computed as the exclusive-OR
of the message’s source and destination addresses. Every one-bit in the header
corresponds to a “valid” channel (or valid dimension) over which the message
can be sent one hop closer to its destination. When a message is sent over
a valid channel, the corresponding bit in the header is changed to zero. A
message reaches its destination when its header contains all zeroes. A simple
routing algorithm is shown in Figure 1.3. The selection of the valid channels
can be deterministic, random, or adaptive to traffic. Note that no matter
which criterion is used to select valid channels, all messages are routed to their

destinations via an optimal path.

The e-cube routing algorithm {Lan®2] is a deterministic algorithm used in

10

some commercial systems such as Intel iPSC Hypercube. In this algorithm, a
message is always sent over the channel corresponding to the least significant
non-zero bit in its header. Thus, every message can only be transmitted along
a single path from its source to its destination. The e-cube routing algorithm
has been proven to be deadlock-free. However, this routing scheme does not

exploit the property of multiple paths from one node to another.

Adaptive algorithms make their routing decisions based on the measurement
of current traffic. It is not surprising that adaptive routing algorithms per-
form better than nonadaptive ones in a dynamic network environment [CBN81],
[FK71]. A simple adaptive routing algorithm for Boolean n-cube networks is
always to send a message over the valid channel with the lightest traffic load in
hopes of balancing the traffic. However, this scheme is more suitable for asyn-
chronous networks where messages arrive at a node at different times, and the
routing decision is made asynchronously for each message. In synchronous net-
works where messages arrive at nodes at the same time, if the routing decisions
are made simultaneously for all messages, many of these messages can end up
being assigned to the channel with the shortest queue, making it a much larger
queue. As a result, the traffic may still be unbalanced. An even simpler routing
algorithm is to randomly select a valid channel for each message. Although this
random routing may not be able to deliver optimal performance, the routing
decisions can be made in a very simple way, and, hence, can be made in a very

short time.

Errors do occur during transmission. Transmission error detection and cor-
rection can be done at many levels. For an interconnection network which is

usually operated in a well protected environment, the transmission error rate

11

across a link between two nodes is expected to be extremely small. In fact, the
transmission error rate in an interconnection network is about the same as the
memory fetch error rate in a processor. With this extremely small error rate, we
can leave the error detection and correction to the destination processors. This
is commonly referred as the end-to-end error detection and correction. More-
over, given that no messages can be lost due to a full buffer and the network
is synchronous, a node can simply keep pumping its messages into its outgoing
channels without waiting for the acknowledgements from the nodes on the other
ends of the links. In this dissertation, we assume that the communication error

rate is negligible.

1.2.3 Switching Techniques

There are several principal switching techniques: circuit switching, message
switching, and some hybrid switching techniques such as virtual cut-through
switching [KK79|. In circuit switching, an end-to-end physical path is set up
before any data is transmitted. Circuit switching eliminates the need for buffer-
ing in the intermediate nodes of a multi-hop path. However, circuit switching
is considered a poor choice for an environment where moderate to heavy bursts

of traffic are likely to occur and where messages are short.

In message switching, no physical path between the source and the destina-
tion is established in advance. Messages are transmitted in a store-and-forward
manner, where each message must be completely received and buffered in an
intermediate node before it can be transmitted to the next node. For a high
speed network, in order to simplify the operation of the network and improve

the performance of the network, we require all messages to be of a fixed length.

12

One may further divide a message into several packets and then route these

packet individually; this scheme is known as packet switching.

Another switching technique is virtual cut-through [KK79]. In virtual cut-
through, whenever a message's header is received by an intermediate node and
its selected output channel is free, the message is transmitted to the next node
before it is completely received in this node. Thus, unnecessary buffering in
front of an idle channel can be avoided. A similar technique called worm-
hole routing is described in [Sei85bl. Wormhole routing differs from virtual
cut-through in that, if the header of a message is blocked, the message stops
advancing and blocks the progress of any other message requiring the channels

it occupies.

The detailed comparison of switching techniques is beyond our discussion.
Instead, we are more interested in the effect of limited buffer space on perfor-

mance. We assume message switching in this dissertation.

1.3 Design Consideration

In this section, we discuss some issues which are important to the design of an

interconnection network.

1.3.1 Simplicity

With current VLSI technology, the channel speed of an interconnection network
is approaching one gigabit per second [AS88]. At this high speed, the amount of
time that the routing algorithm can afford to spend in making routing decisions

is severely constrained. By taking advantage of the topological regularity of the

13

interconnection network, we should simplify the routing algorithms so that they

can be implemented by hardware.

1.3.2 Deadlock-free Routing in Finite-buffered Networks

Nodes are hardware limited to finite buffer space in the real world. Routing
algorithms must be carefully designed in a finite-buffered network in order to
be deadlock-free. One way deadlocks can occur in a network is wheﬂ each
node in a cycle is trying to send a message to its neighbor, but no node has
any buffers available to accept messages. No message can advance toward its
destination; thus the cycle is deadlocked. This locked state cannot be resolved

until exceptional action is taken.

Several deadlock prevention techniques based on the concepts of removing
or avoiding the cycles of channel dependency have been developed. One well-
known technique is the structured buffer pool [MS80], which is used in store-
and-forward networks where a directed graph is constructed and all messages
are moved from one buffer to another along the arcs of the graph. The other
technique known as virtual channels, is used with wormhole routing [DS87).
This scheme splits physical channels on a cycle into multiple virtual channels
and then restricts the routing such that the dependency between the virtual
channels is acyclic. These algorithms are too complicated to be used in a very
high speed interconnection network because the time spent in selecting paths

for forwarding messages is prohibitive.

In this dissertation, we consider a simple deadlock-free routing algorithm
which exploits the homogeneity of the network and applies a technique called

deflection [Max85]. In this routing scheme, when a node has no buffers available

14

on any of the preferred outgoing channels, messages are forced to take alternate

paths which are usually longer than the preferred ones.

1.3.3 Fault-tolerant Routing in Damaged Networks

The issues involved in building a reliable multiprocessor system are complicated
and require much effort from the lowest hardware level up to the highest user
application level. Building a reliable interconnection network which provides
high performance and fault-tolerant interprocessor routing in the presence of

node and/or link failures is obviously an important step to achieve this goal.

We note that the success of the simple routing algorithm in Boolean n-cube
networks is based on the networks’ regularity property. As processors or links
fail, the regularity of the network is destroyed and the original routing algorithm
may no longer be applicable. There are several approaches to ensure successful
routing between any pair of surviving nodes. To make our routing algorithms
as simple as possible, we choose to partially restore the regularity of a damaged
Boolean n-cube network so that the original routing algorithm for nonfaulty

Boolean n-cube networks can still be used with only a minor change.

1.3.4 Performance Analysis and Improvements

Results regarding the communication behavior of Boolean n-cube networks have
been reported in the literature. However, some authors report the performance
values obtained from experiments or simulations, but do not form mathematical
models. Other authors develop queueing models [BA84}, but do not consider
the effect of buffer size on performance. In a real interconnection network,

nodes can be equipped with very few buffers for handling messages. Thus, a

15

model simply assuming infinite buffers in a node cannot accurately reflect the
communication behavior of interconnection networks. Abraham and Padman-
abhan [AP89] developed a model for finite-buffered Boolean n-cube networks.
In this work, however, messages can be dropped from the network if they are
assigned to a full outgoing channel. Thus, their models are based on a loss

system, which is not desirable for high performance interconnection networks.

In this dissertation, we develop mathematical models for evaluating deflec-
tion routing in a Boolean n-cube network with finite buffers. We study the
effect of buffer size on performance and try to find the optimal buffer size as-
signment. We also extend our model to analyze deflection routing in a very
general class of networks called k-ary n-cube networks. A k-ary n-cube net-
work has n dimensions with k£ nodes in each dimension. Given N nodes in the
network, the relationship N = £ must hold between the dimension n and the
radix k. Examples of k-ary n-cube networks include rings, tori, and Boolean n-
cube networks. We also study the degradation of the performance of a damaged

Boolean n-cube network.

1.4 Summary of Dissertation

We now give a summary of this dissertation. In Chapter 2, we present sev-
eral mathematical models for evaluating the performance of Boolean n-cube
networks. We consider both the cases where all the outgoing channels share a
buffer pool and where every channel has its own buffers. Analytic bounds on
the performance are also given. In this chapter, the buffer size is assumed to

be unlimited.

In Chapter 3, we develop a deadlock-free routing algorithm by using the

16

deflection technique. With this algorithm, all messages entering the network
are delivered to their destinations without deadlocks. We analyze the effect of
the buffer size on performance. We show that the throughput of the network
never degrades. We use the function, power (the ratio of the throughput of
the network over the mean delay of messages in the network) as our objective
function. We say that the performance of a network is optimized when its power
is maximized. We show that, for a wide range of input rates, the performance
of a Boolean n-cube network is near optimal if each node is equipped with “2n”

buffers.

We further analyze our deadlock-free routing algorithm in a very general
class of networks called k-ary n-cubes [SB77} in Chapter 4. We show that in an
n-dimensional network, “2n” buffers are essential to optimize the performance.
We also examine the effect of different combinations of dimension n and radix

k on performance.

Chapter 5 presents a set of algorithms to restore the regularity of a Boolean
n-cube network in the presence of node and/or link failures. We first construct
a l-degraded subnet for a damaged Boolean n-cube network by disabling cer-
tain nonfaulty nodes of the network in a distributed manner. An optimal-path
routing algorithm for such degraded networks is then developed. Though the
construction of 1-degraded subnets is very simple, a number of nodes can be
disabled. We then construct a convex subnet where every pair of surviving
nodes is connected by at least one optimal path. We show that very few nodes
are disabled in constructing convex subnets. We also develop a two-level hierar-
chical fault-tolerant routing scheme without disabling a single node. With this

approach, a damaged network is decomposed into a set of clusters; each clus-

17

ter is essentially a convex subcube. Routing is also separated into two levels.
Each node maintains a small routing table. Messages are first routed to their
destination clusters by the table. After a message has arrived at its destina-
tion cluster, it is further routed to its destination node using the optimal-path
routing algorithm we have developed for 1-degraded subnets. We show that
the increase in the mean path length caused by the hierarchical routing is very

small.

We conclude this dissertation in Chapter 6 and suggest some potential areas

for future research.

18

CHAPTER 2

Basic Models for Boolean n-Cube Networks

2.1 Introduction

This chapter presents mathematical models for predicting the performance of
the Boolean n-cube networks where the buffer size of each node is assumed to
be unlimited (or infinite). Routing algorithms in finite-buffered Boolean n-cube

networks are analyzed in the next chapter.

We first assume that every outgoing channel of a node has its own buffer.
Every message which needs further transmission is randomly assigned to a valid
outgoing channel. We solve for the mean delay of a message in the network. We
next develop an approximation model in which every node is assumed to have
a shared buffer for its all outgoing channels. We show that the shared-buffered
model performs better than the separate-buffered model. An optimistic lower

bound on the mean delay is also given.

2.2 Assumptions of the Network Operation

The necessary assumptions about the operation of the network are presented
in this section. We assume that messages are of a fixed length and that the

time of the network is divided into cycles (or slots) with a duration which

19

corresponds to the transmission time of a message from one node to its neighbor.
The processing time of a node to make its routing decisions is assumed to be
negligible.

We further assume that nodes are synchronized in transmitting their mes-
sages in each cycle. In fact, it is possible to operate a tightly-coupled intercon-
nection network with a systemwide clock. For the network where a single clock
is difficult to manage, the synchronization can be achieved as follows. At the
beginning of a cycle, each node makes its routing decisions by assigning some
messages to its outgoing channels. When a node finishes its routing decisions, it
is “ready” to exchange its messages with its neighbors. The node then informs
its neighbors by sending them a READY signal. When a “ready” node receives
a READY signal from a neighbor, it starts transmitting the message which has
been assigned to the corresponding outgoing channel to the neighbor. At the
same time, the node begins receiving a message from the neighbor. If a node has
no message to send to a neighbor, the node can just send a signal to the neigh-
bor. When a node finishes exchanging messages with its all neighbors, it admits
some input messages from its local processors and then continues to the next cy-
cle. (The reason why input messages can only be admitted to a node at the end
of a cycle will become clear in the next chapter when we discuss the deflection
routing in the finite-buffered networks.) Another distributed synchronization
technique for loosely-coupled systems can also be found in [Max88]. However,
the detailed implementation of the synchronization is beyond the discussion of
this dissertation. In the following discussion, we simply assume that nodes are

synchronized in each cycle.

Here, we have assumed that a node is capable of sending multiple messages

20

along its n outgoing channels simultaneously. Clearly, without this capability,
the rich connections and the high bandwidth of a Boolean n-cube network
cannot be fully exploited. For simplifying the analysis, we further assume that
when a message arrives at its destination node, it is delivered to the local
processor immediately. Only the messages which need further transmission are

stored in the buffer. We call these messages the transit messages.

Many routing algorithms can be used to decide which message is to be
transmitted on each channel in a cycle. In this dissertation, instead of us-
ing complicated algorithms, we choose very simple algorithms which randomly
assign messages to their valid outgoing channels. The performance of these

algorithms is also compared with a bound.

2.3 Model 1: A Buffer at Each Outgoing Channel

2.3.1 Assumptions of the Model

This model assumes that every outgoing channel has a separate buffer, as shown
in Figure 2.1. Each message received from a neighboring node or from a local
processor is randomly assigned to a valid outgoing channel. Each outgoing chan-
nel can only transmit one message in a cycle. We assume that every outgoing
channel is statistically identical and modeled as a bulk-arrival and single-server
system. We further assume that there exists an equilibrium state for each out-
going channel. (Clearly, one should not use this assumption in the case of

unbalanced traffic.)

For purposes of analysis, we assume that a message’s destination is uniformly

distributed over the network and that a local processor does not inject a message

21

Msgs from
Neighbors m@_»
Transit Ms
g -0
Delivered Msgs .

Input Msgs from
Local Processors

Figure 2.1: Model 1: A queue at each outgoing channel.

into the node if the message is destined for another processor of the same
node. Let d; be the probability of an input message being ¢ hops away from its

destination. Thus,
n :
di = (i)/(Q“—l) fori=1,2,..,n. (2.1)

The expected number of hops a message needs to travel in the network is easily
calculated asd = 0, i d; = n2""1/(2" - 1), which is equal to the mean number
of one-bits in the header of an input message. We note that d > n/2, but
approaches n/2 when n is large. It is not difficult to extend our model to
include the effect of communication locality (where messages are more likely to
be transmitted to nearby nodes) as long as the traffic is uniformly loaded on

all directions.

We further assume that the arrival of input messages from local processors

follows a geometric distribution with a generation rate of A messages per cycle.

22

Let g; be the probability of a node receiving ¢ input messages from its local
processors in a cycle. We have
g=(l-a)a (2.2)
The generation rate of the geometric distribution is given by
oo
=0
= (1-a)a'i

o
l—ao

That is, a = A/{1+ A). We require that 0 < a < 1. Clearly, the communication

load of the network is determined by the set of probabilities dis and A.

2.3.2 Analysis of the Model

Let us first detérmine the number of messages a node receives from its neighbors
in a cycle. Let P, be the probability that a message which is received from a
neighbor will exit the network at this node. Since, on the average, a message

will exit from the network after moving d hops, we have
P, =1/d (2.3)

We further let P, be the probability that a message received from a neighbor

needs further transmission. Clearly,
PC = 1 - Pg
= 1-1/d. (2.4)
From the description of the system, it follows that every channel has the same
probability of sending a message in every cycle. We define

e £ Channel Utilization

23

= Prob{A channel transmits a message in a cycle.] (2.5)

Thus, on the average a node delivers npF, messages to its local processors in a
cycle. In equilibrium the network flow must be conserved in the sense that the

input flow equals the output flow. Thus,
NA = NnpP, (2.6)
where N is the number of nodes in the network. Replacing P. by 1/d, we obtain

p = —d. (2.7)

3>

To insure stability, we require p < 1. In the case where messages are uniformly

distributed over the network, since d > n/2, we require that A < 2.

Recall that only transit messages are stored in the buffers. Let P, be the
probability of a node receiving a transit message from an incoming channel in

a cycle. We have

(d - 1). (2.8)

Let r; be the probability of a node receiving exactly ¢ transit messages in a
cycle. Since every channel is assumed to be statistically identical, the arrival of

transit messages at a node follows a binomial distribution, which is given by

’

() P(1=P)"* fori=0,1,2,..,7m
T = 4 (29)

0 otherwise.

24

We further define ax as the probability of a node receiving exactly k& messages

(transit and input) in a cycle. Thus,
k
ag =) T gk fork>0. (2.10)
—0

Define G(z), R(z), and A(z) as the z-transforms for probability mass func-

tions g;, 1y, and a;, respectively. We have the following equations:

G(z) = ggsf=:__; (2.11)
R(z) 2 i}r 2 =(1- P+ Pz)" (2.12)
Also, we have

Alz) 2 ioa.;z‘

= S

P

= E20) (o)

— (r,z)(gk_,-z"“)

- R‘(z)c(z). (2.13)

For any z-transform, X(z), we define X(V(1) and X@(1) as the first and
the second derivatives evaluated at z = 1. After performing some algebraic

manipulation, we obtain the following equations:

AD1) = Ad (2.14)
AD(1) = a2 [28 + (1— %) (- 1)2]. (2.15)

We now determine the number of messages assigned to an outgoing channel

per cycle. Let b; be the probability of j messages being assigned to an outgoing

25

channel in a cycle. Assuming that outgoing channels are uniformly loaded, we

[6-”

The z-transform for b; is given as follows:

immediately have

bj =2 a

i=j

B(z) = i b; 2

LR

- Sex()E0-2)"

_ ga‘(l—-%+%)‘

_ A(l_%+§). (2.17)

The first and the second derivatives of B(z) evaluated at z = 1 are then given

by
A

BY(1) = EH ' (2.18)
B@(1) = 2—2[23 + (1—%) (d- 1)2]. (2.19)

We now calculate the mean queue length of an outgoing channel. Below
we essentially repeat the material from Kleinrock’s Queueing Systems, Volume
I: Theory [Kle75}, in which the author derives the Pollaczek-Khinchin formula
for the mean queue length of the M/G/1 system. We define the following two

random variables:

A . .
gx = number of messages queueing at an outgoing

channel at the beginning of cycle k

26

A .. .
vx = number of messages arriving at the outgoing

channel during the cycle k
Clearly, since an outgoing channel can only transmit a message in a cycle, we
have

g — 1 + vy forge>0
Ger1 = (2.20)

Uk for g = 0.

\

We define £\, the shifted discrete step function, as follows:

s

1 fork=12,..,n
3 (2.21)

fo>

0 for k<0.

\

Applying this definition to Equation (2.20), we may rewrite the equation for
gxy1 as follows:

el = Qe — D + g (2.22)

We are concerned with the limiting distribution for the random variable ¢
as k — oo, which is denoted by g. We assume that the Jth moment of g; exists
in the limit. That is,

J}LTOE [qkj] = F [6’} (2.23)

We are interested in finding, E [5], the mean value for ¢. We hope that by
forming the expectation of both sides of Equation (2.22) and taking the limit

as k — oo will yield the mean value. Following the description, we have

Elgen] =Ela) - E[8,] + E[vd].

27

In the limit as k — oo, we have

ElQ=E[d] - E[a] + E[7].

q
The expectation we were seeking drops out of this equation. However, we obtain
E[a;] = E[7]. (2.24)

By definition, the left-hand side can be written as

Ela;] = :é; Ay Prob (4= k|
= N Prob[q=0] + &, Prob[d=1] + ...
= Prob [5> O]
= Prob|A channel is busy.|
Recalling that p is defined as the probability that a channel is busy in trans-

mitting a message in a cycle, we have
E[Aa;] = p (2.25)
Thus,
E[}] =p (2.26)
which also concludes our previous calculation in Equation (2.18) since
E[Y] = Y bi
i=0
= BY(1)
A=
= —d
n

= p_

28

We now square both sides of Equation (2.22) and then take the expectation

in hopes of finding the mean queue length as follows:
G’ = @ + Aqu + vt — 2, Do +2que — 2 By, v (2.27)
By the definition of Ay, we have
(Aqyg)g = A,,
and
qk/—\‘fh = Qk.
Taking the expectation of Equation (2.27) and letting & go to infinity, we have
2 2 2 ~
E[q] = E[q] + E[A] +E[U] - 2E[q] +
2E[q] E[J] - 2E[n;] E[9].
Making use of Equations (2.25) and (2.26) and letting§ = E [6], we obtain the
following equation:
E [’U] —p
= —4 4 (2.28)
However,
~2 s ~ 1 .2
E [’U] = ZProb[v=z] i
i=0
= B@(1) + BU(1)
. 1\ /5 Ad
=2 [2d + (1 ——) (@- 1)2] + Al (2.29)
n

n? n

We finally have the mean queue length at an outgoing channel as follows:

C EPa+ (-1 @~ z
7 = (1= %) + — (2.30)

29

Applying Little’s result [Lit61], we obtain the mean delay of a message at a

given node as

Tﬂode =

= Y + 1 (2.31)

On the average a packet needs to travel d hops through the network. Thus, the

mean delay is

+ d. (2.32)

2.3.3 Validation of the Model

QOur model assumes that every outgoing channel is statistically identical. We
validated this approximation model through simulations against several network
sizes with a variety of workloads. In any given cycle, each node in the simulator
generated input messages based on a geometric distribution with an input rate
of A messages per cycle. The simulator actually routed messages through the
network by our routing algorithm, and generated statistics such as the channel
utilization, the mean queue length, and the mean delay. We ran the simulations
long enough for the network to be in a steady state. Figure 2.2 shows the mean
delay in a Boolean 6-cube network for various input rates. Note that when
A approaches zero, the mean delay is essentially the mean number of hops a
message needs to travel in the network. The match between the model and the

simulation results is extremely good.

30

20

—0— Analytic
[+ Simutation

15

Mean Delay
=

(n=6)

Figure 2.2: Mean delay of a Boolean 6-cube network with a separate buffer at

each outgoing channel.

2.4 Model 2: A Shared Buffer at Each Node

2.4.1 Assumptions of the Model

This section presents an approximation for evaluating a routing algorithm in
Boolean n-cube networks where every node is assumed to have a shared buffer
of unlimited size. All messages in a node which need further transmission are
stored in the shared buffer. The network is assumed to be decomposed into a
set of statistically identical nodes. Considering an arbitrary node in isolation,
we have a bulk-arrival and bulk-service system as shown in Figure 2.3. (Recall
that each outgoing channel is able to transmit a message in each cycle.) We

assume there exists an equilibrium state for the node.

31

Msgs from
Neighbors

D Transit Msgs

P> el 3]2

Delivered Msgs

Input Msgs from
Local Processors

Figure 2.3: Model 2: A shared buffer for a node.

Our routing algorithm works as follows: At the beginning of a cycle, every
node randomly selects a valid channel for every message the node currently
has. To lessen the node processing time, we assume that the selection is done in
parallel for all messages. If more than one message is selected with the same bit
position, the one having the highest priority (i.e., having been in the network
the longest) is successfully assigned to the corresponding outgoing channel.
Unsuccessful messages are saved in the shared buffer for further assignment
in the next cycle. We assume that the assignment is non-persistent. That is,
unsuccessful messages will be reassigned to channels independently as if they
had not been assigned before. A node begins sending the successfully assigned
messages to its neighbors after the node has finished its message assignment.
At the end of a cycle, the node admits some input messages from its local

processors and then continues to the next cycle.

32

®)
=3
[at]
=
o
&
<3
Z
o

543210
msg.1—1 0 1 (D0 10
msg. 2—=|(1)0 1 0 0 0
msg.3—»| 1 0 0 0 0(D
msg.4—»|(D1 00 1 0
msg. 5—| 00 0 0(D 1
msg.6—[1 1 (D0 10

O: Random Assignment : Successful Trans.

Figure 2.4: An example of parallel and random message assignment.

An example of this parallel and random assignment for a node in a Boolean
6-cube network is given in Figure 2.4. The node is shown with 6 buffered
messages. After the random assignment, messages 1, 2, 3 and 5 are successfully
assigned to channels 3, 5, 0, and 1, respectively. Note that in this example,
since no message has a one-bit in dimension 2, channel 2 must be idle in this
cycle. Thus, no matter which algorithm is used, at most five messages can be

successfully assigned in this cycle.

Although the random assignment is not optimal in terms of the number
of messages transmitted in a cycle, the algorithm is very easy to implement.
Also, since the routing decisions can be made simultaneously for all messages,
the calculation is very fast. Thus, not only is the hardware cost low, but also

the processing time required by a node to make the routing decisions can be

33

significantly reduced. In the next section, we compare the performance of this
algorithm with an optimistic model. In the rest of this section, we calculate the

mean message delay of this random assignment routing algorithm.

2.4.2 Analysis of the Model

Let us proceed by determining the number of messages being transmitted by a

node in a cycle. Let

R Given that there are i messages in the node,
fi; = Prob

j of them are transmitted in the cycle.

Since one-bits in the header are assumed to be uniformly distributed and
channel selection is made randomly, it follows that every outgoing channel of
the node has an equal probability of being selected by a message. We assume
that messages are stored in the buffer in the order of decreasing priority. Thus,
the 7th message is successfully assigned to an outgoing channel if and only if
the channel is not chosen by any of the 7 — 1 messages in front of it. It is not

difficult to write down the following recursive equations:

1 ifi=3=20
0 ifi < g

fi,j = { (233)
0 ifj =0and: = 1,2,3,....,

| fi-mn (1-22) + firy () iféi = 1,2,3,..andi>

34

We further define the z-transform for f;; as follows:

Fi(z) & i fui & (2.34)
and
y, y & dFi(z)

Let f; be the mean number of messages successfully transmitted in a cycle,

given that there are currently i messages in the node. Obviously,
T = F). (2.36)
From the definition of f; ; in Equation (2.33), we immediately have
Fo(z) = 1. (2.37)

Also, given that there is only one message in the node, the message must be

successfully assigned to an outgoing channel. Thus,
Fi(z) = 2. (2.38)
In general, we have
Fi(z) = > fii#
=0
o0

- Bl (-5)

J

Z2 Z
= 2F.a(s) - —Fi(2) + - FA()
= 2F(2) + z—“—n_—z)ﬂ(.“l(z)- (2.39)
Thus,

F(z) ~ 2Fi.(2)
z(1-2)

Fl(z) = (2.40)

35

By letting z = 1, both the numerator and the denominator on the right-hand
size of Equation (2.40) become zero. Using L’Hospital’s rule, we obtain the

following equation:

LR - R - FW

FN() = (2.41)

This leads to the equation below:
— 1\ —
fi=1+ (1 - 5) fi-1. (2.42)

Solving the above recursive equation, we obtain

F=n [1 - (1- l)i]. (2.43)

(]

Let us now define
m: 2 Prob [Node has i messages at the beginning of a cycle]. (2.44)

Also, we define

(z) £ im 2. (2.45)

i=0
The mean number of messages successfully transmitted by a node per cycle is

given by

00 1 1]
= n - an(l — —) (2.46)
=0
However, the channel utilization can be calculated as follows:
1 & —
- Z Ty f“ = p. (247)
oo

36

From Equations (2.46) and (2.47), we have

00 1 1

il 1 — —) =1-p 2.48
Sl p (2.48)
Moreover, assuming that every outgoing channel is independent of all others

and n is large enough, we approximate m; as the probability that every outgoing

channel of the node is idle in the cycle. That is,
m = (1 p)" (2.49)

From Equations (2.48) and (2.49), and from the sum of probabilities, we have

the following set of equations:

(o) = (1—p)" (2.50)
(i — %) —1-p (2.51)
nay = 1. (2.52)

Many equations can be used to approximate II(z). Let us assume that

I{z) = (1-p)" ™. (2.53)

Equation (2.53) is easily inverted to give

m = [‘"l"gz_(f‘p)] (1-p) i=0,1,2,3, .. (2.54)

Setting
z = —nlog(1l — p),

we rewrite Equation (2.54) as follows:

mo= e 1=0,1,23,... (2.55)
1.

37

20

Poisson Dist.
g a=10
+ n=8
X n=6

15 F

Mean Delay
=

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.5: Mean delay of Boolean 6, 8, and 10-cube networks. Lines correspond

to the Poisson approximation and points are taken from a simulation.

That is, the number of messages in a node is simply approximated by a Poisson
distribution. Replacing p by Ad/n, the mean queue length is given by
?j:—-nlog(l-:\ﬁ)- (2.56)
n
Applying Little’s result [Lit61], we finally obtain an approximation for the mean
message delay as follows:
A

n
= _ = _ 2% 2.
T /\log(l n) (2.57)

2.4.3 Validation of the Approximation

This approximation model was also validated through simulations. Figure 2.5

shows the mean message delays of the Boolean n-cube network, where n =

38

20

—O— Separate Queue
—¢— Shared Queue

15

10

Mean Delay

(n=10)

0.0 0.2 04 0.6 0.8 1.0

Figure 2.6: Comparing the mean delays obtained from models 1 and 2.

6,8,10. From this figure, we find that the results from approximation and
simulation are very close to each other when n is large (e.g., n is 6 or larger).
In Figure 2.6, we compare the mean delays obtained from models 1 and 2 for
a Boolean 10-cube network. We find that the shared-buffer model performs

better than the separate-buffer model when the input rate is large.

2.5 A lower Bound on the Mean Delay

In this section, we find a lower bound on the mean message delay of any feasi-
ble routing algorithm in Boolean n-cube networks. Instead of considering any
particular routing algorithm, we are here interested in the performance of an

algorithm which is assumed to be able to transmit as many messages as possible

39

in each cycle. Obviously, the mean delay of such an algorithm serves as a lower

bound.

2.5.1 The Optimistic Assumption

We make an optimistic assumption as follows. In each cycle, if the number of
messages in a node is less than or equal to n, then all of these messages are
transmitted to the node’s neighbors. If the number of messages is larger than
n, then exactly n of them are transmitted. We assume that all messages are

forwarded to the directions leading closer to their destinations.

Note that even an exhaustive search cannot achieve this theoretic bound.
As an example, let us consider the situation where there are only two messages
in a node and each header has only one one-bit in the same dimension. In this
case, only one of them can be transmitted in this cycle. Clearly, this lower

bound is optimistic.

We rewrite f;; as follows:

1 fi=37<n

P

i

1 fi >nandj=n

0 otherwise.

Thus,

1 ifi1 < n

n ifi > n

40

£ oaf

S

<

1=

2 3t

E

C]

=

g 2f

N

=
1k —9— Optimistic

—#— Random

0 1 1 1 L L Il 1 L L.
0 2 4 6 8 10 12 14 16 18 20

Number of Packets in the node

Figure 2.7: Mean number of messages successfully transmitted.

Figure 2.7 plots the mean number of messages successfully assigned in the op-
timistic bound model and the random assignment model. We note that, when
the number of messages in a node is small, messages are unlikely to be blocked.
In this case, the mean number of messages successfully transmitted in these
two models is close. When the number of messages in a node is large, since the
random assignment algorithm can successfully assign a large number (close to
n) of messages in a cycle, these two models are also comparable. The differ-
ence between these two models can be substantial when the mean number of

messages in a node is moderate.

41

2.5.2 Analysis of the Model

We define the following random variables for a given node in a given cycle, say

cycle k.
zx = number of messages at the beginning of cycle k
$¢ = number of messages successfully transmitted in cycle k
tx = number of transit messages received in cycle k
gx = number of input messages received at the end of cycle k

Clearly, we have the following equation:
Trtl = Tk — Sk + Lt + Gk (258)

We now proceed to calculate the z-transform for the probability of finding i
messages in a node for this optimistic model. We define the z-transform of the

random variable z; as

Xi(z) 2 iProb [z = i] 2". (2.59)

i=0

By definition of expected value, the z-transform can be also written as
Xe(z) = E[2%]. (2.60)

Since the number of messages received from neighbors and the number of in-
put messages accepted from local processors are independent of the number of

messages the node currently has, we have

Xen(z) = Elfz™]

= FE [zik—8k+tk+9k]

= E[™ | E[Z*|E[z*]. (2.61)

42

We concern ourselves not with the time-dependent behavior, but rather
with the limiting distribution for the random variable zi, which we denote by
I. Similarly, we denote s, ?, and ¢ for Sk, tx, and g, respectively, as k — oo.

Thus, we have

X(z) = Jim Xi(z)

= E[Z7)E[+]E[]. (2.62)

In Section 2.3, P, is defined as the probability of the channel receiving a
transit message in a cycle and r, is defined as the probability of a node receiving

1 transit messages in a ‘ycle. In Equations (2.9), we have shown that

(Bt - P)™* fori=0,1,2,..,n
Ty = 4

0 otherwise
\

where P, = Ad/n. Also, the arrival of input messages follows a geometric

distribution. We thus have the following equation:

-3 nl-a
X(z) = E[z"*")(Pz+1-PR) "oz (2.63)
For simplicity, we let
K(z) = (Pz+1~-P)" l-a (2.64)
l-az

We next examine the expectation on the right hand side of Equation (2.63)

separately. We define

m & Prob [z = i].

43

Following the optimistic assumption and the definition of the z-transform, we

have
B[]

= irr,-(z"‘) + i i (2*77)

1=0 i=n+1

n 1 &= _
= ;ﬂ'i -+ ; Z Ty z
i=

i=n+1

= Yom 4 S (X(E) - Yo me)
i=0 =0
= zinX(z) + iﬂ';‘(l - :_,:)

=0

1 n—1 ‘
= —X(z2) + —I—Zm(z" — 2. (2.65)
z ™3 :

After algebraic manipulation, we obtain

n—1)
Z m (2™ — 2')
i=0

X&) = R =1

(2.66)

Applying Rouche’s theorem [Tit39] to the expression (:"/K(z) — 1) by
taking the circle |z = 1+ 8, where § > 0 is sufficiently small, we show that
there are exactly n simple zeroes inside and on the closed contour |2| = 1 for

the denominator of Equation (2.66) and one zero in |z| > 1. {See Appendix A.)

Let {z;}, where j = 0,1,...,n — 1, be those zeroes in and on |z| < 1 and
{2z} be the one zero in [z] > 1. It is easy to see that one of the zeroes, say z,

must be 1. From Equation (2.64), we rewrite

'M(l—az) — (1—a)(Pz+1-FP)
(l—a)(Pz+1-P)"

—a(z -~ 1)(z—zn)ﬁ(z—zj)

= TS Bari-ByE (2.67)

/K (z) - 1

44

Since the z-transform of a probability distribution must be analytic in the
region |z} < 1, the numerator of Equation (2.66) must vanish at z = z;, for

J=0,1,...,n— 1. Thus, the numerator can be rewritten as

n-1 n—1
dYom(t—2) =Clz-D]][(z - z). (2.68)
=0 i=1
Differentiating both sides and letting z = 1, we have
n—1 n-1
Sm(n—i)=CI[(1 - z) (2.69)
i=0 j=1
where C is a constant to be evaluated below. We know that the channel uti-
lization is
n—1 ’L fe's] n
p = g ™ + ; ™

ln—l
= 1- —Zﬂ',-(n - 1)
L

From Equation (2.7), we replace p by Ad/n. Thus
n-1
Ym(n—i) =n— X (2.70)
i=0
From Equations (2.69) and (2.70), we obtain
¢ = nj? L :
[T(1-2)
=1

The numerator of Equation (2.66) can be rewritten as

n—-1 n-1_ .
S m(" -2 = (n—Ad)(z - 1) []E=2. (2.71)
=0 1l— 2
From Equations (2.66), (2.67) and {2.71}, we have
X(z) = Gz Bzt 1= BT (2.72)

—Mz—2) [[(1—2)

j=1

45

Since X (z) is the z-transform of a probability distribution, X (1) must equal

unity. Hence,

n—Ad

v =1,
_A(l_zn)H(l‘"zj)

i=1

That is,
i n— i
l—-2) = —— — .)

_-’.1:[1(ZJ) —A(I—Zﬂ) (2 73)

From Equations (2.72) and (2.73), we finally obtain the following equation:

(1—2z)(Pz+1-P)"
zZ — Zn

X(z) = (2.74)

where B, = A(d — 1)/n. Recall that z, is the only zero in |z| > 1 for the
expression 2"/ K(z) — 1.

The mean queue length can be easily calculated as follows:

7 = X()
- 1
= ,\(d—1)+zﬂ_1. (2.75)
Applying Little’s result [Lit61], we find the mean delay
q
T =3
A 1
= d+ ——— L. 2.7
MBYOREEY (2.76)

2.5.3 Discussion: How good is the Random Assignment

Figure 2.8 presents the mean delay for the optimistic model and for the random

assignment, routing algorithm. We realize that, when the input rate is low, the

46

20

—LT— Random Assignment
—®— (Qptimistic

15

Mean Delay
=

(n=6)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Figure 2.8: Comparing the mean delay of the random assignment algorithm

with an optimistic lower bound in a Boolean 6-cube network.

queue length is very short. Messages are unlikely to be blocked. Thus, the mean
delay of these two models is close. When the input rate is high, the number
of messages in a node is large. As we have mentioned, the random assignment
algorithm can successfully assign a large number (close to n) of messages in a
cycle. Thus, these two models are comparable. The difference between these
two models can be substantial when the input rate is moderate. However, we
note that, the mean delay is in terms of the number of cycles. If we consider
the node processing time, due to its simplicity and fast calculation, the random

assignment algorithm can perform even better in real time.

Moreover, since the random assignment algorithm makes its routing deci-

sion for all messages simultaneously without any preference, any “good” routing

47

algorithm should use a smaller number of cycles than does the random assign-
ment algorithm to deliver messages. Thus, in terms of the number of cycles,
the model for the random assignment algorithm can serve as an upper bound
on the mean delay. We thus claim that the mean delay (in terms of cycles) of

any “good” routing algorithm should be in between these two models.

2.6 Conclusions

In this chapter we have developed several models for evaluating the perfor-
mance of Boolean n-cube networks. We showed that the shared-buffer model
performs better than the separate-buffer model. We also showed that a very
simple routing algorithm with random message assignment performs close to an
optimistic bound. In this chapter, the buffer size is assumed to be unlimited. In
the next chapter, we will present and analyze a deadlock-free routing algorithm

for finite-buffered Boolean n-cube networks.

48

CHAPTER 3

Analysis of a Deadlock-free Routing Algorithm

with the Deflection Technique

3.1 Introduction

Routing algorithms in a finite-buffered network must be carefully designed in
order to avoid deadlocks. In this chapter, by exploiting the topological regular-
ity of the network and applying a technique called deflection, we develop a very
simple deadlock-free routing algorithm for Boolean n-cube networks with finite
buffers. We show that with this algorithm all messages entering the network are
delivered correctly to their destinations without discards or deadlocks. We also
develop a mathematical model for evaluating the performance of this algorithm.
We solve for the throughput of the network, the probability of acceptance of
an input message, and the mean delay. We show that the throughput of the
network does not degrade even when the network is full. We focus on the way
the size of the buffer affects the performance. We show that the performance
of a Boolean n-cube network is near optimal when each node is equipped with

“2n” buffers.

49

3.2 A Deadlock-free Routing Algorithm in Boolean n-
Cube Networks

Networks must be deadlock-free. One way deadlock can occur in a network is
when each node in a chain is trying to send a message to its neighbor, but no
node has any buffers available to accept messages. In this case, the blocked
node also blocks its neighbors’ outgoing channels and increases the chance of
the neighbors becoming blocked. When the movement of messages comes to
a halt, the system crashes. Several deadlock prevention techniques based on
the concepts of removing or avoiding the cycles of channel dependency have
been developed [MS80], [DS87]. However, without taking advantage of the
underlying topological regularity, these algorithms can be too complicated to

be used in high speed interconnection networks.

Deflection routing has been proposed for slotted networks where each node of
the network has the same number of incoming and outgoing channels {Max85].
Let ni, be the number of incoming channels and n,. be the number of outgoing
channels of a node. In a slotted network, a node can receive up to n;, messages
from its neighbors in a cycle. To make sure all of the incoming messages are
accepted, a node must make at least n,, buffers available to these messages. If
Tt = Min, then the node can always send enough number of messages to its

neighbors such that the number of free buffers is larger than or equal to ny,.

We say that a message is deflected if it is sent along a direction leading
farther away its destination. Clearly, the deflection technique can be applied to
a Boolean n-cube network, as long as the network is synchronized (or slotted).

A similar technique called “referral” is used in the Connection Machine [Hil85].

50

QOur deadlock-free routing algorithm works as follows: We split the routing
decision into two phases. The first phase is exactly the same as the random
and parallel message assignment, in which every node randomly selects one of
the one-bits from the header of every message currently in the node. If more
than one message is selected with the same bit position, the one having the
highest priority is successfully assigned to the channel. After the assignment, if
a node finds that its free buffers will be less than n, it must assign some more
messages in the second phase. Messages are transmitted only when the two-
phase assignment has been completed. Input messages from local processors can
only be admitted into a node at the end of a cycle when the node has finished
exchanging messages with its neighbors. Obviously, without this restriction,

messages coming from neighbors can be lost due to a full buffer.

To be more specific, we let M be the buffer size of each node. Clearly,
M > n. Suppose a node currently has ¢ messages and 7 of them are successfully
assigned in the first phase. Then, (M —i+j) buffers will be free for the messages
coming in from neighbors if there is no second phase. However, we wish to make
available at least n buffers in case each of the node’s n neighbors chooses to
send it a message in the cycle. Thus, if (M — i+ j) < n, the node assigns

(n — M + i — j) messages in the second phase.

Since j channels have been assigned in the first phase, messages chosen in
the second phase must be assigned only to the other (n — j) channels. We note
that (n —j) > (n— M + i~ j) in any case. That is, the node can always find
free outgoing channels in the second phase for the assignment. We assume that
in the second phase the node simply chooses (n — M + 1 — j} messages with the

lowest priority which have failed in the first phase assignment, and assigns each

o1

of them to a free outgoing channel. If a message is luckily assigned to a channel
with the corresponding bit in its header being one, then this message will be
forwarded in the direction toward its destination. Otherwise, the message will
be deflected. In the Boolean n-cube network, a deflected message is sent one hop
away from its destination and the corresponding bit in its header is switched
from zero to one. The message then needs an extra hop to move itself back

along this dimension before it arrives at its destination.

We note that the second phase assignment is essentially the hot potato
algorithm proposed by Baran [Bar64] (in this algorithm, a node tries to get rid
of its messages as fast as it can, by putting its messages on the shortest queue

without knowing to where the messages should be forwarded).

An example of the two-phase message assignment for a node with M =7
buffers in a Boolean 6-cube network is given in Figure 3.1. The node is shown
with 6 messages buffered. After the random assignment in the first phase,
messages 1, 2, 3 and 5 are assigned to channels 3, 5, 0, and 1, respectively.
The node must choose one more message in the second phase to provide a
total of n = 6 free buffers. We assume message 6 is assigned to channel 2.
Thus, message 6 will be deflected in this cycle. If, instead, message 6 had been

assigned to channel 4 in the second phase, then no message will be deflected.

Every message is timestamped in order to avoid livelocks [BBG87]. The
timestamp contains the time when the message was created and the source node
address. Messages are queued in an order based on their priority, where older
messages have higher priority over younger ones. If two messages are created at
the same time, then the message with lower source address has higher priority

over the message with a higher source address. Since at least one of the stored

52

Channel No.
4 3 210

msg. | —m»
msg. 2 —p-
msg. 3 —m

msg. 4 ——
msg. 5——»

- ol@»—‘@om

Ll Ben ll FU Vo Bl Rl I

@oooHQL

@ooooo

10
00
0o®
1 0
M1
10

msg, 6——p

(O : Random Assignment in the first phase

: Successful assignment in the first phase
[] : Assignment in the second phase

Figure 3.1: An example of two-phase message assignment.

messages is successfully assigned in the first phase and all messages successfully
assigned in the first phase are forwarded, the message with highest priority
always makes progress in every cycle. Whenever the oldest message has been
delivered, another message, if there is any, becomes the oldest and proceeds
without being blocked or deflected. Thus, the transmission time is bounded. A

bound on evacuation time for deflection routing is discussed in [Haj91].

3.3 Analysis of the Deadlock-free Routing Algorithm

Boolean n-cube networks with finite buffers have been analyzed in [AP89).

However, the authors simply assumed that messages can be lost if they are

93

transmitted to a full node, which is not desirable. In this section we present an
approximate model for evaluating the deadlock-free routing algorithm described

above. We will focus on the effect of buffer size on performance.

3.3.1 Assumptions of the Model

We make the following assumptions as we did in Section 2.4. We assume that a
message’s destination is uniformly distributed over the network. The ekpected
number of hops a message must travel in the network has been calculated as
d = n2""1/(2" — 1), which approaches n/2 when n is large. However, since a
message can be deflected on the way to its destination, it may not be transmitted
along an optimal path. (Recall that an optimal path from one node to another is
the path whose length equals the Hamming distance between these two nodes.)
Letting k& be the mean number of hops actually traversed by a message, we have
h2>d.

The arrival of input messages from local processors to a node are assumed
to be based on a geometric distribution with a generation rate of A messages
per cycle. Let g; be the probability that a node receives ¢ input messages in a
cycle. Then,

gi=(l—-a)o’, where 0< a = L.

m <
In Section 2.3, we have shown that A < 2 for the Boolean n-cube network
with unlimited buffers. In a finite-buffered network, however, some of the input
messages can be rejected when the node’s buffers are full. We define P, as the

probability of an input message being accepted by the node.

To analyze the algorithm, we assume that the Boolean n-cube network is

decomposed into a set of statistically identical nodes. A given node is modeled

54

Msgs from @_’
Neighbors
]l) Transit Msgs>
Mleee|2]|]
*°
Delivered Msgs :
Input Msgs From @9_>

Local Processors

Figure 3.2: A node with finite buffers.

as a bulk-arrival and bulk-service system as shown in Figure 3.2, where M is
the buffer size of the node. We assume there exists an equilibrium state for the

node.

3.3.2 Imbedded Markov Chain Analysis

For a given node, let the sequence of random variables Xg, X, X,... form an
imbedded Markov chain, where X,, is the number of messages the node has at
the beginning of cycle m. An (M + 1) x (M + 1) matrix P, which represents

the one-cycle transition probability matrix of the node, is defined as
P = [pil ,
where

pi; = lim Prob[Xpn =7 | Xmo1 =1].

m—od

55

We further define the steady state probability vector II as

II = [WOy ™, T2, "'-17TM]1
where

T, = ,,lli_r.EQPrOb[Xm =1 for i=0,1,2,..., M.

If the Markov chain is irreducible, aperiodic and recurrent nonnull, then IT can

be uniquely determined through the following set of linear equations [Kle75]:

n=10ar
(3.1)
M
Z‘}T,‘ =1
=0

3.3.3 Calculating the Matrix P

The key problem of this model is to calculate the transition probabilities p; ;.
Based on the description of the routing algorithm, it follows that the node
repeatedly makes its routing decisions, exchanges messages with its neighbors,
and then admits some input messages from its local processors. Without loss of
generality, we assume that in each cycle all of the transit messages are received

after all of the selected messages have been transmitted. See Figure 3.3.

We let Y5, Y1,Y5,... be a sequence of random variables, where Y, is the
number of messages the node has in cycle m after the node has transmitted all
of its selected messages, but before it has received any transit messages. We also
let Zy, 21, Z2,... be a sequence of random variables, where Z,, is the number
of messages in buffers after the node has received all of its transit messages in

cycle m, but has not accepted any input messages.

56

P Time

Assign Msgs Transmit & Receive Input
to Channels Messages | Msgs I
{ 1 I
] Cyclem

1

bi-‘—Cycle m+1

UL

b = o am e =

e o = o o e o e me a -

(a) Snapshot of queue fluctuations (real system)

A :
: 13
X, =
" : i* :xm+1
: I !
y | W Yy

(b) Snapshot of queue fluctuations (model)

Figure 3.3: Snapshot of queue fluctuations in cycle m.

87

Let us first determine the number of messages transmitted by the node in
a cycle. Let f;; be the probability that j messages are successfully assigned to
channels in the first phase, given that the node has i messages at beginning of
the cycle. Since the first phase assignment is exactly same as the random and
parallel assignment described in 2.4, f;; is given by Equation (2.33). In general,

fi; may be written as

f s

(X 0F () () i

k=0

if 4 > 1 and

w
—

1< j < min(i,n)

f‘)j = A . (32)
1 fi=73=0
0 | otherwise.

\

Given that 7 messages are successfully assigned in the first phase, the second
phase chooses n — M + i — j messages if i — j > M — n. We further let f ; be
the probability that ;7 messages are successfully assigned to channels in both

phases, given that the node has ¢ messages at beginning of the cycle. Thus, we

have)
fi,j lf'l—j'(M—'n
] n-M+i
fi = S fx fi-j=M-n (3.3)
k=1
0 otherwise.

We now proceed to determine the number of transit messages received in a
cycle. Recall that P, is the probability of receiving a transit message from an

incoming channel in a cycle. Obviously, since input messages can be rejected

o8

and transit messages can be deflected, P, is not equal to A(d — 1)/n, which is
given by Equation (2.8) for unlimited-buffered Boolean n-cube networks. We
will solve for P, later. However, given a F,, the probability of a node receiving

1 transit messages in a cycle follows the binomial distribution; that is
Y pi n-i :
t; =1 . |P1-PR)y"", fori=0,1,2,..,n
i

We further define the following three (M + 1) x (M + 1) matrices:

D = [di;],
where
dij = lim Prob[Y;, =j| Xy =i]. (3.4)
R = [rj.k]s
where
rip = lim Prob[Zn = k| Y =j]. (3.5)
A= [ak.‘]:
where
g1 = r}xljgo Prob [Xm.H = | Zm = k] (3.6)

It is not difficult to obtain the following equations:

fiss HOSj<i<M
d5J=< (37)

0 otherwise

59

and

tr-; HO0<j<k<Mandk—-j<n
rj,k=< (38)

0 otherwise

and
(1—-a)ot™* f0<k<I<M-1
Qry = { oM—* f0<k<Mandl = M (3.9)

0 otherwise.

Clearly, the one-cycle transition probability matrix P is given by
P =DRA. (3.10)

That is, given a value for P, P is determined. As a result, the probability
distribution m;, for ¢ = 0,1,2,..., M, is found by solving for the set of linear
equations in Equation (3.1). The remaining problem is to determine the value

for B,.

3.3.4 Determining the Value for F,

The value for P, must satisfy the condition that in equilibrium the network
message input flow equals the message output flow. Recall that p is defined
as the channel utilization, which is equal to the probability that a channel
transmits a message in a cycle. We let p; be the probability a channel is

successfully assigned a message in the first phase, and p, be the probability

60

that a channel is assigned a message in the second phase. Clearly, p = p1 + po.

It is also clear that, given the vector II, we have

M min(i,n) , J
P = Zﬁi fij = (3.11)
=1 =1 n
and
M min(i,n) J
P = Z Ty Z fi.j 1—1- (312)

We further assume that every transmitted message has the same probability
p of being assigned in the first phase and has the same probability ¢ of being

assigned in the second phase. Thus,

- -

A message is assigned in the first phase,
p = Prob

given that it is transmitted in the cycle.

= m/p

and

A message is assigned in the second phase,
g = Prob

given that it is transmitted in the cycle.

L -

= p/p,

where p+ g = 1.

If a message is assigned in the second phase, it must be assigned to a free
channel other than the one which the message has tried to assign in the first
phase. If a message with ¢ one-bits in its header is assigned to a channel in

the second phase, it will be forwarded with probability (i — 1)/(n — 1) and be

61

1
P Pr=sq p+-'—2q p+%q "Nk P+'+1q 1

ooR® @.'@

n-i+2 n-i+1 n-i n-i-1 1
d 1 0 el J o1 J ni 1 w1l

Figure 3.4: State transition diagram for the number of hops traversed by a

message.

deflected with probability (n —~1)/{n ~ 1). The state transition diagram for this
is given in Figure 3.4, where the state numbers represent the number of one-
bits in the header of a message and the transition labels are the probabilities
of transition between states when a message is moved. State 0 is an absorbing
state corresponding to the case when a message arrives at its destination. We
are interested in the expected number of hops a message takes in traversing in

the network.

Let h; be the expected number of steps to move from state ¢ to state 0. We

have the following recursive relations:

g

0 ifi=0
hi =4 (p+ =hg) by + (Bq) hen + 1 ifi=2,.,n—1

hno1+ 1 ifi=n.

\

62

It can be shown that

n

he = 3 6, fori=1,2,...,n (3.13)
j=n+l—s
where
s
1 ifi=1
6,‘ = {
i-1 g li—l 1 ﬁ e
e i MRl S - fori=2,..,n.
3 j=11_#‘7q ¢ m=lmj=m]_"+lq

Let h be the expected number of hops actually traversed by a message. It

follows that
h =) dh. (3.14)

We define 7, as the output rate per node (i.e., the mean number of messages
delivered per cycle per node). On average a message is expected to exit from

the network after moving h hops. Thus, we have
Yout = np/h. (3.15)
We now prove that, given the geometric arrival process of input messages,
Py=1-my. (3.16)

Let

’ 1

’ [
II = [mg,7yy s Tpg]
where

T = Jim Prob[Zm = i] for i=0,1,2,..., M.

Note that an input message is dropped only if the buffers are full. Given

that there are j messages in the node, if {M ~ j) or less messages are generated,

63

then all of these messages are accepted. If more than (M — j) messages are

generated, exactly (M — 7) of them are accepted. Thus,
mo= Y. gi; for i=0,1,..,M—1. (3.17)
=0

and

M , _
= S maM (3.18)

Let ¢; be the expected number of input messages accepted into a network node
per cycle, given that there are j messages in the node just before the arrival of

the input messages. We have

M-j-1

Z gii + E g (M — (3.19)

i=M-j
Recall that g; is the probability that 7 input messages are generated from local

processors in a cycle. However,

M-ji-1

Z gt + Z gs(M .7)

=0 =M

M—j-1
= 2 [(1-o)d'd + (M Z[(l—

i=0 i=M-j
- 9—1"—_5"-23—(M—j—1>a“-f + (M = j)aM
el (320

We immediately have the input rate per node, vin, given by
Yin = Z Tr;,' C;
=0
M
= >l
=0

(1-a¥7)

1—a

64

=0 =0 i=M—j
O
= St -)
— Al - 7y] (3.21)

In equilibrium, the input rate -y, must be equal to the output rate «,,. From

Equations (3.15) and (3.21) , we have that
AMl—my) = np/h (3.22)

This must be satisfied by the given F; and the calculated probability distribution
7. In all the examples we have studied, we have found that the input rate is
a decreasing function of P, while the output rate is an increasing function.
Moreover, the input rate is larger than the output rate when P, approaches 0
and the input rate is smaller than the output rate when F, approaches 1. Thus,

in these examples, P; exists and is unique. See Figure 3.5.

3.3.5 Delay and Throughput

Let « be the throughput of a node, which is defined as the number of messages
delivered to the local processors of a node per cycle (or equivalently the number
of messages accepted from its local processors by the node per cycle). Thus,

Y = Yin = Yout- Given that II has been found, we have

v = A1 - 7). (3.23)

65

(A=1.5) (n=6)

M=24

ot ahad - ol Lol ol i B
[2: o =0 = =f- T2

— -

Rates

Figure 3.5: Input rate and output rate vs a given P,

The throughput of the network is then equal to yN. The mean queue length

of a node is given by
M
7= im. (3.24)

(3.25)

3.3.6 Effects of Deflection
We now calculate the effect of backtracking. Let us define

P; = Prob[A channel forwards a message in a cycle]

P. = Prob[A channel backtracks a message in a cycle},

66

where Py + P, = p. The net progress made by a channel in a cycle is equal to
P; — P,. We realize that whenever a message is deflected, it is sent one hop
farther away from its destination node. The message then needs an extra step

of forwarding to compensate for this loss. We further let

L = Number of channels in the network,
K = Number of cycles in a (long) time period, and

S = Number of messages served by the network in the period.

The expected number of one-bits in headers which are changed to zeroes in
the network in K cycles is simply LK P;. The expected number of zero-bits in
headers changed to ones is LK P;. As a result, the expected number of one-bits
"decreased” due to the network’s transmission is LK(P; — F;), which must be
equal to the number of one-bits in the headers of input messages from local

processors in K cyecles when the network is in a steady state. We have

LK(P; - P) = §d (3.26)

Moreover, the expected number of moves of messages (forward or deflection) in

the network in K cycles is

LK(P; + P,) = Sk (3.27)

From Equations (3.26) and (3.27), we have

h P+ B
d P; - P, (3.28)
Solving for P, and Py, we have
P d
P.,.- = =(1l—-— = y 329
21— =) (329

67

Lo

Model Channel Utilization
X Simulation

Net Progress

08 T

LI o

Probability

04 T
Prob. of Forward

02 F

(n=6;M=10)

0.0 i A
¢.0 0.5 1.0 1.5 28

Figure 3.6: Channel utilization and probability of forwarding.

P = ’—;(1+%). (3.30)

The net progress of a channel per cycle is then given by

J

= au

3.3.7 Validation of the Model and Discussion

The accuracy of this mathematical model was validated by comparing it with
simulation. For each set of system parameters (i.e., the input rate, the buffer
size, and the network size), the simulation ran for a time period long enough
to have the network arrive at a steady state. In this section, we present several

simulation results for a Boolean 6-cube network with various buffer sizes in a

68

Prab. of Acceptance

0.2 1

——= Model
X Simulation (n=6)

1 L 1

0.0 0.5 1.0 L5 2.0

0.0

Figure 3.7: Probability of acceptance of an input message.

node. We find that the match between our model and the simulation results is
very encouraging.

Figure 3.6 shows the utilization, the probability of forwarding, and the net
progress of a channel when M = 10. We note that the difference between the
channel utilization and the probability of forwarding is the probability of deflec-
tion. This figure shows that the effect of deflection is minor even if the buffer
size is relatively small. (Recall that the buffer size must be larger than or equal
to n.) Figure 3.7 presents the probability of acceptance of an input message for
various buffer sizes. Again, we see that with a small number of buffers in a node,
the network accepts most of the input messages unless the input rates are very
large. (Recall that when A approaches 2, the channel utilization approaches 1

in the infinite-buffered network.) From Figure 3.8 we find that the throughput

69

H
i
LS i
i
!

— x
t M=8§
Y 10 | t R 2
1 M=6
'
i
0.5 F :—b Overloaded
’ 1
]
) Model
: x Simulation
0'0 L F1 L L i
0 1 2 3 4 5

A

Figure 3.8: Throughput per node vs new message generation rate.

of the network does not degrade even if the input message generation rate is
much larger than what can be accepted by the network. The dashed line in
this figure shows the ideal throughput of the network, given that there are an

infinite number of buffers at each node.

Figure 3.9 shows the mean delay as a function of the throughput per node.
The “last” point of each curve is for a very large input rate. (Compare with
the results in Figure 3.8 for very large input rates.) We realize that when the
message generation rate is large, although a node with a larger buffer space can
accept more messages, the queue grows as the buffer size increases. As a result,
the mean message delay is also large. In the next section, we will combine these
two performance measures (i.e. throughput and delay) together and find the

“optimal” operating point.

70

12
~——— Model

10 -+ Simulation \

Mean Delay

(n=6)

Figure 3.9: Mean message delay vs the throughput of each node.

3.4 Optimization Issues

In most queueing systems, two performance measures, response time and through-
put, compete with each other. Typically, by raising the throughput of the sys-
tem, which is desirable, the mean response time is also raised, which is not
desirable. These two performance measures were combined into a single mea-

sure known as power, defined as follows [Kle78]

Throughput of the Network
Mean Response Time

Power =

For our system we have

Power =

4=

71

Power

Figure 3.10: Power vs applied input rates.

A system is said to be operating at an optimal point if the power is maxi-
mized. Figure 3.10 shows the power as a function of A for various buffer sizes.
The peak of each curve identifies the optimal generation rate for each buffer
size. This result can serve as a guide to network flow control. We find that,
when input rates are small, an increase in buffer size increases the power. How-
ever, assigning a large number of buffers to a node cannot further improve the
performance. When input rates are large, an increase in buffer size will signif-
icantly increase the throughput of the network. However, if the buffer size is
large enough, adding more buffers just increases the queue length in each node,
but does not affect the throughput. Note that, in our model, the mean delay
was obtained only for those messages accepted to the network. Thus, since the

message delay is significantly increased, the power is decreased. This leads to

72

20 o

18

16 J

14 4

12 J

i 4

Buffer Size

Figure 3.11: The buffer sizes which can deliver the percentage of the maximal

achievable power.

a conclusion that installing many buffers in each node is just not necessary.

Figure 3.11 plots, for a Boolean 6-cube network with different input rates,
the area of buffer sizes which can deliver a percentage (e.g., 95% or 99%) or
more of the maximal achievable power. We find that when input rate is small,
a small number of buffers in a node is enough to approach to the maximum
achievable power. With this small input rate, a network with a large number
of buffers just behaves as if it has an infinite number of buffers. When the
input rate is large, a small number of buffer results in too much deflection and
wastes the communication capacity, while a large number of buffers increases
delay significantly. For a wide rage of input rates, we find that “2n” is the
optimal buffer size assignment for a Boolean n-cube network. We performed

this procedure for many networks with different sizes and all showed similar

73

behavior.

3.5 Conclusions

In this chapter we developed an approximation for evaluating the performance
of a deflection routing algorithm in Boolean n-cube networks with finite buffers.
With this algorithm, when a node is nearly full, it needs to force out some of
its messages to its neighbors; some of these messages can be deflected. The
deflected messages are sent one hop away from their destinations. We showed
that all messages entering the network are guaranteed to arrive at their desti-
nation without deadlocks or discards. The performance of this algorithm has
been analyzed by mathematical models and simulations. We showed that the
effect of the deflection is minor even if every node has only a small number of
buffers. We showed that the throughput of the network does not degrade even
when the network is full. Given the "power” function, we showed that only a

few buffers (i.e., “2n”) are essential to optimize the performance.

74

CHAPTER 4

Analysis of Deflection Routing in k-Ary

n-Cube Networks

4.1 Introduction

In this chapter we develop a mathematical model to evaluate a deflection routing
algorithm for a general class of networks called k-ary n-cubes [SB77|. A number
of network topologies including rings, tori, Omega networks, and hypercubes
(Boolean n-cubes) all belong to this family. Examples of multiprocessor systems
based on such a network include the CMU-Intel iWarp [Bor88], the Ametek 2010
[Sei88], and the MIT J-machine [Dal89], in addition to the hypercube-based

systems.

A k-ary n-cube network consists of k" nodes, each addressed by a n-digit
address (@n-1,@n-2,...,80), where 0 < a; < (k —1). We refer to n as the
dimension and k as the radix of the network. The ith digit of the address,
ai, represents the node’s position in the ith dimension. We assume that links
are unidirectional. Nodes are interconnected in such a way that there is a
link from node (an-1,@n-2,...,a0) to node (bn_1,ba_2,...,b) if and only if there
exists an ¢ such that (a; — bi),,4x = 1 and a; = b; for j = 0,1,...,i —~ 1,7 +
1,..n — 1. Every node can only send messages to its lower neighbor of each

dimension. That is, node {(an-1,Gn-2,...,@0) can only send messages to nodes

75

(Gr-1y ey @ir1, (@i = 1) 0k, Gic1, -y) for £ =0,1,...,n — 1. One may also view

a node as an intersection of n ring structures; each ring consists of & nodes.

In Figure 4.1, we show two 16-node networks, one constructed as a binary
(Boolean) 4-cube and the other as a 4-ary 2-cube. Note that, in a Boolean
n-cube network, there are only two nodes in a dimension (or ring); each node
has a link to the other. In Figure 4.1(a), for simplicity, we show only a link

between two nodes in a dimension.

Links can also be bidirectional. It is worth mentioning here that bidirec-
tional links allow applications to exploit communication locality. For example,
if an object « sends a message to an object 4, then it is likely that 3 will also
send a (response) message back to . If @ and 3 are assigned to two neighbor-
ing nodes, then the round-trip route takes only two hops. In a unidirectional
network, such a round-trip route will take k hops. However, with bidirectional
links, each node handles 2n incoming and 2n outgoing channels, twice as many
and therefore more costly than that of the unidirectional network. Due to
the design and manufacturing cost, we may not be able to construct a large-
dimensional network with bidirectional links. In this chapter, we assume that

links are unidirectional and the connections are end-around.

Given that the destination address of a message is (b,-1,bn-2, ..., bo) and the
message is currently at node {(a,_1, @n_2, ..., ag), we say that the ith dimension is
a “valid” dimension if and only if a; # b;. We say that a message is forwarded
if it is sent along a valid dimension, and therefore ends up one hop closer to its
destination. A message is deflected if it is sent along a nonvalid dimension. A
deflected message will be k — 1 hops further away from its destination than it

was before being deflected.

76

0000 == 001

001 1000
0010 Y0011 | 41010 Mio1
0100 101 | 1100 101

p Y

OBt 110 0
0111 1110
0110 111

(a) A binary (Boolean) 4-cube network.

™ N Y
QT3
W w w

(a8]

, 2,1 2,

N
Y

' 3,1 3,2 33

3
RTHTRTRT

(b) A 4-ary 2-cube network

Figure 4.1: The examples of k-ary n-cube networks with 16 nodes.

The choice of a good network topology is highly sensitive to the assumptions
about the network. Dally [Dal90] analyzed the performance of k-ary n-cube net-
works with various dimensions under the assumption that the bisection width
is held constant, where the bisection width is defined as the minimum num-
ber of wires which must be cut in order to divide the network into two equal
halves. The analysis suggests that lower-dimensional networks yield lower la-
tency. However, node delays and queueing effects were ignored in his analysis.
Agarwal [Agr9l] also analyzed the performance of k-ary n-cube networks by
taking node and link delays into account. He showed that the best network has
a moderately high dimension. However, neither Dally nor Agarwal considered

the effects of buffer size on performance.

In this chapter, we analyze a deflection routing algorithm for k-ary n-cube
networks with finite buffers. We calculate the buffer size for each node which
allows the network to deliver the near-optimal performance for a wide range
of input rates. We examine the performance of the k-ary n-cubes with various
dimensions under the constraint of fixed bisection width. Both the effects of

node processing time and queueing are taken into account in the analysis.

4.2 Deflection Routing in k-Ary n-Cube Networks

Deflection routing can be used in a k-ary n-cube network, as long as the network
is synchronized into cycles, each of which consists of two phases. We apply the
concept of the two-phase message assignment developed earlier for Boolean n-
cube networks to k-ary n-cube networks as follows: In the first phase, each node
selects a valid dimension for each message currently in the node. We assume

that the selection of a valid channel for each message is done simultaneously

78

and independently. If more than one message selects the same dimension, the
one with the highest priority (i.e., the oldest one) is successfully assigned to the

corresponding outgoing channel; other messages are saved in the buffers.

The way of selecting a valid channel in the first phase is different from what
we have for the Boolean n-cube network. In the Boolean n-cube network, every
one-bit in the header indicates a valid channel. Selecting any one of these valid
dimensions will decrease the number of valid channels and the distance to the
destination. In the k-ary n-cube network, however, assigning a message to a
valid channel does not necessarily decrease the number of valid dimensions by
one. In order to exploit the multiplicity of paths provided by the topology, the
routing algorithm should reduce a message’s valid dimensions only when nec-
essary. For example, in the 4-ary 2-cube network (Figure 4.1 (b)), if node (3,1)
wants to transmit a message to node (0,0), it should first send the message to
node (2,1), as long as the corresponding outgoing channel is available. Other-
wise, if the message is first sent to node (3,0), then the message has only one
valid dimension left. In the latter case, the message must be forwarded along a
unique dimension for the rest of its journey. Since a message can be forced out
in the second phase, a message with fewer valid dimensions is more likely to be

deflected.

Badr and Podar [BP89] presented an optimal routing policy for mesh-
connected networks. In their work, they defined v(z, 5) as the success-probability
of delivering a message from node (i,7) to node (0,0), and S(i,j) as a set
of neighboring nodes which maximize v(¢, 7). Assuming uniform traffic, they

showed that

(CL) S(Z,‘l) = {(T"' 1’7;)1(7;#7;_ 1) }:

79

(b) S(3) = {(i-1,5)} fori>j

(c) S(i,7) = {(G,j—-1)} fori<j.

That is, a message should be sent in a direction such that it minimizes the
difference in the number of hops left among the valid dimensions. We apply
this technique to the first phase message assignment, although we do not provide

a formal proof of optimality here.

Suppose a message in node A = (@n-1,0n-2,..-,a) is to be sent to node
B = (b, 1,b, 2,....,00). Let e; be the number of hops the message needs to
travel in dimension i. Thus, e; = (@i — b:),,4x The vector (en_1,€n-2,...,€0)
of a message is referred as the header of the message. Suppose the message is
moved along the mth dimension. The corresponding digit, em, is changed as
follows:

Cm — (em - l)modk

Clearly, if e, > 0, the message is forwarded and e, decreases by one. If e, =0,

the message is deflected; in this case, e, is changed to & — 1.

A valid dimension i is called a preferred dimension if and only if ; > €; for
all j =0,1,...,n—1. Our first phase message assignment is to select a preferred
dimension for each message. If there is more than one preferred dimension in
the header, the node randomly chooses one of them. To further simplify our
presentation, we call a valid dimension j a terminating dimension if e; = 1.
That is, after the message is forwarded along a terminating dimension, the
number of valid dimensions will be reduced by one. If a node cannot make at
least n buffers available in the first phase, the node must assign more messages

in its second phase as described in Section 3.2.

80

4.3 Analysis of the Deflection Routing Algorithm

In this section, we develop an approximation model for evaluating the deflec-
tion routing algorithm in k-ary mn-cube networks with finite buffers. We are
interested in the throughput of the network, the probability of acceptance of
an input message, the mean message delay, and the effect of the buffer size on

performance.

4.3.1 Assumptions of the Model

We assume that a message’s destination is uniformly distributed over the net-
work. The mean number of hops a message needs to travel in each dimension
is (k — 1}/2, given that a node is allowed to transmit a message to itself. The
mean number of hops a message must travel in the network is then calculated
as d = n(k—1)/2. We assume that a node cannot inject a message into the net-
work if the message is for the node itself. In this case, the mean number of hops
becomes d = n(k—1)k"/[2(k*—1)]. However, due to deflection in finite-buffered

networks, a message may not always travel along a shortest path.

At the end of a cycle, the arrival of input messages to a node is assumed to
follow a geometric distribution with a generation rate of A messages per cycle.

Let g; be the probability of a node receiving 7 input messages in a cycle. Then,

: A
= (1— ' = —— < 1
gi=(l—0)c', where 0< T <

Given that all input messages are accepted and are routed via a shortest path

(in an infinite-buffered case), the channel utilization is given by

81

k-1 k"

= A3 k" —1)°

which must be less than 1. Thus,
A < [2(k" = 1))/[(k = 1)k"). (4.1)

When n is large, the inequality can be approximated by A < 2/(k—1), which is
referred to as the ideal communication capacity of a node. However, in a finite
buffered network, input messages are blocked when the source node’s buffers
are full. We define P4 as the probability of an input message being accepted

by the node.

4.3.2 Analysis of the Model

The approach we use to solve the model is similar to what we have developed for
the Boolean n-cube network in the previous chapter. Here we briefly describe
the method and the related variables. We assume that the k-ary n-cube network
is decomposed into a set of statistically identical nodes. We model each node
individually. We further assume there exists an equilibrium state for the node.

Clearly, this is an approximation model.

Let P be the one-cycle transition probability matrix of the node, where an
element p; ; of the matrix is defined as the probability that, given the node has
i messages at the beginning of the last cycle, the node will have j messages at
the beginning of this cycle. Let I be the steady state probability vector, where
an element 7; is the probability of finding ¢ messages at the beginning of a given
cycle. Define M > n to be the buffer size of a node. If the matrix P is given,

then II can be determined by solving the following equations [Kle75}:

MI=1FP

82

Without loss of generality, we divide a cycle into three sub-cycles: departure
of messages, reception of transit messages, and reception of input messages.
The departure process is determined by the algorithm a node uses to assign its
messages to the outgoing channels. The number of input messages accepted in
a cycle is determined by the message generation distribution and the number
of free buffers at the node. However, since the mean number of hops a message
actually traverses is unknown due to deflection, it is very difficult to give an

explicit expression for the number of transit messages received in a cycle.

Let P, be the probability of receiving a transit message from an incoming
channel in a cycle. Given B, the probability of receiving ¢ transit messages in

a cycle is obtained as follows:
ny _; .
t = (z) P(1-P)", i=012,..1.

Thus, the one-cycle transition probability matrix is constructed and II can be
found. Therefore, I1 is uniquely determined by the value of P,. We need one
more condition to solve for P, which is the following: For the system to be
stable, the input flow to the network must equal the output flow out of the

network.

We now calculate h, the mean number of hops actually traversed by a mes-
sage in the network. Following our routing algorithm, a node randomly selects
a preferred dimension in the first phase. Every outgoing channel has the same
probability of being selected under uniform traffic. Given ¢ messages in the

node, the probability (f; ;) of successfully assigning j of them to channels in the

83

first phase is given by Equation (2.33), which is repeated below:

’

B 07 Q) (%) 12 1and1 < S mini
k=0
fgd=<1 if’i=j=0
0 otherwise

.

Given that j messages are successfully assigned in the first phase and (i —
j) > (M —n), then (n ~ M + 1~ j) messages must be assigned to free outgoing
channels in the second phase. Let f ; be the probability that j messages are

successfully assigned in both phases, given that the node initially has 7 messages.

We have .
) n—M+Hi
fis =1 Y fix fi-j=M-n (4.2)
k=1
0 otherwise.

We further have the following equation:

M min(in)

0 J
p = Z i Z fii = (4.3)
=1 j=1 n
M min(i,n} J
o= Z i Z fig = (4.4)
=1 i=1 n
p2=p =P, (4.5)

where p is the probability of a channel transmitting a message in a cycle, p,
is the probability of a channel transmitting a message which is assigned in the

first phase, and p, is the probability of a channel transmitting a message which

84

is assigned in the second phase. Clearly, p = p1 + po. We further define

p=p/p

and

q = p2/p.

Given that a message is successfully assigned and transmitted in a cycle,
let P,, be the probability that the message is assigned to the mth dimensional
outgoing channel. We further let n, be the number of preferred dimensions of
the message. Based on our routing algorithm, it follows that given the message
is successfully assigned in the first phase, it must be assigned to one of its pre-
ferred dimensions. Each of the n, preferred dimensions of the message has the
same probability of being selected. Thus, given that a message is transmitted,
the probability that it is successfully assigned to a particular preferred dimen-
sion in the first phase is p/n,. A preferred dimension can also be assigned in
the second phase. Clearly, if a preferred dimension has been selected but not
successfully assigned in the first phase, it cannot be chosen again in the second
phase because the corresponding outgoing channel must have been assigned by
some other message in the first phase. That is, a preferred dimension is assigned
in the second phase only if it is not selected in the first phase. Moreover, every
dimension of a message except those selected in the first phase have the same
probability of being assigned in the second phase. Thus, given that the message
is transmitted, the probability that it is assigned to a preferred dimension in

the second phase is (1 — 711;)% We then obtain the following equations:

85

Figure 4.2: Transition diagram for calculating the mean path length.

2+ (- %) —&- if the mth dimension is preferred
P = ¢ (4.6)

L otherwise.

“

We now describe a transition diagram as follows: Each state in the diagram
is identified by n digits with radix k which corresponds to (€n—1, €n—2, -.-, €0), the
header of a message. When the message is moved to a neighboring node, the
header changes. The state of the message also changes accordingly. In Figure

4.2, we show the (probabilistic) transitions between neighboring states.

Let h(€n-1,€n2, ---, €0) be the mean number of hops a message actually trav-

els from state (en_1, €n_2,-..,€0) to state (0, 0, ..., 0). Thus, h(ea_1,€n-2,...,€0)

86

can be written as follows:

hlen-1,--s €m,y s €0)
n-1
= 1+ ZPm h(en—1y-.s€ms1, (€m — 1) oukr Em—t, -, €0)
m=0

Solving this set of linear equations, we find the value of h function for each
state. Moreover, given the probability of an input message initially being in a
particular state, then k, the mean number of hops traversed by that message

can be found. Moreover, the output rate of a node is given by
Your = np/h. (4.7)
The input rate per node is given by
Yon = A(L—ae). (4.8)
F; must therefore satisfy the following equation:

A1 —=my) = np/h. (4.9)

The major drawback of this approach is that the number of states in the
transition diagram is equal to the number of nodes in the network. When
the network size grows to hundreds (or more) nodes, this approach becomes

infeasible. In the rest of this section, we present another approach to find h.

We let each state of the diagram be identified by (n,,n4), where n, is the
number of valid dimensions of the message, and n4 is the number of hops from
the current node to its destination. Given that a message has n, valid dimen-
sions, the following condition must hold: n, < ng < (k — 1)n,. That is, we

need (k — 1)n, — n, + 1 states to represent all the cases in which a message has

87

k | n | number of states

16 | 2 45
4 |4 25
218 9

Table 4.1: Number of states required for a network with 256 nodes.

n, valid dimensions. A message has up to n valid dimensions. Thus, the total

number of states required for the transition diagram is given by

[i(k~1) — i + 1]

Ms 1M

= [ik —2) + 1]
i=0
= (kmz)ﬁ-(n—;—ll+n+ 1.

In Table 4.1 we show, for a network with 256 nodes, the number of states
required in the state transition diagram. Compared with our previous approach,

the number of states required for the transition diagram is dramatically reduced.

Given that a message is moved over the mth dimension, its state (ny, ng) is

changed in one of the following three ways:

88

(I) (ny,ng) — (ny,ng—1) if ey > 1

(IT) (ny,n4) — (ny — Lng = 1) if e = 1

(IIT) (ny,mg) — (ny, +1l,ng+k—-1) ife,=0

The transition probabilities are calculated as follows: Consider the state

where n, =1 and nq = j. We look at the three possible cases:

Casel:i=37

Each valid dimension has only one hop to traverse. This is also known
as an extreme case of Boolean n-cube networks where each dimension has at
most one hop to traverse. If the message is selected in the first phase, it is
forwarded and the number of valid dimensions is decreased by one. Given
the message is selected in the second phase, a valid dimension is selected with
probability (i—1)/{n—1), and a nonvalid dimension is selected with probability

(n — 1)/(n — 1). The transition probabilities are shown in Figure 4.3(a}.

CaseIl: i< j<(i—1)(k—1)+1

If the message is successfully assigned in the first phase, it must be assigned
to a preferred dimension. Since ¢ < j, the preferred dimension cannot be a
terminating dimension. Thus, the number of valid dimensions does not change.
Given that the message is selected in the second phase, it can be assigned to
a valid dimension with probability (i — 1)/(n — 1), and assigned to a nonvalid
dimension with probability (n —¢)}/(n — 1). We define r;; as the probability

that the message is assigned to a terminating dimension, given that the message

89

Covmn

J

(c) Case Il : (1-1)k-1)+1 < g i(k-1)

Figure 4.3: State transition diagram for calculating mean path length.

90

is assigned to a valid dimension in the second phase. We approximate 7, ; as
follows: The number of ways to distribute the j hops into the 7 valid dimensions

such that every dimension has at least one hop is

(V)= (),

given that there is no limit on the number of hops to be put in a dimension.
(Note that the maximum number of hops in a dimension is k — 1 for real sys-
tems.) The number of ways to distribute the j hops into the ¢ valid dimensions

such that there are exactly m terminating dimensions is given by

) SR)= ()Y

Moreover, the message must have chosen one of the non-terminating dimensions
in the first phase. Thus, given that the message is assigned to one of the other
¢ — 1 valid dimensions in the second phase, the probability that it is assigned
to a terminating dimension is m/(i — 1), given that there are m terminating

dimensions. Thus, r;; is approximated by

i—-1

> () (5 &

The transition probabilities are shown in Figure 4.3(b).

Case ITL: (i — 1)(k~ 1)+ 1< j <i(k—1)

In this case, none of the valid dimensions is a terminating dimension. The
transition probabilities are the same as those in Case I, except that when the
message is forwarded, its ¢ remains constant while its j decreases by one. Figure

4.3 (c) shows the corresponding transition probabilities.

91

We note that the transition might not exist for some boundary states; in this
case the transition probability is always 0. Given these transition probabilities,
the set of linear equations for finding the mean number of hops to move from one
state to state (0,0, ..., 0) is determined. As a result, the mean number of hops
traversed by a message, h, is also determined. For all the cases we have studied,
a unique P, has been found. Given the P,, we then obtain the distribution of
messages in a node. Finally, we solve for the mean queue length, the throughput
of the network, and the mean delay. Other performance measures such as
channel utilization, probability of acceptance of an input message, and the

probability of a channel deflecting a message can also be found.

4.3.3 Validation of the Model

We validated the model against simulation with different network structures,
sizes, and workloads. The simulator routes messages through the network en-
tirely based on our two-phase message assignment. After the message assign-
ment is completed, every node simultaneously transmits messages to its neigh-
bors. At the end of a cycle, every node generates new messages based on a
geometric distribution with an input rate of A messages per cycle. Some in-
put messages can be dropped if the buffers are full. The simulator generates
statistics such as the channel utilization, the probability of acceptance of input
messages, the mean number of hops traversed by a message, the mean number

of messages delivered in a cycle, the mean queue length, and the mean delay.

We now show some numerical results for a network with 64 nodes. Larger
networks have also been simulated and similar behavior was observed. Noting

that the Boolean n-cube network is a special case which we have evaluated in

92

03

— Model 7TTTTIoIzmoomomonoorosoassae q
+ Simulation e ™M=s
+ & + L
/ M=4
02
Ideal Case
Y
¥ + + + +
M=2
0.1 |
(k=8, n=2)
0.0 L L L L L
0.0 01 0.2 03 04 0.5 0.6

Figure 4.4: Throughput per node for a 8-ary 2-cube network.

the previous chapter, we are now more interested in the results from another
extreme case, the 8-ary 2-cube network. Figure 4.4 illustrates the throughput
of a node (mean number of messages delivered per node per cycle) in the 8-
ary 2-cube network obtained from our model and the simulator. The dashed
line corresponds to an infinite buffered network, in which every message is
accepted if the network is not overloaded and every accepted message is routed
to its destination without deflection. We find that the throughput does not
degrade even if the network is overloaded. The probability of acceptance of
input messages can simply be obtained by dividing the throughput by the input

rate.

Figure 4.5 shows the mean delay as a function of the throughput per node,

where the curves are obtained from our model and the “dots” are from the sim-

93

30

(k=8, n=2) M=8

6.0 0.1 0.2 03

Y

Figure 4.5: Mean delay vs throughput per node for a 8-ary 2-cube network.

ulation. The ”last” point of each curve corresponds to the limiting throughput
in Figure 4.4. Note that, when the input rate is very large, the throughput of
the network with M = 8 is only about 15% larger than that of the network with
M = 4, while the mean delay of the network with M = 8 is almost twice as
large as that of the network with M = 4. From these two figures, we find that

the match between the model and the simulation results is very encouraging.

94

12

10

o

Buffer Size
-2

I (k=8, n=2)

0.0 0.1 0.2 0.3

Figure 4.6: The buffer size in a node which delivers 95% of the maximum

achievable power in a 8-ary 2-cube network.

4.4 Discussion

4.4.1 Optimal Buffer Assignment

In this section, we calculate the buffer size which maximizes the power of the
network system. Recall that the power of a queueing system is defined as its

throughput over its mean response time [Kle78].

Figure 4.6 plots, for a 8-ary 2-cube network with different input rates, the
area of buffer sizes which deliver a percentage (e.g., 95%) of the maximal achiev-
able power. We find that when the input rate is small, a small number of buffers
in a node is enough to approach the maximum achievable power. When the
input rate is large, a small number of buffers simply results in too much de-

flection which wastes the communication capacity. As buffer size increases, the

95

Buffer Size

Figure 4.7: The buffer size in a node which delivers 95% of the maximum

achievable power in a 4-ary 3-cube network.

probability of deflection decreases and the throughput grows, but it approaches
its maximal achievable power quickly. Further assignment of buffers cannot sig-
nificantly increase the throughput but does increase the queue length and the
delay. Thus, the power is also decreased. We find that assigning “2n” buffers
to a node is a very good choice for a wide rage of input rates. Figure 4.7 shows
a similar behavior for a 4-ary 3-cube network. Note that in these figures we are
only interested in the cases in which the input rate ranges in 0 < A < 2/(k—1),

where 2/(k — 1) is the ideal maximal throughput of a node.

4.4.2 Choice of Dimensions and Radixes

Networks with higher dimensions consist of more communication channels (or

links) than do lower-dimensional networks. Thus, given the constant channel

96

width (number of bits to be transmitted over a channel in parallel), the higher-
dimensional networks provide larger communication bandwidth than do the
lower-dimensional networks. However, the bandwidth of a VLSI computing
system cannot be increased arbitrarily. Dally [Dal90] defined bisection width
as the minimal total number of wires which must be cut to separate the network
into two equal halves. In general, the limitation on the bisection width imposes
bounds on the minimum layout area, allowable system size, and cost of the
network {Agr91]. To add more channels in the system, every channel must be
equipped with less wires. That is, the channel width of a higher-dimensional
network is less than that of a lower-dimensional network. Thus, the higher-
dimensional network will spend more time in transmitting a message than the
lower-dimensional network. A realistic comparison of networks with different

dimensions is to hold the bisection width constant [Dal90].

Given that the network is embedded in a plane, the bisection width of a
k-ary n-cube network with W-bit channels can be calculated as 2Wk™"!. To
hold the bisection width constant, the channel width of a k-ary n-cube network,
W(k,n), is given by -gc, where ¢ is a constant. In the following calculation, we
normalize to a Boolean n-cube network with one-bit channels. That is, c is
set to 1. Moreover, we assume the length of a message to be L bits. Thus,
the transmission time of a message between two neighboring nodes in a k-ary

n-cube network is

Tx = L/W(kan)
2L

We further assume that in each cycle, the time spent by a node to process

97

messages is Tp. Thus, the cycle time in a k-ary n-cube network is given by

2L
TP+TX=TP+T-

Clearly, given that the bisection width is held constant, the cycle time of a
higher-dimensional network is longer than that of a lower-dimensional network.
Since multiprocessor systems are usually physically close, we assume that the
propagation delay is negligible.

Define 3 as Tp/L, where L is the transmission time of an L-bit message in
a Boolean n-cube network with one-bit channels. A larger 3 corresponds to
longer node processing time and/or shorter messages. Thus, the cycle time of

a k-ary n-cube network is given by
2
To(k,n) = (ﬁ ¥ E)L.

Let « be the throughput (number of messages delivered per cycle time) per
node and T be the mean delay (in cycles), respectively. By taking the cycle
time of a Boolean n-cube network as a unit of {real) time, the cycle time of a
k-ary n-cube network is normalized as % units of time. Thus, we normalize

the throughput per node of a k-ary n-cube network as

_ B+
W= Yok

The mean delay is also normalized as

_ B2k

Ty —
N B+1

In the following discussion, we assume that every node in a k-ary n-cube net-
work is equipped with 2n buffers. Figures 4.8-4.10 show, for a network with

64 nodes, the normalized delay as a function of the normalized throughput.

98

Normalized Delay

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Throughput

Figure 4.8: Normalized delay as a function of the normalized throughput for a

network with 64 nodes when 3 = 0.

given that 3 = 0, 0.25, and 1, respectively. We find that, given 8 = 0 (al-
though it is impossible), the lower-dimensional networks perform better than
the higher-dimensional networks over a wide range of traffic loads. However, as
[grows, then the higher-dimensional networks perform better than the lower-
dimensional networks when the traffic loads carried by the network are moderate
to high. However, we realize that the lower-dimensional network is easier and

cheaper to design and manufacture than the higher-dimensional network.

99

(B=0.25) (k=8; n=2) (k=4; n=3)

(k=2; l'l=6)

Normalized Delay
F =N

0.0 0.2 0.4 0.6 08 1.0
Normalized Throughput

Figure 4.9: Normalized delay as a function of the normalized throughput for a

network with 64 nodes when G = 0.25.

4.5 Conclusions

In this chapter we developed an approximation for evaluating the performance
of a deflection routing algorithm for a very general class of networks called k-
ary n-cubes with finite buffers. We showed that the throughput of the network
does not degrade even when the network is full. We generalized our previous
observation that the near-optimal assignment of buffers in each node is “2n”
for the n-dimensional network. We realized that, in general, the choice of
the optimal network is difficult since the performance of the network is highly
dependent on the operation of the network and the traffic loads carried by the

network. Building a very high-dimensional network is usually not economical

100

(k=8; n=2) (k=4; n=3)

(k=2; n=6)

Normalized Delay
£

0.0 0.2 0.4 0.6 08 1.0
Normalized Throughput

Figure 4.10: Normalized delay as a function of the normalized throughput for

a network with 64 nodes when 3 = 1.

and may not even be possible. However, a network with a very low dimension

may not be feasible due to its limitation on communication bandwidth.

101

CHAPTER 5

Fault-tolerant Routing in Boolean n-Cube

Networks

5.1 Introduction

Although an interconnection network is usually operated in a well-protected
environment, faults may occur. When nodes or communication links fail, the
regularity of a Boolean n-cube network is destroyed and the original routing
algorithm presented in Figure 1.3 may no longer be applicable. For example,
in Figure 5.1, where faulty nodes are drawn as black dots, nodes 0110 and
0101 cannot communicate with each other via an optimal path since all the
optimal paths between these two nodes are blocked. (Recall that, based on the
original routing algorithm, processors can only communicate by transmitting
messages through an optimal path.) However, nodes 0110 and 0101 should be
able to communicate with each other via a non-optimal path through nodes
1110, 1100 and 1101. To build a reliable multiprocessor system, the presence of
fault-tolerant routing to ensure successful communications between any pair of
non-faulty nodes is essential. It is also important to keep the routing algorithm

as simple as possible.

Fault-tolerant routing can be achieved by employing the network with spare

nodes and links so that when some nodes or links are down, the network can

102

0001 @'}— 1001

1010 / \1011

0010

0101 1100 A 1101

0111 1110 \/ e

0110 1111

Figure 5.1: A Boolean 4-cube network with node faults.

be reconfigured such that the reconfigured network contains the same structure
as the original one [Ren86] [HLN87] [DH91]. Hence, the reconfigured network
is able to use the original routing algorithm. However, the drawbacks of these
approaches are that the number of faults to be tolerated is usually very limited

and the cost of tolerating multiple faults is high.

Fault-tolerant routing can also be achieved by equipping each node or each
message with information about the status of network (i.e., the locations of the
faults). Algorithms which require each node to know the global status of the
network have been reported in [CS89]. One can even assume that the surviving
part of the network has an irregular topology, in which case each node maintains
a routing table as used in networks such as the ARPANET [MW77] [Kle76).
However, as the network grows in size, the amount of storage space and time

needed to maintain the routing tables become prohibitive.

Since a number of faults in a richly-connected Boolean n-cube network may
not destroy its entire regularity, the fault-tolerant routing algorithms should

take advantage of the remaining topological regularity. Several algorithms re-

103

quiring each node to know only the status of its local components have also
been presented in (GS88] [LH88] [CS90a). These algorithms are based on the
depth-first search approach. With this approach, one first attempts to route
messages in the forward directions. When a message reaches a dead end, i.e.
no non-faulty neighbors in the forward directions, the current node sends the
message to a non-faulty node in the backward direction in hopes of routing the
message through another path. The limitation of this approach is that either
the number of hops traversed by a message may grow without bound [GS88] or

the total number of faulty components to be tolerated is restricted (e.g., less

than n) [LH88] [CS90a].

In particular, Chen and Shin [CS90a] developed a set of fault-tolerant rout-
ing algorithms which equip each message with a tag to keep track of the path
traveled so far, and, hence, avoid visiting a node more than once. To tolerate
more than n—1 faults, a more complicated procedure is required to guide back-
tracking when a message reaches a dead end. The drawbacks of this approach
are that the length of the messages is variable and the computation overhead
is not trivial. With their algorithms, to further guarantee that every message
is routed to its destination via a shortest path, every node must be equipped

with nonlocal status [CS90b].

In this chapter, we first evaluate the effect of faulty nodes on the performance
of a Boolean n-cube network. We then develop a set of fault-tolerant routing
algorithms for the Boolean n-cube network. Our approach to fault-tolerance
is to restore the regularity of a damaged network in order to keep the routing
algorithms as simple as possible. Basically, our algorithms work for any number

of faults as long as the network remains connected.

104

One way to restore the regularity of a Boolean n-cube network in the pres-
ence of node failures is to simply disable the nodes with more than one bad
neighbor. The remaining network is called a ”1-degraded subnet.” We develop
a very simple optimal-path routing algorithm for such a subnet. Although the
1-degraded subnet can easily be constructed, many non-faulty nodes may have
to be disabled. We further construct a “convex subnet” in which every pair of
surviving nodes is connected with at least one optimal path. We show that the
optimal-path routing algorithm also works for the convex subnet, and that only

a small number of non-faulty nodes need to be disabled.

To fully preserve the processing power of the network, we also developed a
two-level hierarchical fault-tolerant routing scheme without disabling a single
node. Here, a non-convex network is decomposed into a set of clusters; each
cluster is essentially a convex subcube. Each node maintains a small routing
table where each entry of the table corresponds to a destination cluster. Mes-
sages must be first routed to their destination clusters using the routing tables
and then routed to their destination nodes using the optimal-path routing algo-
rithm. Since no nodes or links are disabled, the rich connection of the network
is fully maintained. We show that the increase in the mean path length caused

by hierarchical routing is very small.

5.2 Degradation of Networks with Node Faults

Let us first present a simple queueing model to evaluate how the performance
of a network is degraded by node failures. In the development of the following
model, we assume that the failure rate is small and every pair of surviving

nodes is connected via an optimal path. Let each node fail independently with

105

001

co10

1101

0110

Figure 5.2: A cut in dimension 3. (Surviving links crossing the cut are shown

as heavy lines).

probability p. We also assume that the arrival of input messages to each node
follows a Poisson process with a rate of A messages per unit time; message
lengths are random and drawn independently from an exponential distribution.

Since a link survives if and only if both nodes at its ends survive, we have

Prob[A link survives.] = (1 — p)

By “cutting” a Boolean n-cube network in a particular dimension as shown
in Figure 5.2, where the network is cut in dimension 3, we show that the number
of links crossing a cut is 2"'. Thus, the expected number of surviving links

crossing a cut is given by

211 -p)* (5.1)

For example, in Figure 5.2, there are 5 surviving links, which are shown as

heavy lines, crossing the cut.

Note that the expected number of surviving nodes in the network is 2"(1—p).

106

We further assume that messages are uniformly destined to all other surviving

nodes in the network. Thus,

Jay . . .
g = traffic intensity from a given source

to a particular destination

A

From Figure 5.2 we note that every message which is generated from a
node in the left subcube which is destined to a node in the right subcube must
travel over one of the surviving links in order to cross the cut. If the message
travels along an optimal path between these two nodes, the message must travel
across the cut exactly once. Also, we assume that the traffic crossing this cut
is perfectly balanced. Since the average number of surviving nodes in each
subcube is 2*'(1 — p) and each will send ¢ units of traffic to every other
surviving node in the network, each node will send ¢[2"~!(1 — p)] units of traffic
across each cut per unit of time. There are 2" !(1 — p) nodes in each subcube

doing this, and traffic is balanced on each link. Thus, we have

p = Traffic load per channel
21 - p))’o

27-1(1 — p)?
A
= T (5.3)

Here, we assume that a link is split into two unidirectional channels in opposite

directions. Obviously, this model yields an optimistic bound.

We apply Kleinrock’s Independence Assumption [Kle76] which is often used
in the delay analysis of communication networks. This assumption states that

each time a message is received at a node within the network, its transmission

107

time is chosen independently from an exponential distribution. We assume
the mean transmission time of a message equals one unit of time. Thus, each
channel is modeled as an M/M/1 system with Poisson arrivals at a rate A/[2(1 - *
p) —2'""] and with an exponential service time whose mean is one unit of time.

In order for this system to be stable, we require that p < 1, that is,

A< 2(1—p) -2t (5.4)

Let I' be the throughput of the network. Thus,

I = A2%1-p) (5.5)

< 22"1-p)—1{1-p) (5.6)

where 2[2"(1—p)—1](1—p) is clearly the mean network communication capacity.

The mean message delay is then given by [Kle76]

L1 o,
T = -2
1;1“1—9
A
- L{ - } p)-2 7" (5.7)
A(1=-p) | |1 - saa

where L is the number of surviving channels in the network (L = 2" '(1—p)?2n).

Thus,

_ n(l - p)
T= 2(1—p) — 21" = X’ (58)

For n >> 1, we obtain the following approximations:

A

N ———— 5.9)
=7 (

P

< 2"Y1-p)? (5.10)

108

25

+ Flow Dev. (numerical)

wt ™ Optimistic (analytical)

)

=15

©

a

=

S 10

=
5 o
° (n=4)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

A

Figure 5.3: Minimal achievable delay of a Boolean 4-cube network with two

different failure rates.

n(l - p)

Tz——---——~——2(l_p)_/\.

(5.11)

In Figure 5.3 we show the mean message delay obtained from our optimistic
model for a Boolean 4-cube network with two different failure rates. We also
ran a flow deviation program [FGK73| to find the minimal achievable delay. We

find that our assumptions are appropriate if failure rates are small.

Moreover, as we have used the technique in previous chapters, we define
power as the throughput of the network over the mean message delay [Kle79}.
A system is said to be operating at an optimal point if the power at that point

is maximized. For n >> 1, we find that the power is maximized when A=1-p

109

which is equal to half the maximum allowed throughput per node, as found in

[KleT9].

5.3 Routing in 1-Degraded Subnets

In this section we describe an algorithm to restore the regularity of a damaged
Boolean n-cube network which contains only node failures. In fact, in an inter-
connection network, since nodes (or processors) are more complex than links,
nodes have higher failure rates than links. It is assumed that a faulty node and
all links connected to it are effectively removed from the network. Thus, to con-
sider a link failure between two non-faulty nodes, one may simply disable one
of these two nodes so that the faulty link is also removed. We will release this

assumption in the next section. We further make the following assumptions:

¢ The remaining network is connected.

o Each node knows the status of its neighboring nodes. The detection of
the fault status of a neighboring node can be achieved by requiring each
non-faulty node to send a “live” message to all its neighboring nodes
periodically. When a node does not receive such a message for a time

period, the node knows that this neighboring node has been down.
® A node cannot transmit a message to a faulty neighboring node.

o If a message is found to be destined to a faulty neighboring node, the
current node discards the message and then informs the source node of
the fact. In the following discussions, we simply assume that a message

cannot be destined to a faulty node.

110

5.3.1 The k-Degraded Subnet

A network is said to be k-degraded if every surviving node in the network has
at most k “bad” (to be discussed) neighbors. A damaged network can easily
be made k-degraded in a distributed manner as follows: Every surviving node
(or non-faulty node initially) has a list which gives the status of its neighbors.
Every surviving node keeps checking its list and disables itself if it has more
than k “bad” neighbors; in this case, it must inform all its surviving neighbors
of the change in its status. The disabling process stops when no nodes further
change their status. Here, during each step of the iteration, the “bad” nodes
include all faulty nodes and the nodes which have been disabled in previous
iterations. This disabling process can be executed by all nodes in parallel. We
call the remaining network a “k-degraded subnet.” In the following discussion,

we will focus on 1-degraded subnets.

A similar algorithm is found in [LH88|, in which the communication com-
plexity of the algorithm was shown to be O(n3). Given that a node has the
capability of simultaneously transmitting and receiving multiple messages to
and from its neighbors, then the time required by the algorithm to converge is
O(n®). It has also been shown that the least number of faulty nodes needed to

disable the entire Boolean n-cube network is [n/2 + 1] [LH88].

5.3.2 The Optimal-path Routing Algorithm

We now present a very simple adaptive routing algorithm for 1-degraded sub-
nets. We let neighbor_status be an n-bit binary number in which a bit is set
to one if its corresponding neighbor is surviving. Otherwise, the bit is reset to

zero. This routing algorithm is shown in Figure 5.4, where “&”” is a bit-wise

111

When a message is received,

if (header=0)
Send the message to the local processor.

else
valid_channels <- header & neighbor_status.
Randomly select a 1-bit from valid channels.
Change the corresponding 1-bit in the Aeader to O.
Send the message over the selected channel.

Figure 5.4: The optimal-path routing algorithm for 1-degraded subnets

AND function. Note that this algorithm is very simple and requires each node
to know only its neighboring status. This algorithm is called the optimal-path
routing algorithm since every message of the network is routed to its destination

along an optimal path.

The proof that this routing algorithm works for 1-degraded Boolean n-cube
subnets is as follows: If a node receives a message with more than one one-bit in
its header, since every surviving node has at most one bad neighbor, the node
surely can find a valid dimension (or channel) to transmit the message. If the
message has only a single one-bit in its header, then the corresponding neighbor
must be surviving. Otherwise, the message is destined to a faulty node; in this

case, the message must be discarded.

5.3.3 Discussion

This approach works well in the situation where a whole cluster of nodes has
been “bombed out.” As an example of such spatially correlated faults, one

may consider a power-supply failure which disables the entire cluster of nodes

112

% Surviving Nodes

"0.00 0.05 0.10 0.15 0.20

Figure 5.5: Percentage of surviving nodes in the 1-degraded subnets.

supported by it. Another example is that of an enemy projectile scoring a hit

on such a network interconnecting processors on a ship, aircraft, tank, etc.

The disadvantage of this approach for constructing 1-degraded subnets is
that, in a large Boolean n-cube network with a large failure rate, since every
node has a large number of neighbors, the probability that a node has more than
one bad neighbor can be large. A disabled node also increases the probability of
its neighbors being disabled. As a result, many nodes may have to be disabled;
hence, the computational power of the system is significantly reduced. Figure
5.5 shows, for networks of different sizes, the percentage of nodes that remain
after the disabling iteration in the simulation settles down, given that node

faults occur independently and randomly with a given probability.

113

5.4 Routing in Convex Subnets

In this section we develop a heuristic algorithm to construct a “convex” subnet
in an attempt to save more non-faulty nodes than in the 1-degraded subnet. A
Boolean n-cube network (or subnet) is said to be convex if and only if every
pair of surviving nodes is connected with at least one optimal path. (Here,
we borrow the word “convex” from geometry, where a contour is convex if and
only if every point inside this contour can be “seen directly” from any other
points of the contour.) We show that the optimal-path routing algorithm for

1-degraded subnets also works for convex subnets.

5.4.1 The Convex Subnet

Boolean n-cube networks have the following topological properties: A node
and its k links can uniquely address a k-subcube which contains the node and
these links, where 0 < k < n. Note that such a k-subcube is the minimal
subcube containing the node and the links. For example, in a Boolean 4-cube
network, the node 0110 and the links in dimensions 0 and 1 address the subcube
01XX. Moreover, any two nodes which are k hops away in distance can uniquely

identify a Boolean k-subcube.

We assume that there is a central control unit which collects information
from every surviving node of the network and makes decisions about how to
disable a node. Here is a heuristic algorithm for constructing a convex subnet:
We let Listfi] be a check-list which contains all surviving nodes with 4 bad links.
Here, the “bad” links include the faulty links and the links connecting to the

faulty and disabled nodes. Nodes on Listfi/ have higher priority for disablement

114

than any other nodes on Listfj/, if ¢ > j. That is, the node with the most bad

links (i.e., the worst connection) has the highest priority of being disabled.

We choose a node, say node «, from the highest priority non-empty check-
list, say in list/k/, and identify the k-subcube containing node a and all its k bad
links. For example, in Figure 5.1, node 0110 and its bad links in dimensions 0, 1,
and 2 identify the 3-subcube 0XXX. Tt is clear that without routing through the
links outside the subcube, node « cannot communicate with any other surviving
nodes of the subcube. We choose to disable the smaller side of the subcube.
Thus, if there are more than two surviving nodes in the subcube, node a is
disabled. If there are exactly two surviving nodes in the subcube, we choose to
disable either one of them which has less bad nodes in its neighboring area. If
node « is the only surviving node in the subcube, it is safe and removed from
the check-list. A safe node may be brought into the check-lists again if any of
its neighbors is disabled later. The algorithm stops when every surviving node
is safe. Our simulations show that the number of surviving nodes remaining in
the convex subnet constructed by our heuristic algorithm is very close to that

obtained by an exhaustive search.

Figure 5.6 illustrates a convex subnet constructed for the damaged Boolean
4-cube network as shown in Figure 5.1. Note that all links connected to a
faulty node or a disabled node are also disabled. To consider link failures, in
Figure 5.7, we show a convex subnet constructed for a network which contains
a faulty link between nodes 1001 and 1101. Clearly, our algorithm works for
link failures.

115

0000 co01 1000

.//—

0010 0011 1010

0100 010 1100 1101

0111 1110

@ Faulty Nodes Disabled Nodes (O Surviving Nodes
—— Disabled Links we Surviving Links

Figure 5.6: A convex subnet constructed for the damaged Boolean 4-cube net-

work as shown in Figure 5.1.

5.4.2 The Routing Algorithm

We now prove that the optimal-path routing algorithm developed in the pre-
vious section for 1-degraded subnets also works for convex subnets. Suppose
that the destination node of a message is k hops away from the node where
the message is currently residing. A k-subcube can be constructed to contain
the current node and the destination node. Since the current node and the
destination node are connected via at least one optimal path, the current node
has at least one surviving link leading to the destination node. Such a surviving
link corresponds to a valid dimension of the message. Thus, the current node
can always find a valid dimension to transmit the message. Applying the same
argument to every intermediate node, we show that every message in a convex

subnet is forwarded to its destination by our optimal-path routing algorithm.

116

0010

0110 —

= = =Faulty Links =~ ——Disabled Links === Surviving Links
@ Faulty Nodes Disabled Nodes O Surviving Nodes

Figure 5.7: A convex subnet constructed for a network containing a faulty link.

5.4.3 Discussion

Figure 5.8 shows the percentage of nodes which remain in the convex sub-
net, given that nodes initially fail independently and randomly with a given
probability. Comparing this with the percentage of nodes which remain in the
1-degraded subnet, we find that the number of surviving nodes is dramatically
increased. In Figure 5.9, we compare these two disabling schemes by showing

the percentage of surviving nodes in a Boolean 8-cube network.

It is very difficult to analytically evaluate the performance of arbitrary net-
works in a dynamic traffic environment. To verify the effectiveness of our rout-
ing algorithm, we extensively simulated the optimal-path routing algorithm in
the convex subnet. We also ran a flow deviation program to find the minimal
achievable delay. These results are also compared with the optimistic bound

obtained in Section 5.2. Figure 5.10 shows, for different input rates, the mean

117

% Surviving Nodes

Figure 5.8: Percentage of nodes remaining in the convex subnets.

message delay in the convex subnet of a Boolean 6-cube network. The results
with 95% confidence shown here were from 100 randomly generated patterns,
each containing 6 faulty nodes. We find that the mean message delay is very

close to the minimal achievable bound, which is also very close to the optimistic

bound.

5.5 Routing in Two-level Hierarchical Networks

In this section, without disabling any non-faulty node, we restore the regularity
of a damaged Boolean n-cube network by decomposing the network into a set
of clusters; each cluster is essentially a subcube with the convexity property.

i.e., every pair of the surviving nodes of a cluster is connected with at least one

118

1.0

0.8

0.6

0.4

% Surviving nodes

—®— nonfaulty

02 F 0O convex
" (n=8) —&— 1-degraded
0.0 * - Loy £+ 3 .
0.00 0.02 0.04 0.06 0.08 0.10

Figure 5.9: Comparison of percentage of surviving nodes in a Boolean 8-cube

network.

optimal path. A two-level hierarchical routing algorithm, which requires every

node to maintain a small routing table, is then developed.

5.5.1 Network Decomposition

In this section, a surviving node is said to be unsafe if the minimal subcube
which contains the node and its all bad links has more than one surviving node.
Recall that the bad links include the faulty links and the links connecting to
the faulty nodes. Clearly, a node without any bad link is safe. A cube is not

convex if it contains at least one unsafe surviving node.

A non-convex Boolean n-cube network is decomposed into a set of clusters

119

20

+ Simulation (95% Conf.)

Min. Achievable Delay

\

Optimistic Bound

[
(=]
L]

Mean Delay

(n=6)

Figure 5.10: Mean delay for the convex subnets of the Boolean 6-cube networks

with 6 faulty nodes.

as follows: For all unsafe surviving nodes, the central control unit counts the
number of bad links in each dimension. The central control unit then chooses
the dimension having the most bad links and cuts the network into two clusters
along this dimension; each cluster is an (n — 1)-subcube. The algorithm for
decomposing a Boolean n-cube network is shown in Figure 5.11. A subcube
needs to be further decomposed if it is not convex.

As an example, let us examine the Boolean 4-cube network with 5 faulty
nodes as shown in Figure 5.1. Clearly, the network is not convex. Table 5.1

shows the bad link dimensions for each unsafe surviving node. In this example.

dimension 1 has the the maximum number of bad links (i.e., 5). We decompose

120

for i=0 to n-1, bad_links[i] <- 0.
for each unsafe surviving node of the cube,
for each bad link of the node, say in dimension ¢,
bad_links{i] = bad_links{i] + 1.
if (bad links{i] =0, foralli) stop.
else
Choose a dimension & such that, for all i,
bad_links{k] >= bad_links{i].
Decompose the cube into two subcubes in dimension &

Figure 5.11: The algorithm for decomposing a Boolean n-cubenetwork.

the network along dimension 1. As a result, the network is separated into
two subcubes XX0X and XX1X. In this case, fortunately, both of these two
subcubes are convex. Thus, the decomposition process stops. The two-level

hierarchical network is shown in Figure 5.12.

5.5.2 The Two-level Hierarchical Routing Algorithm

Every surviving node maintains a cluster routing table with one entry for each
destination cluster. Each entry gives the address of a destination cluster, the
best outgoing channel for that cluster, and a relative weight (usually delay is
used as the weight). Any algorithm (e.g., the ARPANET-like algorithm) can

be used to maintain the cluster routing table.

Messages must first be routed to their destination clusters. When a node
receives a message, if the destination node of the message does not belong
to the cluster in which the node resides, the message is sent to a neighbor

based on the node’s cluster routing table. Otherwise, the message is further

121

node | bad dimensions
0000 12

0001 13

0101 01

0110 012
1011 13

Table 5.1: Bad dimensions for the unsafe surviving nodes of the Boolean 4-cube

network as shown in Figure 5.1.

122

0101
1101

1100

Cluster XX0X

Figure 5.12: A two-level hierarchical structure of the Boolean 4-cube network

as shown in Figure 5.1.

routed to its destination node by using the optimal-path routing algorithm. To
exploit the possible multiple paths from one node to another and balance the
network’s traffic, the cluster routing tables should be updated periodically. We
may further improve the performance by providing multipath routing, where
each entry of the routing table gives multiple choices of outgoing channels. Also,
after a message has arrived at its destination cluster, if there exist multiple valid
dimensions, the message should be transmitted along the most lightly loaded

outgoing channel.

5.5.3 Discussion

The two-level hierarchical routing approach has the following advantages:

123

e No good links or nodes are eliminated. The processing power of the non-

faulty part of the network is fully maintained.

o The number of clusters generated by our decomposition algorithm is typi-
cally small. The size of the routing table is significantly reduced from the
ARPANET-like routing table. Given that there are only node failures,
the number of clusters cannot exceed the number of faulty nodes in the
network. The reason is that every cluster must contain at least one faulty
node. Otherwise, this cluster must be combined with another cluster to
form a larger cluster. For example, the mean number of clusters of a
Boolean 6-cube network with a given number of faulty nodes is shown in

Figure 5.13.

e The optimal-path routing algorithm developed for 1-degraded subnets
works for each cluster. Ouly the message to be sent to another cluster

needs to compute its next node by using the routing table.

¢ By carefully maintaining the routing table, the number of hops traversed

by a message is bounded.

e The increase in the mean path length caused by hierarchical routing is
very small. In Figure 5.14, for a Boolean 6-cube network, we show the
mean path length of the two-level hierarchical networks and that of the

original networks.

124

16
1 (n=6)

12 |

Clusters

1 A

0 2 4 6 8 10 12 14 16

Faulty Nodes

Figure 5.13: Mean number of clusters generated by our decomposition algorithm

for a Boolean 6-cube network.

5.6 Conclusions

In this chapter, we first developed a queueing model to evaluate the degradation
of a damaged Boolean n-cube network with node faults. We next developed
an adaptive fault-tolerant routing algorithm for 1-degraded subnets. This algo-
rithm is very simple; it makes routing decisions based only on the node’s local
status. This algorithm routes every message to its destination via an optimal
path.

We further exploited the remaining regularity of a damaged Boolean n-cube
network and developed a heuristic algorithm to construct a convex subnet in

which every pair of surviving nodes is connected with at least one optimal path.

125

4.0

35 F

10 === — =353

25 F

Mean Path Length

1.0

—0— Two-Level Hierarchical Network
—®— Original Network (n=6)

0-0 A 1 2] A L A L
0.00 0.04 0.08 012 0.16 0.20

0.5 |

Figure 5.14: Comparison of the mean path length of the two-level hierarchical

network and the original network.

We showed the algorithm used in a 1-degraded subnet also works for a convex
subnet. Only a small number of non-faulty nodes must be disabled. The perfor-
mance of the optimal-path routing algorithimn in convex subnets was studied. We

found the mean message delay is very close to the minimal achievable bound.

To preserve all the non-faulty nodes in the network, we also developed a
two-level hierarchical routing scheme. A damaged Boolean n-cube network is
decomposed into a set of clusters; each is essentially a convex subcube. Every
surviving node in the network is required to maintain a small routing table.
A two-level hierarchical routing algorithm was then developed. Without dis-

abling a single non-faulty node, this approach maintains the network’s rich

126

connections. We showed that the increase in the mean path length caused by

hierarchical routing is very small.

127

CHAPTER 6

Conclusions and Future Research

This dissertation proposed a deadlock-free routing algorithm for the k-ary n-
cube network with finite buffers and several fault-tolerant routing algorithms for
the Boolean n-cube network, and analyzed their performance via mathematical

models, approximations, and simulation.

Chapter 2 presented several basic models for evaluating the performance of
the Boolean n-cube network. Performance bounds were also examined. We
showed that the mean delay of our routing algorithm with random message

assignment is close to an optimistic lower bound.

In Chapters 3 and 4, we developed and analyzed a deadlock-free routing
algorithm with deflection for k-ary n-cube networks with finite buffers. We
intensively studied the Boolean n-cube network in Chapter 3. With our al-
gorithm, all messages entering the network are delivered to their destination
with loss or deadlocks. We showed that the throughput of the network never
degrades, and that a small number of buffers in a node is sufficient to deliver
good performance. We generalized our model in Chapter 4 and found that the
assignment of 2n buffers in a node is a good approximation to the “optimal”
choice for a k-ary n-cube network. We also analyzed the networks with var-
ious combinations of dimension n and radix k. We found that the choice of

the optimal network is difficult since the performance of the network is highly

128

dependent on the operation of the network and the traffic loads carried by the
network. Building a very high-dimensional network is usually not economical or
may not be possible. However, a network with a very low dimension is limited

by its communication bandwidth.

Several fault-tolerant routing schemes based on the idea of restoring the
regularity of a damaged Boolean n-cube network were developed in Chapter 5.
One way to restore the regularity of a network in the presence of only node
failures is to simply disable the nodes with more than one bad neighbor. The
remaining network is called a ”1-degraded subnet.” A very simple optimal-
path routing algorithm was developed for such a subnet. This approach works
well in the situation where a whole cluster of nodes have been "bombed out.”
However, many nonfaulty nodes may have to be disabled. We further developed
a heuristic algorithm to construct a “convex subnet” in which every pair of
surviving nodes is connected with at least one optimal path. This approach
considers both node and link failures. We show that the optimal-path routing
algorithm also works for the convex subnet, and that only a small number of
nonfaulty nodes need to be disabled. We also developed a two-level hierarchical
fault-tolerant routing scheme without disabling any nodes. With this approach,
the rich connectivity of the network is fully maintained. We showed that the
increase in the mean path length caused by hierarchical routing is typically very

small.

6.1 Future Work

In this section, we describe a few possible future research areas.

129

6.1.1 Virtual Cut-through with Deflection

The virtual cut-through switching scheme was first proposed by Kermani and
Kleinrock in 1979 [KK79]. In this switching scheme, as soon as the header
of a message is received by an intermediate node, the node can determine on
which channel to transmit the message. If the selected channel is free, then the
message can be sent out of the node before it is completely received. Hence, the
delay due to unnecessary buffering in front of an idle channel can be avoided.
A message is buffered in an intermediate node only when the selected channel
is busy.

It is interesting to analyze the virtual cut-through switching scheme for
the Boolean n-cube network with the deflection technique. In the following
discussion, messages are assumed to be of fixed length. We further assume that
a message is divided into m + 1 segments; the first segment is the header of
the message. Moreover, a cycle of time is divided into n + m mini-cycles. A
mini-cycle consists of the time to process and transmit a message segment to

its neighbor.

The routing algorithm works as follows: The major role of the first n mini-
cycles is to establish the connection. In each of the first n mini-cycles, say &,
every node examines all the headers it has to see if there is any message with
the kth bit set, and, if there is any, to move one of them along the kth outgoing
channel of the node. Whenever a header is successfully assigned to a channel,
the rest of the message follows the header and moves to the neighbor in the

following m mini-cycles.

The deflection technique is used when all buffers are full. Let M be the buffer

size in each node. In the kth mini-cycle, 0 < k < n, if there are M headers

130

inside a node and the node cannot find any bit set in the k-th dimension, the
node has to force out one message across the k-th channel. In this case, the

message is deflected.

We note that every channel can only be requested by a node once in a cycle.
The k-th channel of a node must be free before the k-th mini-cycle. Thus, in
each of the first n mini-cycles, each node has the potential to send a header
to its neighbor along the corresponding channel. However, the node cannot
send headers to its neighbors after the first n mini-cycles even if the node finds
some free output channels. Otherwise, 2 node might be full and use up all its
channels after the first n mini-cycles. In this case, a message from a neighbor
would be dropped which is not desirable. Thus, the last m mini-cycles are solely

for transmission.

When the network is heavily loaded, messages are likely to be blocked in
intermediate nodes and deflected on a longer path. Since the virtual cut-through
switching scheme consists of ' + n mini-cycles in a cycle, its cycle time is
longer than that of the store-and-forward scheme which consists of only m + 1
mini-cycles. Thus, when traffic loads are high and messages are short (i.e. m
is small), the virtual cut-through scheme can perform worse than store-and-
forward. The development of a model to analyze the performance of the virtual
cut-through switching scheme with deflection in k-ary n-cube networks would

be of interest.

6.1.2 Communication Locality

Our performance models assumed that the traffic is uniformly distributed over

the network. However, communication locality may exist and, if so, could be

131

exploited so that the performance of the multiprocessor systems could be im-
proved. In general, communication locality depends on several factors such as
the characteristics of the application algorithm, the interconnection network,
the compiler, and the operating system. Both the throughput and latency of
the networks can be significantly improved if communication locality can be
exploited. One of the reasons why the lower-dimensional networks perform
worse than the higher-dimensional networks is that the mean distance between
two nodes in the lower-dimensional networks is larger than that in the higher-
dimensional networks. By exploiting communication locality, we may signifi-
cantly improve the performance of a low-dimensional network. We would like to

see how the choice of the optimal interconnection network is affected by locality.

6.1.3 Dynamic Restoration of Regularity

It is likely that a nonfaulty node goes down or a faulty node is repaired and
return to service after the convex subnet has been created. Clearly, reconstruc-
tion of a new convex subnet based on the original one can be easier and faster
than reconstruction without this information. We expect that the run-time re-
constructed one keeps as many nonfaulty nodes as possible. The reconstruction
of a two-level hierarchical network is also interesting. A faulty node may further
separate a cluster into two clusters, and a repaired node may result in the join
of the two clusters. In both case, the two-level hierarchy and the routing table

in each node must be updated.

132

6.1.4 Fault-tolerant Routing for k-Ary n-Cube Networks

Our fault-tolerant routing algorithms for Boolean n-cube networks exploit the
network’s topological properties. Although the concept of restoring the regu-
larity of a damaged network works very well for the Boolean n-cube networks,
these algorithms cannot be directly applied to k-ary n-cube networks. For ex-
ample, in Figure 4.1(b), node (1,2) has no obvious way to send messages to node
(1,0) if node (1,1,) is faulty. We need to develop a general rule for restoring the

regularity of a damaged k-ary n-cube network.

6.2 Final Remarks

The choice of the optimal interconnection network for a multiprocessor is highly
sensitive to the assumptions about the operation of the network, the constraints
that apply to the design, and the applications. We have provided several models
and algorithms to understand and improve the performance of interconnection

networks, but there remains much work to be done.

133

APPENDIX A

Search for Zeroes in the Optimistic Model

In this Appendix, we prove that there are exactly n simple zeroes inside and

on the closed contour |z2| = 1 and one zero in |z| > 1 for the denominator of

Equation (2.66) in Section 2.5. We assume that A > 0. Let

and

where

and

Let

£@) = (1-a)(pz + 9", (A1)

g(z) = 2" (1— az), (A.2)
p=2(d-1),
g=1-p

z2 = (1+8)cosf + i (1 +) sinb,

where § > 0 is sufficiently small. We then have the following equations:

"l

|2

1 — az|

(1+6)" s
i1 — a1+ 6)cost — ia{l+ &) sind|
[(1 - Q(l + 6) C039)2 + (a(]_ +6) 3in9)2]1/2

[1 +a®(1+6)° — 2a(1 + (5)c039]”2

134

> 1 - a(l+6) (A.4)
and
{pz+ " = |pz+gql
= |p(1+6)cosf + g+ ip(1+ 6) sind|"

= [(p(1+5) cosf + q)2 + (p (1+5) Sing)g]nﬂ

- [p2(1 +6)% + ¢ + 2pg(1 +6)cost9]n/2
< [p(1+6) + q]°
= (1+pé)" (A.5)
We want to show, when § > 0 is sufficiently small, that
(1+8)" [1-a(1+68)] > (1-a)(l+ps)"
Let

hiz) = Q+2)" [1—e(l+2)] — 1—-0a)(1+px)". (A.6)

Obviously,
h(0) = 0. (A.7)

Differentiating Equation (A.6), we have
E(z) = n(1+2)"" - an+ DA +2)" — (1 - a)np(l +pz)" .

Replacing « and p by 1/(1+ A) and A(d — 1)/n, respectively, and letting x = I,

we have

RY0) = n - (n+Da — np(l —a)

A A 1
= -ty - - Uy
1
= T A
> 0. (A.8)

135

From Equations (A.7) and (A.8), we have
h{6) > 0, (A.9)
where ¢4 is sufficient small and § > 0. That is,
(1+8)" [1-a(14+8)] > (1-a)(l+ps)"
Therefore, given that z = (1 + §)cos@ + i(1 + 6)sinf, we have the following

relations:

lg(z)] = [2"(1 - oz)|
= |2"[(1 - az)|
> (1+468)" [1-a(l1+46)]
> (1—a)(1+ pd)"
> (1-a)lpz+q
= |-(1-0)pz+q)"

= |/(2)| (A.10)

We may now apply Rouche’s theorem [Tit39], which states that if f(2) and g(2)
are functions of z, analytic inside and on a closed contour C, and if |f(2)] <
lg(2)| on C, then g(z) and ¢(z) + f(z) have the same number of zeroes inside
C. In our case, the contour C is |z| = 1+ 4, for a sufficiently small § > 0. But,
g(z) has exactly n zeroes at z = 0 and a zero at z = 1/a. We note that since
a = A/(1+ A), thus 1/a = 1+ 1/X. Also, since A < 2 for the system to be
stable, we can always find a sufficiently small § > 0 such that {1+ 6} < 1/c.
That is, z = 1/« is a zero outside the circle |2| = 1. Therefore, f(z) + g(z) has

exactly n zeroes inside and on the closed contour |z| = 1 and one zero outside

136

the contour. We let z = 0, identified by 2y, be a zero for f(z) + g(z), and let

other zeroes inside and on the contour |z| = 1 be z;, where j = 1,2,...,n — 1.

We next prove that all the zeroes 2y, 21, ..., 2, are simple. For if it were

not so, we should have, for some z,
Fl—az) = 1-oa)(pz+¢)°

and

nz" ! — a(n+1)2" = (1 - a)np(pz +¢)" .

After some calculations, we find that such a z must satisfy the equation
paz® + (n+ l)gaz - ng = 0. (A.11)

Let

b = (n+ l)go
¢ = —ng.

One of the zeroes for Equation (A.11) is

' —-b + vb% — 4ac
2a ‘

F4

If 7 <1, then

b? — dac < (2a + b)?

Thus,

a+b+c>0

Replacing a, b, and ¢ by pa, (n+ 1)qe, and —ng, respectively, we need

pa+ (n+1)go + ng>0

137

That is,

a>ng(l —a) (A.12)

We further replace o and ¢ by A/(1 + A) and 1 — A(d — 1)/n, respectively.
To satisfy Equation A.12, we need Ad > n. This is in contradiction to our
requirement of the system being stable. Thus, we have that every 0 < z; < 1is

simple.

Now, let
s —b = b —dac

&= 2a

Obviously, 2” < 0. If 2” > —1, then we need

b —dac < 4a® — dab + B

< 4a® + 4ab + b

But we have shown that 6% — dac > 4a® + dab+ b%. Thus, each -1 < z, < 0 is

also simple.

138

REFERENCES

[Agr9l] A. Agrawal, “Limits on Interconnection Network Performance,” IEEE

[APS89)

[AS88]

[BA84)

[Bar64]

Transactions on Parallel and Distributed Systems, vol. 2, pp. 398-412,
October 1991.

S. Abraham and K. Padmanabham, “Performance of Direct Binary
n-Cube Networks for Multiprocessors,” IEEE Transactions on Com-
puters, vol. C-38, pp. 1000-1011, July 1989.

W. C. Athas and C. L. Seitz, “Multicomputers: Message-Passing Con-
current Computers,” IEEE Computers, pp. 9-24, August 1988.

L. N. Bhuyan and D. P. Agrawal, “Generalized Hypercube and Hy-
perbus Structures for a Computer Network,” IEEE Transactions on
Computers, vol. C-33, pp. 323-333, April 1984.

P. Baran, “On Distributed Communication Networks,” IEEE Trans-
actions on Communication Systems, Vol. CS-12, pp. 1-9, March 1964.

[BBG87] J. Balzewicz, J. Brzezinski and G. Gambosi, “Time-Stamp Approach

[Bor88]

[BPS9)

to Store-and-Forward Deadlock Prevention,” IEEE Transaction on
Communications, vol. COM-35, pp. 490-495, May 1987.

S. Borkar et al., “iWarp: An Integrated Solution to High-speed Parallel
Computing,” in Proceedings of Supercomputers 88, November 1988,

H. G. Badr and S. Podar, “An Optimal Shortest-Path Routing Policy
for Network Computers with Regular Mesh-Connected Topologies,”
IEEE Transactions on Computers, vol. 38, pp. 1362-1371, October
1989.

[CBN81} W. Chou, A. W. Bragg and A. A. Nilsson, “The Need for Adaptive

[CS89]

Routing in the Chaotic and Unbalanced Traffic Environment,” IEEE
Transactions on Communications, vol. COM-29, pp. 481-490, April
1981.

M. S. Chen and K. G. Shin, “On Hypercube Fault-Tolerant Routing
Using Global Information,” in Proceedings of the Fourth Conference on
Hypercube Concurrent Computers and Applications, pp. 83-86, March
1989.

139

[CS90a)

(CS90b)

[Dalg9]

[Dal90]

[DHO1]

[DS87]

[Fen81)

M. S. Chen and K. G. Shin, “Depth-First Search Approach for Fault-
Tolerant Routing in Hypercube Multicomputers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 1, pp.152-159, April 1990,

M.-S. Chen and K. G. Shin, “Adaptive Fault-Tolerant Routing in Hy-
percube Multicomputers,” IEEE Transactions on Computers, vol. 39,
pp- 1406-1416, December 1990.

W. J. Dally st al., “The J-Machine: A Fine-Grain Concurrent Com-
puter,” In Proceedings of IFIP Congress, 1989.

W. J. Dally, “Performance Analysis of k-ary n-cube Intercohnection
Networks,” IEEE Transactions on Computers, vol. 39, pp. 775-785,
June 1990.

S. Dutt and J. P. Hayes, “Designing Fault-tolerant Systems Using
Automorphisms,” Journal of Parallel and Distributed Computing, vol.
12, pp. 249-268, 1991. '

W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks,” IEEE Transactions on Com-
puters, vol. C-36, pp. 547-553, May 1987.

T. Feng, “A Survey of Interconnection Networks,” IEEE Trensactions
on Computers, vol. C-30, pp. 12-27, December 1981.

[FGK73] L. Fratta, M. Gerla, and L. Kleinrock, “The Flow Deviation Method -

[FKT71]

[GS88]

[HB84]

[Hil85]

An Approach to Store-and-forward Communication Network Design,”
Networks, vol. 3, pp. 97-133, 1973.

G. L. Fultz and L. Kleinrock, “Adaptive Routing Techniques for Store-
and-forward Computer Communication Networks,” in Proceedings of
the International Conference on Communications, Montreal, Canada,
pp. (39-1)-(39-8), June 1971.

J. M. Gordon and Q. F. Stout, “Hypercube Message Routing in the
Presence of Faults,” in Proceedings of the Third Conference on Hyper-
cube Concurrent Computers and Applications, pp. 318-327, January
1988.

K. Hwang and F. Briggs, Computer Architecture and Parallel Process-
ing, McGraw-Hill, New York, 1984.

W. D. Hillis, The Connection Machine, MIT Press, 1985.

140

[HM89]
[Int85]
[Haj91]

[HLN87]

[JH8Y]

[KK77]

(KK79]

[(Kle75]
(Kle76]

[Kle78]

[Kle79]

(KR8]

J. P. Hayes and T. Mudge, “Hypercube Supercomputers,” Proceedings
of the IEEE, Vol. 77, pp. 1829-1841, December 1989.

Intel Scientific Computers, iPSC User’s Guide, No. 175455-001, Santa
Clara, August 1985.

B. Hajek, “Bounds on Evacuation for Deflection Routing,” Distributed
Computing (5), pp. 1-6, 1991.

J. Hastad, T. Leighton, and M. Newman, “Reconfiguring a Hyper-
cube in the Presence of Faults,” in Proceedings of 19th Annual ACM
Symposium Theory of Computing,” pp. 274-284, May 1987.

S. L. Johnsson and C. T. Ho, “Optimal Broadcasting and Personalized
Communication in Hypercube,” IEEE Transactions on Computers,
Vol. 38, pp. 1249-1268, September 1989.

L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large Net-
works, Performance Evaluation and Optimization,” Computer Net-
works, vol. 1, pp. 155-174, January 1977.

P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Com-
puter Communication Switching Technique,” Computer Networks,
Vol. 3, pp. 267-286, September 1979.

L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley and
Sons, New York, 1975.

L. Kleinrock, Queueing Systems, Volume II: Computer Applications,
John Wiley and Sons, New York, 1976.

L. Kleinrock, “ On Flow Control in Computer Networks,” Proceedings
of the International Conference on Communications, Vol. 2, pp. 27.2.1-
27.2.5, June 1978.

L. Kleinrock, “Power and Deterministic Rules of Thumb for Proba-
bilistic Problems in Computer Communications,” International Con-
ference on Communications, pp. 43.1.1-43.1.10, June 1979.

C. Kim and D. A. Reed, “Adaptive Packet Routing in a Hypercube,”
in Proceedings of the Third Conference on Hypercube Concurrent Com-
puters and Applications, pp. 625-630, January 1988.

141

[Lan82)

[LH8S]

[Lit61]

[Max85]

[Max88]

[MS80]

MW7)

[NC85]

C. R. Lang Jr., The Extension of Object-Oriented Languages to a Ho-
mogeneous, Concurrent Architecture, Technical Report 5014, Depart-
ment of Computer Science, California Institute of Technology, May
1982.

T. C. Lee and J. P. Hayes, “Routing and Broadcasting in Faulty Hy-
percube Computers,” in Proceedings of the Third Conference on Hy-
percube Concurrent Computers and Applications, pp. 346-354, January
1988.

J. D .C. Little, “A Proof of the Queueing Formula L = AW,” Opera-
tions Research, vol. 9, pp. 383-387, May 1961.

N. F. Maxemchuk, “Regular and Mesh Topologies in Local and
Metropolitan Area Networks,” AT&T Technical Journal, Vol. 64, No.
7, pp. 1659-1686, September 1985.

N. F. Maxemchuk, “Distributed Clocks in Slotted Networks,” in Pro-
ceedings of Infocom 88, pp. 119-125, March 1988.

P. M. Merlin and P. J. Schweitzer, “Deadlock Avoidance - Store-
and-Forward Deadlock,” IFEFE Transactions on Communications, Vol.
COM-28, pp. 345-354, March 1980.

J. M. McQuillan and D. C. Walden, “The ARPA Network Design
Decisions,” Computer Networks, vol. 1, pp. 243-289, August 1977.

NCUBE Corporation, NCUBE/ten: An Overview, Beaverton, OR,
November 1985.

[PTLP85] J. Peterson, J. Tuazon, D. Liderman, and M. Pniel, “The Mark III

[Ren86)

[SB77]

Hypercube-Ensemble Concurrent Computer,” in Proceedings of 1985
International Conference on Parallel Processing pp. 71-73, August
1985.

D. A. Rennels, “On Implementing Fault-tolerance in Binary Hyper-
cubes” in Proceedings of 16th Fault Tolerant Compuling Symposium,
pp. 344-349, June 1986.

H. Sullivan and T. R. Bashkow, “A Large Scale, Homogeneous, Fully
Distributed Parallel Machine 1,” in Proceedings of the Fourth Sympo-
sium Computer Architecture, pp. 105-117, March 1977.

142

[Sei85a] C. L. Seitz, “The Cosmic Cube,” Communications of the ACM, vol.
28, pp. 22-33, January 1985.

[Sei85b] C. L. Seitz et al. The Hypercube Communication Chip, Display File -
5182:DF:85, Department of Computer Science, California Institute of
Technology, March 1985.

[Sei88] C. L. Seitz et al. “The Architecture and Programming of the Ametek
Series 2010 Multicomputer,” In Proceedings of the Third Conference
on Hypercube Concurrent Computers gnd Applications, pp. 33-36, Jan-
uary 1988.

[Sie85] H. J. Siegel, Interconnection Networks for Large-Scale Parallel Pro-
cessing, Lexington Books, 1985.

[SS88] Y. Saad and M. H. Schultz, ” Topological Properties of Hypercubes,”
IEEE Transactions on Computers, vol. C-37, pp. 867-872, July 1988.

[$589] Y. Saad and M. H. Schultz, “Data Communication in Hypercubes,”
Journal of Parallel and Distributed Computing, vol. 6, pp. 115-135,
1989.

[SW90] Q. F. Stout and B. Wagar, “Intensive Hypercube Communication -
Prearranged Communication in Link-Bound Machines,” Journal of
Parallel and Distributed Computing, vol. 10, pp. 167-181, 1990.

[Tan88] A. S. Tanenbaum, Computer Networks, Second Edition, Prentice-Hall,
1988.

[Tit39] E. C. Titchmarsh, Theory of Functions, Second Edition, Oxford Uni-
versity Press, London, 1939.

[TMC87] Thinking Machines Corporation, Connection Machine Model CM-2
Technical Summary, Technical Report HA87-4, April 1987.

143

