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Abstract

We give the first efficient, optimal solution to a well-studied discrete version of the
“Plateau problem” on minimal surfaces. Our approach is based on the use of network
flows to find minimum-cost slabs, which intuttively correspond to the notion of minimal
“surfaces” of prescribed thickness. An efficient implementation has been used to exhibit
minimal surface solutions for a variety of problem instances.
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(GGiven a contour in three dimensions, the “Platean problem” is to find the surface of mini-
mum area that spans the contour. The Plateau problem is part of the extensive field of minimal
surfaces, which originated with the development of the multidimensional calculus of variations
[6] [9] [10}. While the study of minimal surfaces can be traced to Lagrange {1768), it was
J. Plateau (1801-1883) who conducted the first extensive investigations, using wire loops and
soap films to physically model minimal spanning surfaces [25]. Subsequently, many mathemati-
cians of the nineteenth and twentieth centuries, including Riemann, Welerstrass, and Schwarz,
contributed to the theory of minimal surfaces [27], culminating with the discovery of general

analytic solutions by Douglas [7] and Radé [26] in the 1930’s.

Practical applications of the Platean problem abound. In orthopedic surgery or dentistry,
the shaping of prostheses involves a minimum surface computation to improve contact and to
reduce the risk of rejection or infection. Minimum surface computations also arise in the design
of packaging for consumer goods; the analogous formulation in two dimensions corresponds to

optimum path planning for robotics, or rapid deployment in military applications [20].



A surface has minimal area if and only if it has zero mean curvature at each point, but this
characterization is non-constructive. The problem is subtle: (i) a minimal surface may self-
intersect, (i) a given contour can bound numerous different surfaces of distinct topologies, and
(iii) a very slight modification to the boundary contour can cause an enormous change in the
corresponding minimal surface topology [6] [8]. Finding a minimal surface spanned by a given
contour typically entails solutton of a system of partial differential equations. In many instances,
analytic solutions are known to exist but remain virtually impossible to find; thus, solutions to
specific cases have been individually discovered and proved over the last two centuries {9] [24]

[28].

This paper gives a new, constructive approach which solves a well-studied class of discrete
Plateau instances using network flow techniques. We generalize standard formulations in that
we do not search for a minimal (zero-thickness) surface; rather, we seek a minimal slab having
some prescribed positive thickness d (this informal terminology should evoke the picture of, e.g.,
a thick orange peel). Qur algorithm obtains a minimum-cost slab having thickness everywhere
of at least d, where cost is defined to be the total weighted volume of the slab with respect to

an arbitrary weight function defined over R3.

Our solution diverges from the usual finite-element based approach, and instead employs a
more direct combinatorial technique involving network flows [11]. The crucial observation is that
a minimum-cost slab which spans a set of locations (e.g., the set of locations on the given contour)
ts also a minimum-cost cut-set which separates two other locations. Given this observation, we
efficiently obtain eptimael minimum surface solutions by computing maximum flows to exploit
the duality between spanning sets and separating sets [21] [22]. Several important features of

our method are as follows:

1. First, we depart from traditional methods in allowing the minimum surface to possess
a positive thickness; this yvields added realism in that all physical objects will have such

“dimension”.

2. Second, all previons methods define the cost of the surface to be its area; we generalize

the minimum surface computation within an arbitrarily weighted space {as opposed to a



uniformly weighted volume). This allows our method to produce solutions which trade
off surface area in favor of occupying “cheaper” regions of the space (e.g., stronger or

healthier regions within a bone). Again, this adds practicality to the approach.

3. Third, our approach guarantees a globally oplimal solution to the discrete Plateau prob-
lem that we formally define below. In contrast, all previous methods involve variational
techniques which can only guarantee io converge to locally optimal solutions. Moreover,
a major attraction is that the algorithm gives the first efficient, polynomial-time solution
to the discrete Plateau formulation below. Our algorithm can be implemented to run
in O(|N|?) time where |N| is the number of nodes in a discrete mesh representation of
the space, and experimental results confirm that we can efficiently find minimal surface

solutions.

4. Finally, other advantages include: (i) the restriction of our method to two dimensions
provides the first efficient, optimal solution for the minimum-width path planning problem
in arbitrarily weighted terratns [20]; (i1) the method extends to address Plateau’s minimum-
surface formulation in arbitrarily high dimension; and (iii) the intrinsic regularity and
geometry of the underlying space yields a layered, bounded-degree network representation,

resulting in possible added efficiency of our network-flow approach.

1 Problem Formulation

In its simplest form, the Plateau problem is as follows: given a Jordan curve ['* in #°, find a
surface D* of minimum area having boundary I'*. This formulation is difficult to address due
to its generality, and thus in the remainder of the paper we deal with the well-studied class of
instances first described by Rado [26], for which (1) the orthogonal projection I' of the given
boundary I'* onto the zy-plane is simple (i.e., non self-intersecting), and (2} the solution admits
a functional representation z = f(r,y), where f is continuous and has domain equal to the
subset of the xy-plane bounded by I'. The first condition specifies that the planar projection
of the boundary curve forms a simple closed loop, while the second condition specifies that the

minimal surface solution can be projected onto the interior of this planar loop without “overlap”.



Radd’s two conditions give us the “restricted Plateau Problem” [26]: given a Jordan curve
I'* in %3 whose projection I' onto the xy-plane is a deformed (i.e., homeomorphic to a) circle,
find a surface D* (having functional representation z = f(z,y)) of minimal area with boundary
I'* (Figure 1}. Note that in our discussion, we adopt the convention of using starred letters to
denote three-dimensional objects (e.g., a contour I'*, a surface "), and unstarred letters to
denote their respective projections {e.g., a boundary I', a region D); a glossary of notation is

given at the end of the paper.
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Figure 1: A surface D* and its bounding contour I'™, as well as the corresponding
projected region D) and its boundary T'.

A recent trend has been to solve instances of the Platean problem empirically via numerical
methods. Wilson [32] discretized the problem by approximating the minimal surface using
triangulations. Other methods for the numerical solution of a restricted version of the Plateau
problem were given by Greenspan [15] [16], who used a combination of difference and variational
methods, and by Concus [4], who used a finite difference approach. A more general numerical
method is the finite element scheme given by Hinata et al. [18]. More recent efforts include
those of Tsuchiya, who gave methods for approximating minimal surfaces in parametric form,
again using a finite element approach [29]. Tsuchiya’s work is noteworthy for demonstrating
convergence under certain conditions [30] [31], but this guaranteed convergence is not necessarily
to the global optirmum solution. It should also be noted that most of these previous works do
not address the issue of computational efficiency; those methods which are “efficient” in the
size of the discretized problem representation again cannot guarantee convergence to the global

optimum solution.



We now formally develop the discrete Plateau problem formulation which satisfies Radd’s
conditions, and which we solve in Section 2 below. The development will focus on the duality

between connection and separation which motivates our network flow sclution.
Definition: A region is a simply connected, compact subset of %2,

Given any three-dimensional point set P* C R®, its projection is the set of all points in
the zy-plane with z and y coordinates equal to those of some point in P*; ie., proj(P*) =
{(z,y) | 3z > (=,y,2) € P*}. We naturally extend this idea of projection to apply to
any function f{x,y) of two variables, by considering the function f to be the set/relation
{(z,y, flz,y) | =,y € R, where f(z,y) is defined}; thus, proj(f) is simply the domain of
the function f. With this in mind, we capture Radd’s class of minimum-surface instances by
defining a boundery to be a Jordan curve T in the plane, and by defining a contour I'* to be a

three-dimensional embedding of a Jordan curve which has the required functional representation:

Definition: A confour T* is the set of points {(z,y, f(z,¥)) € £3 | (z,y) € T} where fisa

continuous real function f : I' — & over some boundary T

By the Jordan curve theorem [5], any boundary T partitions the plane into three mutually
disjoint sets: T itself; its interior ¢n#(T'); and its exterior exi(I'). Thus, a contour I'" 1s a
three-dimensional embedding of a deformed circle, and the orthogonal projection of I'* onto the

zy-plane is the boundary T of some region D =int(I'YUT.

In view of the functional representation, any surface D* that spans ['™* will satisfy prej(f3*) =

D, ie.:

Definition: A surface D* is the set of points {{(z.y, f*(2,¥)) € R3|(z,y) € D} where [* is a

continuous real function f* : D — R defined over some region 2 in the zy-plane.

Any contour T'™ induces an infinite family of distinct spanning surfaces. We may view the
continuous surface function f* : D — H as an extension of the contour function f: ' — R; 1.e,,

(2, y) = f(z,y) for all (x,y) € T C D (recall Figure 1).

Given a surface D*, define the cylinder cyl(D*) to be the set of all points directly above



or below D*; in other words, cyl(D*) = {(z,y,z) | (¢, y) € proj(D*),z € R}. We may extend
the cyl function to contours: cyl(T*) =cyl{ D), where as usual D =proj(T*) U int(proj(T*)).

Intuitively, any surface D* partitions cyl(D*) into three mutually disjoint subsets:

1. the points lying above D*, denoted by Df = {(z,y,z) | (z,y) € prof(D), z > f*(z,y)};
2. the points of D* itsell, {{x,y, f*(x,y)) | (z,y) € prof( D)}, and

3. the points lying below D*, denoted by D} = {(z,y.2) | (z,%) € prof(D*),z < f*(z,y)}.

In other words, the surface D* separates Di from D}. In practice, we truncate both the top
and the bottom of the cylinder cy!(I'™) “far enough” above and below D~ respectively, so that
both D} and D} are bounded sets. We then define a weight function w : cyiT*) — R¥ such

that each point s € cgl{T*) has a non-negative weight w(s).

We now generalize our formulation to allow a prescribed non-zero thickness to the separating
surface D* (recall the orange peel suggested above). From this, we will establish the relationship

hetween the concept of d-separation [14] [19] and this thickness-d requirement.

Definition: Given a contour I, a d-separating slab ¥ C cyl(D") is a superset of some surface
D" with T as the bounding contour of D*, such that any point of D} — D* is at distance d or

greater from any point of D)} — D*.

This is illustrated in Figure 2. We say that D* is a minimal d-separating slab if no subset of D*
satisfies the preceding definition. The cost of a slab is defined to be the integral of the weight
function w over the volume of the slab. Because the weight function is non-negative and because
we are interested in minimum-cost slabs, our discussion henceforth will refer only to minimal

d-separating slabs. Given d > 0, the thickness-d Platean problem is stated as follows:

Thickness-d Plateau Problem: Given a contour I'*, a weight function w : cyl(T*) — R,

and a thickness ¢ > 0, find a d-separating slab D™ C ¢yi(T*) which has minimum total cost.

While the formulation specifies an arbitrary weight function that must be integrated over the

volume of the slab to vield a total cost, in practical applications the space is often discretized



Figure 2: a d-separating slab D* relative to a given contour T'.

relative to a given fixed grid or sampling granularity. This is a standard assumption with
numerical approaches to the Plateau problem (e.g., [18] [29] {32]), and in the present work we
also adopt this assumption of a fixed grid representation. With such a discrete version of the
thickness-d Plateau problem, the cost of a slab is naturally defined to be the sum of the weights
of the grid points contained in it. The notion of d-separation also naturally extends to the

discrete grid:

Definition: Given a cylinder S, a discrete d-separating slab D* in the gridded space S is the

set of gridpoints of S contained in some d-separating slab D* in S (Figure 3).

As in the continuous case, a discrete d-separating slab partitions the rest of the gridpoints into
two sets, such that each gridpoint in one set is at least distance d away from any gridpoint in
the other set. A discrete d-separating slab is minimal if no subset of it satisfies the preceding

definition. We now have:

Discrete Plateau Problem: (Given a weighted gridded space $ with boundary B C S, a
contour I'* on the boundary of S, and a thickness d > 0, find a discrete d-separating slab

D c S which contains I™* and has minimum total cost.



Figure 3: A_discretized representation S of a space S, and a discrete d-separating
slab D" in 5. Note that D* is the set of lattice points contained in the continuous
d-separating slab 1) in S,

We now use a network flow approach to develop an efficient, optimal algorithm for the discrete
Plateau problem. Note that the granularity of the grid is intrinsic to the problem instance, and
that our method will optimally solve any discrete Plateau instance. Intuitively, if the granularity
quantum of the grid is near zero, the solution of the discrete Plateau problem instance will also

solve the corresponding continuous thickness-d Plateau problem instance.

2 A Solution Using Network Flow

To solve the discrete Plateau problem, we use ideas from network flows in continua [19] and
exploit the duality between a minimum cut and a maximum flow. The overview of our solution

is as follows:

1. Discretize the volume of the cylinder induced by the given contour {i.e., consider only the

lattice points of cyl(T*) with respect to a given resolution).

2. Create a d-connected mesh network over cy{{T'™} by connecting each lattice peoint to all
other lattice points within distance d; this guarantees that any separating set of nodes
will have a minimum thickness d (we use the obvious one-to-one correspondence between

nodes of the network and lattice points of the cylinder).



3. Connect a source node s (sink node ¢) to all nodes on the surface of the cylinder that lie

below (above) the contour.
4. Use a maximum flow algorithm to compute a maximum s-¢ flow in the resulting network.

5. A maximum s-f flow specifies a minimum cut through the cylinder which separates s from
t, and this minimum cut corresponds to a minimal thickness-d slab that contains the given

contour.

Before describing each of these steps in greater detail, we first review several key concepts
from the theory of network flows [11] [23]. A flow network n = (N, A, 5.4, ¢,¢') is a directed
graph with node set N; a set of directed arcs A C N x N; a distinguished source s € N and
a distinguished sink ¢ € N; an are capacity function ¢ : A — Rt which specifies the capacity
cij > 0 of each arc a;; € A; and a node capacify function ¢/ : N — R* which specifies the
capacity ¢} > 0 of each node n; € N. (To handle undirected graphs, we may replace each

undirected arc a;; by two directed arcs ¢;; and a;;, each having capacity i)

A flow in 7 assigns to each arc a;; a value ¢;; with the constraint that 0 < ¢;; < c¢;;. An arc
a;; is saturated if ¢;; = c;;. We insist on flow conservation at every node except s and ¢, and

we require that the flow through each node does not exceed the capacity of that node:

Sei o= Y b < ¢ j#st
: p

A node n; is called satureted if E iy = cf,-. Since flow is conserved at every node, the total
i
amount of flow from the source must be equal to the total flow into the sink, and we call this

quantity the value ¢ of the flow:

‘13:2‘15“' = Z¢j:
¢ i

A flow with the maximum possible value is called a mazimum flow. An s-f cut in a network
is a set (N', A’) of nodes N’ C N and arcs A" C A such that every path from s to f uses at

least one node of N’ or at least one arc of A’. The capacity ¢c(N', A') of a cut 1s the sum of the



capacities of all nodes and arcs in the cut. A classical result of linear programming states that
the maximum flow value is equal to the minimum cut capacity; this is the mez-flow min-cut

theorem [11]:

Theorem: Given a network n = (N, 4, 5,t,¢,¢'), the value of a maximum s-¢ flow is equal to
the minimum capacity of any s-¢t cut. Moreover, the nodes and ares of any minimum s-¢ cut are

a subset of the saturated nodes and saturated arcs In some maximum s-t flow. 0

Recall our earlier observation that any slab [* will separate, or cut, D} from Dj. In
particular, a slab [* with small cost will correspond to a cut between a node s € D and a
node t € D} with a small cost (capacity). Since a subset of the saturated nedes/arcs in some
maximum s-¢ flow will yield this s-¢ cut, it is natural to derive the desired minimal slab via a

maximum flow computation in an appropriately capacitated network.

Qur first step towards this goal is to transform an instance of the discrete Plateau problem
into an instance of network flow, by: (i) superimposing a discrete grid on egl(T'™™), (ii) assigning
capacities to nodes in the grid according to the weight function w :cylT™*) — R*, and (iii)
converting the grid into a mesh network n by mapping gridpoints to capacitated nodes of  and

then adding infinite-capacity arcs to join these nodes into a mesh.

To ensure that any s-f cut in the mesh created by (iii) will have the required thickness, we
define the d-neighborhood of a node v to be the set of all nodes at distance d or less from v. We
then connect each node to all nodes in its d-neighborhood with infinite-capacity ares, where d
is the prescribed slab thickness. An illustration of this construction for d = 2 is given in Figure

4.

Finally, we introduce a source node s and a sink node ¢, connecting them respectively to
the nodes of the boundary B C S lying “below” T'* and to the nodes of B lying “above” I'*
This forces any st-separating cut (which will correspond to the desired d-separating slab) to
contain the given contour nodes I'* lying on the boundary B of the gridded space. In other
words, we force the minimum slab te span the contour T'*. This completes the outline of our

transformation; Figure 5 gives a high-level illustration of the construction.
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Figure 4: A node and its d-neighborhood; here d = 2.

The resulting d-connected network has two useful properties. First, a minimum s-¢ cutset in
this network will consist only of nodes. This is because all arcs have infinite capacities, while
there exist cuts with finite cost since all node capacities are finite. Second, any nodeset that
cuts this network must correspond to the set of lattice points in a discrete d-separating slab;

this property follows from the d-connectivity of the mesh.

Finally, observe that up to this point, we have converted a discrete Plateau problem instance
to a maximum flow instance on an undirected, node-capacitated network. However, network flow
algorithms typically assume that the input i1s an are-capacitated network (with infinite node
capacities). Therefore, in order to use a standard maximum flow algorithm on our network,
we must transform an instance having both node and arc capacities into an equivalent arc-
capacitated maximum flow instance. To accomplish this, we use the standard device of splitting
each node v € N with weight w, into two unweighted nodes v/ and v, then introducing a
directed arc from v’ to v" with capacity w,. Then, we transform each arc (u,v) € A of the
original network into two infinite-capacity directed arcs (u”,v'} and (v, u'}. Note that each
arc (v',v") of the resulting directed network will, when saturated, contribute the original node

weight 1, to the minimum cut value. This transformation is illustrated in Figure 6.

11
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Figure 5: A discrete Plateau problem instance transformed inte a network flow
instance.

Pigure 6: Transformation of a node- and arc-capacitated flow network to an arc-
capacitated flow network.

The overall size of the network increases by only a constant factor via this last transformation,
i.e., the final directed arc-capacitated network will have only 2{N| nodes and |V |+2|A} arcs. This
implies that the maximum flow computation in the transformed network will be asymptotically

as fast as in the original node-capacitated network. A formal summary of our algorithm, which



we call the Disc_Plateau algorithm, is given in Figure 7.

Algorithm: Disc_Platean

Input: contour I'*
node weight function w :cy(I*) — RF
thickness d > 0
grid size ¢

Output: A minimal d-separating slab R* with boundary contour T*
Create a d-connected mesh network G of grid size g over cyl(T™)
Set node capacities of (¢ according to weight function w

Set arc capacities of G to infinity

Set all boundary node capacities to oo

Transform node-capacitated network & into are-capacitated network 7
Create source node s and sink node ¢ in 7

Connect s to boundary nodes (z,y,2) € cyi(I'*) 3 2 < T*(z,y)
Connect ¢ to boundary nodes (z,y,2) € cgl(T™) 3 2 > T*(2,y)

Set capacities of all arcs adjacent to s or ¢ to oo

Compute a maximum s-¢ flow in 5

Output all nodes incident to arcs in a minimum cut of

Figure 7: Algorithm Disc_Platean finds a d-separating slab of minimum cost in an
arbitrarily weighted discrete space, i.e., an optimal solution to the discrete Platean
problem. The time complexity of the algorithm is dominated by the maximum flow
computation,

The max-flow min-cut theorem [11} and the existence of polynomial-time algorithms for

maximum flow together imply the following:

Theorem: Algorithm Disc_Plateau outputs an optimal solution to the discrete Plateau problem

in time polynomial in the size of the gridded space S 1

3 Correctness Issues

There exist cases where the minimal surface exits the cylinder ¢yl(I'*) {2], and since our method is
confined to yield an optimal solution inside cyl(T*), its solution will not correspond to the global
optimum: a typical construction is given in Figure 8. However, in such examples, although the
contour T'* projects to a deformed circle, the true minimal surface does not admit a functional
representation D* = {(z,y, f*(z,y)) € R®|(2,y) € D} as required by the second condition

defining Radé’s class, and thus our methodology does not claim to address such examples in the

13



first place.
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Figure 8: An example of a bounding contour T* (left) where the minimal surface
(right) exits the convex hull of cg{(T'*). However, this instance is not in Radé’s class
since a vertical line intersects the surface more than once (right), contradicting the
second condition (functional representation of D*) defining Radd’s class.

In fact, for a uniformly weighted space (which corresponds to Plateau’s original minimum-
surface formulation), the difficulty presented by D* lying outside cyl(T™) can occur only when
the eontour’s planar projection I" is non-convex. However, in such a uniformly weighted space,
no part of a minimal surface can lie outside the cylinder induced by the convex hull of the
boundary contour, an observation which follows directly from the minimum principle that is
usually applied in, e.g., the solution of Laplace’s equation [3] [17]. The minimal principle states
that if the values of a continuous function are held fixed at the domain’s boundary, then the
function can not attain a minimum or maximum anywhere in the interior of the domain, unless
the function is constant over the entire domain (for example, if the temperature function on the
boundary of a disk is held fixed and heat diffusion is allowed to occur until a thermal equilibrium
steady state is reached, then both the minimum and maximum temperatures will occur on the
disk’s boundary). Thus, if we extend the search space to include the entive convex hull of the
projection of the contour, i.e., we define the augmented cylinder induced by a contour I'* to be
eyl(T*) = cyl convez_hull(proj(I'*))), our methedology applied within this augmented cylinder

will yield globally optimal solutions.
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The mimmum principle also implies that a minimal surface in a uniformly weighted space
can not extend up past the highest point on its bounding contour, or down past the lowest point
on the contour. With regard to our solution of the discrete Plateau problem, the minimum
principle thus implies that given a uniform weight function, “far enough” above {(below) the
bounding contour I'* (recall the discussion defining a cylinder in Section 1) may be achieved

with a discrete cylinder that extends no higher (lower) than the highest (lowest) point on T'".

4 A Practical Implementation

There are many algorithms for computing maximum flows in a network [11] [12] [14]. To
demonstrate the viability of our approach, we have simply applied an existing implementation
of the algorithm of Dinic [13]. Starting with an empty flow, the Dinic algorithm iteratively
augments the flow in stages: the optimal flow solution is achieved when no flow augmentation
is possible. Each stage starts with the existing flow, and attempts to “push” as much flow as
possible along shortest paths from the source to the sink i a residual network wherein each
arc has capacity equal to the difference between its original capacity and its current flow value.
After the current flow has been thus augmented, newly saturated arcs are removed and the
process iterates. Since there can be at most |N| — 1 such stages, each requiring time at most

O(lA} - |N|), the total time complexity of the Dinic algorithm is O(|A| - |N|?).

The time complexity of the Dinic algorithm is O(|N|3), where |N| is the number of nodes
in the discrete mash representation of the space. In practice, more efficient flow algorithms are

available. For example, by using the network flow algorithm of [1], we obtain the following:

Theorem: For a given prescribed slab thickness d, our algorithm solves the discrete Plateau
problem in O(|N|?) time, where |N| is the number of nodes in the gridded representation of the

space.

Proof: The degree of each node in the mesh is bounded by d°, so that |4] = O(d® - |N]). The
network flow algorithm of [1] operates within time O(| 4] - |N| - log(|A[/|N])}. Assuming that d
N

‘3)_ 0

is a constant, the overall time complexity of cur method is therefore O

15



Our current implementation integrates ANSI C code to transform an arbitrary Plateau
problem instance satisfying conditions (1) and (2) of the discrete Plateau problem formulation
into a maximum-flow instance; we use the Fortran-77 Dinic code of [13] to compute the flow, and
then invoke Mathematica [33] to draw the resulting surface. We have tested our implementation
on several classes of problem instances, involving underlying spaces that are both uniformly
weighted and non-uniformly weighted. Figure 9 shows a small example with boundary contour
consisting of four diagonals on the faces of a cube, uniform node weights, and d = 2; the resulting

saddle is optimal for the resolution used.

>
o

43

]

8

Figure 9: Minimal surface computation in a uniformly weighted space.

Based on our experimental results, we have concluded that our approach constitutes a viable

16

TFOIWEAL. 1T O NI I Y T T O

2UHE § NG AT VRN e L TR 88T

R L R



new method for solving the discrete Plateau problem in arbitrarily weighted spaces. Although
Dinic’s algerithm is certainly not the ideal maximum flow algorithm for a mesh topology, typical
running times used to generate and solve our test cases range from only several seconds (for the
example of Figure 9) to an hour on a low-end SUN-4 workstation with small RAM/swap space.
Our runtimes show the expected clear dependencies on the mesh resolution, the minimum slab

thickness d, and the memory/swap configuration available.

5 Conclusions

We have developed a polynomial-time combinatorial algorithm which gives optimal sclutions
to a well-studied class of instances of the discrete Plateau problem. Our method is based
on the duality between connecting sets and separating sets, and relies on a maximum-flow
computation which finds a minimum-cost d-separating slab of prescribed thickness d in an
arbitrarily weighted space. The accuracy of the solution with respect to the continuous version
of the problem depends an the grid resolution, which is a parameter intrinsic to the input. Our

method generalizes to both lower- and higher-dimensional instances.

Chief among the future research goals is improvement of the time complexity of the network
flow computation; substantial improvement is likely since the mesh is a highly regular, symmetric
network that admits a concise representation. Additional research might also examine minimal
surface computations using hierarchical approaches as a heuristic speedup; addressing the case
where the prescribed contour does not necessarily lie on the boundary of its containing space is
also of interest. Finally, we believe that our methodology can address a larger class of Plateau
instances via the standard approach of decomposing a spanning surface into patches which may

then be individually optimized.
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Glossary

d - Prescribed minimum thickness (non-negative) of the solution surface.
P* - A three-dimensional point set; i.e., P C R3.

proj(P) - Orthogonal projection of P onto the ay-plane.

ind(I"} - Poiats interior to the Jordan curve I,

ext(T') - Points exterior to the Jordan curve T

T'* - A Jordan curve in R®,

slab - A “surface” having a specified positive thickness d.

I' - Orthogonal projection prof{T’) of T'* onto the zy-plane.

D - A (planar) region; also the interior inf(T") of T

D* - A minimal surface spanning the boundary I'*.

cyl(D*) - All points above and below D™ le., eyl D*) = {(x,y,2) | (2,¥) € proj(D*}, z € R}.

cyl(T*) - Extension of eyl to contours: i.e., cyl(T™) = cyl(int(proj(T™))).

D; - Set of points in cyl(D*) lying above D7 ie., D {z,y,2) | (x,y) € proj(D*),z >

D™ (z, )}
D} - Set of points in cyi(D*) lying below D*; ie., Dy

D*(z,y)}.

{(z,9.2) | (z,y) € proj(D*}, 2z <

i

w - A non-negative weighting function; i.e., w :eyl(I*) — Rt.

D* - A d-separating slab, which is also a superset of some surface D*.
S - A space; i.e., a subset of R,

B - Boundary of a space.

S - A gridded (discrete) space; i.e., a subset of Z x Z x Z.
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D* - A discrete d-separating slab, which is also a subset of some d-separating surface D
N - A node set.

A-An arcset; e, ACN x N.

G - A graph; ie, G= (N, A).

¢ - An arc weight function; i.e.,, c: A — Rt.

¢’ - A node weight function; t.e., ¢/ : N — R+,

s - A distinguished source node s € V.

t - A distinguished sink node t € N.

77 - A capacitated flow network with node set N, arc set A, source s, sink {, arc capacity function

¢, and node capacity function ¢’

n; - A node n; € N in the graph G = (N, A).

a;; - An arc a;; € A connecting nodes n; and nj.

@i; - Flow value of arc a;; (satisfying 0 < ¢é;; < ¢;;).

& - Value of the flow in the network; 1.e., ® = Zési = Z @1
- ;

J

(N’ A") - An s-t cut in 7; i.e., a set of nodes N’ C N and arcs A’ C 4 such that every path

from s to t uses at least one node of N’ or at least one arc of 4"

c(N', A") - Capacity of the cut (N', A’); i.e., the sum of the capacities of the nodes in N’ and

the arcs in A'.

conver_hull(S) - The convex hull of S; i.e., all convex combinations of points in 5.
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